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Using e+e− collision data at ten center-of-mass energies between 2.644 and 3.080 GeV collected with the 
BESIII detector at BEPCII and corresponding to an integrated luminosity of about 500 pb−1, we measure 
the cross sections and effective form factors for the process e+e− → �0�̄0 utilizing a single-tag method. 
A fit to the cross section of e+e− → �0�̄0 with a pQCD-driven power function is performed, from which 
no significant resonance or threshold enhancement is observed. In addition, the ratio of cross sections 
for the processes e+e− → �−�̄+ and �0�̄0 is calculated using recent BESIII measurement and is found 
to be compatible with expectation from isospin symmetry.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the past few decades, many experiments have observed sur-
prising behavior in the near-threshold region in the production 
cross section of nucleon pairs in e+e− collisions. The measured 
cross section for the process e+e− → pp̄ is approximately con-
stant in the energy range from threshold up to about 2 GeV [1–8], 
with an average value of about 0.85 nb. Similar behavior in 
the near threshold region has been observed in the processes 
e+e− → nn̄ [9–11], e+e− → ��̄ [12] and e+e− → �+

c �̄−
c [13,14]

with average cross sections of 0.8 nb, 0.3 nb and 0.2 nb, respec-
tively. The non-vanishing cross section near threshold and the 
wide-range plateau discussed above have attracted much interest 
and driven many theoretical studies, including scenarios that in-
voke B B̄ bound states [15] or unobserved meson resonances [16], 
Coulomb final-state interactions or quark electromagnetic interac-
tion that into account the asymmetry between attractive and re-
pulsive Coulomb factors [17,18]. In the present context of QCD and 
of our understanding of the quark-gluon structure of hadrons, it is 
particularly interesting to understand these anomalous phenomena 
in the hyperon sector [19–21]. Recently, the BESIII collaboration 
performed high precision studies of possible threshold enhance-
ment in the processes e+e− → �±�̄∓ [22] and �−�̄+ [23] with 
an energy scan method, and also reported a non-vanishing cross 
section near threshold. To understand the nature of these thresh-
old effects, measurements of the near-threshold pair production of 
other hyperons will be valuable.

Additionally, the electromagnetic structure of hadrons, parame-
trized in terms of electromagnetic form factors (EMFFs) [24], pro-
vides a key to understanding QCD effects in bound states. However, 
experimental information regarding the EMFFs of hyperons re-
mains limited. The access to hyperon structure by EMFFs provides 
extra motivation for measurements of exclusive cross sections and 
EMFFs for baryon antibaryon pairs.

In this Letter, we report a measurement of the Born cross sec-
tion and the effective form factor for the process e+e− → �0�̄0

using a single-baryon-tag method at center-of-mass (CM) energies 
between 2.644 and 3.080 GeV. We fit the Born cross sections under 
various hypotheses for the �0�̄0 production in e+e− annihilation. 
The data set used in this analysis corresponds to a total of about 
500 pb−1 e+e− collision data [25,26] collected with the BESIII de-
tector [27] at the BEPCII storage rings [28].

2. BESIII detector and Monte Carlo simulation

The BESIII detector [27] records symmetric e+e− collisions pro-
vided by the BEPCII storage rings [28]. BESIII has collected large 
data samples in the τ -charm threshold region [29]. The cylindri-
cal core of the BESIII detector covers 93% of the full solid angle 
and consists of a helium-based multilayer drift chamber (MDC), a 
plastic scintillator time-of-flight system (TOF), and a CsI(Tl) elec-
4

tromagnetic calorimeter (EMC), which are all enclosed in a super-
conducting solenoidal magnet providing a 1.0 T magnetic field. The 
solenoid is supported by an octagonal flux-return yoke with re-
sistive plate counter muon-identification modules interleaved with 
steel. The charged-particle momentum resolution at 1 GeV/c is 
0.5%, and the dE/dx resolution is 6% for electrons from Bhabha 
scattering. The EMC measures photon energies with a resolution of 
2.5% (5%) at 1 GeV in the barrel (end-cap) region. The time resolu-
tion in the TOF barrel region is 68 ps. The end-cap TOF system was 
upgraded in 2015 using multi-gap resistive plate chamber technol-
ogy, providing a time resolution of 60 ps [30].

To determine the detection efficiency 100,000 simulated e+e−→
�0�̄0 events are generated for each energy point with phase space 
modeling in the conexc generator [31], which takes into account 
the beam-energy spread and corrections from initial-states radi-
ation (ISR). The �0 is simulated via evtgen [32] in its decay to 
the π0� mode with the subsequent decay � → pπ− with phase 
space model. The anti-baryons are allowed to decay inclusively ac-
cording to the branching fractions from the Particle Data Group 
(PDG) [33] (unless otherwise noted, the charge-conjugate state of 
the �0 mode is included by default below). The response of the 
BESIII detector is modeled with Monte Carlo (MC) simulations us-
ing a framework based on geant4 [34]. Large simulated samples 
of generic e+e− → hadrons events (inclusive MC) implemented by 
the conexc generator [31] are used to estimate background.

3. Event selection

The selection of e+e− → �0�̄0 events with a full reconstruc-
tion method suffers from a low reconstruction efficiency. Hence, 
a single baryon �0 tag technique is employed, i.e., only one �0

baryon is reconstructed via the π0� decay mode with � → pπ−
and π0 → γ γ , and the presence of the anti-baryon �̄0 is inferred 
from the recoil mass of the detected �0.

Charged tracks are required to be reconstructed in the MDC 
within the angular coverage of the MDC: | cos θ | < 0.93, where θ
is the polar angle with respect to the e+ beam direction. Informa-
tion from dE/dx measured in the MDC combined with the TOF is 
used to construct a particle-identification probability for the hy-
potheses of a pion, kaon, and proton. Each track is assigned to the 
particle type with the highest probability. Events with at least one 
negatively charged pion and one proton are kept for further analy-
sis.

Photons are reconstructed from isolated showers in the EMC. 
The energy deposited in the nearby TOF counter is included to im-
prove the reconstruction efficiency and energy resolution. Photon 
energies are required to be greater than 25 MeV in the EMC bar-
rel region | cos θ | < 0.8), or greater than 50 MeV in the EMC end 
cap (0.86 < | cos θ | < 0.92). The showers in the angular range be-
tween the barrel and the end cap are poorly reconstructed and 
are excluded from the analysis. Furthermore, the EMC timing of 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Distribution of Mπ0� versus Mrecoil
π0�

for all energy points from data. The 
dashed lines denote the �0 signal region.

the photon candidate must be in coincidence with collision events, 
0 ≤ t ≤ 700 ns, in order to suppress electronic noise and energy 
deposits unrelated to the collision events. At least two photon can-
didates are required.

To reconstruct the π0 candidates, a one-constraint (1C) kine-
matic fit is employed for all γ γ combinations by constraining the 
invariant mass of two photons to the π0 nominal mass [33], and 
a requirement is placed on the goodness-of-fit, χ2

1C < 20, to sup-
press non-π0 backgrounds. Here the fitted momentum of π0 is 
used to further analysis. To reconstruct � candidates, a secondary 
vertex fit [35] is applied to all pπ− combinations and those with 
a goodness-of-fit χ2 < 500 are selected. In the case when there is 
more than one combination satisfying this requirement then that 
one with the minimum value of |Mpπ − m�| among all pπ com-
binations is chosen, where Mpπ is the invariant mass of the pπ
pair, and m� is the nominal mass of the � baryon [33]. The pπ−
invariant mass of the selected candidate is required to be within 5 
MeV/c2 of the nominal � mass, a criterion determined by optimiz-
ing the figure of merit (FOM) S√

S+B
based on the MC simulation. 

Here S is the number of signal MC events and B is the number of 
the background events expected from simulation. To further sup-
press background from non-� events, the � decay length, i.e., the 
distance between its production and decay positions, is required 
to be greater than zero. The �0 candidates are reconstructed from 
the combination of the selected π0 and � candidates by minimiz-
ing the variable |Mπ0� − m�0 |, where Mπ0� is the invariant mass 
of the π0� pair, and m�0 is the nominal mass of the �0 baryon 
taken from the PDG [33]. In order to suppress background further, 
the π0� invariant mass is required to be within 10 MeV/c2 of the 
nominal �0 mass, where the cut value is again set from FOM stud-
ies.

To select �̄0 anti-baryon candidates, we use the distribution of 
mass recoiling against the selected π0� system,

Mrecoil
π0�

=
√

(
√

s − Eπ0�)2 − |�pπ0�|2, (1)

where Eπ0� and �pπ0� are the energy and momentum of the se-
lected π0� candidate in the CM system, and 

√
s is the CM energy. 

Fig. 1 shows the distribution of Mπ0� versus Mrecoil
π0�

for all energy 
points. A clear accumulation is observed around the �0 nominal 
mass. 

4. Extraction of signal yields

The signal yield for the process e+e− → �0�̄0 at each en-
ergy point is determined by performing an extended unbinned 
maximum-likelihood fit to the Mrecoil

π0�
spectrum in the range from 

1.20 GeV/c2 to 1.45 GeV/c2. In the fit, the signal shape for the pro-
cess e+e− → �0�̄0 at each energy point is represented by the 
5

Fig. 2. Fit to the recoil mass spectra of π0� for each energy point. Dots with error 
bars show data. The short-dashed line represents the signal shape and the long-
dashed line signifies background.

simulated MC shape. After applying the same event selection on 
the inclusive MC samples at each CM energy, it is found that some 
background is present at each energy point, mainly coming from 
e+e− → π��̄ events. These events distribute smoothly in the re-
gion of interest and can be described by a second-order polynomial 
function, while for two energy points near the �0�̄0 mass thresh-
old at 2.644 and 2.646 GeV, the background is modeled by an 
Argus function [36]. The signal significances for the energy points 
2.644, 2.646, 2.700 and 2.950 GeV are found to be below three 
standard deviations. For these energy points, the upper limits for 
e+e− → �0�̄0 production are calculated at the 90% confidence 
level (C.L.) based on the profile likelihood method incorporating 
systematic uncertainties [37]. Fig. 2 shows the fit to the distri-
bution of Mrecoil

π0�
for the e+e− → �0�̄0 process at each energy 

point after applying the event selection described above. Note that 
single-baryon-tag method means that in a small fraction of events 
both the �0 and �̄0 hyperons are reconstructed, which means that 
the recoil-mass fit introduces double counting into the analysis. A 
correction factor of 1.08 is applied to the statistical uncertainty to 
account for this effect [23,38] based on MC simulation, while for 
two energy points near the �0�̄0 mass threshold at 2.644 and 
2.646 GeV, the correction factor is estimated to be 1.03. The num-
ber of observed events is summarized in Table 1. 

5. Determination of Born cross section

The Born cross section for e+e− → �0�̄0 is calculated by

σ B(s) = Nobs

2L(1 + δ) 1
|1−
|2 εB

, (2)

where Nobs is the number of the observed signal events, L is the 
integrated luminosity related to the CM energy, the factor 2 is 
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Table 1
The measured Born cross sections σ B and effective form factors |Geff(s)| for e+e− → �0�̄0 at ten CM energy points. Also listed at each point is the integrated luminosity L, 
the VP correction factor 1

|1−∏ |2 , the ISR correction factor 1 + δ, the detection efficiency ε , the number of the observed signal events Nobs(NU P ), and the signal significance 
S(σ ), taking account of both statistical and systematic uncertainties. The values between the parentheses for σ B and |Geff(s)| are the corresponding upper limits at 90% C.L.

√
s GeV L (pb−1) 1

|1−∏ |2 1 + δ ε (%) Nobs(NU P ) σ B (pb) |Geff(s)| ×10−3 S(σ )

2.644 33.72 1.04 0.75 1.60 ± 0.03 3.0 ± 2.8 (< 7.9) 5.7 ± 5.4 ± 1.1 (< 15.0) 54.0 ± 26.0 ± 5.0 (< 88.0) 2.0
2.646 34.00 1.04 0.76 1.71 ± 0.03 9.3 ± 5.1 (< 18.0) 16.1 ± 9.4 ± 2.8 (< 31.2) 88.0 ± 26.0 ± 7.0 (< 120.0) 2.0
2.700 1.03 1.04 0.85 5.85 ± 0.05 3.8 ± 2.4 (< 7.8) 56.8 ± 35.9 ± 3.1 (< 116.5) 120.0 ± 38.0 ± 3.0 (< 170.0) 2.1
2.800 4.78 1.04 0.90 10.38 ± 0.08 27.8 ± 7.9 47.6 ± 13.5 ± 2.6 93.0 ± 13.0 ± 3.0 5.0
2.900 105.23 1.03 0.92 12.08 ± 0.08 160.0± 23.4 10.5 ± 1.5 ± 0.6 41.0 ± 3.0 ± 3.0 8.2
2.950 15.94 1.03 0.93 12.09 ± 0.08 16.7 ± 9.2 (< 28.8) 7.2 ± 4.0 ± 0.4 (< 12.4) 34.0 ± 9.3 ± 1.0 (< 44.0) 2.7
2.981 16.07 1.02 0.94 12.80 ± 0.08 20.5 ± 8.2 8.2 ± 3.3 ± 0.4 36.0 ± 7.2 ± 1.0 3.2
3.000 15.88 1.02 0.94 12.67 ± 0.08 19.9 ± 7.3 8.2 ± 3.0 ± 0.4 36.0 ± 6.5 ± 1.0 3.6
3.020 17.29 1.01 0.95 12.80 ± 0.08 20.3 ± 7.6 7.6 ± 2.8 ± 0.4 34.0 ± 6.4 ± 1.0 3.6
3.080 263.70 0.91 0.97 12.60 ± 0.08 54.0 ± 22.2 1.5 ± 0.6 ± 0.1 15.0 ± 3.0 ± 0.4 3.0
required for the inclusion of the c.c. mode, (1 +δ) is the ISR correc-
tion factor [39], 1

|1−
|2 is the vacuum polarization (VP) correction 
factor [40], ε is the detection efficiency and B denotes the prod-
uct of the known branching fractions for the decays �0 → π0�, 
� → pπ− and π0 → γ γ , respectively [33]. The ISR correction fac-
tor is obtained using the QED calculation as described in Ref. [41]
and taking Eq. (6) used to fit the cross section measured in this 
analysis parameterized as input. The measured cross sections are 
summarized in Table 1. 

6. Determination of effective form factor

Assuming that spin-1/2 baryon pair production is dominated 
by one-photon exchange, the Born cross-section for the process 
e+e− → �0�̄0 can be parameterized in terms of the two EMFFs 
G E (s) and G M(s) [42] as follows:

σ B(s) = 4πα2β

3s
[|G M(s)|2 + 1

2τ
|G E(s)|2], (3)

where α is the fine structure constant, the variable β = √
1 − 1/τ

is the B B̄ velocity, τ = s/4m2
�0 , m�0 the �0 mass, and s is the 

square of the measured CM energy. The effective form factor is 
defined as a combination of the EMFFs

|Geff(s)| =
√

2τ |G M(s)|2 + |G E(s)|2
2τ + 1

, (4)

and, through substitution of Eq. (3) into Eq. (4), is proportional to 
the square root of the Born cross-section:

|Geff(s)| =
√√√√√ 3sσ B

4πα2β

(
1 + 2m2

�0

s

) . (5)

The measured values of the effective form factors are summarized 
in Table 1.

7. Fit to Born cross section

A least-χ2 method [43] is used to fit the Born cross-section for 
the process e+e− → �0�̄0 with the assumption of two alternative 
functions. The first of these is a perturbative-QCD (pQCD) driven 
energy power function [44],

σ B = c0 · β
(
√

s − c1)10
, (6)

where c0 is the normalization, c1 is the mean effect of a set of 
possible intermediate states. This model has been applied success-
fully in studies of e+e− → ��̄ [12], �±�̄∓ [22], and �−�̄+ [23]
6

production. The fit returns c0 = (20.3 ± 9.6) pb · GeV−10 and c1 =
(1.52 ± 0.13) GeV, where the uncertainty includes both statisti-
cal and systematic contributions. Fig. 3 shows the fit result with 
quality χ2/ndof = 19.9/8.0, where the number of freedom degree 
(ndof ) is calculated by subtracting the number of free parameters 
in the fit from the total number of energy points. The second func-
tion is a coherent sum of a pQCD-driven energy power function 
plus a Breit-Wigner (BW) function to test the resonance reported 
in the charged mode [23]

σ B(
√

s) =
∣∣∣∣∣∣
√

c0 · β
(
√

s − c1)10
+ eiφ BW (

√
s)

√
P (

√
s)

P (M)

∣∣∣∣∣∣
2

. (7)

Here the mass and width are fixed to the values of the charged 
mode [23], φ is a relative phase between the BW function

BW (
√

s) =
√

12π�eeB�

s − M2 + iM�
, (8)

and the power function and P (
√

s) is the two-body phase space 
factor. In Eq. (8), �ee is the electronic partial width, M and � are 
the mass and width of BW, respectively, and B is the branching 
fraction. The significance for the resonance described by the BW is 
estimated to be 2.0σ including the systematic uncertainty, which 
receives contributions from the Born cross section for this mea-
surement and the uncertainty in the knowledge of the mass and 
width of the resonance from previous studies [23]. The fit has a 
quality of χ2/ndof = 10.7/4.0 and is shown in Fig. 3. The com-
parison of fit quality for both models is fair. Note that neither fit 
model describes the point near 2.8 GeV well, which may be due to 
statistical fluctuation or the contribution of one or more additional 
unknown resonances. A Bayesian approach [45] gives the upper 
limit on the product of the electronic partial width and the branch-
ing fractions for this possible resonance decaying to the �0�̄0 to 
be �eeB < 0.3 eV at the 90% C.L., after taking into account the 
systematic uncertainties described in the following. 

8. Systematic uncertainty

Several sources of systematic uncertainties are considered on 
the Born cross section measurement. They include the � recon-
struction efficiency, the fit range, the background shape, the mass 
resolution and the fit models for the cross section. Knowledge of 
the decay branching fractions of intermediate states and the lu-
minosity measurement gives additional contributions. All of the 
systematic uncertainties are discussed in detail below.

1. The understanding of the �0 reconstruction efficiency, which 
in turn depends on the photon-selection efficiency, the π0

reconstruction efficiency, the � reconstruction efficiency, the 
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Fig. 3. Fit to the Born cross section of e+e− → �0�̄0 at CM energies between 2.644 
and 3.080 GeV for the first assumed function (top) and second assumed function 
(bottom) discussed in the main text. Dots with error bars show the Born cross sec-
tion including both statistical and systematic uncertainties. The blue solid line is 
the fit result. The vertical dashed line represents the production threshold for �0�̄0

pairs. The bottom panel of each plot gives the distribution of fit residuals.

requirements on the mass of the � and �0, and the decay 
length of the � candidates, is studied with a control sample of 
J/ψ → �0�̄0 events via single- and double-tag methods. The 
selection criteria for the charged tracks, and the reconstruc-
tion of � and �0 candidates are exactly the same as those 
described in Sec. 3. The �0 reconstruction efficiency is defined 
as the ratio of the number of double-tag �0�̄0 events to that 
from the single tags. For studying the reconstruction efficiency 
for two energy points near threshold, care is taken to ensure 
that the momenta of the two pions in the final state of the 
control sample is within the same range as those of the sig-
nal decays. A detailed description of the method can be found 
in Ref. [46]. The difference in the �0 reconstruction efficiency 
between the data and MC samples is assigned as the uncer-
tainty.

2. The uncertainty due to the fitting range is estimated by shift-
ing the fitting range of Mrecoil

π0�
by 20 MeV/c2. The difference in 

yields is taken as the systematic uncertainty of the fit range.
3. The uncertainties due to the background shape arise mainly 

from the level of the wrong-combination background and 
the form of the polynomial function used. For the wrong-
combination background, there are transition π0’s with similar 
momenta in both the baryon and anti-baryon decay chains 
7

Table 2
Systematic uncertainty on the Born cross section mea-
surement, with the values in parentheses indicating 
the value near threshold (in %).

Source Value

�0 reconstruction 2.7 (14.8)
Fitting range 2.5
Background shape 3.3
Mass resolution 1.0
Angular distribution 1.0
Line shape 1.1
Intermediate states 0.8
Luminosity 1.0
Total 5.4 (15.5)

within the signal events. Incorrect use of these in the �0 re-
construction leads to the wrong-combination background. The 
impact of this component on the background shape is stud-
ied by studying how the shape changes as the association 
criteria for the neutral pions are varied in the MC. The un-
certainty associated with the polynomial function is estimated 
by changing from a second order to a third order function. The 
observed difference in the yields is taken as the systematic un-
certainty due to the background shape.

4. The uncertainty associated with knowledge of the mass res-
olution is estimated by changing the nominal PDF to the 
MC-simulated shape convolved with Gaussian function whose 
mean and width are free parameters. The difference in yields 
is taken as the systematic uncertainty due to the mass resolu-
tion.

5. In this analysis, the detection efficiency for each energy point 
is determined from MC simulated with the phase space model, 
which may not describe the angular distribution well. Thus, a 
joint angular distribution formalism [47] combined with the 
measured parameters in J/ψ → �0�̄0 decay is employed to 
validate the detection efficiency, where the angular distribu-
tion parameter is set to unity which is its maximally allowed 
value. The difference in the efficiency for both models is taken 
as the systematic uncertainty associated with the angular dis-
tribution.

6. The uncertainty of the fit model used to evaluate the line 
shape of Born cross section incorporating the effect of ISR fac-
tor is estimated by floating and fixing the index of the pQCD 
energy power function. The resulting change in selection effi-
ciency is taken as the systematic uncertainty due to the fitting 
model of line shape.

7. The uncertainties associated with the branching fractions of 
the intermediate states �0 and � are taken from the PDG [33].

8. The luminosity at all energy points is measured using the 
Bhabha events, with an uncertainty of about 1.0% [48].

The various systematic uncertainties on the cross-section mea-
surements are summarized in Table 2, where the values in paren-
theses represent the corresponding values for the two energy 
points near threshold. Assuming all sources to be independent, the 
total systematic uncertainty is obtained by summing over the indi-
vidual contributions in quadrature. 

9. Discussion and conclusion

Born cross sections and effective form factors for the exclusive 
process e+e− → �0�̄0 are measured by means of a single baryon 
tag method for the first time. The e+e− collision data are collected 
at ten center-of-mass energies between 2.644 and 3.080 GeV by 
the BESIII detector at BEPCII, and correspond to a total integrated 
luminosity of about 500 pb−1. The measured Born cross sections 
are described adequately with a pQCD-driven energy power func-
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Fig. 4. Comparison of Born cross sections between the charged mode [23] and neu-
tral mode (top) and the ratio of Born cross sections between both modes bottom 
for eight energy points from 2.6444 to 3.0800 GeV, where the uncertainties include 
both statistical and systematic contributions.

tion, which tend to zero around 2.64 GeV and so do not exhibit 
any obvious threshold enhancement. Allowing for a resonance at 
around 3.0 GeV, as reported in Ref. [23], gives a signal with a 
significance of 2.0σ , including both statistical and systematic un-
certainties. The upper limit on the product of the electronic partial 
width and the branching fractions for this resonance decaying to 
the �0�̄0 final state is estimated to be �eeB < 0.3 eV at 90% 
C.L. The fit models considered do not describe the data well at 
2.8 GeV, which is behavior that warrants closer study when larger 
data sets become available. The effective form factor is deter-
mined at each energy point, but the samples are not large enough 
to allow separate measurements of G E (s) and G M(s). A compar-
ison of the measured Born cross sections between the charged 
mode e+e− → �−�̄+ [23] and the neutral mode e+e− → �0�̄0, 
as shown in Fig. 4, shows consistent behavior with the current 
level of experimental precision. The ratio of Born cross sections 
for both modes is within 1σ of the expectation of isospin symme-
try. These results provide more information for understanding the 
insight into the nature of hyperon pair production in e+e− annihi-
lation near threshold.
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