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We report on the first multi-differential measurement of ¢ meson and =~ hyperon production as
well as the ¢/ K~ and ¢/= ratio in Au+Au collisions at y/snn = 3 GeV with the STAR experiment
under its fixed target configuration at RHIC. ¢ mesons and =~ hyperons are measured through their

hadronic decay channels, ¢ — K™K~ and =~
K™, ¢ and =~

— An™.
are presented in different centrality and rapidity intervals. The total production

The transverse kinetic energy spectra of

yields and the ratios within a 47 coverage are calculated and compared to thermal model predic-
tions. A calculation within the grand canonical ensemble framework shows a clear discrepancy from
our measurement. Our data favor the canonical ensemble approach employing local strangeness
conservation with a small strangeness correlation length (r. < 4.2fm) in 0-10% central Au+Au

collisions at y/snn = 3 GeV.

Relativistic heavy ion physics is aiming at the de-
tailed investigation of phase structures of strongly in-
teracting matter, governed by quantum chromodynam-
ics (QCD), under extreme conditions of high temper-
ature and density [IH3]. Particle production has been
studied to investigate the properties of the produced
QCD matter in heavy-ion collisions. The strange quark
mass is comparable to the QCD renormalization scale
(Agep ~ 200 MeV) [ 5], therefore strange quark dy-
namics plays an important role in understanding the
QCD Equation-of-State of hot and dense nuclear mat-
ter particularly in the high density region [6HIT].

Statistical thermal models have often been used to
characterize the thermal properties of the produced me-
dia [I2HI6]. In these models, grand canonical ensemble
(GCE) and canonical ensemble (CE) statistical descrip-
tions can be applied to conserve electric charge, baryon
number, and strangeness number in order to compute
the final state particle yields. Both GCE and CE mod-
els are able to describe various particle yields includ-
ing strange particles produced in heavy-ion collisions at
RHIC and the LHC at center-of-mass energy (,/snxn)
greater than 7.7 GeV. It has been argued that at lower en-
ergies, strangeness number needs to be conserved locally
on an event-by-event basis described by the CE, which
leads to a reduction in the yields of hadrons with non-
zero strangeness number (“Canonical Suppression”) [17].

The ¢(1020) meson is the lightest bound state of
strange quarks into a pair (s5 ) with zero net strangeness
number (S=0). In the GCE model, the ¢/K~ ratio is
expected to fall off as the collision energy decreases to-
wards the threshold. In the CE model, ¢ meson pro-
duction, unlike other strange hadrons (K, =7, etc.),
is not affected by the strangeness canonical suppression.
Therefore, the ¢/ K~ ratio is expected to increase with
decreasing collision energy in models using the CE treat-
ment for strangeness. The canonical suppression power
for 2 is even larger than for K—. The ¢/K~ and ¢/=~
ratios offer a unique test to scrutinize thermodynamic
properties of strange quarks in the hot and dense QCD
environment.

* Deceased

In heavy-ion collisions, the near/sub-threshold produc-
tion of multi-strange hadrons can be achieved from the
multiple collisions of nucleons, produced particles, and
short-lived resonances [I8]. The particle production in
heavy-ion collisions below its free nucleon-nucleon (NN)
threshold (\/snN ~2.89 GeV for ¢ and ~3.25GeV for
=7) is expected to be sensitive to the stiffness of the
nuclear equation of state at high density, as it is for
single-strange hadrons [9 I9]. The near/sub-threshold
production further provides the possibility to observe ex-
otic states of QCD matter [20] and signatures of “soft
deconfinement” [21].

Measurements from the experiments at the AGS, SPS,
RHIC and LHC show that the ¢/K~ ratio in heavy-ion
collisions stays remarkably flat (~0.15) at collision en-
ergies /snn > 5 GeV [22H24]. Recent measurements of
the ¢/K~ ratio in heavy-ion collisions at collision en-
ergies below the ¢ free NN-threshold from HADES and
FOPI show a hint of relative enhancement compared to
those from high energies at RHIC and the LHC [25-
28], indicative of the applicability of the CE descrip-
tion for strangeness production at these energies. The
RHIC Beam Energy Scan phase-II program, including
both collider and fixed target setups with the STAR ex-
periment, covers a center-of-mass energy range of 3.0—
19.6 GeV. This offers a great opportunity to conduct pre-
cise measurements of the energy dependence of the ¢/ K~
and ¢/Z7 ratios at low collision energies, which are cru-
cial in understanding the strangeness dynamics as well
as the medium properties in high baryon density regions
in QCD.

The dataset used in this analysis consists of Au+Au
collisions at /syn = 3 GeV collected by the STAR exper-
iment operated under the fixed target (FXT) setup [29)
in the 2018 RHIC run. A single beam was provided by
RHIC with total energy equal to 3.85 GeV /nucleon and
incident on a gold target of thickness 0.25 mm, corre-
sponding to a 1% interaction probability. The target is
installed inside the vacuum pipe, 2 cm below the center of
the beam axis, and located 200 cm to the west of the cen-
ter of the STAR detector. The main detectors used are
the Time Projection Chamber (TPC) [30], the Time of
Flight (TOF) detector [31], and the Beam-Beam Counter
(BBC) [32]. The trigger is provided by the signal in the
east BBC detector and at least five hits in the TOF detec-



tor. Tracking and particle identification (PID) are done
using the TPC and TOF. Events are selected with the
offline reconstructed collision vertex within 1.5 cm of the
target center along the beam direction. Approximately
2.6x10® minimum bias (MB) triggered events passed the
selection criteria and are used in this analysis.

The centrality class is selected using measured charged
particle multiplicity within the TPC acceptance. A
Monte Carlo Glauber model, used in conjunction with
a negative binomial distribution to model particle pro-
duction in hadronic collisions, is optimized in order to
best match the data and determine the centrality class.
Due to the trigger inefficiency in the low multiplicity re-
gion (corresponding to the most peripheral collisions),
and finite contribution to our signals of interest, we only
report the results from the 0-60% (0-40%) centrality class
in this paper.

The ¢ mesons are reconstructed via the hadronic de-
cay channel ¢ — K™K~ with a branching ratio (BR)
of 49.2%, while the Z~ hyperons via the 2~ — An~ —
pr~w~ channel with a BR of 63.8% [33]. £~ reconstruc-
tion is performed using the KF Particle Finder package
based on the Kalman Filter method [34}[35]. The charged
tracks are reconstructed with the TPC in a 0.5 T uniform
magnetic field. The TPC tracks are required to consist of
at least 20 TPC hits (out of a maximum of 45, and ratio
> 0.52) to ensure good tracking and avoid track splitting
(15 TPC hits required for Z~ to increase the sample of
signal candidates). The charged tracks are identified via
a combination of the ionization energy loss measurement
with the TPC and the time-of-flight measurement with
the TOF. A minimum pr cut of 0.2 GeV/c is required
in the analysis. Due to the charge asymmetry for the
particle yields at \/syn = 3 GeV, a smaller yield for K~
compared to KT means relatively higher contamination.
Thus a strict PID criterion requiring both TPC and TOF
is implemented for K~ [36],[37]. Both the TPC and TOF
detectors have full azimuthal coverage within a pseudo-
rapidity range of 0<n < 1.88 for the TPC and 0<n < 1.5
for the TOF in FXT mode [30, 31].

Figure [1| (a) shows the invariant mass distribution of
KT K~ pairs in the transverse momentum (pr) region of
0.4-1.6 GeV/c for 0-60% central collisions. The combi-
natorial background is estimated with the mixed-event
(ME) technique in which KT and K~ from different
events of similar characteristics (centrality, event plane
angle) are paired. The mixed-event spectra are normal-
ized to the same-event (SE) distributions in the mass
range of 1.04-1.08 GeV/c2. After the subtraction of the
combinatorial background, the remainder distribution is
shown as red solid circles. The K+ K~ invariant mass re-
mainder distribution is fitted with a Breit-Wigner func-
tion for the signal plus a linear function which repre-
sents the remaining correlated background (< 1%) from
a partial reconstruction of strange hadrons. The ¢ me-
son raw yields are extracted from the Breit-Wigner func-
tion fit within the corresponding 30 mass window. The
extracted ¢ signal shape is consistent with its intrin-
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FIG. 1. Invariant mass distributions of K* K~ (A7 ™) in the
pr region of 0.4-1.6 (0.5-2.0) GeV/c in 0-60% (0-40%) cen-
tral Au+Au collisions at /snn = 3 GeV. Black open circles
represent the same-event unlike-sign distribution. The grey
shaded histogram represents the normalized mixed-event (ro-
tating daughters for £7) unlike-sign distribution that is used
to estimate the combinatorial background. The red solid
circles depict the ¢ meson (a) and =~ (b) signals obtained
by subtracting the combinatorial background from the same-
event distribution. Reconstructed ¢ meson (c) and =~ hy-
peron (d) acceptance plot, pr vs. rapidity in the center-of-
mass frame (yem) in Au+Au collisions at \/snn = 3GeV. The
dotted line indicates the target rapidity location. The red
curve represents the TPC and TOF acceptance edge.

sic properties convoluted with the detector smearing ef-
fect due to finite momentum resolution (< 3% for single
track). Figure [1] (b) shows the invariant mass distribu-
tion of A(pr~ )7~ in the pp region of 0.5-2.0 GeV/c for
0-40% central collisions. The combinatorial background
is estimated with the rotating daughter (Rot) method,
in which a daughter track of =~ is rotated by a ran-
dom angle between 150 to 210 degrees in the transverse
plane. The rotated spectra are normalized to the same-
event distributions in the mass ranges of 1.30-1.31 and
1.34-1.35GeV/c?. After the combinatorial background
is subtracted, the A7n~ invariant mass distributions are
fitted with a Gaussian for the signal plus a linear func-
tion for the remaining correlated background. The =~
raw yields are obtained via histogram bin counting from
the invariant mass distributions with all background sub-
tracted within mass windows of 30. The reconstructed
¢ meson and =~ acceptances (pr VvS. Yem) in the col-
lision center-of-mass frame are shown in Fig. [1| (¢) and
(d), respectively. The target is located around ye,, = -
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FIG. 2. K~ (a), ¢ meson (b) and =~ (c) invariant yields
as a function of mr — mg for various rapidity regions in 0-
10% central Au+Au collisions at V/snN = 3GeV. Statistical
and systematic uncertainties are added quadratically here for
plotting. Solid and dashed black lines depict mr exponential
function fits to the measured data points with scaling factors
in each rapidity windows.

1.05, using the convention where the beam travels in the
positive direction. The red curve represents the TPC
and TOF acceptance edge. The reconstructed ¢ mesons
and = hyperons in this analysis cover the range from the
target to mid-rapidity.

The reconstructed K—, ¢ meson, and =~ raw yields
are calculated in each centrality and pr bin within each
rapidity slice. The raw yields are corrected for the TPC
acceptance and tracking efficiency, the particle identifica-
tion efficiency, and the TOF matching and PID efficiency.
The final average reconstruction (including acceptance
etc.) efficiency is about 0.30 for the K~ about 0.04 for
the ¢ meson and about 0.02 for the =~.

The systematic uncertainty of the raw yield extraction
is estimated by changing the histogram fitting method to
bin counting method or by changing the fitting ranges.
The maximum difference between these scenarios is then
converted to a standard deviation and added to the sys-
tematic uncertainties. The contribution varies by pr, ra-
pidity, and centrality and the overall contribution is less
than 5% for the invariant yield. The systematic uncer-
tainty in the TPC acceptance and efficiency correction
erpc is estimated by varying the cuts on track selec-
tion criteria and topological variables (for =~ only). The
contribution to the total yield is about 4-5% for K, 13-
16% for ¢ and 6-10% for =~. This leads to a 10-13%
(12-18%) uncertainty in the measured ¢/K~ (¢/Z7) ra-
tio. The uncertainty of the PID efficiency correction is
estimated in a similar way by varying the PID selection
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FIG. 3. Rapidity density distributions of K~ (squares), ¢ me-
son (circles) and 2~ (diamonds) pr-integrated yields dN/dy
in 0-10% (a), 10-40% (b) and 40-60% central (¢) Au+Au col-
lisions at y/snn = 3 GeV. Solid lines depict Gaussian function
fits to the data points.

cuts and the contribution is less than 3% to the total
yield. For the pr integrated yield, one important source
of systematic uncertainty comes from the extrapolation
to the full pr range due to the limited acceptance. This is
estimated by choosing several fitting functions [38]. The
maximum difference between these scenarios and the de-
fault one (mp-exponential) is quoted as the systematic
uncertainty from this source. This contribution is 5-7%
for K—, 14-17% for ¢ and 13-15% for =~.

Figure [2| shows the acceptance x efficiency corrected
K~, ¢ meson and Z~ invariant yields as a function of
transverse mass kinetic energy (mp — mg) for various
rapidity ranges in 0-10% central Au+Au collisions at
/SnN = 3 GeV. Dashed and solid lines depict fits to the
spectra with the mp-exponential function in order to ex-
trapolate the unmeasured pp ranges. The pr integrated
rapidity distributions dN/dy are displayed in Fig. [3| for
Au+Au collisions at /syn = 3 GeV for three different
centralities. Solid curves depict Gaussian function fits to
the data points with the centroid parameter fixed to zero.
They are used to extrapolate to the unmeasured rapidity
region in order to calculate the total multiplicities per
triggered event for each particle.

The ¢/K~ and ¢/=~ ratios is presented in Fig. 4| as a
function of collision energy ,/snn, including the midra-
pidity data from the AGS, SPS and RHIC BES at higher
energies and 47 acceptance data (weak y-dependence)
from SIS at lower energies. The black solid circles show
our measurements in 0-10% centrality bins in Au+Au
collisions at /sxny = 3GeV. The measured ¢, K~ and
=~ yields in 47 and the ¢/K~, ¢/=~ ratios in different
centrality bins are listed in Tab. [l The ¢/K~ and ¢/=~
ratios measured at 3 GeV are slightly higher than the val-
ues at high energies for \/syn > 5GeV [22H24] 139, [45-
48] despite the collision energy being very close to the ¢
threshold and below the =~ threshold in NN collisions.
Though there is no clear difference in the ¢ /K~ ratio be-
tween the 0-10% and 10-40% central bins, the result in
the most peripheral 40-60% central bin shows a hint of a



TABLE 1. ¢, K~, E7 integrated yields and ¢/K~ and ¢/=~ ratios for given centrality classes in Au+Au collisions at
/3NN = 3GeV. The first error given corresponds to the statistical one, the second to the systematic error.
Centrality ¢ (10779) K~ (1079) o/K~ = (1079 d/="
0-10% 20.1+£1.44+38 8.70 £0.02 £0.53 0.231 £ 0.016 £ 0.042 139+ 08+24 1.454+0.134+0.34
10-40% 8.5+04+1.7 3.394+0.01 £0.20 0.249 £0.011 £ 0.046 | 3.61 £0.32£0.59| 2.34 +0.23 £0.65
40-60% 264+0.24+0.5 0.79 £ 0.01 £ 0.06 0.327 £ 0.029 4 0.069 — —
— ing the THERMUS package [40] with energy dependent
061 [ smasH GCE | freeze-out parameters (Tch, pp) taken from [12]. These
Aurhu O — urono’ _C_E’zrcz(fm) E parameters were extracted through a thermal model fit
L ooal al [ uramo 32 | to the particle yield at mid-rapidity. The strangeness
< 0-35% - 42 number is conserved on average in the GCE, where the
S paa - 62 model does not contain a strangeness suppression fac-
02 B [ ] PbsPb0-72% | tor that accounts for non-equilibrium in the strangeness
- ée*”;ﬁﬁ;—rﬁ;—?ﬂ" sector. It is clear that the model fails to describe the
[ e preg ] data at low energies, including our new measurements
ol e ——— | @ i at /sy = 3GeV, which indicates the thermal particle
L P ‘ /] phase-space at low energies is far from the GCE limit
2 ® AutAu, 0-10% e and the local treatment of strangeness conservation is
b I : ",;..;.'%) crucial [50]. In the canonical approach, the correlation
= | ® "c%"" ! length, 7., defines a region of the particle production
ECE i)x;.'f’ & phase space inside which the production of the open
1 | oas% - V&W ] strangeness is canonically conserved. Both the ¢/ K~ and
L | ¢/Z~ data from our measurement favor the CE thermo-
- / -~ ] dynamics for strangeness with a small strangeness corre-
ol _—// o () ] lation length (r. < 4.2fm). It is worthwhile to point out
> 3 5 10 20 that the CE calculations with the same 7, parameter can-

Collision Energy |sy,, (GeV)

FIG. 4. ¢/K~ (a) and ¢/E (b) ratio as a function of colli-
sion energy, v/snn. The solid black circles show the measure-
ments presented here in 0-10% centrality bin, while empty
markers in black are used for data from various other ener-
gies and/or collision systems [22H28] [39]. The vertical grey
bands on the data points represent the systematic uncertain-
ties. The grey solid line represents a THERMUS calculation
based on the Grand Canonical Ensemble (GCE) while the dot-
ted lines depict calculations based on the Canonical Ensemble
(CE) with different values of the strangeness correlation ra-
dius (rc) [12, [40]. The green dashed line, green shaded band
and the solid red line show transport model calculations from
the public versions UrQMD' [T} @2], modified UrQMD? [43]
and SMASH [44], respectively.

larger value, as shown in Tab. [} For comparison, a pre-
vious measurement in p+p collisions at 2.7 GeV shows
that ¢/K~ = 1.04+£0.23 [49]. Similarly, the ¢/=~ ratio
in mid-central collisions seems to be larger than that in
central collisions.

Various curves in Fig. [4] represent the predictions of
¢/K~ and ¢/=" ratios from several model calculations
in central A+A collisions. Statistical model calculations,
based on the Grand Canonical Ensemble and Canonical
Ensemble for strangeness with several different choices of
strangeness correlation length (r.), were calculated us-

not describe our ¢/K~ and ¢/Z~ data simultaneously
(as also observed in lighter systems and at lower colli-
sion energy [27]). The production yields of ¢ and 2~ in
near/sub-threshold regions based on the thermal model
calculations are sensitive to the freeze-out parameters.
A global thermal model fit with all the particle yields
at 3GeV will help to precisely determine these thermal
parameters in the future.

Hadronic transport models are widely used in the high
baryon density region to study the properties of the pro-
duced dense matter [AIH44, 51, [52]. In the modified
version of the Ultra-relativistic Quantum Molecular Dy-
namics (UrQMD) model [43], new decay channels from
high mass baryon resonances to ¢ and =~ are deployed.
The relevant decay branching fraction was determined
by fitting the experimental data from p+p collisions [49].
From the comparison shown in Fig. the modified
UrQMD? calculation for central (b < 5fm) Aut-Au colli-
sions agrees with the data points at low /snn, including
our new measurement for ¢/K~. However calculations
from the public UrQMD" model underestimate our mea-
surements for both ¢/K~ and ¢/=~. Another hadronic
transport approach called Simulating Many Accelerated
Strongly-interacting Hadrons (SMASH) attempts to in-
corporate the newest available experimental data from
both elementary hadronic cross sections and dilepton in-
variant mass spectra to constrain the resonance branch-
ing ratios [44]. The ¢/K ~ ratio is reasonably reproduced
using SMASH in the smaller system and ,/syn below



3 GeV, despite the overestimation of each individual (¢,
K ™) transverse mass spectrum measured, e.g. in Au+Au
0-40% system by HADES [28| 44]. The predicted ¢/K~
ratio from the same model is about is 2.5¢ higher than
central Au+Au 0-10% collisions at 3 GeV. This indicates
some important in-medium mechanism for strangeness
production and propagation may be missing for the large
system in SMASH.

In summary, we report the first multi-differential mea-
surement of K~, ¢(1020) and Z~ production yields
and the ¢/K~, ¢/Z~ ratios in AutAu collisions at
/5NN = 3 GeV with the STAR experiment at RHIC. The
measured ¢/K~ ratio is about 50 larger than zero in
0-10% and 10-40% central collisions. The statistical
model prediction based on the Grand Canonical Ensem-
ble underestimates the measured ¢/K~ ratio. Both the
results of /K~ and ¢/=Z~ ratios favor the model with
the Canonical Ensemble treatment for strangeness and
a small strangeness correlation length parameter, r., in
0-10% central Au+Au collisions. The transport models
including the resonance decays can reasonably describe
both our measured ¢/ K~ ratio result at this energy and
the trend of ¢/=~ at lower energies. Our results sug-
gest a significant change in the strangeness production
at \/snn = 3 GeV compared to higher collision energies,
providing new insights into the Equation-of-State of QCD
matter in the high baryon density region close to the
strangeness production threshold [6]. Furthermore, the
sub-threshold =~ measurement could serve as a probe of

a new state of QCD matter and the energy dissipation
during the collision in the future [10, £3].
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