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(Dated: August 6, 2021)

The Born cross section of the process e+e− → ΛΛ̄ is measured at 33 center-of-mass energies between 3.51

and 4.60 GeV using data corresponding to the total integrated luminosity of 20.0 fb−1 collected with the BESIII

detector at the BEPCII collider. Describing the energy dependence of the cross section requires a justification

from the ψ(3770) → ΛΛ̄ decay, which is fitted with a significance of 4.9σ with the systematic uncertainty

included. The lower bound on its branching fraction is 2.4 × 10−6 at the 90% confidence level (C.L.), at

least five times larger than expected from predictions using a simple scaling approach. This result indicates the

importance of effects from vector charmonium(-like) when interpreting data in terms of e.g., electromagnetic

structure observables. There are no definite conclusions about the interplay with other vector charmonium(-like),

and we set 90% C.L. upper limits for the products of the electronic widths and the branching fractions.

Two-body baryonic decays of vector (JPC = 1−−)

charmonium(-like) provide a testing ground of the Quantum

Chromodynamics predictions [1, 2]. The ψ(3770) vector me-

son is believed to be a conventional cc̄ state located above the

open-charm threshold and is expected to decay into aDD̄ me-

son pair with a branching fraction of 99% or more [3]. How-

ever, in addition to the cc̄ pair, if there are some constituent

gluons or light quarks and antiquarks, the decay modes to the

light-quark systems will be enhanced [4]. In 2003, the BES

Collaboration observed the first non-DD̄ decay of ψ(3770)
into J/ψπ+π− [5, 6]. Subsequently, the CLEO Collabora-

tion confirmed the observation and found more non-DD̄ de-

cays of ψ(3770) [7–9] and the first decay into light-quark

hadrons ψ(3770) → φη [10]. In addition, the production of

the baryon–antibaryon (BB̄) final states in charmonium(-like)

decay have relatively simpler topology and interaction picture.

Thus, the experimental study of e+e− → BB̄ can clarify the

nature of the ψ(3770) charmless decays. In an early study, the

BESIII collaboration has already found evidence for the inter-

ference effect in e+e− → pp̄ in the vicinity of ψ(3770) [11].

In the past two decades, several vector states were observed

at energies between 3.7 and 4.7 GeV at various e+e− col-

liders. Four charmonium(-like) predicted by potential mod-

els [1] ψ(3770), ψ(4040), ψ(4160) and ψ(4415) are well es-

tablished and seen in the inclusive hadronic cross section [12].

In addition, new states such as Y (4230), Y (4260), Y (4360),
X(4390), Y (4660), were reported using the initial state ra-

diation (ISR) processes e+e− → γISRπ
+π−J/ψ(ψ(3686))

at the BABAR [13–16] and Belle experiments [17–21], or

in energy-scan experiments at CLEO-c [22] and BESIII [23–

28]. Up to now, no evidence for decay modes into light-quark

baryon–antibaryon pairs of these charmonium(-like) is found.

The overpopulation of vector charmonium(-like) with respect

to predictions from potential models , and the difficulty in de-

scribing the properties of these states make them attractive

candidates for exotic states [29].

In addition, knowledge of the vector charmonium(-like)

coupling to the BB̄ final states is crucial for understanding

the electromagnetic structure of the baryons. In Refs. [30,

31], the time-like electromagnetic form factors (EMFFs) for

the ground-state octet baryons were measured based on the

CLEO-c data. It is assumed that the branching fractions of

ψ(3770) to the BB̄ final states scale with the decay widths

into a pair of electrons (electronic decay widths) comparing

to the ψ(3686) state, e.g., branching fraction B(ψ(3770) →
ΛΛ̄) ≈ 5× 10−7, and therefore are negligible.

In this Letter, we present a measurement of the Born cross

section for the e+e− → ΛΛ̄ process using data correspond-

ing to a total integrated luminosity of 20.0 fb−1 [32–34] col-

lected at center-of-mass (c.m.) energies
√
s between 3.51 and

4.60 GeV with the BESIII detector [35, 36] at the BEPCII

collider [37]. We extract the Λ effective form factor and re-

port an evidence of the ψ(3770) → ΛΛ̄ process by fitting the

e+e− → ΛΛ̄ dressed cross section.

Candidates for the e+e− → ΛΛ̄ events are reconstructed

using the Λ → pπ− and Λ̄ → p̄π+ decay modes. The de-

tection efficiency is determined by Monte Carlo (MC) sim-

ulations. A sample of 100,000 events is simulated for each

of the 33 c.m. energy points. The production process is simu-

lated by the KKMC generator [38, 39] that includes corrections

for the ISR effects. The Λ and Λ̄ decays are handled by the

EVTGEN [40] program. The response of the BESIII detector

is modeled with MC simulations using a framework based on

GEANT4 [41].

Tracks of charged particles are reconstructed in the multi-

layer drift chamber with a helical fit which should have a

good quality. These tracks should be within | cos θ| < 0.93,

where θ is the polar angle with respect to the e+ beam direc-

tion. Events with two successfully reconstructed negatively-

charged and two positively-charged particles are kept for fur-

ther analysis.

To reconstruct Λ(Λ̄) candidates, we apply a secondary

vertex fit [42] to all pairs of positive and negative charged

particles. The corresponding χ2 value is required to

be less than 500. The track combination with mini-

mum |Mpπ− −mΛ|2 + |Mp̄π+ −mΛ|2 is selected, where

Mpπ−(Mp̄π+) is the invariant mass of the pπ−(p̄π+) pair, and

mΛ is the world-average Λ mass value from the Particle Data

Group (PDG) [12]. To further suppress background from non-

Λ processes, the Λ decay length is required to be larger than

zero, where the negative decay lengths are caused by the lim-

ited detector resolution.

To further suppress background and improve the mass res-

olution, a four-constraint (4C) kinematic fit imposing energy-

momentum conservation is applied for the ΛΛ̄ hypothesis.

The χ2
4C of the fit is required to be less than 200. Figure 1

shows the distribution of Mpπ− versus Mp̄π+ of the accepted
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candidates from all data samples. Clear peaks around the Λ
known mass can be discerned. The invariant massMpπ− is re-

1.10 1.12 1.14

)2 (GeV/c-πpM
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FIG. 1. Distribution of Mpπ− versus Mp̄π+ of the accepted can-

didates from all data samples, where the red box shows the signal

region, the green boxes denote the selected sideband regions.

quired to be within 5 MeV/c2 of the known Λ(Λ̄) mass as the

signal region marked by S. After applying the above selection

criteria, the survived background events are mainly from non-

Λ(Λ̄) events, such as e+e− → π+π−pp̄. The background

yield in the signal region is estimated using four sideband re-

gions Bi, where i = 1, 2, 3, 4, each with the same area as the

signal region. The regions are shown in Fig. 1, and the exact

ranges are given in the Supplemental Material [32]. The sig-

nal yield Nobs for e+e− → ΛΛ̄ events at each energy point

can then be extracted by subtracting the number of events in

the sideband regions from the number of events in the signal

region,NS : Nobs = NS− 1

4

∑4

i=1
NBi

, and they are listed in

Table I.

The dressed cross section σdr for the process e+e− → ΛΛ̄
is defined as

σdr(s) =
Nobs

L(1 + δ)ǫ B2(Λ → pπ−)
, (1)

where L is the integrated luminosity at given c.m. energy
√
s,

(1 + δ) is the ISR correction factor [39, 43], ǫ is the detec-

tion efficiency, and the branching fraction B(Λ → pπ−) =
(63.9 ± 0.5)% is taken from PDG. The ISR correction factor

is obtained using the calculation described in Ref. [44], where

the dressed cross sections are adopted as initial input and are

iterated to obtain stable result. The dressed cross section is

related to the Born cross section via the vacuum polarization

factor 1

|1−Π|2 [45] as σdr = σB/|1− Π|2 (further details are

provided in the Supplemental Material [32]).

Systematic uncertainties on the cross section measurement

mainly come from the luminosity measurement, the Λ recon-

struction, the 4C kinematic fit, the branching fraction for the

decay Λ → pπ−, the line-shape description, and the physical

model dependence. The uncertainty due to the vacuum polar-

ization is negligible. The integrated luminosity is measured by

e+e− → (γ)e+e− events with a similar method to Ref. [33]

with an uncertainty of 1.0%. The systematic uncertainty of

the Λ(Λ̄) reconstruction incorporating the tracking, the mass

window of Λ(Λ̄), and the decay length of Λ(Λ̄) is studied us-

ing a control sample of ψ(3686) → ΛΛ̄ decay with the same

method as introduced in Refs. [46–50]. The signal MC sample

is simulated using a DIY model [51] implementing the joint

angular distribution from Refs. [52, 53]. The efficiency dif-

ference between data and MC simulation is found to be 0.5%

for the Λ reconstruction and 1.5% for the Λ̄ reconstruction.

The uncertainty from the 4C kinematic fit is studied using the

control sample of ψ(3686) → ΛΛ̄ decays with and without

performing a 4C kinematic fit. The relative change of 1.0%

is assigned as the systematic uncertainty. The uncertainty of

the branching fraction for Λ → pπ− from the PDG [12] is

0.8%, and is propagated to the final result. The uncertainty

from the line-shape description is estimated with an alterna-

tive input cross section line shape based on a simple power-

law function. The change of the efficiency, 2.6%, is taken as

the systematic uncertainty. The uncertainty due to the physical

model dependence is estimated to be 2.5% by comparing the

efficiencies between phase space and the DIY model incorpo-

rating the Λ transverse polarization and spin correlation based

on the control sample of ψ(3770) → ΛΛ̄ decays. Assuming

all sources are independent, the total systematic uncertainty

on the cross section measurement is determined to be 4.3%

by adding these sources in quadrature. The correlations for

the different points are negligible due to the limited statistics.

The extracted Born cross sections at each energy point are

listed in Table I and shown in Fig. 2(top) together with the

CLEO-c results at 3.770 GeV and 4.160 GeV [30, 31]. Fig-

ure 2(bottom) shows the extracted energy dependence of the

Λ effective form factor Geff(s) defined as [55]

Geff(s) =

√

3sτσB

2πα2β(2τ + 1)
, (2)

where α is the fine-structure constant, β =
√

(τ − 1)/τ is the

Λ velocity and τ = s/(4m2
Λ).

The dressed cross section for the continuum e+e− → ΛΛ̄
process is expected to have an asymptotic power-law behavior

∝ s−n with the exponent n ≈ 10 [55–57]. A least-χ2 fit

including statistical and systematic uncertainties to the power-

law distribution describes the data points reasonably well, as

shown with the dashed line in Fig. 3. The fitted value of the

exponent n is close to 10, as shown in the column “Fit I” in

Table II. A fit with the coherent sum of the power-law function

and a Breit–Wigner (BW) function

σdr(s) =

∣

∣

∣

∣

√
σ0

(

M√
s

)n

+ eiφBW(s)

∣

∣

∣

∣

2

(3)

is applied, where M is the ψ(3770) mass, σ0 is the value of

the continuum cross section at ψ(3770) and φ is the relative
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TABLE I. The number of signal events Nobs and Born cross sections

σB obtained at the 33 c.m. energy points. The values in the brackets

represent the upper limit at 90% C.L. calculated with the profile like-

lihood method [54] taking into account the systematic uncertainty.

The first and second uncertainties for σB are statistical and system-

atic, respectively.
√
s (GeV) Nobs σB (fb)

3.5100 61.0+7.8
−7.8 1020+130

−130± 44

3.5146 5.0+2.8
−2.2 (< 9.7) 820+460

−360± 35 (< 1600)

3.5815 13.0+4.3
−3.7 1030+340

−290± 44

3.6500 3.0+2.3
−1.9 (< 6.8) 470+360

−230± 20 (< 1000)

3.6702 10.0+3.8
−3.2 790+370

−250± 34

3.7730 261.0+16.2
−16.2 530+33

−33 ± 22

3.8077 2.0+2.3
−1.3 (< 5.3) 230+260

−150± 10 (< 610)

3.8675 1.0+1.8
−0.6 (< 3.7) 52+94

−31 ± 2 (< 190)

3.8715 1.7+2.3
−0.6 (< 5.3) 88+120

−47 ± 4 (< 270)

3.8962 1.0+1.8
−0.6 (< 3.7) 110+200

−68 ± 5 (< 420)

4.0076 13.0+4.3
−3.7 160+54

−46 ± 7

4.1301 6.0+3.3
−2.7 (< 10.0) 120+65

−53 ± 5 (< 200)

4.1585 7.7+3.3
−2.7 (< 13.7) 120+52

−43 ± 5 (< 220)

4.1783 18.0+5.3
−4.2 40+12

−9 ± 2

4.1893 0.5+1.8
−0.5 (< 3.7) 7+24

−7 ± 1 (< 50)

4.1996 3.7+2.8
−1.7 (< 8.3) 56+42

−26 ± 2 (< 130)

4.2097 1.0+1.8
−0.6 (< 3.7) 16+29

−10 ± 1 (< 59)

4.2188 0.7+1.8
−0.6 (< 3.7) 11+29

−10 ± 1 (< 59)

4.2263 16.7+4.4
−3.8 120+32

−30 ± 5

4.2358 4.5+2.8
−2.3 (< 9.7) 66+41

−34 ± 3 (< 140)

4.2439 2.7+2.3
−1.8 (< 6.8) 34+29

−23 ± 2 (< 85)

4.2580 6.0+3.3
−2.2 (< 11.0) 48+26

−18 ± 2 (< 88)

4.2669 2.0+2.3
−1.3 (< 5.3) 25+29

−16 ± 1 (< 66)

4.2778 1.0+1.8
−0.6 (< 3.7) 40+72

−24 ± 2 (< 150)

4.2889 7.0+3.3
−2.7 (< 12.4) 98+46

−38 ± 4 (< 170)

4.3128 4.7+2.8
−2.2 (< 9.7) 65+39

−31 ± 3 (< 130)

4.3379 2.7+2.3
−1.8 (< 6.8) 35+43

−24 ± 2 (< 89)

4.3583 3.7+2.8
−1.7 (< 8.3) 51+39

−24 ± 2 (< 110)

4.3776 1.2+2.3
−1.0 (< 5.3) 15+29

−13 ± 1 (< 67)

4.3980 0.0+0.8
−0.0 (< 2.0) 0+11

−0 ± 1 (< 27)

4.4156 2.5+2.3
−1.7 (< 6.8) 16+15

−11 ± 1 (< 45)

4.4370 5.0+2.8
−2.2 (< 9.7) 59+33

−26 ± 3 (< 120)

4.5995 0.7+1.8
−0.8 (< 3.7) 9+23

−8 ± 1 (< 47)

phase between the continuum and the resonance. The BW

function is

BW(s) =

√
σψMΓ

s−M2 + iMΓ
with σψ=

12π(h̄c)2ΓeeB
ΓM2

, (4)

where Γ and Γee are the total and the electronic width of the

ψ(3770) resonance, respectively, and B denotes the branch-

ing fraction to ΛΛ̄. The solid line in Fig. 3 and the column

”Fit II” in Table II shows the result of the fit with two solu-

tions, where the mass and width of ψ(3770) are fixed accord-

ing to the PDG values [12], and σ0, n, φ and σψ parameters

are free. The improvement of the χ2 value gives a signifi-

cance of 4.9σ for the hypothesis with the ψ(3770) resonance.

The correlation coefficient between the resonance cross sec-

tion σψ and the phase φ is almost equal to one. In the “Fit

II”, two solutions are expected according to the mathemati-

) 
(f

b)
Λ

Λ 
→ - e

+
(e

B σ 0

500

1000

1500

BESIII

CLEO-c 

  (GeV)s
3.4 3.6 3.8 4.0 4.2 4.4 4.6

)
-3

 1
0

×
(s

) 
(

ef
f

G

0

5

10

15

FIG. 2. The measured Born cross section (top) and Λ effective form

factor (bottom) for e+e− → ΛΛ̄ as a function of the c.m. energy,

where the uncertainties include the statistical and systematic ones.

cal calculation [58, 59], but they are merged with each other

within the uncertainty of 1σ due to the statistics limitation so

that only one solution is provided. Our results can be sum-

marized by giving 90% C.L. intervals 24 < σψ < 1800 fb

and 2.4 × 10−6 < B < 1.8 × 10−4, and represents the first

evidence of the decay ψ(3770) → ΛΛ̄. Note that the sys-

tematic uncertainties due to beam energy, mass and width of

the ψ(3770) resonance have been considered by varying the

known value within one standard deviation, and they turn out

to be negligible. This result is larger by at least an order of

magnitude than the prediction based on the scaling from the

branching fractions values at the ψ(3686) resonance [30, 31],

implying that it need to consider interpreting the CLEO-c data

in terms of EMFFs.

TABLE II. Results of the fit to the dressed cross section for the

e+e− → ΛΛ̄ process, where two solutions in ”Fit II” are pro-

vided. The fitting procedure includes both statistical and system-

atic uncertainties except for the c.m. energy calibration. B is the

branching fraction of the decay ψ(3770) → ΛΛ̄ measured assuming

Bee = 9.7 × 10−6, the central value of the world average [12], and

Γee = Γψ(3770)Bee = (261.2 ± 21.3) eV.

Fit I Fit II

σ0 (fb) 379 ± 22 320 +750
−340

n 8.8 ± 0.4 8.2 ± 0.6

φ (rad) – 3.2 +1.0
−0.7 4.2 +0.3

−2.0

σψ (fb) 0(fixed) 240 +1470
−190 1440 +270

−1390

χ2/ndof 62.0/31 34.6/29 34.6/29

B (×10−5) – 2.4 +15.0
−1.9 14.4 +2.7

−14.0
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FIG. 3. The dressed cross section of the process e+e− → ΛΛ̄
is represented by the dots with error bars, including statistical and

systematic uncertainties. The red dashed line represents the fit with

the power-law function only, while the solid blue line is for the fit

with the power-law function and the ψ(3770) resonance. The bottom

panel shows the pull distribution for the fit with the resonance.

Finally, we have included in the fit an additional char-

monium state: ψ(4040), ψ(4160), Y (4260) and ψ(4415).
Since the significance of each of these is smaller than 3σ,

we quote upper limits at the 90% C.L. for the ΓeeB prod-

ucts: < 5.5 × 10−3 eV for ψ(4040), < 0.7 × 10−3 eV for

ψ(4160), < 0.8 × 10−3 eV for Y (4260) and < 1.8 × 10−3

eV for ψ(4415) including the systematic uncertainty. These

results provide the important information to understand the

nature of charmonium(-like) states above open charm thresh-

old and in particular their coupling to the BB̄ final states and

even insight into the puzzle of large non-DD̄ component of

ψ(3770).
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