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Abstract Using (448.1±2.9)×106 ψ(3686) events collected with the BESIII detector, we perform the first

search for the weak baryonic decay ψ(3686) → Λ+
c Σ̄

− + c.c.. The analysis procedure is optimized using a

blinded method. No significant signal is observed, and the upper limit on the branching fraction (B) of

ψ(3686)→Λ+
c Σ̄

−+c.c. is set to be 1.4×10−5 at the 90% confidence level.

Key words Weak decay, Upper limit, BESIII detector
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1 Introduction

The weak decays of the J/ψ and ψ(3686) are ex-

tremely rare compared to their dominant strong and

electromagnetic decays. For example, the branching

fractions of the semi-leptonic and hadronic weak de-

cays of the J/ψ are predicted to be less than 10−9 in

the framework of the standard model (SM)[1]. Over

the past few years, the BESIII collaboration previ-

ously searched for the baryon and lepton number vi-

olating decay J/ψ → Λ+
c e

−[2] and the flavor chang-

ing neutral current decay ψ(3686) → Λ+
c p̄e

+e−[3],

as well as the weak decays J/ψ → D−e+νe[4] and

J/ψ → D(∗)−
s e+νe[5]. Throughout this paper, the

charge conjugated channels are always implied. To

date, however, no signal has been observed in these

channels.

Searches for purely baryonic weak ψ(3686) decays

involving a charmed baryon Λ+
c in the final state have

never previously been performed. Figure 1 shows the

lowest order Feynman diagram for the rare baryonic

decay ψ(3686)→Λ+
c Σ̄

− in the SM. Here, the c quark

acts as a spectator, the c̄ quark transforms into a s̄,

the dū pair is produced via W -boson exchange, and

the uū pair is then produced from the vacuum. These

quarks and anti-quarks hadronize into the Λ+
c and

Σ̄−. Reference [6] predicted the branching fraction of

ψ(3686)→Λ+
c Σ̄

− to be on the order of 10−9 to 10−11

in the SM, which is comparable to those of the de-

cays of ψ(3686)→ charmed meson + anything. New

physics mechanisms beyond the SM, such as the top-

color model[7] and the Randall-Sundrum model[8],

may enhance this decay branching fraction signifi-

cantly. The experimental study of ψ(3686)→ Λ+
c Σ̄

−

may therefore offer important information for a com-

prehensive understanding of the weak decay mecha-

nisms of charmonium states.

A sample of (448.1±2.9)×106 ψ(3686) events[9] has

been collected using electron and positron collisions,

thereby offering an ideal opportunity to search for the

ψ(3686)→Λ+
c Σ̄

− decay. By analyzing this data sam-

ple, we report the first search for ψ(3686)→Λ+
c Σ̄

−.

c̄

c

ψ(3686)

c
d
u

ū

s̄

W
ū

Λ+
c

Σ̄−

Figure 1. Feynman diagram for the process

ψ(3686)→Λ+
c Σ̄

− in the SM[6].

2 BESIII detector and Monte Carlo

simulation

The BESIII detector[10] records symmetric e+e−

collisions provided by the BEPCII storage ring[11],

which operates with a peak luminosity of 1 ×
1033 cm−2s−1 in the center-of-mass energy range from

2.0 to 4.95 GeV. BESIII has collected more than

32 fb−1 of data samples in this energy region[12].

The cylindrical core of the BESIII detector consists

of a helium-based multilayer drift chamber (MDC), a

plastic scintillator time-of-flight system (TOF), and

a CsI(Tl) electromagnetic calorimeter (EMC), which

are all enclosed in a superconducting solenoidal mag-

net providing a 1.0 T magnetic field. The solenoid

is supported by an octagonal flux-return yoke with

resistive plate counter muon identification modules

interleaved with steel. The charged-particle momen-

tum resolution at 1 GeV/c is 0.5%, and the dE/dx

resolution is 6% for electrons from Bhabha scattering.

The EMC measures photon energies with a resolution

of 2.5% (5%) at 1 GeV in the barrel (end cap) region.

The time resolution in the TOF barrel region is 68 ps,

while that in the end cap region is 110 ps.

Simulated event samples produced with the

geant4-based[13] Monte Carlo (MC) package, which

includes the geometric description of the BESIII de-

tector and the detector responses, are used to de-

termine the detection efficiency and to estimate the

backgrounds. The simulation includes the beam

energy spread and initial state radiation (ISR) in

the e+e− annihilations, modeled with the genera-

tor kkmc[14]. The inclusive MC sample consists of

the production of the charmonium resonances, and

the continuum processes incorporated in kkmc. The

known decay modes are modeled with evtgen[15] us-

ing branching fractions taken from the Particle Data

Group[16], and the remaining unknown decays from

the charmonium states with lundcharm[17]. Final

state radiation from charged final-state particles is

incorporated with the photos package[18]. In this

analysis, the decays ψ(3686)→Λ+
c Σ̄

− and Σ̄− → p̄π0

are generated according to phase space and the de-

cay Λ+
c → pK−π+ is generated using an amplitude

analysis model[19].

3 Event selection and data analysis

The procedure to select candidate events from the

process ψ(3686) → Λ+
c Σ̄

−, where the Λ+
c baryon de-

cays to pK−π+ and the Σ̄− baryon decays to p̄π0, is

outlined below.
010201-5
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It is required that there are at least four charged

tracks and two photons in the candidate events. The

polar angle of each charged track is required to be in

the range |cosθ|< 0.93, coinciding with the coverage

of the MDC. The charged tracks from Λ+
c → pK−π+

decays must originate from the interaction point with

a distance of closest approach less than 1 cm in the

transverse plane (|Vxy|) and less than 10 cm along the

z axis (|Vz |). For the charged tracks from Σ̄− decays,

the requirements of |Vxy| and |Vz| are loosened to be

less than 10 cm and 20 cm, respectively, due to the

relatively long lifetime of the Σ̄−. No secondary ver-

tex is considered because there is only one charged

track from the Σ̄−. Particle identification (PID) for

the charged pion, kaon, and proton is performed us-

ing the dE/dx and TOF information. The particle

type with the highest probability is assigned to each

track.

The π0 candidates are identified as photon pairs

reconstructed from the EMC showers. Each EMC

shower is required to be within a 700 ns time window,

which is applied to suppress electronic noise and en-

ergy depositions unrelated to the event. The energy

deposited in nearby TOF counters is included in the

energy of the EMC showers to improve the photon re-

construction efficiency and energy resolution. At least

two photon candidates are required, with a minimum

energy of 25 MeV in the barrel region (|cosθ|< 0.80)

or 50 MeV in the end cap region (0.86< |cosθ|< 0.92).

The opening angle between the photon candidate and

the nearest charged track must be greater than 10◦.

A five-constraint (5C) kinematic fit is performed

on the hypothesis of e+e− → pK−π+p̄γγ, with the in-

variant mass of the γγ combination constrained to the

π0 nominal mass. The helix parameters of charged

tracks of the MC events have been corrected to im-

prove consistency with the data, following Ref.[20].

The events satisfying χ2
5C < 60, which has been op-

timized based on the Punzi method[21], are kept for

further analysis. If there are multiple candidates in

an event, the one with the smallest χ2
5C is retained.

After applying all requirements above, there

are two main background sources[22], ψ(3686) →
K∗(892)−pΛ̄ (K∗(892)− → π0K−, Λ̄ → π+p̄) and

ψ(3686)→ K̄∗0(892)pΣ̄− (K̄∗0(892)→ π+K−, Σ̄− →
p̄π0). The former and latter ones are suppressed

by requiring the invariant mass of π+p̄ (M(π+p̄))

/∈ [1.090,1.130] GeV/c2 and the invariant mass of

K−π+ (M(K−π+)) /∈ [0.756,1.036] GeV/c2, respec-

tively. These requirements have also been optimized

with the Punzi method[21].

Figure 2 shows the distribution of the invariant

mass of p̄π0 (M(p̄π0)) versus the invariant mass of

pK−π+ (M(pK−π+)) for the events in data surviving

the event selection. The Σ̄− candidates are required

to be within the interval M(p̄π0) ∈ (1.150,1.230)

GeV/c2, which corresponds to three times the resolu-

tion around Σ̄− peak. The signal yield of ψ(3686)→
Λ+
c Σ̄

− is extracted from an unbinned maximum like-

lihood fit to the M(pK−π+) distribution, as shown

in Fig. 3. In the fit, the lineshapes of signal and

background are modeled by the signal MC simulation

and a 1st-order Chebyshev polynomial, respectively.

In addition, the yields of signal and background are

free to float. Since no significant signal is observed

from the ψ(3686) data, conservative upper limits will

be assuming all the fitted signals are from Σ̄− after

the following two checks. First, the events in the Σ̄−

sideband region shows that the non-Σ̄− contribution

in the selected candidates is negligible. Second, an

analysis of 2.93 fb−1 of data taken at
√
s=3.773 GeV

shows that no peaking background of the continuum

production of e+e− →Λ+
c Σ̄

− is foreseen.

To estimate the upper limit of the branching frac-

tion of ψ(3686) → Λ+
c Σ̄

−, we use a likelihood scan

method after incorporating systematic uncertainties

as discussed in next section.

)2c) (GeV/+π-M(pK
2.24 2.26 2.28 2.3 2.32

)2 c
) 

(G
eV

/
0 πp

M
(

1.16

1.18

1.2

1.22

Figure 2. Distribution of M(p̄π0) versus

M(pK−π+) for the accepted candidate events

in data.
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Figure 3. Fit to the M(pK−π+) distribution

for the candidate events from ψ(3686) →

Λ+
c Σ̄

−. The points with error bars are data.

The red dashed line is the signal, the black

dashed line is the background, and the blue

solid curve is the total fit. The pink dashed

line is the inclusive MC sample.

4 Systematic uncertainty

Systematic uncertainties for the upper limit on

the branching fraction can be classified into two cat-

egories: additive terms and multiplicative terms.

The additive terms contain the uncertainties

caused by the chosen signal shape, background shape

and fit range. The effect due to the signal shape is

estimated by replacing the signal MC shape with the

signal MC shape convolved with a Gaussian resolu-

tion function with a mean of 1.0 MeV/c2 and a reso-

lution of 1.3 MeV/c2. These parameters are obtained

from a fit to the M(pK−π+) spectrum using the

data sample taken above Λ+
c Λ̄

−

c production threshold.

The effect from the background shape is evaluated

using 1st-order and 2nd-order Chebyshev polynomi-

als. The effect from the fit range is estimated with

fit ranges of [2.26,2,31] GeV/c2, [2.26,2,32] GeV/c2

and [2.25,2,31] GeV/c2. Among all aforementioned

terms, the case yields the largest upper limit is chosen

for further analysis.

The sources of multiplicative systematic uncer-

tainties include the number of ψ(3686) events, track-

ing efficiency, PID efficiency, π0 reconstruction, Σ̄−

mass window, kinematic fit, quoted branching frac-

tions of intermediate states, and the signal MC

model. The systematic uncertainties of the require-

ments of M(π+p̄) and M(π+K−) are estimated by

changing individual veto regions by 10 MeV/c2. The

associated effects on the upper limits are less than

0.1% which are negligible. The other systematic un-

certainties are discussed below.

(a) Number of ψ(3686) events: The total number

of ψ(3686) events in the data sample was deter-

mined to be (448.1±2.9)×106 with the inclusive

hadronic events in Ref.[9]. The uncertainty of

the total number of ψ(3686) events, 0.6%, is

assigned as a systematic uncertainty.

(b) Tracking and PID efficiencies: The uncertain-

ties from the tracking and PID efficiencies have

been studied with the high purity control sam-

ples ψ(3686) → π+π−J/ψ[23]. The systematic

uncertainty due to the tracking or PID effi-

ciency is assigned to be 1.0% for each track.

(c) π0 reconstruction: The systematic uncertainty

of the π0 reconstruction efficiency has been

studied with the control sample of J/ψ→ ρπ in

Ref.[23]. The associated systematic uncertainty

is assigned to be 1.0% for each π0.

(d) Σ̄− mass window: To estimate the systematic

uncertainty from the Σ̄− mass window, we use

the control sample of ψ(3686) → Σ+Σ̄− with

Σ+ → pπ0 and Σ̄− → p̄π0. The difference be-

tween the acceptance efficiencies of data and

MC simulation, 0.1%, is taken as the corre-

sponding systematic uncertainty.

(e) 5C kinematic fit: To examine the systematic

uncertainty due to the 5C kinematic fit, we ex-

amine the signal efficiencies with and without

correcting the MDC helix parameters for the

signal MC events. The change of the signal

efficiency, 0.2%, is assigned as the systematic

uncertainty.

(e) Quoted branching fraction: The branching frac-

tions of Λ+
c → pK−π+, Σ̄− → p̄π0 and π0 → γγ

are quoted from the Particle Data Group[16],

which are (6.28± 0.32)%, (51.57± 0.30)%, and

(98.823±0.034)%, respectively. They contribute

to a total uncertainty of 5.2%, which is regarded

as a systematic uncertainty.

(f) MC model: The signal MC sample of

ψ(3686) → Λ+
c Σ̄

− is generated according to

phase space. To estimate the systematic un-

certainty of the MC model, we generate alter-

native signal MC samples by using the J2BB1

model[24] with an angular distribution of 1 +

αcos2 θ. To be conservative, two extreme sce-

narios corresponding to α = −1 and α = 1 are

taken into account. The difference of the ef-

ficiencies between the phase space model and
010201-7
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the J2BB1 model, 11.0%, is taken as the corre-

sponding systematic uncertainty.

Assuming that all sources are independent, the

total multiplicative systematic uncertainty is de-

termined to be 13.5% by adding all uncertainties

quadratically. The systematic uncertainties are sum-

marized in Table 1.

Table 1. Multiplicative systematic uncertain-

ties in the branching fraction measurement.

Source Uncertainty (%)

Number of ψ(3686) events 0.6

Tracking efficiencies 4.0

PID efficiencies 4.0

π0 reconstruction 1.0

Σ̄− mass window 0.1

5C kinematic fit 0.2

Quoted branching fractions 5.2

MC model 11.0

Total 13.5

m
ax

/L iL

0

0.2

0.4

0.6

0.8

1

)-510×B (
0 2 4

Figure 4. Distributions of the likelihoods ver-

sus the branching fraction of ψ(3686) →

Λ+
c Σ̄

−. The results obtained with and without

incorporating the systematic uncertainties are

shown in the red solid and blue dashed curves,

respectively. The black arrow shows the result

corresponding to the 90% confidence level.

5 Result

The branching fraction of ψ(3686)→Λ+
c Σ̄

− is cal-

culated using

B(ψ(3686)→Λ+
c Σ̄

−)=
Nsig

Nψ(3686) ·ΠBi ·ǫ
, (1)

where Nψ(3686) is the total number of ψ(3686) events

in the data sample, ΠBi is the product of the

branching fractions of the intermediate decays Λ+
c →

pK−π+, Σ̄− → p̄π0, and π0 → γγ, and ǫ is the de-

tection efficiency which is determined to be (11.03±
0.08)% based on MC simulation.

No significant signal is observed and the upper

limit on the signal yield is set to be 21.1 at the 90%

confidence level by assuming the fitted signal yield is

entirely from the process ψ(3686)→Λ+
c Σ̄

−. The raw

likelihood distribution versus B(ψ(3686) → Λ+
c Σ̄

−)

is shown as the blue dashed curve in Fig. 4. This

curve is then smeared by a Gaussian function with

a mean of 0 and a width equal to the multiplica-

tive systematic uncertainty of 13.5% according to

Refs.[25, 26]. The updated likelihood distribution is

shown as the red solid curve in Fig. 4. By integrating

the red dashed curve from zero to 90% of physical

region, the upper limit on the branching fraction of

ψ(3686)→Λ+
c Σ̄

− at the 90% confidence level is set to

be

B(ψ(3686)→Λ+
c Σ̄

−)< 1.4×10−5.

6 Summary

By analyzing (448.1±2.9)×106 ψ(3686) events col-

lected with the BESIII detector, we present the first

search for ψ(3686)→ Λ+
c Σ̄

−. No significant signal is

observed in the data sample. Therefore, we set an up-

per limit on the branching fraction of 1.4×10−5 at the

90% confidence level. This is far above the prediction

in the SM. An additional 2.3 billion of ψ(3686) events

at BESIII will be available soon. This larger ψ(3686)

data sample offers an opportunity to further improve

the sensitivity of searching for this decay[27].

The BESIII collaboration thanks the staff of

BEPCII and the IHEP computing center for their

strong support.
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