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Using a sample of 448.1 × 106 ψð2SÞ events collected with the BESIII detector, we perform a study of
the decay J=ψ → KþK− via ψð2SÞ → πþπ−J=ψ . The branching fraction of J=ψ → KþK− is determined
to be BKþK− ¼ ð3.072� 0.023ðstatÞ � 0.050ðsystÞÞ × 10−4, which is consistent with previous measure-
ments but with significantly improved precision.
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I. INTRODUCTION

The decay of narrow vector states of charmonium, like
J=ψ , into states of light quarks can proceed via cc̄ annihi-
lation into a virtual photon or three gluons. In the case of
the decay to two kaons, regardless of the charge of the
kaons, both strong and electromagnetic interactions con-
tribute with comparable strength, and the branching frac-
tion (BF) depends critically on their relative phase [1].
Neglecting the interference between the continuum and
resonance amplitudes may affect the measurement of the
BF, BKþK− , in the reaction eþe− → KþK−.
Early phenomenological studies argued that this relative

phase is quite large, close to �90° [2–5]. The contribution
of the continuum has been investigated also in Refs. [6,7],
showing that the interference between continuum and
resonance amplitudes may affect the J=ψ decays. Further-
more, the authors show the crucial role in confirming the
large universal phase between the strong and the electro-
magnetic amplitudes, which can affect precision measure-
ments of the branching ratio of charmonia decays with
special focus on the decays in two pseudoscalars. In Ref. [1],
it is demonstrated that the direct coupling of J=ψ to the
hadronic final state is important in the KþK− case and a
combination of measurements on and off resonance is
essential to obtain the relative magnitude and phase of
quantum electrodynamics (QED) and hadronic amplitudes.
The most recent BKþK− measurement was reported

by BABAR [8], using the untagged initial state radia-
tion (ISR) technique, to be BKþK− ¼ ð3.36� 0.20ðstatÞ �
0.12ðsystÞ × 10−4. They applied a correction for the effect

of the interference with the continuum, after the determi-
nation of the relative phase, by combining their result and
the ones from other experiments for the J=ψ → K0

SK
0
L

decay [9,10]. By using the result from Ref. [9], the BABAR
collaboration determined a relative phase φ ¼ ð97� 5Þ° or
ð−97� 5Þ°; on the other hand, by using the results in
Ref. [10], the phase was determined to be φ ¼ ð111� 5Þ°
or ð−109� 5Þ°. Using the latter determination of φ, BKþK−

was measured to be ð3.22� 0.20ðstatÞ � 0.12ðsystÞÞ ×
10−4 or ð3.50� 0.20ðstatÞ � 0.12ðsystÞÞ × 10−4, depend-
ing on the sign of the phase. It is worthwhile to notice that
the shifts due to the interference are large, i.e., about 5%,
and should be taken into account in the eþe− → KþK−

reaction for precision measurements.
The study of this decay channel, by means of ψð2SÞ →

πþπ−J=ψ , allows us to measure BKþK− with no need
to take into account the interference of the resonant
amplitude with the continuum. It is advantageous, being
the most probable ψð2SÞ decay (Bðψð2SÞ → πþπ−J=ψÞ ¼
ð34.98� 0.02� 0.45Þ% [11]), and the most accessible
experimentally. For studies of J=ψ decays, the J=ψ events
can be tagged by the recoiling mass against the πþπ−

system in the decay ψð2SÞ → πþπ−J=ψ. This J=ψ sample
is automatically free of any contamination of KþK−, pp̄,
μþμ− and eþe− produced directly at the center of mass
energy (cme) of

ffiffiffi
s

p ¼ 3.097 GeV. The continuum con-
tribution is negligible in the subsequent J=ψ decay, making
this sample relatively clean and simple to analyze. The
most recent measurement of BKþK− in this channel was
performed by Metreveli et al. using CLEO-c data [10],
with a result of ð2.86� 0.09� 0.19Þ × 10−4; this meas-
urement currently is the only one determining the world
average by the Particle Data Group (PDG) [12]. In the
same article the relative phase in J=ψ decays into pseu-
doscalar pairs was reported to be φ ¼ ð73.5þ5.0

−4.5Þ°, obtained
by means of the BFs of J=ψ → KþK−, J=ψ → πþπ−

and J=ψ → K0
SK

0
L.
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A sample of 448.1 × 106 ψð2SÞ events collected in 2009
and 2012 with the BESIII detector offers, by virtue of
being about 20 times larger than the CLEO-c statistics, a
unique opportunity to improve the precision of BKþK− .
It is worthwhile to notice that the sign of sinφ for J=ψ
decays can be determined experimentally from the relative
difference, δBKþK−=BKþK− , between precise measurements
of BFs in both eþe− → KþK− reaction and ψð2SÞ →
πþπ−J=ψ , as suggested in Ref. [8].
This paper describes the measurement of BKþK− via

ψð2SÞ → πþπ−J=ψ with BESIII data and it is organized
as follows. Section II contains a brief description of the
BESIII detector and data and Monte Carlo (MC) samples.
In Sec. III we describe the analysis strategy, that foresees a
measurement relative to the precisely measured BF of the
J=ψ → μþμ− decay. In Sec. IV we present the event
selection and in Sec. V the background evaluation can
be found. The BKþK− measurement is presented in Sec. VI
while the systematic uncertainties are discussed in Sec. VII.
Sec. VIII, with summary and conclusions, closes the paper.

II. BESIII DETECTOR, DATA AND MC SAMPLES

In this analysis we use two large data samples of ψð2SÞ
decays, collected with the BESIII detector in 2009 and in
2012. The numbers of ψð2SÞ events were determined to be
ð107.0� 0.8Þ × 106 and ð341.1� 2.1Þ × 106 [13], respec-
tively. The BESIII detector records symmetric eþe− colli-
sions provided by the BEPCII storage ring [14], which
operates in the cme range from 2.00 to 4.95 GeV. BESIII
has collected large data samples in this energy region [15].
The cylindrical core of the BESIII detector covers 93%
of the full solid angle and consists of a helium-based
multilayer drift chamber (MDC), a plastic scintillator time-
of-flight system (TOF), and a CsI(Tl) electromagnetic
calorimeter (EMC), which are all enclosed in a super-
conducting solenoidal magnet providing a 1.0 T (0.9 T in
2012) magnetic field. The solenoid is supported by an
octagonal flux-return yoke with resistive plate counter
muon identification modules interleaved with steel.
The charged-particle momentum resolution at 1 GeV=c

is 0.5%, and the resolution of the specific energy loss,
dE=dx, is 6% for electrons from Bhabha scattering. The
EMC measures photon energies with a resolution of 2.5%
(5%) at 1 GeV in the barrel (end cap) region. The time
resolution in the TOF barrel region is 68 ps, while that in
the end cap region is 110 ps. Details about the design and
performance of the BESIII detector are given in Ref. [16].
Monte Carlo simulated data samples produced with a

GEANT4-based [17] software package, which includes the
geometric description of the BESIII detector [18] and the
detector response, are used to determine detection efficien-
cies, to estimate backgrounds and for event selection
optimization. The simulation models the beam energy
spread and ISR in the eþe− annihilations with the generator

KKMC [19,20]. An inclusive MC (INC-MC) sample
includes the production of the ψð2SÞ resonance, the ISR
production of J=ψ , and the continuum processes incorpo-
rated in KKMC [19–21]. All particle decays are modeled
with EVTGEN [21,22] using BFs either taken from the
PDG [23], when available, or otherwise estimated with
LUNDCHARM [24,25]. Final state radiation (FSR) from
charged final state particles is incorporated using the
PHOTOS package [26]. The INC-MC samples correspond
to 106 millions ψð2SÞ events for 2009 and 400 millions
ψð2SÞ events for 2012.
To evaluate the detection efficiency, exclusive signal MC

simulations are performed with equivalent sizes much
larger than the expected data statistics. The ψð2SÞ pro-
duction has been previously described and the subsequent
decays are generated using EVTGEN [21,22] with the JPIPI

module for ψð2SÞ → πþπ−J=ψ, VSS for J=ψ → KþK− and
VLL for J=ψ → μþμ−.

III. METHOD

In order to reduce the experimental systematic uncer-
tainties, the BF of J=ψ → KþK− is determined relative to
the well known J=ψ → μþμ− channel. The strategy for this
analysis is to measure the ratio

R≡ BKþK−

Bμþμ−
: ð1Þ

This ratio can be rewritten as

R ¼ BKþK−

Bμþμ−
¼ NKþK− × ϵμþμ−

Nμþμ− × ϵKþK−
; ð2Þ

where NKþK− and Nμþμ− are the observed numbers of
events of J=ψ → KþK− and J=ψ → μþμ−, respectively,
while ϵKþK− and ϵμþμ− are the corresponding reconstruction
efficiencies. In this way, the systematic uncertainties in the
total number of ψð2SÞ events and the tracking efficiencies
of charged particles, are canceled in the R measurement.
Combining the obtained R with the precise world average
of Bμþμ− from the PDG [23], ð5.916� 0.033Þ%, BKþK− can
be measured.

IV. EVENT SELECTION

The channel we are investigating is ψð2SÞ → πþπ−J=ψ
with the subsequent decay J=ψ → KþK−.
The total number of charged tracks in an event must be

four with net charge equal to zero. Charged tracks are
reconstructed using the MDC. For each track, the point of
closest approach to the interaction point must be within
1 cm in the plane perpendicular to the beam direction and
within 10 cm along the beam direction. Moreover, to
guarantee better agreement between data and MC simu-
lation, we require them to have a polar angle in the range
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−0.80 < cos θ < 0.80, where θ is defined with respect to
the z-axis, taken to be the symmetry axis of the MDC.
Furthermore, a vertex fit in which all charged tracks are
forced to originate from a common vertex is performed and
required to be successful. The parameters of daughter
tracks after the vertex fit are updated.
We require two pion candidates and two kaon candi-

dates, both oppositely charged, in each event. No particle
identification is required to avoid additional systematic
uncertainty. The two tracks with lower momentum (less
than 1.0 GeV=c) are assigned as the pion candidates, as
expected by the exclusive MC sample. To veto the back-
ground events associated with photon conversion we
require the cosine of the opening angle between the two
pions, cos θππ , to be less than 0.5. The recoiling mass
against the two selected pions is calculated as

RMðπþπ−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpcme − pπþ − pπ−Þ2

q
ð3Þ

where pcme and pπ� are the four-momenta in the center of
mass system and for the two charged pion candidates,
respectively. The recoiling mass [RMðπþπ−Þ] distribution
of the accepted candidates is shown in Fig. 1, dominated
by the production of the J=ψ resonance. To tag the J=ψ
production, the RMðπþπ−Þ range between 3.087 and
3.107 GeV=c2 is required, corresponding to about �5σv,
where the width σv is obtained by fitting the RMðπþπ−Þ
distribution with a Voigt function. The remaining two good
charged particles can be kaon candidates, for which we
require their momenta greater than 1.2 GeV=c, as sug-
gested by the exclusive signal MC sample. The opening
angle θKþK− between the two decay products is calculated
in the reference frame of the J=ψ , requiring cos θKþK− <
−0.95. The yields of the J=ψ → eþe− and J=ψ → μþμ−
overwhelm the J=ψ → KþK− one, since their BFs are
several orders of magnitude larger. To veto the background

of J=ψ → eþe−, an efficient selection can be found using
the ratio Edep=p, in which Edep is the energy deposited in
the EMC and p is the reconstructed momentum in the
MDC for a decay product of J=ψ , requiring it to be less
than 0.8 c. Further selection is applied on the total energy
deposited in the EMC for an event, EEMC, which is required
to be between 0.3 and 2.5 GeV. To perform the measure-
ment of BKþK− , we calculate the scaled visible energy (Xvis)
of the two particles in the decay final state, which are Kþ
and K− candidates, as

Xvis ¼
EKþ þ EK−

EJ=ψ
; ð4Þ

where EK� are the energies of the kaon candidates
calculated using the kaon mass hypothesis in the center-
of-mass frame and EJ=ψ is the J=ψ energy, in the same
reference frame, corresponding to the J=ψ rest mass. The
J=ψ → KþK− signal is expected to center around
Xvis ¼ 1.0, while at lower values two final state particles
with higher mass can be found, mainly from J=ψ → pp̄
decay due to the lack of PID requirements, and at higher
values the ones with lower mass (mainly J=ψ → μþμ−). We
define two different intervals in Xvis to tag the two decays
of interest: the J=ψ → KþK− signal region (KK signal
region) and the J=ψ → μþμ− signal region (dimuon
region), between 0.98 and 1.01 and between 1.02 and
1.07, respectively. The asymmetric range of the KK signal
region is chosen because of the significant tail of the
J=ψ → μþμ− distribution, shown in Fig. 2, where the
MC distributions are shown for INC-MC with MC-truth
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FIG. 1. Distribution of RMðπþπ−Þ against the (πþπ−) system of
the selected candidates. The best fit of a Voigt function to the data
is shown as the blue line. The red arrows show the �5σv range.
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FIG. 2. Distribution of Xvis, for the INC-MC sample, with
MC-truth matching applied, in log-scale, pattern-filled with
vertical lines in red for J=ψ → KþK−, with horizontal lines in
green for J=ψ → μþμ− and with oblique squares in blue for
J=ψ → pp̄. The purple dashed line arrows show the KK signal
region and the magenta dot dashed line ones the dimuon region,
as described in the text.
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matching for the J=ψ → KþK− and J=ψ → μþμ− decays.
Momentum conservation in the reconstructed J=ψ decays
is required by demanding, in the decay, the magnitude
of the normalized vector sum of the total momentum,
jPi pij=EJ=ψ , to be less than 0.025. This allows us to reject
most of the background from decays to more than two
bodies.
After all these requirements the Xvis distribution features

three structures, as shown in Fig. 3. The one centering
around Xvis ¼ 0.85 is well separated, and consists mainly
of the residual J=ψ → pp̄ decays. A further selection is
applied, requiring the Xvis to be greater than 0.90. The third
structure, centering around Xvis ¼ 1.05, is well separated,
but the tail in the KK signal region must be evaluated in the
fit procedure.

V. BACKGROUND ESTIMATION

We perform a background study using the INC-MC
samples, described in Sec. II, thanks to the MC-truth
matching and to the TopoAna package [27]. After all
the selections, except theXvis ones, described in Sec. IV, the
main background components are shown in Fig. 4. In the
dimuon region, the background is mainly due to ψð2SÞ →
πþπ−J=ψ ; J=ψ → eþe−=πþπ− (B1/B2), accounting for
about 0.67%, as shown in the bottom of Fig. 4. Non-
πþπ−J=ψ background is negligible. In KK signal region,
the background fraction is about 6%. It is dominated by
non-πþπ−J=ψ events that account for about 70% of the
total background, while about 30% is due to the tail of
J=ψ → μþμ−, dominating the background involving J=ψ
production as shown in Fig. 4. This background can be
subtracted in the fit procedure. The non-πþπ−J=ψ back-
ground is a peaking background, mainly involving the
K1ð1270Þ� resonance production. The main background
channel (charge conjugation is implied) is the decay

ψð2SÞ → K−K1ð1270Þþ with the subsequent decays
K1ð1270Þþ → πþK�

0ð1430Þ and K�
0ð1430Þ → π−Kþ.

Large uncertainties on the decay BFs related to these
channels are reported in the PDG [12]. For this reason,
the non-πþπ−J=ψ background fraction in KK signal region
is evaluated by a data-driven method. An unbinned
extended maximum likelihood fit is performed to the
RMðπþπ−) distribution in KK signal region in the range
½3.02–3.15� GeV=c2. The signal (all J=ψ decays) is mod-
eled by the MC-simulated signal shape, convolved with a
Gaussian resolution function to account for data-MC
differences, and the background by a second-order
Chebyshev polynomial function. The parameters of the
Gaussian and all yields are left free in the fit. The integral
of the best fit function in the defined signal range,
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FIG. 3. Distribution of Xvis for data, in log-scale. The green
dashed line arrows show the KK signal region and the purple dot
dashed line ones the dimuon region, as described in the text.
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FIG. 4. Distributions of Xvis for the inclusive Monte Carlo
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plotted. The blue line indicates the total INC-MC distribution, the
red histogram gives all background events in KK signal region,
and the green and blue histograms give background events with a
J=ψ and without πþπ−J=ψ , respectively. Likewise, the plot
(b) shows the Xvis distribution for dimuon region broken down
into its relevant contributions B1 and B2, as described in the text.
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½3.087; 3.107� GeV=c2, allows us to evaluate the peaking
background contribution, as shown in Fig. 5. The ratio
between non-πþπ−J=ψ background and the total number of
events is found to be ð1.110� 0.157Þ%, ð1.257� 0.095Þ%
and ð1.145� 0.079Þ% for the 2009, 2012, and 2009þ
2012 (full) data samples, respectively.

VI. MEASUREMENT OF THE BRANCHING
FRACTION OF J=ψ → K +K −

A. Signal yields and efficiencies

The yields of the J=ψ decays into two charged kaons and
into two muons can be determined simultaneously by a fit
to the Xvis distribution, as defined in Eq. (4). In the fit, the
tail of μþμ− distribution in KK signal region can be
evaluated and subtracted. An unbinned extended maximum
likelihood fit is performed. The probability density func-
tions are MC-simulated shapes, extracted from the exclu-
sive MC samples and convolved with a single Gaussian
function for the J=ψ → KþK− decay and a double-
Gaussian function for the J=ψ → μþμ− contribution. The
parameters of the Gaussians and both the yields are left free
in the fit. The peaking background in KK signal region is
described by a Gaussian function, with the parameters fixed
to the best fit ones obtained from the INC-MC sample,
selected by MC-truth matching. The background fraction is
fixed to the ratio determined by the data-driven method as
described in Sec. V. The peaking background in dimuon
region is described by a single MC-simulated shape for
both J=ψ → eþe− and J=ψ → πþπ− decays, extracted

from the INC-MC sample with MC-truth matching, as
well. The background fraction is fixed to the INC-MC
value in this case. In Fig. 6 the fit results are shown for the
full data sample. The yields NKþK− and Nμþμ− are deter-
mined by the integral of the fit function in KK and dimuon
region, respectively. An input/output check is performed by
means of pseudoexperiments. We use 1000 MC samples,
each with the same size of data, to check the pull
distribution and no bias is found, confirming the stability
of the fit procedure. The efficiencies for both J=ψ →
KþK− and J=ψ → μþμ− are determined by means of
exclusive MC samples, described in Sec. II, separately
for the two data samples. The full-sample efficiencies,
determined with a weighting procedure, are ϵμþμ− ¼
0.3269� 0.0006 and ϵKþK− ¼ 0.3732� 0.0006.
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FIG. 5. Distribution of RMðπþπ−Þ of the accepted candidates
for the full data sample with the best fit result in KK signal region
in red in logarithmic scale. The signal is shown with blue dashed
line and the non-πþπ−J=ψ background in cyan. The black points
are data.
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B. BF results

The ratioR ¼ 0.005153� 0.000041 is determined from
Eq. (2), using the yields and efficiencies extracted and
reported in Table I. Using the PDG Bμþμ− [23], we measure
BKþK− ¼ ð3.072� 0.023Þ × 10−4. The same procedure has
been used for the 2012 and 2009 data samples separately
with results in agreement with those of the full data sample.
A further input/output check is performed using the
INC-MC sample, confirming the absence of bias in the BF
measurement with an agreement between the branching
ratio used for generation and the determined one within
1 sigma.

VII. SYSTEMATIC UNCERTAINTIES

In the following, the contributions to the systematic
uncertainties, as summarized in Table II, are discussed.
In the ratio R of BFs, defined in Eq. (2), the systematic
uncertainties for the tracking efficiency of the charged
tracks and for the number of ψð2SÞ cancel.
The relative uncertainty due to the finite size (750 000

events) of the exclusive MC sample used for the calculation
of efficiency is calculated by binomial error calculation,
resulting in 0.2%. For all the sources related to the event
selection, the systematic uncertainty is calculated from the
maximum difference between the BKþK− values obtained
by changing the selection and the nominal one, with both
the efficiency and the signal yield being affected by the
event selections. This selection is used to tag the J=ψ
and reject the background, mostly the non-πþπ−J=ψ
background. In detail the recoiling mass window is
modified from about 5σ to 4σ and we calculate the
difference in the BKþK− . The relative uncertainty is
0.30%. The limits for cos θ is tightened to be �0.7.

The corresponding uncertainty is negligible, being less
than 2 × 10−5. We change the selections on cos θππ and
cos θKK to estimate the related systematic uncertainty. In
the first case we change the upper limit on cos θππ from 0.5
to 0.6, and in the second case we change the upper limit on
cos θKþK− from −0.95 to −0.9. In either case, the system-
atic uncertainty is negligible, being less than 5 × 10−5. We
modify the selection lowering the kaon momenta cut to
1.0 GeV=c. The uncertainty is negligible, being around
2 × 10−5. The normalized net momentum selection is
changed by �0.05, keeping the largest difference in B as
systematic uncertainty. It is found to be 1.00%. The Edep=p
upper limit is changed to 0.7 and 0.9, taking the larger
difference as the systematic uncertainty with a value of
0.7%. The EEMC window is modified to [0.35, 2.45] and
[0.25, 2.55] GeV. The systematic uncertainty is found to be
0.5%. The Xvis range, which defines the signal range after
fitting, is changed from the chosen asymmetric window,
fixed to [0.98, 1.01], due to the dimuon peak in the higher
Xvis values range, to [−4σ;þ2σ], where the σ is obtained
from the full width at half maximum of the signal
distribution. The systematics is 0.6% The total relative
systematic uncertainty on the event selection is 1.50%. The
uncertainty due to the peaking background fraction is
obtained as the maximum variation in the BKþK− changing
the background fraction by �1σ. The uncertainty is
evaluated to be 0.2%. The systematic uncertainty for
Bμþμ− is quoted from the PDG as 0.5% [23]. The uncer-
tainty due to the fit procedure is estimated by adding an
additional flat background function and results in being
negligible. Furthermore a study of pseudoexperiments is
performed to evaluate additional systematics in the fitting
procedure, and no fit bias is found. The sum in quadrature
of all the contributions gives a relative total systematic
uncertainty of 1.6%, corresponding to 0.050 × 10−4.

VIII. SUMMARY

We have performed a precision measurement of the BF
of the decay of J=ψ → KþK− to be BKþK− ¼ ð3.072�
0.023ðstatÞ � 0.050ðsystÞÞ × 10−4, still dominated by the
systematic uncertainty. This is an improvement by more
than a factor of three over the previous measurement of
ð2.86� 0.21Þ × 10−4 [10], obtained using the CLEO-c
data, that is up to now the PDG value, with central value
in agreement with that BF result. The most precise
measurement of the BKþK− in direct reaction, which takes
into account the interference effect, is the BABAR one [8],
in which they gave an indication of the positive sign of
the relative phase. Due to their large uncertainties, our
result is in agreement with both BBABARþ

KþK− ¼ ð3.22�
0.20� 0.12Þ × 10−4 with positive phase within less than
1σ and BBABAR−

KþK− ¼ ð3.50� 0.20� 0.12Þ × 10−4 with neg-
ative phase within about 2σ. Our result represents the first
step in the path to determine the sign of the relative phase

TABLE I. The efficiencies (ϵ) and the yields (N) for both
J=ψ → μþμ− and J=ψ → KþK− decays, indicated in the sub-
script.

ϵKþK− 0.3732� 0.0006
ϵμþμ− 0.3269� 0.0006
NKþK− 18 176� 135
Nμþμ− 3 026 803� 17 409

TABLE II. Relative systematic uncertainties in the BF
measurement.

Source Systematic uncertainty (%)

Event selection 1.5
MC statistics 0.2
Background 0.2
Bμþμ− 0.5

Total 1.6
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between strong and electromagnetic amplitudes in this
channel. A measurement in the eþe− → KþK− process
with improved precision will complete the picture.
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