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Using J=ψ radiative decays from 9.0 billion J=ψ events collected by the BESIII detector, we search
for di-muon decays of a CP-odd light Higgs boson (A0), predicted by many new physics models beyond
the Standard Model, including the next-to-minimal supersymmetric Standard Model. No evidence for
the CP-odd light Higgs production is found, and we set 90% confidence level upper limits on the
product branching fraction BðJ=ψ → γA0Þ × BðA0 → μþμ−Þ in the range of ð1.2 − 778.0Þ × 10−9 for
0.212 ≤ mA0 ≤ 3.0 GeV=c2. The new measurement is a 6–7 times improvement over our previous
measurement, and is also slightly better than the BABAR measurement in the low-mass region for
tan β ¼ 1.

DOI: 10.1103/PhysRevD.105.012008

I. INTRODUCTION

The origin of mass is one of the most important questions
in physics. The masses of the fundamental particles are
generated through spontaneous breaking of electroweak
symmetry by the Higgs mechanism [1]. The Higgs mecha-
nism implies the existence of at least one new scalar
particle, the Higgs boson, which was the last missing
Standard Model (SM) particle. It was discovered by the
Large Hadron Collider experiments at CERN [2] in July
2012 and has a profound effect on our fundamental
understanding of matter.
Many models beyond the SM, such as the next-

to-minimal supersymmetric Standard Model (NMSSM)
[3–5], extend the Higgs sector to include additional
Higgs fields. The NMSSM adds an additional singlet chiral
superfield to the Minimal Supersymmetric Standard Model
(MSSM) [6] to alleviate the so-called “little hierarchy
problem” [7]. It contains three CP-even, two CP-odd,
and two charged Higgs bosons [3,4]. The mass of the
lightest Higgs boson, A0, may be smaller than twice the
mass of the charmed quark, thus making it accessible via
J=ψ → γA0 [8].
The branching fraction of V → γA0 (V ¼ ϒ; J=ψ ) is

expressed as [8–10]

BðV → γA0Þ
BðV → lþl−Þ ¼

GFm2
qg2qCQCDffiffiffi
2

p
πα

�
1 −

m2
A0

m2
V

�
; ð1Þ

where α is the fine structure constant, GF is the Fermi
coupling constant, l≡ e or μ, mq is the quark mass, CQCD

includes the leptonic width of BðV → lþl−Þ [11,12] as well
as mA0 dependent QCD and relativistic corrections to
BðV → γA0Þ [10], and gq is the effective Yukawa coupling
to the Higgs field to the up- or down-type quark-pair. In the
NMSSM, gc ¼ cos θA= tan β (q ¼ c) for the charm quark
and gb ¼ cos θA tan β (q ¼ b) for the bottom quark, where
tan β is the ratio of up- and down-type Higgs doublets, and
cos θA is the fraction of the nonsinglet component of the A0

[13,14]. The value of cos θA is zero for a pure A0 singlet
state [15]. The branching fraction of J=ψ → γA0 is pre-
dicted to be in the range of 10−9–10−7 depending upon the
A0 mass and the NMSSM parameters [4]. The branching

fraction of A0 → μþμ− is predicted to be much larger for
tan β ≥ 1 [13]. An experimental study of such a low-mass
Higgs boson is desirable to test the SM [16] and to look for
new physics beyond the SM [3,4,17].
The BABAR [18], CLEO [19], and CMS [20] experiment

have searched for dimuon decays of A0, and placed a
strong exclusion upper limit on gb. On the other hand, the
BESIII measurements, sensitive on gc, is complementary to
those by considering gb. The recent BESIII measurement
[21], based on 225 million J=ψ events, is slightly lower
than the BABAR measurement [18] in the low-mass
region for tan β ≤ 0.6. The combined measurements of
the BESIII and BABAR have revealed that the A0 is mostly
singlet in nature because of obtained upper limit on
cos θAð¼ j ffiffiffiffiffiffiffiffiffi

gbgc
p jÞ ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðA0 → μþμ−Þ

p
, independent of

tan β, is very close to zero especially in the low-mass
region [21]. However, this BESIII limit [21] is still an order
of magnitude above the theoretical predictions [4]. BESIII
has recently accumulated about 39 times more J=ψ events
in comparison to the previous measurement [21], and these
can be utilized to discover the A0 or exclude parameter
space of the NMSSM [22].
This paper describes the search for di-muon decays of a

CP-odd light Higgs boson in radiative decays of J=ψ using
9 billion J=ψ events collected by the BESIII detector in
2009, 2018, and 2019 [22]. Because muon particle iden-
tification (PID) was not available for the J=ψ data collected
in 2012, we exclude this data sample for the A0 search.

II. BESIII DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector [23] records symmetric eþe−
collisions provided by the BEPCII storage ring [24], which
operates with a peak luminosity of 1 × 1033 cm−2 s−1 in the
center-of-mass energy range from 2.0 to 4.95 GeV. BESIII
has collected large data samples in this energy region [25].
The cylindrical core of the BESIII detector covers 93%
of the full solid angle and consists of a helium-based
multilayer drift chamber (MDC), a plastic scintillator time-
of-flight system (TOF), and a CsI(Tl) electromagnetic
calorimeter (EMC), which are all enclosed in a super-
conducting solenoidal magnet providing a 1.0 T magnetic
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field. The solenoid is supported by an octagonal flux-return
yoke with resistive plate counter muon identification
modules interleaved with steel. The MDC measures the
momentum of charged particles with a resolution of 0.5% at
1 GeV=c. The EMC measures the photon energies with a
resolution of 2.5% (5%) at 1 GeV in the barrel (endcap)
region. The time resolution of the TOF in the barrel region
is 68 ps. The time resolution of the TOF in the endcap
region was 110 ps before 2015 and was improved to be
60 ps after upgrading with the multi-gap resistive plate
chambers. Muons with momentum above 0.5 GeV=c are
identified by the iron flux return of the magnet instru-
mented with about 1272 m2 of resistive plate muon
counters (MUC) arranged in nine (eight) layers in the
barrel (endcaps).
Simulated Monte Carlo (MC) events based on GEANT4

[26] are used to optimize the event selection criteria, to study
the potential backgrounds, and to determine the detector
acceptance. A MC sample of 9.0 billion inclusive J=ψ
events is used for the background studies with the generic
TopoAna tool [27]. The known J=ψ decay modes are
generated by the EVTGEN generator [28] with branching
fractions taken from the Particle Data Group (PDG) [29],
and the remaining unknown decay modes by LUNDCHARM

[30]. The final state radiation corrections are included in the
MC simulation using PHOTOS [31]. The production of the
J=ψ resonance through eþe− annihilation including the
beam-energy spread and the initial-state-radiation (ISR) is
simulated by the KKMC [32]. A 2.93 fb−1 ψð3770Þ data
sample [33,34] is used to study the background from the
quantum electrodynamics (QED) process of eþe− →
γμþμ−. To compute the detection efficiency, we generate
0.12 million simulated signal MC events at 23 different
Higgs mass points ranging from 0.212 to 3.0 GeV=c2 with a
phase-space model for the A0 → μþμ− decay and a P-wave
model for the J=ψ → γA0 decay [28].

III. DATA ANALYSIS

We select events with two oppositely charged tracks and
at least one photon candidate. A photon candidate, recon-
structed with clusters of energy deposited in the EMC, is
selected with a minimum energy of 25 MeV in the barrel
region (j cos θj < 0.8) or 50 MeV in the end-cap region
(0.86 < j cos θj < 0.92). The energy deposited in the
nearby TOF is included to improve the energy resolution
and reconstruction efficiency. The angle between a photon
and the nearest extrapolated track in the EMC is required
to be larger than 10 degrees to remove bremsstrahlung
photons. The EMC timing is required to be within 700 ns
relative to the event start time to suppress electronic noise
and energy deposits unrelated to the signal events.
Charged tracks are reconstructed from the ionization

signals measured by the MDC and are required to be in the
MDC detection acceptance region of j cos θj < 0.93, where

θ is the angle of the charged track with the z axis, which is
the axis of the MDC. Further, their points of closest
approach to the z-axis must be within �10 cm from the
interaction point along the z direction and within �1 cm in
the plane perpendicular to z. To suppress contamination by
electrons and pions, both charged tracks are required to
satisfy the following selection criteria: (1) Eμ

cal=p < 0.9 c,
(2) 0.1 < Eμ

cal < 0.3 GeV, and (3) the absolute value of the
time difference between the TOF and expected muon time
(ΔtTOF) must be less than 0.26 ns. Here, Eμ

cal is the energy
deposited in the EMC by the μþ=μ− particle, and p is the
momentum of the charged muon track. To further improve
the purity of muons, one of the charged tracks is required to
have its penetration depth in the MUC be greater than
(−40.0þ 70 × p=ðGeV=cÞ) cm for 0.5 ≤ p ≤ 1.1 GeV=c
and 40 cm for p > 1.1 GeV=c.
The two muon tracks are required to originate from a

common vertex by performing a vertex fit to form an A0

candidate. A four-constraint (4C) kinematic fit is performed
with the two charged tracks and one of the photon
candidates in order to improve the mass resolution of
the A0 candidate. If there is more than one γμþμ− candidate,
the candidate with the minimum value of the χ2 from the 4C
kinematic fit (χ24C) is selected, and the χ24C is required to be
less than 40 to reject backgrounds from J=ψ → πþπ−π0

and eþe− → γπþπ−π0. We reject fake photons by requiring
the dimuon invariant mass (mμþμ−) obtained from the 4C
kinematic fit to be less than 3.04 GeV=c2. To suppress
backgrounds from eþe− → γμþμ− and J=ψ → μþμ−ðγÞ,
the absolute value of the cosine of the muon helicity angle
(cos θhelμ ), defined as the angle between the direction of one
of the muons and the direction of the J=ψ in the A0 rest
frame, is required to be less than 0.92.
After the above selection criteria, we determine the

signal yield as a function of mA0 in the interval of
0.212 ≤ mA0 ≤ 3.0 GeV=c2 by performing a series of
one-dimensional unbinned extended maximum likelihood

(ML) fits to the reduced mass, mred ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μþμ− − 4m2
μ

q

distribution of surviving events. Figure 1 shows the mred
distribution of surviving events together with the back-
ground predictions from various simulated MC samples
and 2.93 fb−1 of ψð3770Þ data [33,34]. We use mred rather
than mμþμ− because it is easier to model the nonpeaking
background across the entire mA0 region, in particular,
the kinematic threshold region mμþμ− ≈ 2mμ (mred ≈ 0).
The nonpeaking background is dominated by eþe− →
γμþμ− and J=ψ → μþμ−ðγÞ, and the peaking background
by J=ψ → ρ=ωπ and J=ψ → γf ðf ¼ f2ð1270Þ; f0ð1500Þ;
f0ð1710ÞÞ decays, where both ρ=ω and f decay to πþπ−.
The mred distribution of data is generally well described by
the background predictions, except in the low-mass region,
where KKMC [32] fails to reproduce the ISR events for the
eþe− → γJ=ψ ; J=ψ → μþμ− process. This disagreement
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has little impact on the search because the signal extraction
procedure does not depend on the background predictions.
The fit function includes the contributions of signal,

continuum background and peaking background compo-
nents from ρ=ω, f2ð1270Þ, f0ð1500Þ, and f0ð1710Þ mes-
ons. Table I summarizes themred fit intervals for the various
mA0 points used to handle both nonpeaking and peaking
backgrounds smoothly.
Simulated MC samples are used to develop the proba-

bility density functions (PDFs) of signal and backgrounds.
The A0 is assumed to be a scalar or pseudo-scalar particle
with a very narrow decay width in comparison to the
experimental resolution [35]. We describe the mred distri-
bution of the signal PDF by the sum of two Crystal Ball
(CB) functions [36] with a common peak value and
opposite side tails. The mred resolution varies from
2 MeV=c2 to 12 MeV=c2 while the signal efficiency varies
between 27% and 53% depending upon the muon momen-
tum values at different A0 mass points. We interpolate the

signal efficiency and signal PDF parameters linearly
between the mass points of the generated signal MC
events. The nonpeaking background PDF is described by
a function tanhðP5

l¼1 plml
redÞ in the threshold mass region

of 0.212 ≤ mA0 ≤ 0.40 GeV=c2, where pl are the poly-
nomial coefficients. This function provides a threshold like
behavior in the low-mass region of themred distribution and
passes through the origin when mred ¼ 0. In the other mass
regions, we use second, third, fourth, fifth or sixth-order
Chebyshev polynomial function to describe the nonpeaking
background PDFs detailed in Table I. We determine the
initial parameters of these background PDFs using a
cocktail MC sample of all possible nonpeaking back-
grounds to achieve better agreement between data and
the fit models.
To take into account the well-known structure of the ρ-ω

interference, we describe the peaking background PDF of
the mred distribution with the Gounaris and Sakurai (GS)
function in the range of 0.4 ≤ mred ≤ 1.06 GeV=c2 [37].
The fit formula, detailed in Ref. [38], is the same as that
used previously by the BABAR [38] and BESIII [34]
experiments in the measurement of the eþe− → πþπ−
cross section in the ρ=ω mass region. The amplitudes
for the higher ρ states, ρð1450Þ, ρð1700Þ, and ρð2150Þ, as
well as the masses and widths of those states are taken from
Ref. [38]. We fix the ω width according to the PDG [29]
value and float the other parameters during the fit. We
describe the peaking background PDFs corresponding to
f2ð1270Þ, f0ð1500Þ and f0ð1710Þ resonances by the sum
of the two CB functions [36] using the parameters
determined from MC samples of J=ψ → γf, f → πþπ−
decays, where f ¼ f2ð1270Þ, f0ð1500Þ, and f0ð1710Þ
mesons.
The search for the A0 narrow resonance is performed in

steps of approximately half the mred resolution, i.e.,
1 MeV=c2 in the mass range of 0.22≤mA0 ≤1.5GeV=c2

and 2.0 MeV=c2 in the other mA0 regions, with a total of
2 035 mA0 points. The PDF parameters of the signal and
peaking backgrounds of J=ψ → γf are fixed while the
nonpeaking background PDF, and the numbers of the
signal, peaking, and nonpeaking background events are
floated. Plots of the fit to the mred distribution for two
selected mass points are shown in Fig. 2.
The fit is repeated with alternative signal, peaking, and

nonpeaking background PDFs to determine the systematic
uncertainties for the numbers of signal events associated
with the corresponding PDFs at each mA0 point. The
uncertainty associated with the signal PDF is studied by
replacing the sum of the two CB functions with a “Cruijff”
function [39]. The uncertainty associated with the ρ-ω peak
is evaluated by varying the ρ and ω contributions in the
formula of Eq. (26) of Ref. [38]. The uncertainty due to the
peaking background of J=ψ → γf is studied by replacing
the sum of the two CB functions with the simulated MC
samples of the corresponding decay processes convolved
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FIG. 1. Themred distribution of data (black dot points with error
bars), together with the background predictions of the QED
eþe− → γμþμ− process from ψð3770Þ data (black histogram) and
J=ψ → ρπ, μþμ−ðγÞ, γf (f ¼ f2ð1270Þ; f0ð1500Þ; f0ð1710Þ)
decays from MC samples of those processes (gray pattern
histogram). The dashed cyan histogram represents the combined
background.

TABLE I. The mred fit intervals for various mA0 points.

mred fit interval
(GeV=c2)

mA0 points
(GeV=c2)

Order of Polynomial
function

0.002–0.45 0.212, 0.4 5th
0.3–0.65 0.401, 0.6 4th
0.4–1.06 0.601, 1.0 3rd
0.95–1.95 1.001, 1.8 2nd
1.7–2.5 1.802, 2.4 5th
2.3–2.7 2.402, 2.6 4th
2.5–2.9 2.602, 2.848 5th
2.75–3.0 2.85, 2.90 6th
2.85–3.032 2.902, 3.0 5th
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with a Gaussian function whose parameters are floated
during the fit. The uncertainty due to the nonpeaking
background PDF is studied by replacing the
tanhðP5

l¼1 plml
redÞ and nth order Chebyshev polynomial

function with tanhðP6
l¼1 plml

redÞ and ðnþ 1Þth order
Chebyshev polynomial functions, respectively, in the fit.
The one with the largest signal yield among these fit
scenarios is considered to produce the final result.
The product branching fraction of J=ψ → γA0 and

A0 → μþμ− as a function of mA0 is calculated as

BðJ=ψ → γA0Þ × BðA0 → μþμ−Þ ¼ Nsig

ϵ · NJ=ψ
; ð2Þ

where Nsig is the number of signal events, ϵ is the signal
selection efficiency, and NJ=ψ ¼ ð8.998� 0.039Þ × 109 is
the number of J=ψ events. Figure 3 shows the plots of the
product branching fractions BðJ=ψ → γA0Þ × BðA0 →
μþμ−Þ and the statistical significance, defined as
S ¼ signðNsigÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðLmax=L0Þ

p
, where LmaxðL0Þ is the

maximum likelihood value for a fit with number of signal
events being floated (fixed at zero). The largest upward
local significance value is determined to be 3.5σ at
mA0 ¼ 0.696 GeV=c2. Based on a large ensemble of
pseudoexperiments [18], the probability of observing a
fluctuation of S ≥ 3.5σ is estimated to be 12%. The
corresponding global significance value is determined to
be at the level of 1σ. Thus, we conclude that no evidence of
Higgs production is found within the searchedmA0 regions.

IV. SYSTEMATIC UNCERTAINTIES

According to Eq. (2), the systematic uncertainties for the
branching fraction measurement include those from the
number of signal events, the reconstruction efficiency, and
the number of J=ψ events. The uncertainties associated
with the number of signal events originating from the PDF
parameters of signal and backgrounds are considered by
performing alternative fits at each mA0 point.
Pseudo experiments are utilized to test the reliability of

the fit procedures and compute the fit bias, which may
appear due to imperfect signal and background modeling.
The same fit procedure is performed in each pseudoex-
periment. The resultant average difference between the
input and output signal yields is determined to be 0.3
events. We consider it as an additive systematic uncer-
tainty (σadd), which may affect the significance of any
observation but does not scale with the reconstructed
signal yield.
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FIG. 2. Fits to the mred distributions for (top) mA0 ¼
0.221 GeV=c2 and (bottom) mA0 ¼ 0.696 GeV=c2. The corre-
sponding local significancevalues at thesemass points are observed
to be 3.3σ and 3.5σ, respectively. Black dots with error bars
represent the data, the red long-dashed curve the nonpeaking
background, the pink dotted curve the peaking background, the
green dashed curve the signal PDF, and the solid blue curve the total
fit results. In the bottom figure, the well-known ρ-ω interference is
taken care of by describing the peaking background PDFof themred
distribution by a GS function [37,38], as described in the text.
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The uncertainties associated with the reconstruction
efficiency and the number of J=ψ events do not affect
the significance of any observation. Thus, we consider
them as multiplicative systematic uncertainties (σmult) and
scale with the number of reconstructed signal events. The
uncertainty associated with the reconstruction efficiency
includes those from tracking, PID, and the photon detection
efficiency.
The uncertainty due to MDC tracking is determined to be

1% per track using the high statistics control samples of
J=ψ → ρπ and J=ψ → pp̄πþπ−. A total of 2.0% system-
atic uncertainty is assigned for the two charged tracks in
this analysis. The systematic uncertainty associated with
the photon reconstruction efficiency is determined using a
control sample of eþe− → γμþμ− in which the ISR photon
is predicted using the four momenta of the two charged
tracks. This sample also includes the dominant contribution
from J=ψ → γπþπ− decay, including all the possible
intermediate resonances. The relative difference in effi-
ciency between data and MC is found to be 0.2%, which is
considered as a systematic uncertainty.
A control sample of J=ψ → μþμ−ðγÞ is used to evaluate

the systematic uncertainty due to the muon PID, cos θhelμ ,
and χ24C requirements. In this sample, one track is tagged
with a tight muon PID. The final uncertainty associated
with the muon PID also takes into account the fraction of
events with one or two tracks identified as muons obtained
from the simulated signal MC sample. The corresponding
uncertainties, computed as the relative change in efficiency
between data and MC, are determined to be ð2.9 − 4.1Þ%,
0.8% and 1.8%, respectively. The systematic uncertainty

due to the number of J=ψ events is 0.3% using J=ψ
inclusive hadronic events. Table II summarizes the fit
bias and multiplicative sources of the systematic uncer-
tainties, where we obtain the total σmult by adding the
individual ones in quadrature. The total σmult varies
between 4.1% to 5.0% depending on the Higgs mass
point. The final systematic uncertainty is calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2add þ ðσmult × NsigÞ2

q
.

V. RESULT

Since no evidence of Higgs production is found, we set
90% confidence level (CL) upper limits on the product
branching fractions BðJ=ψ → γA0Þ × BðA0 → μþμ−Þ as a
function of mA0 using a Bayesian method [29] after
incorporating the systematic uncertainty by smearing the
likelihood curve with a Gaussian function having a width
equal to the systematic uncertainty. The limits vary in the
range of ð1.2 − 778.0Þ × 10−9 for the Higgs mass region of
0.212 ≤ mA0 ≤ 3.0 GeV=c2 depending on themA0 point, as
shown in Fig. 4. The new measurement has a 6–7 times
improvement over the previous BESIII measurement [21].
To compare our results with the BABAR measurement

[18], we also compute 90% CL upper limits on the effective
Yukawa coupling of the Higgs fields to the bottom-quark
pair gbð¼ gc tan2 βÞ ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðA0 → μþμ−Þ

p
as a function of

mA0 for different values of tan β using Eq. (1) as shown in
Fig. 5. Our new measurement is slightly better than the
BABAR measurement [18] in the low-mass region
for tan β ¼ 1.0.

TABLE II. The fit bias and multiplicative sources of the
systematic uncertainties. The systematic uncertainties associated
with the signal, peaking, and nonpeaking background PDFs are
taken as the largest difference of signal yield among the
alternative fit scenarios at eachmA0 point as described in Sect. III.

Source Uncertainty

Additive systematic uncertainties (events)
Fit bias 0.3

Total 0.3

Multiplicative systematic uncertainties (%)
Tracking 2.0
Photon detection efficiency 0.2
Depth in MUC 2.9–4.1
Eμ
cal 0.1

ΔtTOF Negl.
Cosθhelμ 0.8
χ24C 1.8
J=ψ counting 0.7

Total 4.1–5.0
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FIG. 4. The 90% CL upper limits on the product branching
fractions BðJ=ψ → γA0Þ × BðA0 → μþμ−Þ versus mA0 including
all the uncertainties, together with the expected limits computed
using a large number of pseudoexperiments. The inner and outer
bands correspond to 68% and 95% of the expected limit values
and include the statistical uncertainties only.
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VI. SUMMARY

We search for di-muon decays of A0 in J=ψ → γA0 using
9.0 billion J=ψ events collected by the BESIII detector. No
evidence of Higgs production is found, and we set 90% CL
upper limits on product branching fractions BðJ=ψ →
γA0Þ × BðA0 → μþμ−Þ in the range of ð1.2 − 778.0Þ ×
10−9 for 0.212 ≤ mA0 ≤ 3.0 GeV=c2. This result has an
improvement by a factor of 6-7 over the previous BESIII
measurement [21], and is better than the BABAR measure-
ment [18] for mA0 ≤ 0.7 GeV=c2 for tan β ¼ 1. Thus, our
measurement is more stringent for mA0 ≤ 0.7 GeV=c2 over
the existing experimental results [18–21,40]. The new
BESIII limit is also lower than the theoretical prediction
at the threshold Higgs mass point of 0.212 GeV=c2, and
thus constrains a large fraction of the parameter space of the
new physics models, including NMSSM [3,4,17].
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