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Abstract

The linear and mode-coupled contributions to higher-order anisotropic flow are presented for Au+Au collisions at
√
sNN

= 27, 39, 54.4, and 200 GeV and compared to similar measurements for Pb+Pb collisions at the Large Hadron Collider
(LHC). The coefficients and the flow harmonics’ correlations, which characterize the linear and mode-coupled response
to the lower-order anisotropies, indicate a beam energy dependence consistent with an influence from the specific shear
viscosity (η/s). In contrast, the dimensionless coefficients, mode-coupled response coefficients, and normalized symmetric
cumulants are approximately beam-energy independent, consistent with a significant role from initial-state effects. These
measurements could provide unique supplemental constraints to (i) distinguish between different initial-state models and
(ii) delineate the temperature (T ) and baryon chemical potential (µB) dependence of the specific shear viscosity

η
s (T, µB).
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Experimental studies of heavy-ion collisions at the LHC
and the Relativistic Heavy Ion Collider (RHIC) indicate
the creation of the Quark-Gluon Plasma (QGP) [1–4], a
state of matter implied by Quantum Chromodynamics (QCD).
A central aim of prior and current experimental investiga-
tions of this plasma is to understand its transport proper-
ties such as its specific viscosity or ratio of shear viscosity
to entropy density (η/s ) [5–11]. Anisotropic flow measure-
ments continue to be a valuable route to η/s estimation
because they reflect the viscous hydrodynamic response to
the anisotropy of the initial-state energy density [6, 12–24]
which is characterized by the complex eccentricity vectors
En [25–29]:

En ≡ εne
inΦn (1)

≡ −
∫

dx
′

dy
′

rn einφ ρe(r, φ)
∫

dx′ dy′

rn ρe(r, φ)
, (n > 1),

where εn and Φn are the magnitude and azimuthal di-
rection of the nth eccentricity vector, x

′

= r cosφ, y
′

=
r sinφ, r is the radial coordinate, φ is the spatial az-
imuthal angle, and ρe(r, φ) is the initial energy density
profile [28, 30, 31].

The azimuthal anisotropy of particles produced relative
to the reaction plane can be expressed as [32]:

Ep
d3N

d3p
=

1

2π

d2N

pTdpT dy

(

1 +

N
∑

i=1

2vn cos (n (ϕ− ψn))

)

,

(2)
where N is the number of the particles produced, Ep is the
energy of the particle, vn is the nth order flow coefficient,
pT is transverse momentum, y is the rapidity, ϕ is the
azimuthal angle of the particle’s momentum, and ψn is

the nth-order symmetry plane. The coefficients v1, v2, and
v3 are commonly termed directed, elliptic and triangular
flow, respectively.

Prior investigations of v2 and v3 and their fluctua-
tions [29, 33–44] as well as higher-order flow harmonics
vn (n > 3) [20, 35, 39, 45–50] have provided invaluable
initial insights into the properties of the QGP. Notably,
the extensively studied v2 [39, 51–53] and v3 flow coeffi-
cients [46, 54] are linearly related to ε2 and ε3 [17, 29, 55–
62]:

vn = κnεn, (3)

where the parameter κn encodes the effects of viscous at-
tenuation [46, 61, 63] which depend on the particle pT ,
charged particle multiplicity and η/s . The higher-order
flow harmonics show a linear response to the same-order
eccentricity but also include a mode-coupled response to
the lower-order eccentricities ε2 and ε3 [22, 30, 31, 64]:

V4 = v4e
i4ψ4 = κ4ε4e

4iΦ4 + κ
′

4ε
2

2e
4iΦ2

= V Linear

4 + χ4,22V
MC

4 , (4)

V5 = v5e
i5ψ5 = κ5ε5e

5iΦ5 + κ
′

5ε2e
2iΦ2ε3e

3iΦ3

= V Linear

5 + χ5,23V
MC

5 , (5)

where κ
′

k (k = 4, 5) reflects the combined influence of the
medium properties and the coupling between the lower-
and higher-order eccentricity harmonics. In Eqs. (4) and
(5) the terms VLinear

k and VMC

k are the linear and the mode-
coupled contributions and χk,nm represents the mode-coupled
response coefficients. The normalized symmetric cumu-
lants (NSC(n,m)) [65, 66] are also expected to give a mea-
sure of the mode-coupled contributions.
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The mode-coupled contributions to Vk and NSC(n,m)
can provide further constraints for η/s and the initial-stage
dynamics [30, 33, 34, 38, 66–71]. Consequently, ongoing ef-
forts seek to leverage extensive measurements of the linear
and mode-coupled contributions to Vk and NSC(n,m) to
develop unique supplemental constraints that can (i) dis-
tinguish between different initial-state models and (ii) pin
down the temperature (T ) and baryon chemical potential
(µB) dependence of the specific shear viscosity η

s (T, µB).
Prior measurements have been reported for charged hadrons
in Pb+Pb collisions at

√
sNN = 2.76 and 5.02 TeV [72–

74] and Au+Au collisions at
√
sNN = 200 GeV [11, 33],

and for identified particle species in Pb+Pb collisions at√
sNN = 2.76 GeV [72]. Here, we report the VLinearn , VMC

n ,
χk,nm and NSC(n,m) measurements for Au+Au collisions
at

√
sNN = 27, 39, 54.4, and 200 GeV to extend the data

set that can provide simultaneous constraints for ηs (T, µB)
and the initial-state. The initial-state effects which influ-
ence the dimensionless mode-coupled coefficients and the
normalized symmetric cumulants could be insensitive to
the beam energy, while η

s (T, µB) is not [75–77].
The data for the present analysis were collected with

the STAR detector at RHIC using a minimum-bias trig-
ger [78] in 2017, 2010 and 2018 at

√
sNN = 54.4, 39 and

27 GeV respectively. Charged particle tracks with full az-
imuthal angle and pseudorapidity |η| < 1.0 coverage were
used to reconstruct the collision vertices of tracks mea-
sured in the Time Projection Chamber (TPC) [79]. A
Monte Carlo Glauber simulation has been used to deter-
mine the collision centrality from the measured event-by-
event charged particle multiplicity in |η| < 0.5 with at
least 10 hits [80, 81]. In this analysis, tracks with at
least 15 TPC space points and Distance of Closest Ap-
proach (DCA) to the primary vertex of less than 3 cm
were used. We accept tracks with transverse momentum
0.2 < pT < 4 GeV/c. Events are chosen with vertex po-
sitions within ±40 cm from the TPC center (along the
beam direction), and within ±2 cm in the radial direction
relative to the center of the TPC.

The two- and multi-particle cumulant methods are em-
ployed for our correlation analysis. The framework for
the cumulant method is described in Refs. [65, 66]; its
extension to the case of subevents is also described in
Refs. [82, 83]. Here, the two- and multi-particle correla-
tions were formed using the two-subevents cumulant tech-
nique [83], with ∆η = η1 − η2 > 0.7 between the
subevents A and B (i.e., ηA > 0.35 and ηB < −0.35).
The use of the two-subevents technique serves to reduce
the nonflow correlations [84]. The two- and multi-particle
correlations are given as:

vInclusivek = 〈〈cos(k(ϕA1 − ϕB2 ))〉〉1/2, (6)

Ck,nm = 〈〈cos(kϕA1 − nϕB2 −mϕB3 )〉〉, (7)

〈v2nv2m〉 = 〈〈cos(nϕA1 +mϕA2 − nϕB3 −mϕB4 )〉〉,(8)

where 〈〈 〉〉 denotes the average over all particles in a single
event and a subsequent average over all events, k = n+m,
n = 2, m = 2 or 3, and ϕi is the azimuthal angle of the
momentum of the ith particle.

Using Eqs. (6)-(8), the mode-coupled contributions to
vk, assuming factorization, can be expressed as [31, 85]:

vMC

k =
Ck,nm
√

〈v2nv2m〉
,

∼ 〈vk cos(kΨk − nΨn −mΨm)〉, (9)

and the linear contribution to vk is given by:

vLineark =
√

(vInclusivek ) 2 − (vMC

k ) 2. (10)

Equation (10) assumes that the linear and mode-coupled
contributions to vk are independent [31, 84]. The ratio
of the mode-coupled contribution to the inclusive vk also
gives an estimate of the correlation ρk,nm between flow
symmetry planes of order n and m[72];

ρk,nm =
vMC

k

vInclusivek

,

≈ 〈cos(kΨk − nΨn −mΨm)〉. (11)

The mode-coupled response coefficients, χk,nm, which quan-
tify the contributions of the coupling to the the higher-
order anisotropic flow harmonics, are defined as:

χk,nm =
vMC

k
√

〈v2n v2m〉
. (12)

The normalized symmetric cumulants, NSC(n,m), from
the standard cumulants method [65, 66] are given as:

SC(n,m) = 〈〈cos(nϕ1 +mϕ2 − nϕ3 −mϕ4)〉〉
− 〈〈cos(n(ϕ1 − ϕ2))〉〉

〈〈cos(m(ϕ1 − ϕ2))〉〉 (13)

NSC(n,m) =
SC(n,m)

(vInclusiven )
2
(vInclusivem )

2
, (14)

with the condition that m 6= n and n and m are positive
integers. The pT -integrated measurements for k = n+m,
n = 2, m = 2 and 3 were performed as a function of
centrality for each beam energy.

The systematic uncertainties of the presented measure-
ments are obtained from variations in the analysis cuts for
event selection, track selection and non-flow suppression;
(I) event selection was varied via cuts on the vertex po-
sitions determined in the TPC along the beam direction,
−40 to 0 cm or 0 to 40 cm instead of the nominal value of
±40 cm. (II) Track selection was varied by (a) reducing
the DCA from its nominal value of 3 cm to 2 cm, and (b)
increasing the number of TPC space points from greater
than 15 points to more than 20 points. (III) The pseu-
dorapidity gap, ∆η for the track pairs, used to mitigate
the non-flow effects due to resonance decays, Bose-Einstein
correlations, and the fragments of individual jets, was var-
ied from ∆η = 0.6 to ∆η = 0.8. Table 1 gives a sum-
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Figure 1: Comparison of the pT integrated three-particle correlators,
C4,22 (a) and C5,23 (b), for Au+Au collisions at

√
sNN = 54.4, 39

and 27 GeV, obtained with the two-subevents cumulant method. The
C4,22 and C5,23 measurements for Au+Au at

√
sNN = 200 GeV are

taken from Ref. [11].

mary of these systematic uncertainty estimates. The over-
all systematic uncertainty, assuming independent sources,
was evaluated via a quadrature sum of the uncertainties
resulting from the respective cut variations. They range
from 4% to 10% from central to peripheral collisions. The
overall systematic uncertainties are shown as open boxes in
the figures. Statistical uncertainties are shown as vertical
lines.

Quantities Minimum value Maximum value
Event 2% 5%
Track 3% 7%
∆η 2% 7%

Table 1: Summary of the estimated systematic uncertainty contri-
butions (see text).

Figure 1 compares the centrality dependence of the
C4,22 and C5,23 coefficients for 0.2 < pT < 4.0 GeV/c
in Au+Au collisions at

√
sNN = 200, 54.4, 39 and 27 GeV.

The coefficients show similar centrality-dependent patterns
and magnitudes that decrease with beam energy. These
dependencies suggests that C4,22 and C5,23 are sensitive
to the initial-state eccentricity and the change in viscous
attenuation with beam energy. The latter could result
from both a change in the charge particle multiplicity
and η/s(µB, T ) [75, 76] with beam energy. Thus, detailed
model comparisons to the centrality and beam energy de-
pendence of C4,22 and C5,23 could serve as an additional
constraint for precision extraction of η/s [77].

The vInclusivek , C4,22 and C5,23 coefficients were used
to extract vMC

k , vLineark , ρk,nm, χk,nm, and NSC(n,m) (cf.
Eqs. 9 – 14) to home in on further constraints for the
initial- and final-states respectively. The centrality depen-
dence of vInclusivek ((a) and (d)), vLineark ((b) and (e)), and
vMC

k ((c) and (f)) v4,5 coefficients are shown for several
beam energies in Fig. 2. The mode-coupled coefficients
((b) and (e)) indicate a much stronger increase with cen-
trality than that for the linear coefficients ((c) and (f)),
suggesting that the vLineark coefficients are subject to much
larger viscous attenuation than the vMC

k coefficients; note
that εMC

k and εLineark increase with centrality. The vMC

k

and vLineark coefficients for Au+Au collisions also indicate
a relatively weak dependence on beam energy, suggesting

that the viscous attenuation and the eccentricity are weak
functions of the beam energy (cf. Eq. 3) especially for the
energy span

√
sNN = 27 - 54.4 GeV. The LHC measure-

ments (set-1 [72], for 0.2 < pT < 5.0 GeV/c and |η| < 0.8,
and set-2 [38], for pT > 0.5 GeV/c and |η| < 2.5) (pan-
els (a)–(f)) show patterns that are similar to those for
Au+Au collisions, albeit with magnitudes that are much
larger, implying a more sizable dependence on beam en-
ergy from RHIC to LHC energies [75, 77]. The difference
between the magnitudes for the set-1 and set-2 LHC mea-
surements reflects the dependence of these coefficients on
〈pT 〉. Ref. [11] has reported a qualitatively similar depen-
dence at lower beam energy. Note however, that the 〈pT 〉
is a weak function of the RHIC beam energy range of in-
terest in this work [86]. These beam energy and centrality
dependencies can be used to further constrain theoretical
models.

The centrality dependence of the mode-coupled response
coefficients χk,nm (n = 2 and m = 2 and 3) for Au+Au
(
√
sNN = 200, 54.4, 39 and 27 GeV) and Pb+Pb collisions

(
√
sNN = 2.76 TeV) [72] are compared in Figs. 3 (a) and

(b). Results demonstrate a weak dependence on central-
ity and beam energy, confirming that (I) the mode-coupled
v4,5 coefficients are dominated by the correlations from the
lower-order flow harmonics and (II) χk,nm is weakly sensi-
tive to the viscous effects (η/s ) [75, 77] and hence, more
sensitive to the initial-state effects.

Figure 3 (c) and (d) compares the centrality depen-
dence of the ρk,nm coefficients for Au+Au collisions (

√
sNN

= 200, 54.4, 39 and 27 GeV) and Pb+Pb collisions (
√
sNN

= 2.76 TeV) [72]. They indicate a strong centrality depen-
dence and a relatively weak dependence on beam energy.
These characteristic dependencies suggests that ρk,nm can
provide a supplemental constraint for the beam energy de-
pendence of the viscous effects (η/s ) [75, 77] and could be
used to discern different initial-state models [77].

Figure 4 summarizes the results for the NSC(n,m) that
reflect the strength of the correlation/anti-correlation be-
tween the vn and vm flow harmonics. Figs. 4(a) and (b)
show the NSC(2, 3) and NSC(2, 4) respectively, for 0.2 <
pT < 4.0 GeV/c in Au+Au collisions at

√
sNN = 200,

54.4 and 27 GeV and the corresponding LHC measure-
ments [34]. The NSC(2, 3) coefficients indicate an anti-
correlation (negative values) [67, 87] between v2 and v3,
as expected from the known anti-correlation between ε2
and ε3. In contrast, the NSC(2, 4) coefficients indicate a
correlation between v2 and v4 consistent with the mode-
coupled correlations between ε2 and ε4. The weak beam
energy dependence further indicates that NSC(2, 3) and
NSC(2, 4) are insensitive to the effects of viscous attenu-
ation [75] and could set a constraint on the initial-state
eccentricity correlations.

In summary, we have presented new pT-integrated mea-
surements of the charge-inclusive, linear and mode-coupled
contributions to the higher-order anisotropic flow coeffi-
cients v4,5, mode-coupled response coefficients χk,nm, cor-
relations of the event plane angles ρk,nm and normalized
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Figure 2: Comparison of the inclusive ((a) and (d)), mode-coupled ((b) and (e)) and linear ((c) and (f)) higher-order flow harmonics v4 and
v5 obtained with the two-subevents cumulant method, as a function of centrality in the pT range 0.2− 4.0 GeV/c for Au+Au collisions at
√
sNN = 54.4, 39 and 27 GeV. The v4 and v5 measurements of

√
sNN = 200 GeV are taken from Ref. [11]. The solid points indicate LHC

measurements for pT in the range 0.2− 5.0 GeV/c set-1 [72] and pT > 0.5 GeV/c set-2 [38] for Pb+Pb collisions at
√
sNN = 2.76 TeV.
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Figure 3: Comparison of the χn+m,nm ((a) and (c)) and ρn+m,nm

((b) and (d)) obtained with the two-subevents cumulant method, as
a function of centrality in the pT range 0.2− 4.0 GeV/c for Au+Au
collisions at

√
sNN = 54.4, 39 and 27 GeV. The χn+m,nm and

ρn+m,nm at
√
sNN = 200 GeV are taken from Ref. [11]. The solid

points are the LHC measurements for Pb+Pb collisions at
√
sNN =

2.76 TeV set-1 [72] and set-2 [38].

symmetric cumulant NSC(2, 3) and NSC(2, 4), for Au+Au
collisions at

√
sNN = 200, 54.4, 39 and 27 GeV. Our mea-

surements are compared with similar LHC measurements
for Pb+Pb collisions at

√
sNN = 2.76 TeV. For all pre-

sented energies, the mode-coupled v4,5 measurements in-
dicate a large centrality dependence. In contrast, the lin-
ear v4,5, which dominates the central collisions, displays
a weak centrality dependence. The v4,5 measurements
show a beam energy dependence which reflects the sensi-
tivity to η/s. The dimensionless coefficients χk,nm, ρk,nm,
NSC(2, 3) and NSC(2, 4) show magnitudes and trends which
are approximately beam energy independent, suggesting
that the measured dimensionless quantities are dominated
by initial-state effects. These results should prove invalu-
able to theoretical efforts which seek simultaneous con-
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Figure 4: Comparison of NSC(2, 3) (a) and NSC(2, 4) (b) using the
standard cumulant method as a function of centrality in the pT
range 0.2–4.0 GeV/c for Au+Au collisions at

√
sNN = 54.4, 39

and 27 GeV. The NSC(2, 3) and NSC(2, 4) at
√
sNN = 200 GeV are

taken from Ref. [33]. The solid diamonds indicate LHC measure-
ments for the pT range from 0.2–5.0 GeV/c for Pb+Pb collisions at
√
sNN = 2.76 TeV [34].

straints for η
s (T, µB) and the initial-state.
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