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A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific 
goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological 
fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to 
result in a charge separation phenomenon across the reaction plane, whose strength could be strongly 
energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this 
Letter, we present a low energy search for the CME in Au+Au collisions at √sNN = 27 GeV. We measure 
elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both 
mid-rapidity |η| < 1.0 and at forward rapidity 2.1 < |η| < 5.1. We compare the results based on the 
directed flow plane (�1) at forward rapidity and the elliptic flow plane (�2) at both central and forward 
rapidity. The CME scenario is expected to result in a larger correlation relative to �1 than to �2, while 
a flow driven background scenario would lead to a consistent result for both event planes. In 10-50% 
centrality, results using three different event planes are found to be consistent within experimental 
uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain 
an upper limit on the deviation from a flow driven background scenario at the 95% confidence level. This 
work opens up a possible road map towards future CME search with the high statistics data from the 
RHIC Beam Energy Scan Phase-II.

© 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

Relativistic heavy-ion collisions are the ideal testing ground for 
the theory of strong interaction and its symmetries. The hot and 
dense medium produced in these collisions has been conjectured 
to be accompanied by an axial charge asymmetry, where the parity 
(P ) and charge-parity (C P ) are violated locally, leading to a dif-
ference in number of right-handed and left-handed quarks [1–5]. 
Such an imbalance can result in a separation of electric charge 
in the direction of the extremely strong (1014 T) magnetic field 
(B), produced by the protons in the colliding heavy-ions [4,6]. 
This phenomenon is known as the Chiral Magnetic Effect (CME). 
Observations consistent with the CME have been reported in con-
densed matter systems [7]. However, their verification in relativis-
tic collision-produced medium is still pending.

In heavy-ion collisions, the CME is expected to cause a charge 
separation across the reaction plane determined by the impact 
parameter and the beam direction. This is because the reaction 
plane is correlated to the direction of the magnetic field. There-
fore, the CME will lead to preferential emission of positively and 
negatively charged particles into opposite sides of the reaction 
plane [8,9]. Finding conclusive experimental evidence for this phe-
nomenon has become one of the major scientific goals of the 
heavy-ion physics program at the Relativistic heavy-ion Collider 
(RHIC) [10–17] during the past decade. Possible signals for this 
effect have also been extensively studied at the Large Hadron 
Collider (LHC) [18–20]. However, measurements sensitive to CME 
are also sensitive to background correlations [21–23] and the two 
sources are very difficult to separate. Therefore, recent experimen-
tal measurements have focused on disentangling the signal and 
background [24–28], providing upper limits on the observability of 
3

the CME [19,20] or providing data-driven baselines for background 
estimates [17,18,29].

The measurements at the LHC have provided upper limits on 
the observability of the CME in 2.76 TeV and 5.02 TeV Pb+Pb col-
lisions [19,20]. Two recent measurements from STAR (Solenoidal 
Tracker at RHIC) have provided upper limits on the CME fraction 
in Au+Au collisions at 

√
sNN = 200 GeV. The first one used the pair 

invariant mass dependence of the CME sensitive charge separation 
observable �γ and found an upper limit of CME signal to be 15% 
of the inclusive result at the 95% confidence level (CL) [29]. The 
second one exploited the difference of the CME sensitive observ-
ables and elliptic flow as the main background source with respect 
to the spectator neutron plane and participant plane. Such analy-
sis found a hint of positive signal in mid-central events with 1-3σ
significance [30]. Among extensive experimental efforts in disen-
tangling signal and background, the most controlled and precise 
measurement has been done in collisions of isobars 96

44Ru+96
44Ru and 

96
40Zr+96

40Zr at the top RHIC energy [31]. Under the standards of a 
blind analysis with a set of predefined criteria, no evidence consis-
tent with a signal for the CME was found in isobar collisions.1

An outstanding question is the behavior at lower collision en-
ergy. The change of collision energy affects the prerequisites for 
the CME such as the magnetic field lifetime, the domain size of ax-
ial charge imbalance, and the presence of a medium where quarks 
and gluons are deconfined and the chiral symmetry of Quan-
tum Chromodynamics (QCD) is restored [33–37]. Furthermore, the 

1 Two- and three-particle non-flow contribution to the CME measurement by 
spectator and participant planes were studied in Ref. [32] as well as to incorporate 
the multiplicity difference between the two isobars that can modify the baseline for 
a CME scenario.

http://creativecommons.org/licenses/by/4.0/
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background contributions to the CME are also expected to change 
with the collision energy. Despite the theoretical progress, a quan-
titative prediction for the collision energy dependence of the CME 
signal remains challenging [38,39]. Therefore, a dedicated effort on 
the CME search at collision energies below 

√
sNN = 200 GeV is 

very desirable and timely. The first low energy CME search from 
STAR under the Beam Energy Scan program Phase-I (BES-I) was 
reported in Ref. [15]. An important observation was that by lower-
ing collision energies the charge separation decreases and eventu-
ally disappears at 

√
sNN = 7.7 GeV. Such an observation might be 

driven by the disappearance of either signal or background sources 
of charge separation. Further investigation of CME driven charge 
separation at lower energies has been limited by statistics of BES-
I data and poor resolution of event plane determination at lower 
energies. Several previous flow measurements from STAR indicate 
that a partonic phase, necessary for the CME phenomenon, may 
be created in Au+Au collisions above 

√
sNN > 10 GeV [40,41]. This 

gives us the necessary impetus for CME search above 
√

sNN > 10
GeV with improved detector capabilities.

In this letter, we present an analysis of a high statistics data 
sample of Au+Au collisions at 

√
sNN = 27 GeV collisions taken by 

the STAR detector in the year of 2018 with the newly installed 
highly-segmented Event Plane Detectors (EPDs) [42]. The EPD is 
one of the major upgrades added to the STAR detector for the 
Beam Energy Scan phase II (BES-II) program. It covers the pseudo-
rapidty window of 2.1 < |η| < 5.1 symmetrically around the mid-
rapidity and significantly improves the event plane resolution at 
forward rapidity. We would like to note that EPDs increase the res-
olution of the reconstracted first order event plane by a factor two 
compared to the previously used Beam Beam Counter (BBCs) that 
had much coarser granularity [42]. We measure elliptic flow scaled 
charge dependent correlations relative to event planes using the 
EPDs and the Time Projection Chamber (TPC) [43] at mid-rapidity 
|η| < 1.0. Then we compare the results using the directed flow 
plane (�1) at forward rapidity and the elliptic flow planes (�2) at 
both central and forward rapidity. The �1 plane determined by the 
EPDs is dominated by the large directed flow of protons and has 
stronger correlation to the magnetic field direction than �2 plane 
does. As a result, the CME scenario is expected to yield in a larger 
charge separation across �1 than that of �2, while a flow driven 
background scenario would lead to a consistent result for both the 
event planes. We search for evidence of the CME driven charge 
separation and provide an upper limit on deviations from a flow 
driven background scenario.

We have organized this paper as follows. In Sec. 2, we introduce 
the detectors and data sample followed by the analysis techniques 
in Sec. 3. We discuss the systematic uncertainty sources in Sec. 4. 
We present the results in Sec. 5 and a summary in Sec. 6.

2. Detectors and data sample

STAR was the only operational detector at RHIC during the 
collection of Au+Au 27 GeV data in the year of 2018. The main 
subsystems of STAR used for this analysis are the TPC, Time-of-
Flight (ToF) detector [44], Vertex Position Detectors (VPDs) [45], 
and the EPDs. Charged particles are detected within the range of 
|η| <1, over full 2π azimuthal coverage and transverse momen-
tum (pT ) larger than 0.2 GeV/c using the STAR TPC situated inside 
a 0.5 T solenoidal magnetic field. For this pT range we estimate 
the tracking efficiency of the TPC to range from 77% to 86% us-
ing embedding simulations based on the geant [46]. The TPC is 
used to reconstruct the position of the primary vertices of colli-
sions along the beam direction (V z) and along the radial direction 
transverse to the beam axis (Vr ). For the current analysis we re-
strict the positions of primary vertices within |V z| < 40 cm and 
Vr < 2 cm. To reduce the contamination from secondary charged 
4

Fig. 1. Cartoon to demonstrate the EPD detector acceptance and response to directed 
flow from both spectator protons and participant particles. The left shows the sum 
of ten simulated UrQMD [48] events with identical event planes and the right (on 
a different scale) represents the response of the EPDs to real data (yellow repre-
senting more counts, blue representing fewer) with approximately matching event 
plane. Beam rapidity for these 27 GeV events is Ybeam = 3.4 which falls within the 
acceptance of the EPD (2.1 < |η| < 5.1). Forward spectator protons are represented 
by the green color in the UrQMD cartoon and by the matching detector hits near 
the center of the EPD (yellow peak-like structure). Produced particles, colored grey 
(pions), yellow (kaons) and red (protons) in the UrQMD cartoon, are responsible for 
the peak near the outer edge of the EPD opposite to the inner peak in azimuthal 
angle. At this energy, the inner EPD sectors detect beam fragments, stopped and 
spectator protons which have the opposite sign of directed flow compared to the 
forward produced particles that are detected by the outer EPD sectors.

particles, we only select tracks with a distance of closest approach 
(DCA) to the primary vertex of less than 3 cm. We also require at 
least fifteen ionization points in the TPC for selecting good tracks. 
STAR collected minimum-bias events by requiring the coincidence 
of signals from the Zero Degree Calorimeters (ZDCs) [47], on ei-
ther side of the interaction region, at the rate of 0.5-2 kHz. Among 
these minimum bias events we identified approximately 0.023%
out-of-time pile-up of two events that we remove by studying the 
correlation between the number of TPC tracks and the number of 
tracks matched with a hit in the ToF detector. We also require good 
events have at least one TPC track matched to the ToF. After these 
event cuts, approximately 300 million minimum bias events be-
come available for our analysis.

The EPD system used for event plane measurements consists of 
two wheels located ±3.75 m away from the center of the TPC, cov-
ering approximately 2.1 < |η| < 5.1 in pseudorapidity and 2π in 
azimuth. Each wheel consists of 12 “supersectors”, each of which 
consists of 31 plastic scintillator tiles. Each tile is connected to a 
silicon photomultiplier (SiPM) via optical fiber. Charged particles 
emitted in the forward and backward directions produce a signal 
distribution in the EPD tiles with identifiable peaks correspond-
ing to 1, 2, 3, · · · minimally ionizing particles (MIPs). A threshold 
value of 0.3 MIP is used as a default parameter for hit identifica-
tion. We use the MIP weighted hit distribution to reconstruct the 
event planes in our analysis. Details of the EPDs can be found in 
Ref. [42]. 

In 27 GeV Au+Au collisions, a unique capability can be achieved 
with this detector as illustrated in Fig. 1. In this figure we show 
the positions of different particles from ten simulated UrQMD [48]
events with identical event planes. In addition, we also show the 
response of the EPDs to incident particles from many events using 
real data with approximately matching event plane. The rapidity 
of beam remnants and other breakup products from the colliding 
beam (Ybeam =3.4) falls in the acceptance of the EPDs (2.1 < |η| <
5.1). Therefore, the EPDs can measure the directed flow (v1) at 
forward rapidity due to the beam fragments and stopped protons. 
Interestingly, the directed flow changes sign between the inner half 
(|η| > Ybeam) and outer half (|η| < Ybeam) of the EPDs. Observa-
tion of large forward directed flow at |η| > Ybeam and sign change 
at Ybeam were made from PHOBOS measurements [49]. The EPDs 
were built to measure the �1 plane corresponding to such a large 
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forward directed flow that is expected to be a proxy for the reac-
tion plane, particularly for |η| > Ybeam.2

The benefit of using the EPDs for CME search is that we expect 
the forward �1(|η| > Ybeam) plane to be more correlated to the 
magnetic field than the elliptic flow plane determined by particles 
from mid and forward rapidities. This is supported by our UrQMD 
simulations [48]: 1) �1(|η| > Ybeam) is dominated by charged 
hadrons, most of which (70%) are protons that are fragments 
and spectators and not produced in collisions, and 2) we find 
that the correlation of B-field with �1(|η| >Ybeam) is 18.9 ± 1.2%
and 11.1 ± 2.0% stronger compared to the same with �2 from 
TPC (�2(|η| < 1)) and EPD(�2(|η| <Ybeam)), respectively when the 
strength is estimated by the quantity γB (�n) = 〈cos(2�B − 2�n)〉.3

3. Analysis techniques

The primary CME sensitive charge separation observable,4 the 
γ -correlator, is defined as:

γ (φα,φβ) = 〈cos (φα + φβ − 2�RP)〉, (1)

where φα and φβ denote the azimuthal angles (φ) of charge parti-
cles, and �RP is the reaction plane angle [8]. The charge separation 
is quantified by the difference between the γ -correlators measured 
for the opposite-sign (OS) and the same-sign (SS) particles defined 
as,

�γ = γO S − γS S . (2)

In addition, we introduce the scaled charge separation correlator:

�γ /v2 , where v2 = 〈cos(2φ − 2�RP)〉 . (3)

The normalized quantity �γ /v2 is better to account for the triv-
ial scaling expected from a flow driven background due to res-
onance decay and local charge conservation [8,21]. As a proxy 
for the �RP, we use the first order event plane, �1, Ybeam<|η|<5.1, 
from the directed flow of forward protons. We compare such mea-
surements with the charge separation across: 1) the second-order 
plane driven by elliptic flow of the forward participants, i.e., using 
�RP = �2, 2.1<|η|<Ybeam , and 2) the second-order plane of produced 
particles at mid-rapidity, i.e., with �RP = �2, |η|<1. If the back-
ground is entirely due to flowing neutral clusters and is the only 
source of charge-dependent correlations, the �γ /v2 ratios with 
respect to different event planes (�A , �B , �C · · · ) are expected to 
be the same [8,21,23,53–55], i.e.,

�γ /v2(�A) = �γ /v2(�B) = �γ /v2(�C ) · · · (4)

For our measurements, in the case of a flow driven background 
scenario, one expects:

�γ /v2(�1,Ybeam<|η|<5.1)

= �γ /v2(�2,2.1<|η|<Ybeam) = �γ /v2(�2,|η|<1).
(5)

2 Note that �1(|η| > Ybeam) measured from the EPDs is not the plane of only 
spectators and should not be confused and compared to the commonly used spec-
tator neutron planes measured using the ZDC [50,51].

3 We estimate the magnitude B and the direction (�B ) of the B-field at the cen-
tral point of the participant zone defined by the average weighted positions of the 
participants for that event. We then estimate various harmonic event planes such 
as �2(|η| < 1), �2(|η| < Ybeam) and �1(|η| > Ybeam) similar to what has been used 
in the data analysis, using the final state particles produced in the same UrQMD 
event.

4 Along with the conventional γ -correlator the novel R-variable and the signed 
balance functions have been proposed as alternative observables for CME search. 
Recently, members of the STAR collaboration have also performed model calcula-
tions to demonstrate the sensitivity of different CME observables [52]. We do not 
explore such observable in this study and only stick to the studies of γ -correlator.
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The aim of our study is to test any deviation from the flow 
driven background scenario (Eq. (5)) in Au+Au collisions at 

√
sNN =

27 GeV. It has been argued that an observation of �γ /v2(�1) >
�γ /v2(�2) cannot be caused by flow driven background [53,54]. 
This is because background from flowing resonances is largest 
along �2 [53]. However, if �γ /v2(�1) is significantly larger than 
�γ /v2(�2), the observation would indicate larger magnetic field 
driven charge separation across �1 than that of �2. Such an ob-
servation will have an implication for the CME scenario since the 
CME signal is expected to be correlated with the magnetic field 
direction. It is important to note that Eq. (5) is expected to be ro-
bust against event plane de-correlations or flow fluctuations, since 
they affect both numerator and denominator in the same way (see 
Ref. [54]). In addition, the effect of non-flow may cause devia-
tions from Eq. (5) as discussed in Ref. [32] which studied the effect 
using AMPT [56] and HIJING [57] simulations. At the top RHIC en-
ergy, non-flow contamination to the CME-like signal due to sources 
such as fragmentation and momentum-conservation from dijets, is 
found to be −5 ± 3% to 4 ± 5%, depending on the choice of the 
event planes. However, in the context of our analysis at lower en-
ergy, production of dijets is expected to be smaller and so non-flow 
effects are expected to be smaller at forward rapidity.

As a first step, we use the combination of the TPC with the in-
ner EPDs (|η| > Ybeam) to measure the charge separation across 
the �1 using the γ -correlator expressed in the scalar product 
method [58] as:

γ (�1) = γ
α,β

1,1,1,1(ηα,ηβ)(�1,Ybeam<|η|<5.1)

= 〈cos(φα(ηα) + φβ(ηβ)

− �1,Ybeam<η<5.1 − �1,−Ybeam>η>−5.1)〉

≡ 〈Q α
1,TPC Q β

1,TPC Q ∗
1,EPDE Q ∗

1,EPDW〉
〈Q 1,EPDE Q ∗

1,EPDW〉 .

(6)

Where the subscripts “1,1,1,1” denote first order harmonics asso-
ciated with the azimuthal angle of particles φα , φβ from TPC 
(|η| < 1), the event planes �1 from the inner EPD east and west, 
respectively. Here, we use the algebra based on Q -vectors [59], 

defined as Q n =
M∑

i=1
wieinφ/ 

M∑
i=1

wi . The weight factor wi accounts 

for the imperfection in the detector acceptance in bins of η − φ, 
pT (track-curvature), V z , and centrality. M refers to the number 
of particles in the analysis. When the particles “α” and “β” are of 
same-sign and share the same acceptance |η| < 1, the Q -vector 
estimations require special treatment as follows. We estimate

Q α
1,TPC Q β

1,TPC =

(∑
i

wieiφi

)2

− ∑
i

w2
i ei2φi

(∑
i

wi

)2

− ∑
w2

i

, (7)

where Q α
n,TPC(ηα) and Q β

n,TPC(ηβ) denote charge dependent Q -
vectors of particles at pseudorapidities ηα and ηβ within |η| < 1 
and for 0.2 ≤ pT ≤ 3.0 GeV/c using the TPC. Similarly, Qn,EPDE/W

refers to the Q -vectors obtained from the hits in the EPDs which 
require slightly different treatment. For the EPDs we use the num-
ber of MIPs corresponding to hits produced by particles as weights, 
and assume that they pass through the center of the tile. Since the 
sign of the directed flow changes inside the EPD acceptance, we 
need to weight the first order Q -vectors with a parameterization 
of the directed flow (sign-and-magnitude) as a function of pseudo-
rapidity, approximated as v1(�1, η) = a1η + a3η

3. Here a1 and a3, 
obtained by fitting data, are the linear are cubic parameters that 
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capture the rapidity-odd nature of v1. We also estimate the ellip-
tic anisotropy of the particles at mid-rapidity with respect to the 
�1 plane from the EPDs using the scalar product method as fol-
lows:

v2,1,1(�1)

= 〈
cos

(
2φ − �1,Ybeam<η<5.1 − �1,−5.1<η<−Ybeam

)〉

≡
〈
Q 2,TPC Q ∗

1,EPDE Q ∗
1,EPDW

〉
〈Q 1,EPDE Q ∗

1,EPDE〉
.

(8)

Here the notation “2,1,1” denotes the use of second order harmonic 
in front of the azimuthal angle of particle φ from mid-rapidity and 
first order harmonics associated with the �1 planes from the east 
and west EPDs.

As a second step, we follow a similar approach to measure 
charge separation with respect to the �2 of the produced parti-
cles dominated by forward participants:

γ (�2, 2.1<|η|<Ybeam) = γ
α,β

1,1,2(ηα,ηβ)(�2, 2.1<|η|<Ybeam)

= 〈cos(φα(ηα) + φβ(ηβ) − 2�2,2.1<|η|<Ybeam)〉

≡ 〈Q α
1,TPC Q β

1,TPC Q ∗
2,EPDE + Q α

1,TPC Q β

1,TPC Q ∗
2,EPDW〉

2
√

〈Q 2,EPDE Q ∗
2,EPDW〉

.

(9)

Here the subscripts “1,1,2” denote first order harmonics of the az-
imuthal angles of the particles “α”, “β” and second order harmonic 
associated with the event plane �2 from the outer EPD. We esti-
mate the corresponding elliptic anisotropy coefficient relative to 
the �2 using the scalar product method as:

v2(�2, 2.1<|η|<Ybeam)

= 〈
cos

(
2φ − 2�2,2.1<|η|<Ybeam

)〉

≡ 〈Q 2,TPC Q ∗
2,EPDE + Q 2,TPC Q ∗

2,EPDW〉
2
√

〈Q 2,EPDE Q ∗
2,EPDW〉

.

(10)

As a third step, we perform another measurement using charge 
separation across the elliptic flow plane of produced particles at 
mid-rapidity |η| < 1 in the following way:

γ (�2,|η|<1) = γ
α,β

1,1,2(ηα,ηβ)(�2,|η|<1)

= 〈cos(φα(ηα) + φβ(ηβ) − 2φc)〉
v2,c{2}

≡ 〈cos(φα(ηα) + φβ(ηβ) − 2�2,|η|<1)〉.

(11)

Similar to previously used convention, here the subscripts “1,1,2” 
associated with the notation of γ refer to the order of harmon-
ics in front of the azimuthal angles φ of three distinctly different 
particles “α, β”, and “c”, all measured by the TPC. We use the 
charge-inclusive reference particle “c” to construct the elliptic flow 
plane �2 at mid-rapidity. The quantity v2,c{2} (written as v2{2} in 
the following) refers to the elliptic flow coefficient of the reference 
particle ‘c’ that we estimate using two-particle correlations:

v2{2}2(|η| < 1) = 〈cos(2φ1(η1) − 2φ2(η2))〉 . (12)

In this v2{2}2 measurement from the TPC, we require �η1,2 =
|η1 − η2| > 0.05 to remove track merging and electron pairs from 
photon conversions. For v2{2}2(�η1,2) measurements we also re-
move short-range components due to femtoscopic correlations us-
ing the approach described in Ref. [60].

We perform measurements of γ in �η = ηα − ηβ slices and 
require �η > 0.05 before integrating over �η to correct for the 
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two-track merging effects which is most dominant in central colli-
sions. The main challenge, when all three particles “α, β” and “c” 
are taken from the TPC, is that no �η cut is applied between α, β
and “c” to reduce short-range non-flow correlations. This can be 
circumvented using a sub-event method by restricting, for exam-
ple, “c” from −1 < η < −0.2 and “α, β” from 0.2 < η < 1. How-
ever, restricting the acceptance of “α, β” results in larger statistical 
uncertainty that is particularly problematic at 27 GeV due to the 
lower number of produced particles compared with higher colli-
sion energies. We therefore avoid using the sub-events method. 
This difficulty highlights the advantage of using event planes from 
the EPDs at low energy which helps suppress short-range correla-
tions while using the full TPC acceptance for α and β to get the 
highest statistical significance.

In our measurements, we determine centrality using the prob-
ability distributions of uncorrected TPC tracks within |η| < 0.5. 
We use a two-component Monte Carlo Glauber model fit to de-
termine the values of average number of participating nucleons 
Npart in nine centrality intervals (0-5%, 5-10%, 10-20%,..., 70-80%). 
Scaling the correlation observables by the number of participants 
Npart as written in Eq. 4 compensates for the natural dilution of 
correlations (�γ ∼ 1/Npart) due to an increasing number of su-
perposition of independent sources while going from peripheral to 
central events [61].

4. Statistical and systematic uncertainties

We use standard error propagation method for statistical un-
certainty estimations in our analysis. However, for ratio observ-
ables such as �γ /v2 we examine the contribution from covari-
ance terms. For this, we use an analytical approach as well as a 
Monte Carlo approach that is equivalent to the statistical Boot-
strap method [62], originally developed for the STAR isobar blind 
analysis [31]. Analytical estimates indicate that the statistical un-
certainty in the quantity �γ /v2 is dominated by the numerator (a 
factor of 50 larger than the co-variance term) and the co-variance 
terms can be ignored [31]. Monte Carlo approach also leads to a 
consistent conclusion. The statistical uncertainties for all the re-
sults presented in this letter are obtained using the method of 
error propagation. Our study of the ratio of �γ /v2 with respect 
to �1 and �2 planes shows that the analytical method of er-
ror propagation ignoring co-variance overestimates the statistical 
uncertainty by 5% using two different Monte Carlo methods in 
10 − 50% centrality (see supplementary material).

The systematic uncertainties in our measurements include con-
tributions from different choices of track and event selection con-
ditions. We use the Barlow method to remove the effects of sta-
tistical fluctuations in the systematic error estimation [63]. For 
details of the Barlow method, see Ref. [31]. The relative uncertainty 
number quoted for each case for the purpose of the following dis-
cussion are estimated for the final observable of interest that is 
the double-ratio of (�γ /v2) with respect to �1 and �2 planes 
within 10-20%, 20-30%, 30-40%, and 40-50% centrality bins. A vari-
ation of the minimum number of ionization points in the TPC from 
15 to 20 leads to a relative systematic uncertainty up to 7%. We 
find that a variation of the global DCA of the track to the pri-
mary vertex from < 3 cm to < 2 cm leads to a contribution up 
to 1%. Systematic errors arise due to trigger bias and changes in 
beam luminosity. This we estimate by separately analyzing low, 
middle and high luminosity data sets and find a contribution up 
to 0.2%. The uncertainty associated with the determination of EPD 
�1 is obtained by varying the acceptance from the default cut 
of 3.4 (Ybeam) < η < 5.1 to 4.0 < η < 5.1, which leads to a con-
tribution up to 2%. The variation from 3.4 (Ybeam) < η < 5.1 to 
full EPD acceptance 2.1 < η < 5.1 leads to a contribution up to 
0.5% for the systematics associated with the �1 plane estimation. 
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Fig. 2. Elliptic anisotropy coefficient v2 using TPC tracks and EPD hits. The up-
per panel shows elliptic flow relative to different event planes. The lower panel 
shows the v2 ratio using the directed flow plane compared with the forward and 
mid rapidity elliptic flow planes. The lines indicate the statistical uncertainties and 
the shadowed boxes indicate the systematic uncertainties. The centrality bins are 
shifted horizontally for clarity.

Fig. 3. Charge separation across different event planes measured by the difference 
between opposite (OS) and same sign (SS) γ -correlators. The upper panel shows 
the �γ = γ (OS) - γ (SS) across different event planes. The �γ points are scaled 
with Npart to account for dilution due to super-position of independent sources and 
also to improve the visibility. The lower panel shows the ratios of �γ across the 
directed flow plane to the same across the elliptic flow planes. The lines indicate 
the statistical uncertainty, the shadowed boxes indicate the systematic uncertainty. 
Points are shifted horizontally for clarity.

Similarly, we vary the acceptance for determining the �2 plane 
from the default cut of 2.1 < η < 3.4 (Ybeam) to 2.1 < η < 3.0
and 2.1 < η < 5.1 (full EPD) leading to systematic uncertainties of 
2% and 0.5%, respectively. We add different systematic uncertainty 
sources in quadrature and obtain the total systematic uncertainty 
is not bigger than 7%. 

Similar to previous STAR analyses of three-particle correla-
tions [30,31,64,65], we investigate the effects of the following cut 
variations: 1) the acceptance of tracks from the default value of 
|η| < 1.0 to |η| < 0.8, 2) variation of the Vz cut from the default 
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value of |V z| < 40 cm to 0 < Vz < 40 cm and, 3) variation of the 
maximum allowed Vr from 2 cm to 1 cm. In all such cases, we 
find zero systematic uncertainty following the Barlow criteria. In 
addition, we study the effect of pT dependent tracking efficiency 
by using it as a weight (wi ) for the Q -vectors from the TPC. We 
observe no statistically significant difference in our final observ-
ables with and without efficiency weights. For the results shown 
in this letter we do not include pT dependent tracking efficiency 
as weights. We studied the stability of the results by changing the 
threshold on the number of MIPs for EPD hits in the Q -vector es-
timation. After changing the value of MIP threshold from 0.3 to 1, 
we do not see any statistically significant change in our results.

5. Results

In Fig. 2, we show the elliptic flow coefficients
v2,1,1(�1,|η|>Ybeam), v2(�2,|η|<Ybeam), and v2(�2,|η|<1) defined in 
Eq. (10)-(12) as a function of Npart in the upper panel, and the ra-
tios of v2(�1)/v2(�2) in the lower panel. The difference in the 
magnitudes of v2 from mid-rapidity to forward rapidity can be at-
tributed to changes in the non-flow contribution, flow fluctuations, 
and event plane de-correlation. It is challenging to disentangle 
these three effects as was discussed in previous STAR publications 
such as Ref. [66,67]. The lower panel of Fig. 2 indicates a drop of 
20 −40% in v2 along the �1 plane in comparison to the same from 
the �2 plane for peripheral events.

In Fig. 3, we show the charge-dependent γ correlator, �γ =
γO S − γS S , measured relative to �2,|η|<1 plane, �2,2.1<|η|<Ybeam

plane, and �1,Ybeam<|η|<5.1 as a function of Npart. In mid-central 
events the magnitudes of �γ for different planes are consistent 
with each other. In central and peripheral events, results for the 
�1 plane hint at a weaker charge separation although differences 
are smaller than the statistical uncertainties. This is also evident 
from the ratio plot shown in the lower panel. It is difficult to make 
any conclusion related to the magnetic field driven charge separa-
tion from �γ ratio, as a flow-driven background is the dominant 
contribution to the �γ correlator. 

Therefore, in Fig. 4, upper panel, we present the centrality de-
pendence of the quantity

R(�n) = �γ (�n)

v2(�n)
× Npart, (13)

measured relative to the �1 and �2 planes from forward and mid-
rapidity. Compared to the �γ measurements shown in Fig. 3, we 
observe a much weaker centrality dependence after scaling �γ
with v2.

Finally, to quantify the difference between the charge separa-
tion across �1 plane relative to that of �2, we take a ratio be-
tween R(�1) and R(�2). As mentioned in Eq. (5), R(�1)/R(�2) is 
expected to be unity in the case of flow driven background sce-
nario. For magnetic field driven correlations, we expect this ratio 
to be above unity. The values of R(�1)/R(�2) are shown on the 
lower panel of Fig. 4. We fit this quantity over a centrality range of 
10 − 50% using a constant function by properly incorporating the 
statistical and systematic uncertainties.

To quantitatively estimate the deviation from a flow driven 
background, we define a quantity D as follows,

D = R(�1)/R(�2) − 1, (14)

where observation of a significant nonzero value of D implies the 
presence of the magnetic field driven correlations.5 We find the 

5 According to previous studies [53,54] one can obtain a relation like:

D = (�γ /v2)�1 − 1 = fCME(�2)

(
γB (�1) v2(�2) − 1

)
. (15)
(�γ /v2)�2 γB (�2) v2(�1)
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Fig. 4. (Upper panel) The quantity R obtained by estimating the charge separation 
measured by the difference between opposite-sign and same-sign γ correlator (�γ ) 
and then scaling by v2 times Npart . The measurements are shown for all three dif-
ferent event planes. (Lower panel) The ratio of the quantity R shown on upper panel 
between �1 plane and �2 plane. The error bars indicate the statistical uncertainty, 
the shadowed bars indicate the systematic uncertainty. The results of the fit includ-
ing 1σ fitting uncertainties are shown by bands with dashed border for 10 − 50%
centrality in lower panel. Points are shifted horizontally for clarity.

Fig. 5. The upper limit at the 95% CL calculated for the deviation quantity D in 
10-50% centrality.

quantity D to be 0.011 ± 0.046 and 0.069 ± 0.043 when R(�2)

is estimated from �2,2.1<|η|<Ybeam and �2,|η|<1, respectively. The 
results are consistent with zero within total uncertainty. In order 
to quantify the possible deviation from zero, we derive an upper 
limit at the 95% CL on D using the Feldman-Cousin approach6 dis-
cussed in Ref. [68]. In centrality 10-50%, we find the upper limits 
of D to be 10% and 16% using �2 at forward and mid-rapidity, re-

In the flow-driven background scenario, one expects fCME = 0, therefore D is ex-
pected to be zero. However, in the presence of CME one expects D > 0. This 
is because the elliptic flow is maximum w.r.to �2 plane. So, we always have 
v2(�2)/v2(�1) > 1 (measurement). Also, since �1 is determined by the directed 
flow of forward protons (which also generate B-field), it has a larger correla-
tion with the B-field direction than the �2 plane. Therefore, γB (�1)/γB (�2) > 1
(UrQMD simulation). In the presence of CME one has fCME > 0 so D > 0.

6 The upper limit of a quantity with measured mean x0 and standard deviation 
σ at 95% confidence is: x0 + (1.96 +n(x0)) ×σ . The quantity n(x0) can be obtained 
from table.10 of Ref [68].
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spectively. Here the numbers are rounded into integers. We show 
these estimates in Fig. 5.

6. Summary

In this letter, we present measurements of charge separation 
with respect to reaction plane using Au+Au 

√
sNN =27 GeV colli-

sions. At this collision energy, the STAR forward EPDs can measure 
the event plane associated with a large directed flow from beam 
fragments with high resolution. This directed flow plane (�1) is 
expected to be more correlated with the direction of magnetic 
field than the elliptic flow planes (�2) of produced particles as 
shown in UrQMD simulations. Therefore, we measured the charge 
separation scaled by ellipticity R(�n) across the �1 determined at 
forward rapidity and compare it with the corresponding measure-
ments using �2 reconstructed out of produced particles at both 
forward and mid-rapidity. Within our measurement uncertainties 
we find the ratio R(�1)/R(�2) to be consistent with unity, which 
agrees with the expectations from a flow driven background sce-
nario. For further quantification, we derive an upper limit at the 
95% confidence level on the quantity D = R(�1)/R(�2) − 1 for 
possible deviation from a flow driven background scenario. In 10-
50% centrality we find the upper limits of D to be 10% and 16%
using �2 at forward and mid-rapidity, respectively. In this analy-
sis we argued that the information of the directed flow near the 
beam rapidity using EPDs and the elliptic flow at mid-rapidity al-
lows us to control the flow driven CME background in 27 GeV 
Au+Au collisions and explore effects beyond background. Due to 
the acceptance of the EPDs (2.1 < η < 5.1), the same can be done 
for several data sets (

√
sN N = 9.2, 11.5, 13.7, 14.5, 17.3, 19.6 GeV) 

collected by the STAR under RHIC Beam Energy Scan Phase II pro-
gram. The use of forward event planes in this work not only pi-
oneers a high-precision CME search from the RHIC Beam Energy 
Scan Phase II program, but also opens up opportunities to search 
for other magnetic field driven effects at RHIC.
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