Observation of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$

M. Ablikim ${ }^{1}$, M. N. Achasov ${ }^{10, c}$, P. Adlarson ${ }^{67}$, S. Ahmed ${ }^{15}$, M. Albrecht ${ }^{4}$, R. Aliberti ${ }^{28}$, A. Amoroso ${ }^{66 A, 66 C}$, M. R. An^{32}, Q. $\mathrm{An}^{63,49}$, X. H. Bai ${ }^{57}$, Y. Bai ${ }^{48}$, O. Bakina ${ }^{29}$, R. Baldini Ferroli ${ }^{23 A}$, I. Balossino ${ }^{24 A}$, Y. Ban ${ }^{38, k}$, K. Begzsuren ${ }^{26}$, N. Berger ${ }^{28}$, M. Bertani ${ }^{23 A}$, D. Bettoni ${ }^{24 A}$, F. Bianchi ${ }^{66 A, 66 C}$, J. Bloms ${ }^{60}$, A. Bortone ${ }^{66 A, 66 C}$, I. Boyko 29, R. A. Briere ${ }^{5}$, H. Cai ${ }^{68}$, X. Cai ${ }^{1,49}$, A. Calcaterra ${ }^{23 A}$, G. F. Cao ${ }^{1,54}$, N. Cao ${ }^{1,54}$, S. A. Cetin ${ }^{53 A}$, J. F. Chang ${ }^{1,49}$, W. L. Chang ${ }^{1,54}$, G. Chelkov ${ }^{29, b}$, D. Y. Chen ${ }^{6}$, G. Chen ${ }^{1}$, H. S. Chen ${ }^{1,54}$, M. L. Chen ${ }^{1,49}$, S. J. Chen ${ }^{35}$, X. R. Chen ${ }^{25}$, Y. B. Chen ${ }^{1,49}$, Z. J Chen ${ }^{20, l}$, W. S. Cheng ${ }^{66 C}$, G. Cibinetto ${ }^{24 A}$, F. Cossio ${ }^{66 C}$, X. F. Cui ${ }^{36}$, H. L. Dai ${ }^{1,49}$, X. C. Dai ${ }^{1,54}$, A. Dbeyssi ${ }^{15}$, R. E. de Boer ${ }^{4}$, D. Dedovich ${ }^{29}$, Z. Y. Deng ${ }^{1}$, A. Denig ${ }^{28}$, I. Denysenko ${ }^{29}$, M. Destefanis ${ }^{66 A, 66 C}$, F. De Mori ${ }^{66 A, 66 C}$, Y. Ding ${ }^{33}$, C. Dong ${ }^{36}$, J. Dong ${ }^{1,49}$, L. Y. Dong ${ }^{1,54}$, M. Y. Dong ${ }^{1,49,54}$, X. Dong ${ }^{68}$, S. X. Du ${ }^{71}$, Y. L. Fan ${ }^{68}$, J. Fang ${ }^{1,49}$, S. S. Fang ${ }^{1,54}$, Y. Fang ${ }^{1}$, R. Farinelli ${ }^{24 A}$, L. Fava ${ }^{66 B, 66 C}$, F. Feldbauer ${ }^{4}$, G. Felici ${ }^{23 A}$, C. Q. Feng ${ }^{63,49}$, J. H. Feng ${ }^{50}$, M. Fritsch ${ }^{4}$, C. D. Fu ${ }^{1}$, Y. Gao ${ }^{64}$, Y. Gao ${ }^{38, k}$, Y. Gao ${ }^{63,49}$, Y. G. Gao ${ }^{6}$, I. Garzia ${ }^{24 A, 24 B}$, P. T. Ge ${ }^{68}$, C. Geng ${ }^{50}$, E. M. Gersabeck ${ }^{58}$, A Gilman ${ }^{61}$, K. Goetzen ${ }^{11}$, L. Gong ${ }^{33}$, W. X. Gong ${ }^{1,49}$, W. Gradl ${ }^{28}$, M. Greco ${ }^{66 A, 66 C}$, L. M. Gu ${ }^{35}$, M. H. Gu ${ }^{1,49}$, S. Gu ${ }^{2}$, Y. T. Gu ${ }^{13}$, C. Y Guan ${ }^{1,54}$, A. Q. Guo ${ }^{22}$, L. B. Guo ${ }^{34}$, R. P. Guo ${ }^{40}$, Y. P. Guo ${ }^{9, h}$, A. Guskov ${ }^{29}$, T. T. Han ${ }^{41}$, W. Y. Han^{32}, X. Q. Hao ${ }^{16}$, F. A. Harris ${ }^{56}$, N Hüsken ${ }^{22,28}$, K. L. He ${ }^{1,54}$, F. H. Heinsius ${ }^{4}$, C. H. Heinz ${ }^{28}$, T. Held ${ }^{4}$, Y. K. Heng ${ }^{1,49,54}$, C. Herold ${ }^{51}$, M. Himmelreich ${ }^{11, f}$, T. Holtmann ${ }^{4}$, Y. R. Hou ${ }^{54}$, Z. L. Hou ${ }^{1}$, H. M. Hu ${ }^{1,54}$, J. F. $\mathrm{Hu}^{47, m}$, T. $\mathrm{Hu}^{1,49,54}$, Y. Hu^{1}, G. S. Huang ${ }^{63,49}$, L. Q. Huang ${ }^{64}$, X. T. Huang ${ }^{41}$, Y. P. Huang ${ }^{1}$, Z. Huang ${ }^{38, k}$, T. Hussain ${ }^{65}$, W. Ikegami Andersson ${ }^{67}$, W. Imoehl 22, M. Irshad ${ }^{63,49}$, S. Jaeger ${ }^{4}$, S. Janchiv ${ }^{26, j}$, Q. Ji ${ }^{1}$, Q. P. Ji ${ }^{16}$, X. B. Ji ${ }^{1,54}$, X. L. Ji ${ }^{1,49}$, Y. Y. Ji ${ }^{41}$, H. B. Jiang ${ }^{41}$, X. S. Jiang ${ }^{1,49,54}$, J. B. Jiao ${ }^{41}$, Z. Jiao ${ }^{18}$, S. Jin ${ }^{35}$, Y. Jin ${ }^{57}$, T. Johansson ${ }^{67}$, N. Kalantar-Nayestanaki ${ }^{55}$, X. S. Kang ${ }^{33}$, R. Kappert ${ }^{55}$, M. Kavatsyuk ${ }^{55}$, B. C. Ke ${ }^{43,1}$,
I. K. Keshk ${ }^{4}$, A. Khoukaz ${ }^{60}$, P. Kiese ${ }^{28}$, R. Kiuchi ${ }^{1}$, R. Kliemt ${ }^{11}$, L. Koch 30, O. B. Kolcu ${ }^{53 A, e}$, B. Kopf ${ }^{4}$, M. Kuemmel ${ }^{4}$, M. Kuessner ${ }^{4}$, A. Kupsc ${ }^{67}$, M. G. Kurth ${ }^{1,54}$, W. Kühn ${ }^{30}$, J. J. Lane ${ }^{58}$, J. S. Lange ${ }^{30}$, P. Larin ${ }^{15}$, A. Lavania ${ }^{21}$, L. Lavezzi ${ }^{66 A, 66 C}$, Z. H. Lei ${ }^{63,49}$, H. Leithoff ${ }^{28}$, M. Lellmann ${ }^{28}$, T. Lenz ${ }^{28}$, C. Li ${ }^{39}$, C. H. Li^{32}, Cheng $\mathrm{Li}^{63,49}$, D. M. Li ${ }^{71}$, F. $\mathrm{Li}^{1,49}$, G. Li^{1}, H. Li^{43}, H. Li ${ }^{63,49}$, H. B. $\mathrm{Li}^{1,54}$, H. J. Li ${ }^{16}$, J. L. Li ${ }^{41}$, J. Q. Li^{4}, J. S. Li^{50}, Ke Li ${ }^{1}$, L. K. Li^{1}, Lei Li^{3}, P. R. Li^{31}, S. Y. Li^{52}, W. D. $\mathrm{Li}^{1,54}$, W. G. Li^{1}, X. H. Li ${ }^{63,49}$, X. L. Li^{41}, Xiaoyu Li ${ }^{1,54}$, Z. Y. Li ${ }^{50}$, H. Liang ${ }^{63,49}$, H. Liang ${ }^{1,54}$, H. Liang ${ }^{27}$, Y. F. Liang ${ }^{45}$, Y. T. Liang ${ }^{25}$, G. R. Liao ${ }^{12}$, L. Z. Liao ${ }^{1,54}$, J. Libby ${ }^{21}$, C. X. Lin ${ }^{50}$, B. J. Liu ${ }^{1}$, C. X. Liu ${ }^{1}$, D. Liu ${ }^{63,49}$, F. H. Liu ${ }^{44}$, Fang Liu ${ }^{1}$, Feng Liu ${ }^{6}$, H. B. Liu ${ }^{13}$, H. M. Liu ${ }^{1,54}$, Huanhuan Liu ${ }^{1}$, Huihui Liu ${ }^{17}$, J. B. Liu ${ }^{63,49}$, J. L. Liu ${ }^{64}$, J. Y. Liu ${ }^{1,54}$, K. Liu ${ }^{1}$, K. Y. Liu ${ }^{33}$, Ke Liu ${ }^{6}$, L. Liu ${ }^{63,49}$, M. H. Liu ${ }^{9, h}$, P. L. Liu ${ }^{1}$, Q. Liu ${ }^{54}$, Q. Liu ${ }^{68}$, S. B. Liu ${ }^{63,49, ~ S h u a i ~ L i u ~}{ }^{46}$, T. Liu ${ }^{1,54}$, W. M. Liu ${ }^{63,49}$, X. Liu ${ }^{31}$, Y. Liu ${ }^{31}$, Y. B. Liu^{36}, Z. A. Liu ${ }^{1,49,54}$, Z. Q. Liu ${ }^{41}$, X. C. Lou ${ }^{1,49,54, ~}$ F. X. Lu ${ }^{16}$, F. X. Lu ${ }^{50}$, H. J. Lu ${ }^{18}$, J. D. $\mathrm{Lu}^{1,54}$, J. G. $\mathrm{Lu}^{1,49}$, X. L. Lu ${ }^{1}$, Y. Lu ${ }^{1}$, Y. P. Lu ${ }^{1,49}$, C. L. Luo ${ }^{34}$, M. X. Luo ${ }^{70}$, P. W. Luo ${ }^{50}$, T. Luo ${ }^{9}, h$, X. L. Luo ${ }^{1,49}$, S. Lusso ${ }^{66 C}$, X. R. Lyu ${ }^{54}$, F. C. Ma ${ }^{33}$, H. L. Ma ${ }^{1}$, L. L. Ma^{41}, M. M. Ma ${ }^{1,54}$, Q. M. Ma^{1}, R. Q. $\mathrm{Ma}^{1,54}$, R. T. Ma^{54}, X. X. $\mathrm{Ma}^{1,54}$, X. Y. Ma ${ }^{1,49}$, F. E. Maas ${ }^{15}$, M. Maggiora ${ }^{66 A, 66 C}$, S. Maldaner ${ }^{4}$, S. Malde ${ }^{61}$, Q. A. Malik ${ }^{65}$, A. Mangoni ${ }^{23 B}$, Y. J. Mao ${ }^{38, k}$, Z. P. Mao ${ }^{1}$, S. Marcello ${ }^{66 A, 66 C}$, Z. X. Meng ${ }^{57}$, J. G. Messchendorp ${ }^{55}$, G. Mezzadri ${ }^{24 A}$, T. J. Min ${ }^{35}$, R. E. Mitchell ${ }^{22}$, X. H. Mo ${ }^{1,49,54}$, Y. J. Mo^{6}, N. Yu. Muchnoi ${ }^{10, c}$, H. Muramatsu ${ }^{59}$, S. Nakhoul ${ }^{11, f}$, Y. Nefedov ${ }^{29}$, F. Nerling ${ }^{11, f}$, I. B. Nikolaev ${ }^{10, c}$, Z. Ning ${ }^{1,49}$, S. Nisar ${ }^{8, i}$, S. L. Olsen ${ }^{54}$, Q. Ouyang ${ }^{1,49,54}$, S. Pacetti ${ }^{23 B, 23 C}$, X. Pan ${ }^{9, h}$, Y. Pan ${ }^{58}$, A. Pathak ${ }^{1}$, P. Patteri ${ }^{23 A}$, M. Pelizaeus ${ }^{4}$, H. P. Peng ${ }^{63,49}$, K. Peters ${ }^{11, f}$, J. Pettersson ${ }^{67}$, J. L. Ping ${ }^{34}$,
R. G. Ping ${ }^{1,54}$, R. Poling ${ }^{59}$, V. Prasad ${ }^{63,49}$, H. Qi ${ }^{63,49}$, H. R. Qi ${ }^{52}$, K. H. Qi ${ }^{25}$, M. Qi ${ }^{35}$, T. Y. Qi^{9}, T. Y. Qi ${ }^{2}$, S. Qian ${ }^{1,49}$, W. B. Qian ${ }^{54}$, Z. Qian ${ }^{50}$, C. F. Qiao 54, L. Q. Qin ${ }^{12}$, X. P. Qin ${ }^{9}$, X. S. Qin ${ }^{41}$, Z. H. Qin ${ }^{1,49}$, J. F. Qiu ${ }^{1}$, S. Q. Qu 36, K. H. Rashid ${ }^{65}$, K. Ravindran ${ }^{21}$, C. F. Redmer ${ }^{28}$, A. Rivetti ${ }^{66 C}$, V. Rodin ${ }^{55}$, M. Rolo ${ }^{66 C}$, G. Rong ${ }^{1,54}$, Ch. Rosner ${ }^{15}$, M. Rump ${ }^{60}$, H. S. Sang ${ }^{63}$, A. Sarantsev ${ }^{29, d}$, Y. Schelhaas ${ }^{28}$, C. Schnier ${ }^{4}$, K. Schoenning ${ }^{67}$, M. Scodeggio ${ }^{24 A, 24 B}$, D. C. Shan ${ }^{46}$, W. Shan ${ }^{19}$, X. Y. Shan ${ }^{63,49}$, J. F. Shangguan ${ }^{46}$, M. Shao ${ }^{63,49}$, C. P. Shen ${ }^{9}$, P. X. Shen ${ }^{36}$, X. Y. Shen ${ }^{1,54}$, H. C. Shi ${ }^{63,49}$, R. S. Shi ${ }^{1,54}$, X. Shi ${ }^{1,49}$, X. D Shi ${ }^{63,49}$, J. J. Song ${ }^{41}$, W. M. Song ${ }^{27,1}$, Y. X. Song ${ }^{38, k}$, S. Sosio $^{66 A, 66 C}$, S. Spataro ${ }^{66 A, 66 C}$, K. X. Su ${ }^{68}$, P. P. Su ${ }^{46}$, F. F. Sui ${ }^{41}$, G. X. Sun ${ }^{1}$, H. K. Sun ${ }^{1}$, J. F. Sun ${ }^{16}$, L. Sun 68, S. S. Sun ${ }^{1,54}$, T. Sun 1,54, W. Y. Sun 34, W. Y. Sun 27, X Sun ${ }^{20, l}$, Y. J. Sun ${ }^{63,49, ~ Y . ~ K . ~ S u n ~}{ }^{63,49, ~}$ Y. Z. Sun ${ }^{1}$, Z. T. Sun ${ }^{1}$, Y. H. Tan^{68}, Y. X. $\operatorname{Tan}^{63,49}$, C. J. Tang ${ }^{45}$, G. Y. Tang ${ }^{1}$, J. Tang ${ }^{50}$, J. X. Teng ${ }^{63,49,}$ V. Thoren ${ }^{67}$, W. H. Tian ${ }^{43}$, Y. T. Tian ${ }^{25}$, I. Uman ${ }^{53 B}$, B. Wang ${ }^{1}$, C. W. Wang ${ }^{35}$, D. Y. Wang ${ }^{38, k}$, H. J. Wang ${ }^{31}$, H. P. Wang ${ }^{1,54}$, K. Wang ${ }^{1,49}$, L. L. Wang ${ }^{1}$, M. Wang ${ }^{41}$, M. Z. Wang ${ }^{38, k}$, Meng Wang ${ }^{1,54}$, W. Wang ${ }^{50}$, W. H. Wang ${ }^{68}$, W. P. Wang ${ }^{63,49}$, X. Wang ${ }^{38, k}$, X. F. Wang ${ }^{31}$, X. L. Wang ${ }^{9, h}$, Y. Wang ${ }^{50}$, Y. Wang ${ }^{63,49}$, Y. D. Wang ${ }^{37}$, Y. F. Wang ${ }^{1,49,54}$, Y. Q. Wang ${ }^{1}$, Y. Y. Wang ${ }^{31}$, Z. Wang ${ }^{1,49}$, Z. Y. Wang ${ }^{1}$, Ziyi Wang ${ }^{54}$,

Zongyuan Wang ${ }^{1,54}$, D. H. Wei ${ }^{12}$, P. Weidenkaff ${ }^{28}$, F. Weidner ${ }^{60}$, S. P. Wen ${ }^{1}$, D. J. White ${ }^{58}$, U. Wiedner ${ }^{4}$, G. Wilkinson ${ }^{61}$, M. Wolke ${ }^{67}$, L. Wollenberg ${ }^{4}$, J. F. Wu ${ }^{1,54}$, L. H. Wu ${ }^{1}$, L. J. Wu ${ }^{1,54}$, X. Wu ${ }^{9, h}$, Z. Wu ${ }^{1,49}$, L. Xia ${ }^{63,49}$, H. Xiao ${ }^{9, h}$, S. Y. Xiao ${ }^{1}$, Z. J. Xiao ${ }^{34}$, X. H. Xie ${ }^{38, k}$, Y. G. Xie ${ }^{1,49}$, Y. H. Xie ${ }^{6}$, T. Y. Xing ${ }^{1,54}$, G. F. Xu ${ }^{1}$, Q. J. Xu ${ }^{14}$, W. Xu $u^{1,54}$, X. P. Xu u^{46}, Y. C. Xu ${ }^{54}$, F. $Y^{9}{ }^{9, h}$, L. Yan ${ }^{9, h}$, W. B. Yan ${ }^{63,49}$, W. C. Yan ${ }^{71}$, Xu Yan ${ }^{46}$, H. J. Yang ${ }^{42, g}$, H. X. Yang ${ }^{1}$, L. Yang ${ }^{43}$, S. L. Yang ${ }^{54}$, Y. X. Yang ${ }^{12}$, Yifan Yang ${ }^{1,54}$, Zhi Yang ${ }^{25}$, M. Ye ${ }^{1,49}$, M. H. Ye ${ }^{7}$, J. H. Yin ${ }^{1}$, Z. Y. You ${ }^{50}$, B. X. Yu ${ }^{1,49,54}$, C. X. Yu ${ }^{36}$, G. $\mathrm{Yu}^{1,54}$, J. S. Yu ${ }^{20, l}$, T. Yu ${ }^{64}$, C. Z. Yuan ${ }^{1,54}$, L. Yuan ${ }^{2}$, X. Q. Yuan ${ }^{38, k}$, Y. Yuan ${ }^{1}$, Z. Y. Yuan ${ }^{50}$, C. X. Yue ${ }^{32}$, A. Yuncu ${ }^{53 A, a}$, A. A. Zafar ${ }^{65}$, Y. Zeng ${ }^{20, l}$, B. X. Zhang ${ }^{1}$, Guangyi Zhang ${ }^{16}$, H. Zhang ${ }^{63}$, H. H. Zhang ${ }^{50}$, H. H. Zhang ${ }^{27}$, H. Y. Zhang ${ }^{1,49}$, J. J. Zhang ${ }^{43}$, J. L. Zhang ${ }^{69}$, J. Q. Zhang ${ }^{34}$, J. W. Zhang ${ }^{1,49,54}$, J. Y. Zhang ${ }^{1}$, J. Z. Zhang ${ }^{1,54}$, Jianyu Zhang ${ }^{1,54}$, Jiawei Zhang ${ }^{1,54}$, L. M. Zhang ${ }^{52}$, L. Q. Zhang ${ }^{50}$, Lei Zhang ${ }^{35}$, S. Zhang ${ }^{50}$, S. F. Zhang ${ }^{35}$, Shulei Zhang ${ }^{20, l}$, X. D. Zhang ${ }^{37}$, X. Y. Zhang ${ }^{41}$, Y. Zhang ${ }^{61}$, Y. H. Zhang ${ }^{1,49}$, Y. T. Zhang ${ }^{63,49}$, Yan Zhang ${ }^{63,49}$, Yao Zhang ${ }^{1}$, Yi Zhang ${ }^{9, h}$, Z. H. Zhang ${ }^{6}$, Z. Y. Zhang ${ }^{68}$, G. Zhao ${ }^{1}$, J. Zhao ${ }^{32}$, J. Y. Zhao ${ }^{1,54}$, J. Z. Zhao ${ }^{1,49}$, Lei Zhao ${ }^{63,49}$, Ling Zhao ${ }^{1}$, M. G. Zhao ${ }^{36}$, Q. Zhao ${ }^{1}$, S. J. Zhao ${ }^{71}$, Y. B. Zhao ${ }^{1,49}$, Y. X. Zhao ${ }^{25}$, Z. G. Zhao ${ }^{63,49}$, A. Zhemchugov ${ }^{29, b}$, B. Zheng ${ }^{64}$, J. P. Zheng ${ }^{1,49}$, Y. Zheng ${ }^{38, k}$, Y. H. Zheng ${ }^{54}$, B. Zhong ${ }^{34}$, C. Zhong ${ }^{64}$, L. P. Zhou ${ }^{1,54}$, Q. Zhou ${ }^{1,54}$, X. Zhou ${ }^{68}$, X. K. Zhou ${ }^{54}$, X. R. Zhou ${ }^{63,49}$, X. Y. Zhou ${ }^{32}$, A. N. Zhu ${ }^{1,54}$, J. Zhu ${ }^{36}$, K. Zhu ${ }^{1}$, K. J. Zhu ${ }^{1,49,54, ~}$ S. H. Zhu ${ }^{62}$, T. J. Zhu ${ }^{69}$, W. J. Zhu ${ }^{9, h}$, W. J. Zhu ${ }^{36}$, Y. C. Zhu ${ }^{63,49}$, Z. A. Zhu ${ }^{1,54}$, B. S. Zou ${ }^{1}$, J. H. Zou ${ }^{1}$
(BESIII Collaboration)
${ }^{1}$ Institute of High Energy Physics, Beijing 100049, People's Republic of China
${ }^{2}$ Beihang University, Beijing 100191, People's Republic of China
${ }^{3}$ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
${ }^{4}$ Bochum Ruhr-University, D-44780 Bochum, Germany
${ }^{5}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{6}$ Central China Normal University, Wuhan 430079, People's Republic of China
${ }^{7}$ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China
${ }^{8}$ COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
${ }^{9}$ Fudan University, Shanghai 200443, People's Republic of China
${ }^{10}$ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People's Republic of China
${ }^{13}$ Guangxi University, Nanning 530004, People's Republic of China
${ }^{14}$ Hangzhou Normal University, Hangzhou 310036, People's Republic of China
15 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People's Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People's Republic of China
18 Huangshan College, Huangshan 245000, People's Republic of China
19 Hunan Normal University, Changsha 410081, People's Republic of China
20 Hunan University, Changsha 410082, People's Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
${ }^{23}$ INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy;
(B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
${ }^{24}$ INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122,
Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People's Republic of China
${ }^{26}$ Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia 27 Jilin University, Changchun 130012, People's Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany 31 Lanzhou University, Lanzhou 730000, People's Republic of China
32 Liaoning Normal University, Dalian 116029, People's Republic of China

[^0]${ }^{h}$ Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People's Republic of China
${ }^{i}$ Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
${ }^{j}$ Currently at: Institute of Physics and Technology, Peace Ave.54B, Ulaanbaatar 13330, Mongolia
${ }^{k}$ Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China
${ }^{l}$ School of Physics and Electronics, Hunan University, Changsha 410082, China
${ }^{m}$ Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China

Abstract

Using $2.93 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$collision data taken with the BESIII detector at a center-of-mass energy of 3.773 GeV , the observation of the $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ semileptonic decay is presented. The statistical significance of the decay $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ is greater than 10σ. The branching fraction of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ is measured to be $\left(1.09 \pm 0.13_{-0.16}^{+0.09} \pm 0.12\right) \times 10^{-3}$. Here, the first uncertainty is statistical, the second is systematic, and the third originates from the assumed branching fraction of $K_{1}(1270)^{-} \rightarrow K^{-} \pi^{+} \pi^{-}$. The fraction of longitudinal polarization in $D^{0} \rightarrow$ $K_{1}(1270)^{-} e^{+} \nu_{e}$ is determined for the first time to be $0.50 \pm 0.19_{\text {stat }} \pm 0.08_{\text {syst }}$.

PACS numbers: $13.20 . \mathrm{Fc}, 12.15 . \mathrm{Hh}$

Semileptonic (SL) D decays offer a good testbed to understand nonperturbative strong-interaction dynamics in weak decays $[1,2]$. Studies of the SL $D^{0(+)}$ decays into the strange axial-vector mesons $K_{1}(1270)$ or $K_{1}(1400)$ are especially appealing. Reference [3] points out that the combined measurements of $D^{0(+)} \rightarrow \bar{K}_{1}(1270) \ell^{+} \nu_{\ell}$ and $B \rightarrow K_{1}(1270) \gamma$ provide a possible way to determine the photon polarization in $b \rightarrow s \gamma$ transitions without considerable theoretical ambiguity. Knowledge of the $b \rightarrow s \gamma$ photon polarization plays a unique role in probing right-handed couplings in new physics [3-5]. As LHCb reported a large up-down asymmetry in $B^{-} \rightarrow K_{\text {res }}^{-}\left(\rightarrow K^{-} \pi^{+} \pi^{-}\right) \gamma$ in the $K^{-} \pi^{+} \pi^{-}$invariant mass bin of $[1.1,1.3] \mathrm{GeV} / c^{2}$ which is dominated by $K_{1}(1270)^{-}$contribution [6]. Therefore, the decay $D^{0} \rightarrow$ $K_{1}(1270)^{-}\left(\rightarrow K^{-} \pi^{+} \pi^{-}\right) \ell^{+} \nu_{\ell}$ is particularly desired to quantify the hadronic effects of $K_{1}(1270)^{-} \rightarrow K^{-} \pi^{+} \pi^{-}$. Throughout this Letter, charged conjugated modes are always implied.

To date, the $K_{1}(1270)$ and $K_{1}(1400)$ mesons have been extensively investigated in τ, D, B, and charmonium decays [7-16]. In theory, the physical mass eigenstates of $K_{1}(1270)$ and $K_{1}(1400)$ are decomposed as mixtures of the ${ }^{1} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{P}_{1}$ states with a mixing angle $\theta_{K_{1}}$. Various approaches were proposed to extract $\theta_{K_{1}}$, but with very different results [17-24]. Experimental measurements of $D^{0(+)} \rightarrow \bar{K}_{1}(1270) e^{+} \nu_{e}$ offer deeper insight into the mixing angle $\theta_{K_{1}}$, which is essential for reliable calculations describing the $\tau[17], B[19,25]$, and $D[26$, 27] decays involving K_{1}, and for investigations in the field of hadron spectroscopy [28].

The branching fractions (BFs) of $D^{0(+)} \rightarrow$ $\bar{K}_{1}(1270) e^{+} \nu_{e}$ have been computed with different models: the Isgur-Scora-Grinstein-Wise (ISGW) quark model [1] and its update, ISGW2 [2], three-point QCD sum rules (3PSR) [29], covariant light-front quark
model (CLFQM) [30], and the light-cone QCD sum rules (LCSR) [31, 32]. The predicted BFs, which are sensitive to $\theta_{K_{1}}$ and its sign, vary from 10^{-3} to $10^{-2}[29,30,32]$. Measurements of these decay BFs and related longitudinal polarization are key to testing different theoretical calculations and understanding the weak-decay mechanisms of D mesons. For example, assuming isospin symmetry, the ratio of the partial decay widths for the SL $D^{0(+)}$ decays, which are both mediated via $c \rightarrow s e^{+} \nu_{e}$, is expected to be unity [33]. Measuring the BFs thus allows a test of isospin invariance in $D^{0(+)} \rightarrow \bar{K}_{1}(1270) e^{+} \nu_{e}$. Large $D^{0} \rightarrow K_{1}(1270)^{-} \ell^{+} \nu_{\ell}$ samples also supply a clean environment, with no additional hadrons in the final state, to accurately determine the mass and width of $K_{1}(1270)$, and to explore the relative strengths and phases of $K_{1}(1270)^{-}$ decays into various final states that differ considerably with its neutral counterpart $\bar{K}_{1}(1270)^{0}$, which currently all suffer large uncertainties.

An observation of $D^{+} \rightarrow \bar{K}_{1}(1270)^{0} e^{+} \nu_{e}$ was previously reported by BESIII [34]. However, the only evidence for $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ was reported by CLEO [35]. This Letter presents an observation of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ by using $2.93 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$ collision data [36] recorded at a center-of-mass energy $\sqrt{s}=3.773 \mathrm{GeV}$ with the BESIII detector [37].

Details about the design and performance of the BESIII detector are given in Ref. [37]. Simulated samples produced with a GEANT4-based [38] Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulation includes the beam-energy spread and initial-state radiation (ISR) in the $e^{+} e^{-}$ annihilations modeled with the generator KKMC [39]. The inclusive MC samples consist of the production of
the $D \bar{D}$ pairs, the non- $D \bar{D}$ decays of the $\psi(3770)$, the ISR production of the J / ψ and $\psi(3686)$ states, and the continuum processes incorporated in KкмC [39]. The known decay modes are modeled with EVTGEN [40] using BFs taken from the Particle Data Group [41], and the remaining unknown decays from the charmonium states with LUNDCHARM [42]. Final-state radiation (FSR) from charged final-state particles is incorporated with the рнотоs package [43]. The $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ decay is simulated with the ISGW2 model [2] and the $K_{1}(1270)^{-}$is allowed to decay into all intermediate processes with final state of $K^{-} \pi^{+} \pi^{-}$. The $K_{1}(1270)^{-}$ resonance shape is parameterized by a relativistic BreitWigner function with mass of $(1.253 \pm 0.007) \mathrm{GeV} / c^{2}$ and width of $(90 \pm 20) \mathrm{MeV}$ [41]. The BFs of $K_{1}(1270)$ subdecays measured by Belle [44] are input, since they give better data/ MC consistency than those reported in Ref. [41].

At $\sqrt{s}=3.773 \mathrm{GeV}, \bar{D}^{0}$ and D^{0} mesons are produced in pairs. The momenta of \bar{D}^{0} and D^{0} are equal and in opposite directions. This advantage allows to study the D decays with the double-tag (DT) technique first developed by Mark III [45]. The \bar{D}^{0} mesons are reconstructed by their hadronic decays to $K^{+} \pi^{-}$, $K^{+} \pi^{-} \pi^{0}$, and $K^{+} \pi^{-} \pi^{-} \pi^{+}$. These inclusively selected events are referred to as single-tag (ST) \bar{D}^{0} mesons. In the presence of the ST \bar{D}^{0} mesons, candidates for $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ are selected to form DT events. For a given tag mode, the BF of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$, $\mathcal{B}_{\text {SL }}$, is obtained by

$$
\begin{equation*}
\mathcal{B}_{\mathrm{SL}}=N_{\mathrm{DT}} /\left(N_{\mathrm{ST}} \cdot \varepsilon_{\mathrm{SL}} \cdot \mathcal{B}_{\mathrm{sub}}\right) \tag{1}
\end{equation*}
$$

where N_{ST} and N_{DT} are the ST and DT yields in data, $\varepsilon_{\mathrm{SL}}=\varepsilon_{\mathrm{DT}} / \varepsilon_{\mathrm{ST}}$ is the efficiency of detecting the SL decay in the presence of the $\mathrm{ST} \bar{D}^{0}$, and $\mathcal{B}_{\text {sub }}$ is the BF of $K_{1}(1270)^{-} \rightarrow K^{-} \pi^{+} \pi^{-} . \varepsilon_{\text {ST }}$ and $\varepsilon_{\text {DT }}$ are the efficiencies of selecting the ST and DT candidates, respectively.

This analysis uses the same selection criteria of $K^{ \pm}, \pi^{ \pm}$, and π^{0} as in Refs. [46-49]. The ST \bar{D}^{0} mesons are identified by the energy difference $\Delta E \equiv$ $E_{\bar{D}^{0}}-E_{\text {beam }}$ and the beam-constrained mass $M_{\mathrm{BC}} \equiv$ $\sqrt{E_{\text {beam }}^{2}-\left|\vec{p}_{\bar{D}^{0}}\right|^{2}}$, where $E_{\text {beam }}$ is the beam energy, $E_{\bar{D}^{0}}$ and $\vec{p}_{\bar{D}^{0}}$ are the total energy and momentum of the $\mathrm{ST} \bar{D}^{0}$ in the $e^{+} e^{-}$rest frame. If there are multiple combinations in an event, the combination with the smallest $|\Delta E|$ is chosen for each tag mode. Combinatorial backgrounds in the M_{BC} distributions are suppressed by requiring ΔE within $(-29,27),(-69,38)$, and $(-31,28) \mathrm{MeV}$ for $\bar{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$, and $K^{+} \pi^{-} \pi^{-} \pi^{+}$, respectively.

The M_{BC} distributions of the accepted ST candidates in data for the three tag modes are shown in Fig. 1. To extract the ST yield for each tag mode, an unbinned maximum-likelihood fit is performed to the corresponding M_{BC} distribution. The signal is described
by the MC-simulated shape convolved with a doubleGaussian function accounting for the resolution difference between data and MC simulation, and the background is modeled by an ARGUS function [50]. Fit results are shown in Fig. 1. Events within $M_{\mathrm{BC}} \in(1.858,1.874)$ GeV / c^{2} are kept for further analysis. The ST yields for the $\bar{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$, and $K^{+} \pi^{-} \pi^{-} \pi^{+}$tag modes are $542153 \pm 774_{\text {stat }}, 1080690 \pm 1727_{\text {stat }}$, and $737036 \pm 1712_{\text {stat }}$, respectively.

Fig. 1. Fits to the M_{BC} distributions of the ST candidates in data. Points with error bars are data. Blue solid curves are the fit results and red dashed curves represent the background contributions of the fit. Pair of red arrows in each subfigure indicate the M_{BC} window.

Particles recoiling against the ST \bar{D}^{0} candidates are used to reconstruct candidates for $D^{0} \rightarrow$ $K_{1}(1270)^{-} e^{+} \nu_{e}$. The $K_{1}(1270)^{-}$is reconstructed via $K_{1}(1270)^{-} \rightarrow K^{-} \pi^{+} \pi^{-}$. The K^{-}and $\pi^{ \pm}$candidates are selected with the same criteria as the tag side. Positron particle identification (PID) uses the combined information from the specific ionization energy loss $(d E / d x)$, time of flight, and electromagnetic calorimeter (EMC), with which we calculate the combined confidence levels under positron, pion, and kaon hypotheses $C L_{e}$, $C L_{\pi}$ and $C L_{K}$. Positron candidate is required to satisfy $C L_{e} /\left(C L_{e}+C L_{\pi}+C L_{K}\right)>0.8$. To reduce backgrounds from hadrons and muons, the positron candidate is required to satisfy $E / p>0.8$, where E is the energy deposited in the EMC and p is the momentum measured by the multilayer drift chamber (MDC). No additional charged track is allowed in the event.

To distinguish positrons from backgrounds related to hadrons, the positron candidates are required to satisfy $E / p-0.38>0.14 \times \chi_{d E / d x}^{e}$, where $\chi_{d E / d x}^{e}$ is the $d E / d x \chi^{2}$ with the positron hypothesis, respectively. To suppress the background from $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$, we require $M_{K^{-} \pi^{+} \pi^{-} \pi_{e \rightarrow \pi}^{+}}<1.8 \mathrm{GeV} / c^{2}$, where $\pi_{e \rightarrow \pi}^{+}$ is the positron candidate reconstructed with the pion mass hypothesis. To suppress the background from $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\left(\pi^{0}\right)$, with $\pi^{0} \rightarrow e^{+} e^{-} \gamma$ (and missing another π^{0}), the opening angle between e^{+}and π^{-} $\left(\theta_{a}\right)$ is required to satisfy $\cos \theta_{a}<0.94$. To suppress the background from $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{0}$, we require $M_{K^{-} \pi^{+} \pi^{-} \pi_{e \rightarrow \pi}^{+} \pi^{0}}<1.4 \mathrm{GeV} / c^{2}$ when there is at least one reconstructed π^{0} among the photons recoiling against the ST \bar{D}^{0} meson in an event. Furthermore, the opening angle between the missing momentum (defined below)
and the most energetic unused shower $\left(\theta_{b}\right)$ is required to satisfy $\cos \theta_{b}<0.81$. To suppress the background from $D^{0} \rightarrow K^{-} \pi^{0} e^{+} \nu_{e}$ with $\pi^{0} \rightarrow e^{+} e^{-} \gamma$, we require $M_{\pi^{+} \pi^{-}}>0.31 \mathrm{GeV} / c^{2}$. Background involving K_{S}^{0} decay is suppressed by requiring $M_{\pi^{+} \pi^{-}}$outside the interval $(0.488,0.508) \mathrm{GeV} / c^{2}$. For the $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ tag mode, combinatorial background from $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$ vs. $D^{+} \rightarrow K^{-} \pi^{+} X$ is suppressed by requiring the difference between the beam-energy and the energy of the $\left(K^{+} \pi^{-}\right)_{\mathrm{tag}} \pi_{\text {sig }}^{-}$combination to be greater than 8 MeV .

Information concerning the undetectable neutrino is inferred by the kinematic quantity $M_{\text {miss }}^{2} \equiv E_{\text {miss }}^{2}-$ $\left|\vec{p}_{\text {miss }}\right|^{2}$, where $E_{\text {miss }}$ and $\vec{p}_{\text {miss }}$ are the missing energy and momentum of the SL candidate, respectively, calculated by $E_{\text {miss }} \equiv E_{\text {beam }}-\Sigma_{j} E_{j}$ and $\vec{p}_{\text {miss }} \equiv-\vec{p}_{\bar{D}^{0}}-\Sigma_{j} \vec{p}_{j}$ in the $e^{+} e^{-}$center-of-mass frame. The index j sums over the K^{-}, π^{+}, π^{-}and e^{+}of the signal candidate, and E_{j} and \vec{p}_{j} are the energy and momentum of the j-th particle, respectively. To partially recover the energy lost to FSR and bremsstrahlung, the four-momenta of photon(s) within 5° of the initial positron direction are added to the positron four-momentum measured by the MDC. To improve the $M_{\text {miss }}^{2}$ resolution, all the candidate tracks plus the missing neutrino are subjected to a kinematic fit requiring energy and momentum conservation, as well as the invariant masses of the \bar{D}^{0} and D^{0} candidate particles being constrained to the nominal D^{0} mass. The momenta from the kinematic fit are used to calculate $M_{\text {miss }}^{2}$.

Fig. 2. (a) Distribution of $M_{K^{-} \pi^{+} \pi^{-}}$vs. $M_{\text {miss }}^{2}$ of the DT candidate events. Projections of the 2 D fit to (b) $M_{\text {miss }}^{2}$ and (c) $M_{K^{-} \pi^{+} \pi^{-}}$. The distributions are summed over all three tags. In (b) and (c), points with error bars are data; blue solid, red dotted, green dashed, and black dashed curves are total fit, signal, peaking background of $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$, and other background, respectively. In (b), the peaking background concentrating around $0.033 \mathrm{GeV}^{2} / c^{4}$ is from $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-} \pi^{0}$.

Figure 2(a) shows the distribution of $M_{K^{-} \pi^{+} \pi^{-}}$vs. $M_{\text {miss }}^{2}$ of the accepted $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} e^{+} \nu_{e}$ candidate events in data after combining all tag modes. A clear signal, which concentrates around the $K_{1}(1270)^{-}$ nominal mass in the $M_{K^{-} \pi^{+} \pi^{-}}$distribution and around zero in the $M_{\text {miss }}^{2}$ distribution, can be seen. The DT yield is obtained from a two-dimensional (2D) unbinned extended maximum-likelihood simultaneous fit to the data for the three tags. In the fit, the 2D signal shape is described by the MC-simulated shape extracted from the signal MC events of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$.

The 2D shapes of the peaking background of $D^{0} \rightarrow$ $K^{-} \pi^{+} \pi^{+} \pi^{-}$and the other backgrounds are modeled by those derived from the inclusive MC sample. The number of peaking background events from $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$ is fixed at the simulated value, and the number of the other backgrounds is a free parameter. The smooth 2D probability density functions of signal and background are modeled by using RooNDKeysPdf [51, 52]. The signal efficiencies with the ST modes $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$, $K^{+} \pi^{-} \pi^{0}$, and $K^{+} \pi^{-} \pi^{-} \pi^{+}$are ($\left.14.08 \pm 0.14_{\text {stat }}\right) \%$, $\left(13.38 \pm 0.10_{\text {stat }}\right) \%$, and $\left(11.22 \pm 0.10_{\text {stat }}\right) \%$, respectively. The BFs given by the three tags are constrained to have the same value in the fit. The 2D fit projections to the $M_{\text {miss }}^{2}$ and $M_{K^{-} \pi^{+} \pi^{-}}$distributions are shown in Figs. 2(b) and 2(c), respectively. From the fit, we obtain the DT yield of $N_{\mathrm{DT}}=109.0 \pm 12.5_{\text {stat }}$. The statistical significance of the signal is estimated to be greater than 10σ, by comparing the likelihoods with and without the signal component, and taking the change in the number of degrees of freedom into account. The fitted product of the BFs for $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ and $K_{1}(1270)^{-} \rightarrow K^{-} \pi^{+} \pi^{-}$is

$$
\mathcal{B}_{\mathrm{SL}} \cdot \mathcal{B}_{\mathrm{sub}}=\left(3.59 \pm 0.41_{\text {stat }}^{-0.52_{\mathrm{syst}}}+0.31\right. \text {. }
$$

The reliability of the MC simulation is verified since the data distributions of momenta and $\cos \theta$ of K^{-}, π^{+}, π^{-} and e^{+}as well as invariant masses of $K^{-} \pi^{+}$and $\pi^{+} \pi^{-}$ are consistent with those of MC simulations.

In the BF measurement, the DT method ensures that most uncertainties arising from the ST selection cancel. The uncertainty from the ST yield is assigned to be 0.5%, by examining the relative change in the yield between data and MC simulation after varying the signal shape and the endpoint of the ARGUS function in the yield fits.

The systematic uncertainties originating from e^{+} tracking and PID efficiencies are studied by using the control samples of $e^{+} e^{-} \rightarrow \gamma e^{+} e^{-}$events and those for K^{-}and $\pi^{ \pm}$are investigated with the DT $D \bar{D}$ hadronic events. All samples provide good coverage on track kinematics. The e^{+}efficiencies for tracking and PID are also re-weighted in 2D (momentum and $\cos \theta$) to match those of the $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ data. For K^{-} and π^{+}, similar weighting is performed on momentum only since the data and MC angular distributions already agree well. Small differences between the data and MC efficiencies for K^{-}tracking, e^{+}tracking, and e^{+}PID are found, which are $+(2.6 \pm 0.4) \%,+(1.0 \pm 0.2) \%$, and $-(1.4 \pm 0.2) \%$, respectively. The MC efficiencies, corrected by the aforementioned differences, are used for the BF determination. After corrections, the residual uncertainties related to the tracking (PID) efficiencies of e^{+}, K^{-}, π^{+}, and π^{-}are assigned as $0.2 \%(0.2 \%)$, $0.4 \% ~(0.3 \%), 0.2 \%(0.2 \%)$, and $0.2 \% ~(0.2 \%)$, respectively.

Any systematic effects related to the requirements on $M_{K^{-} \pi^{+} \pi^{-} \pi_{e}^{+} \rightarrow \pi^{\prime}}, M_{K^{-\pi^{+} \pi^{-} \pi_{e}^{+} \rightarrow \pi^{0}}}, M_{\pi^{+} \pi^{-}}$,
$\Delta E\left[\left(K^{-} \pi^{+}\right)_{\mathrm{tag}} \pi_{\text {sig }}^{+}\right], \cos \theta_{a}$, and $\cos \theta_{b}$, are examined by varying individual requirements by $\pm 0.05 \mathrm{GeV} / c^{2}, \pm 0.05$ $\mathrm{GeV} / c^{2}, \pm 0.01 \mathrm{GeV} / c^{2}, \pm 0.004 \mathrm{GeV}, \pm 0.02$, and ± 0.02, respectively. Accounting for correlations in the samples, the changes in the BFs are smaller than the statistical uncertainty on the difference, so neither a systematic correction nor uncertainty is applied from this source according to Ref. [53]. The systematic uncertainty from the input BFs of $K_{1}(1270)^{-}$subdecays is assigned to be 3.0% by varying each of the quoted subdecay BFs of Belle [44] by $\pm 1 \sigma$ and by comparing our nominal signal efficiency to the one based on the world average BFs of $K_{1}(1270)^{-}$decays.

The systematic uncertainty of the 2D fit is estimated to be ${ }_{-13.5 \%}^{+6.9 \%}$ via two aspects. The uncertainty from signal shape is mainly caused by varying the $K_{1}(1270)$ width by $\pm 1 \sigma(\pm 6.0 \%)$. The uncertainty of background shape is mainly due to non- $K_{1}(1270)^{-}$sources of $K^{-} \pi^{+} \pi^{-}$ $\left({ }_{-8.7 \%}^{+0.0 \%}\right)$, which is the change of the fitted DT yield after fixing a non-resonant component by referring to the nonresonant fraction in $B \rightarrow J / \psi \bar{K} \pi \pi$ [44]. The uncertainty due to ignoring $D^{+} \rightarrow K_{1}(1400)^{-} e^{+} \nu_{e}$ is assigned as ${ }_{-7.6 \%}^{+0.0 \%}$, by performing pseudoexperiments to evaluate fit biases and assuming its contribution is one order of magnitude lower than our signal decay $[30,32,41]$, while the effects from $D^{0} \rightarrow K^{*}(1410)^{-} e^{+} \nu_{e}$ and $D^{0} \rightarrow$ $K_{2}^{*}(1430)^{-} e^{+} \nu_{e}$ are negligible.

The uncertainty due to the MC samples' limited size, 1.0%, is considered as a source of systematic uncertainty.

The uncertainty from FSR recovery is assigned as 0.3% by referring to Ref. [49]. The uncertainty due to the kinematic fit is ignored since it is only used to improve the $M_{\text {miss }}^{2}$ resolution. The total systematic uncertainty is estimated to be ${ }_{-14.5 \%}^{+8.7 \%}$ by adding all the individual contributions in quadrature.

Using the world average of $\mathcal{B}_{\text {sub }}=(32.9 \pm 3.6) \%$ [41, 54], we obtain
$\mathcal{B}_{\mathrm{SL}}=\mathcal{B}_{D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}}=\left(1.09 \pm 0.13_{-0.16}^{+0.09} \pm 0.12\right) \times 10^{-3}$,
where the third uncertainty is from the external uncertainty of the assumed $\mathrm{BF} \mathcal{B}_{\text {sub }}$.

A 2D fit is also performed in each of the five equalsized $\cos \theta_{K}$ bins to determine the background subtracted angular distribution, where θ_{K} is the angle between the opposite of D^{0} flight direction and the normal $\vec{p}_{\pi, \text { slow }} \times$ $\vec{p}_{\pi \text {,fast }}$ to the $K^{-} \pi^{+} \pi^{-}$plane in the $K^{-} \pi^{+} \pi^{-}$rest frame, where $\vec{p}_{\pi \text {,slow }}\left(\vec{p}_{\pi, \text { fast }}\right)$ is the momentum of the lower (higher) momentum pion $[3,6]$. Figure 3 shows the fit to the θ_{K} distribution with a second-order polynomial function [3],

$$
\begin{equation*}
\frac{d \Gamma\left(D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}\right)}{d \cos \theta_{K}} \propto 1+k_{1} \cos \theta_{K}+k_{2} \cos ^{2} \theta_{K} \tag{2}
\end{equation*}
$$

where k_{1} is a free parameter, $k_{2}=\left(1-3 F_{L}\right) /\left(1+F_{L}\right)$,
$F_{L}=\frac{\left|c_{0}\right|^{2}}{\left|c_{0}\right|^{2}+\left|c_{+}\right|^{2}+\left|c_{-}\right|^{2}}$ is the fraction of K_{1} longitudinal polarization, with $c_{0, \pm}$ representing the nonperturbative amplitudes for $D \rightarrow K_{1}$ with different polarizations. As θ_{K} is parity odd, the sign for $\cos \theta_{K}$ in \bar{D}^{0} decays is flipped. We obtain $F_{L}=0.50 \pm 0.17_{\text {stat }} \pm 0.08_{\text {syst }}$, where the systematic uncertainty mainly comes from signal shape modeling. Our F_{L} result is compatible within 1σ with the LCSR predictions in Ref. [32].

Fig. 3. Fit to the efficiency corrected signal yields in bins of $\cos \theta_{K}$. Solid (dashed) lines with error bars are signal yields after (before) efficiency correction that accounts for efficiency differences between the first bin and other bins. Blue solid curve is the fit result.

In summary, using $2.93 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$collision data taken at $\sqrt{s}=3.773 \mathrm{GeV}$, we report the first observation of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$. The obtained product of the BFs for $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ and $K_{1}(1270)^{-} \rightarrow$ $K^{-} \pi^{+} \pi^{-}$is consistent with the CLEO's result but with precision improved by about threefold [35]. Our BF of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ contributes $(1.68 \pm 0.35) \%$ of the total SL decay width of D^{0} [41], which lies between the ISGW prediction (1\%) and the ISGW2 prediction (2%), consistent with the BESIII result for the D^{+} counterpart [34]. Our BF of $D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}$ agrees with the CLFQM and LCSR predictions when $\theta_{K_{1}} \approx 33^{\circ}$ or $57^{\circ}[30,31]$ and clearly disfavors the prediction reported in Ref. [32]. Using the BF of $D^{+} \rightarrow$ $\bar{K}_{1}(1270)^{0} e^{+} \nu_{e}$ measured by BESIII [34] and the worldaverage lifetimes of D^{0} and D^{+}[41], we determine the ratio of the partial decay widths of the two decays to be $\Gamma_{D^{0} \rightarrow K_{1}(1270)^{-} e^{+} \nu_{e}} / \Gamma_{D^{+} \rightarrow \bar{K}_{1}(1270)^{0} e^{+} \nu_{e}}=1.20 \pm 0.20 \pm$ 0.14 ± 0.04, where the systematic uncertainties from the background shape, the tracking and PID efficiencies of K^{-}, π^{+}, and e^{+}as well as FSR recovery are canceled, the uncertainties of the lifetimes of D^{0} and D^{+}are included; the uncertainties of the quoted BFs for $K_{1}(1270)$ decays are largely canceled. This result agrees with unity as predicted by isospin symmetry. Our F_{L} measurement is compatible with theoretical predictions.

Further studies of the $K \pi \pi$ system with larger $D^{0(+)} \rightarrow \bar{K}_{1}(1270) e^{+} \nu_{e}$ samples at BESIII in the near future [55] and large $D^{*+} \rightarrow D^{0} \pi^{+}, D^{0} \rightarrow K_{1}(1270)^{-}(\rightarrow$ $\left.K^{-} \pi^{+} \pi^{-}\right) \ell^{+} \nu_{\ell}$ samples at LHCb [56] allow to extract the hadronic-transition form factors, the mass, width, and the subdecay BFs of $K_{1}(1270)$, and to quantify the hadronic effects in $K_{1}(1270) \rightarrow K \pi \pi$. These will benefit the precise determinations of photon polarization
in $b \rightarrow s \gamma$ transitions with high statistics sample of $B \rightarrow K_{1}(1270) \gamma$ at Belle II [57] and LHCb [58], thereby effectively over-constraining the right-handed couplings in new physics models.

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. Authors thank Wei Wang and Fu-Sheng Yu for helpful discussions. This work is supported in part by National Key Research and Development Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11775230, 11605124, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207, U1932108; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation programme under Contract No. Marie Sklodowska-Curie grant agreement No 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 2000605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.
[1] N. Isgur, D. Scora, B. Grinstein, and M. B. Wise, Phys. Rev. D 39, 799 (1989).
[2] D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
[3] W. Wang, F. S. Yu, and Z. X. Zhao, Phys. Rev. Lett. 125, 051802 (2020).
[4] D. Atwood, M. Gronau, and A. Soni, Phys. Rev. Lett. 79, 185 (1997).
[5] D. Becirevic, E. Kou, A. Le Yaouanc, and A. Tayduganov, J. High Energy Phys. 08 (2012) 090.
[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 161801 (2014).
[7] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. C 11, 599 (1999).
[8] G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 13, 197 (2000).
[9] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D

62, 072006 (2000).
[10] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 161601 (2001).
[11] H. Yang et al. (Belle Collaboration), Phys. Rev. Lett. 94, 111802 (2005).
[12] J. M. Link et al. (FOCUS Collaboration), Phys. Lett. B 610, 225 (2005).
[13] J. Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 83, 1918 (1999).
[14] M. Ablikim et al. (BES Collaboration), Phys. Rev. D 72, 092002 (2005).
[15] C. Daum et al. (ACCMOR Collaboration), Nucl. Phys. B 187, 1 (1981).
[16] D. Aston et al., Nucl. Phys. B 292, 693 (1987).
[17] M. Suzuki, Phys. Rev. D 47, 1252 (1993).
[18] F. Divotgey, L. Olbrich and F. Giacosa, Eur. Phys. J. A 49, 135 (2013).
[19] H. Hatanaka and K. C. Yang, Phys. Rev. D 77, 094023 (2008); 77, 094023(E) (2008).
[20] H. Y. Cheng, Phys. Lett. B 707, 116 (2012).
[21] H. G. Blundell, S. Godfrey and B. Phelps, Phys. Rev. D 53, 3712 (1996).
[22] A. Tayduganov, E. Kou and A. Le Yaouanc, Phys. Rev. D 55, 074011 (2012).
[23] H. J. Lipkin, Phys. Lett. B 72, 249 (1977).
[24] L. Burakovsky and T. Goldman, Phys. Rev. D 56, 1368 (1997).
[25] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004). 81, 059901(E) (2010).
[26] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074031 (2010).
[27] H. Y. Cheng, Phys. Rev. D 67, 094007 (2004).
[28] L. Burakovsky and T. Goldman, Phys. Rev. D 57, 2879 (1998).
[29] R. Khosravi, K. Azizi, and N. Ghahramany, Phys. Rev. D 79, 036004 (2008).
[30] H. Y. Cheng and X. W. Kang, Eur. Phys. J. C 77, 587 (2017); 77, 863(E) (2017), and private communication.
[31] S. Momeni, Eur. Phys. J. C 80, 553 (2020).
[32] S. Momeni and R. Khosravi, J. Phys. G 46, 105006 (2019).
[33] M. A. Ivanov, J. G. Körner, J. N. Pandya, P. Santorelli, N. R. Soni, and C. T. Tran, Front. Phys. (Beijing) 14, 64401 (2019).
[34] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 123, 231801 (2020).
[35] M. Artuso et al. (CLEO Collaboration), Phys. Rev. Lett. 99, 191801 (2007).
[36] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 37, 123001 (2013); Phys. Lett. B 753, 629 (2016).
[37] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010).
[38] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).
[39] S. Jadach, B. F. L. Ward, and Z. Was, Comp. Phys. Commu. 130, 260 (2000); Phys. Rev. D 63, 113009 (2001).
[40] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
[41] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[42] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang, and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000).
[43] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[44] H. Guler et al. (Belle Collaboration), Phys. Rev. D 83, 032005 (2011).
[45] R. M. Baltrusaitis et al. (Mark III Collaboration), Phys. Rev. Lett. 56, 2140 (1986); J. Adler et al. (Mark III Collaboration), Phys. Rev. Lett. 60, 89 (1988).
[46] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 121, 081802 (2018).
[47] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 122, 011804 (2019).
[48] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 122, 062001 (2019).
[49] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 92, 072012 (2015).
[50] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[51] W. Verkerke and D. Kirkby, eConf No. C0303241, MOLT007 (2003), [arXiv:physics/0306116].
[52] https://root.cern.ch/doc/master/classRooNDKeysPdf.html.
[53] R. Barlow et al., arXiv:0207026[hep-ex].
[54] $\mathcal{B}_{K_{1} \rightarrow K^{-} \pi^{+} \pi^{-}}=\frac{1}{3} \times \mathcal{B}_{K_{1} \rightarrow K_{\rho}}+\frac{4}{9} \times \mathcal{B}_{K_{1} \rightarrow K^{*}(892) \pi}+\frac{4}{9} \times$ $0.93 \times \mathcal{B}_{K_{1} \rightarrow K_{0}^{*}(1430) \pi}+\mathcal{B}_{K_{1} \rightarrow K^{+}} \times \mathcal{B}_{\omega \rightarrow \pi^{+} \pi^{-}}$where K_{1} denotes $K_{1}(1270)^{-}$.
[55] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44, 040001 (2020).
[56] A. Davis, [arXiv:1703.10695]; [arXiv:1901.04785].
[57] E. Kou et al. (Belle II Collaboration), PTEP 2019, 123C01 (2019); 2020, 029201(E) (2020).
[58] R. Aaij et al. (LHCb Collaboration), arXiv:1808.08865.

[^0]: ${ }^{33}$ Liaoning University, Shenyang 110036, People's Republic of China ${ }^{34}$ Nanjing Normal University, Nanjing 210023, People's Republic of China

 35 Nanjing University, Nanjing 210093, People's Republic of China
 ${ }^{36}$ Nankai University, Tianjin 300071, People's Republic of China
 37 North China Electric Power University, Beijing 102206, People's Republic of China
 38 Peking University, Beijing 100871, People's Republic of China
 ${ }^{39}$ Qufu Normal University, Qufu 273165, People's Republic of China
 40 Shandong Normal University, Jinan 250014, People's Republic of China
 ${ }^{41}$ Shandong University, Jinan 250100, People's Republic of China
 ${ }^{42}$ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
 ${ }^{43}$ Shanxi Normal University, Linfen 041004, People's Republic of China
 ${ }^{44}$ Shanxi University, Taiyuan 030006, People's Republic of China
 ${ }^{45}$ Sichuan University, Chengdu 610064, People's Republic of China
 ${ }^{46}$ Soochow University, Suzhou 215006, People's Republic of China
 ${ }^{47}$ South China Normal University, Guangzhou 510006, People's Republic of China
 ${ }^{48}$ Southeast University, Nanjing 211100, People's Republic of China 49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China
 ${ }^{50}$ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
 ${ }^{51}$ Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
 52 Tsinghua University, Beijing 100084, People's Republic of China
 ${ }^{53}$ Turkish Accelerator Center Particle Factory Group, (A)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
 ${ }^{54}$ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
 ${ }^{55}$ University of Groningen, NL-9747 AA Groningen, The Netherlands ${ }^{56}$ University of Hawaii, Honolulu, Hawaii 96822, USA
 57 University of Jinan, Jinan 250022, People's Republic of China
 58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom 59 University of Minnesota, Minneapolis, Minnesota 55455, USA
 ${ }^{60}$ University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany ${ }^{61}$ University of Oxford, Keble Rd, Oxford, UK OX13RH
 ${ }^{62}$ University of Science and Technology Liaoning, Anshan 114051, People's Republic of China ${ }^{63}$ University of Science and Technology of China, Hefei 230026, People's Republic of China
 ${ }^{64}$ University of South China, Hengyang 421001, People's Republic of China 65 University of the Punjab, Lahore-54590, Pakistan
 ${ }^{66}$ University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy ${ }^{67}$ Uppsala University, Box 516, SE-75120 Uppsala, Sweden ${ }^{68}$ Wuhan University, Wuhan 430072, People's Republic of China
 ${ }^{69}$ Xinyang Normal University, Xinyang 464000, People's Republic of China
 ${ }^{70}$ Zhejiang University, Hangzhou 310027, People's Republic of China
 ${ }^{71}$ Zhengzhou University, Zhengzhou 450001, People's Republic of China
 ${ }^{a}$ Also at Bogazici University, 34342 Istanbul, Turkey
 ${ }^{b}$ Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
 ${ }^{c}$ Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
 ${ }^{d}$ Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
 ${ }^{e}$ Also at Istanbul Arel University, 34295 Istanbul, Turkey
 ${ }^{f}$ Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
 ${ }^{g}$ Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China

