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Zusammenfassung

Die Zustandsgleichung extrem dichter Materie unter Einfluss der starken Wechselwirkun-
gen ist zur Zeit nicht vollständig verstanden. Ein Grund hierfür ist die große Herausfor-
derung, die eine theoretische Berechnung direkt aus der Quantenchromodynamik, also der
fundamentalen Theorie der starken Wechselwirkung, bei endlichen chemischen Potentialen
darstellt. Neutronensterne mit ihren extremen Dichten von 5 bis 6 mal der Kernsättigungs-
dichte (Englisch: nuclear saturation density, ρ0) können als kosmische Laboratorien dienen,
um die Eigenschaften von Materie unter diesen Bedingungen zu untersuchen. Die Messung
von Neutronensternmassen und -radien sowie ihrer Gezeitenverformbarkeit (Englisch: tidal
deformability) geben Einsichten in die Eigenschaften von Materie im Inneren dieser Ster-
ne. Die Fortschritte der letzten Jahre bei der Beobachtung von Neutronensternen durch
elektromagnetische Signale und Gravitationswellen erlauben nun eine Rekonstruktion der
zugrundeliegenden Zustandsgleichung.

Bei niedrigen Dichten (∼ ρ ≲ 2ρ0) kann die Zustandsgleichung durch Experimente an
Atomkernen und theoretische Berechnungen im Rahmen der sogenannten chiralen effek-
tiven Feldtheorie (english: chiral effective field theory, χEFT) eingeschränkt werden. Bei
asymptotisch hohen Dichten (∼ ρ ≳ 40ρ0) können störungstheoretische Berechnungen
der Quantenchromodynamik angewendet werden, um die Zustandsgleichung anzunähern.
Im Dichtebereich zwischen diesen beiden Extremen, indem sich Neutronensterne befin-
den, wird die Zustandsgleichung üblicherweise mit verschiedenen theoretischen Ansätzen
modelliert. Dabei werden unterschiedliche physikalische Annahmen für die Zusammenset-
zung und Eigenschaften stark wechselwirkender Materie getroffen. Modelle können nicht-
relativistisch oder relativistisch sein und verschiedene Freiheitsgrade beinhalten. Manche
Beschreibungen gehen von rein nukleonischer Materie aus, andere enthalten zusätzlich
Hyperonen, Pionen- und Kaon-Kondensate oder reine, freie Quarkmaterie. Außerdem exi-
stieren sogenannte hybride Modelle mit einem Phasenübergang von hadronischer Materie
zu freier Quarkmaterie.

Mit diesen Modellen werden globale Eigenschaften von Neutronensternen vorhergesagt und
mit aktuellen Beobachtungsdaten verglichen. Alternativ kann die Zustandsgleichung aus
Beobachtungen durch herkömmliche Methoden wie der Bayes’schen Inferenz rekonstruiert
werden. In dieser Arbeit werden hierzu effiziente, alternative Methoden entwickelt. Hierfür
untersuchen wir die Anwendbarkeit von Deep Learning Techniken.
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Deep Learning ist ein Teilgebiet des maschinellen Lernens, bei dem künstliche, neuronale
Netzwerke, sogenannte ‘Deep Neural Networks’, mit zahlreichen, miteinander verbundenen
Schichten verwendet werden. Dieser Ansatz war in den letzten Jahren maßgeblich an
Fortschritten der Künstlichen Intelligenz beteiligt und hat für zahlreiche Durchbrüche im
Bereich Bilderkennung, Spracherkennung und Sprachverarbeitung gesorgt.

In dieser Arbeit nutzen wir Deep Learning, um Algorithmen für zwei verschiedene Aufgaben
zu entwickeln:

1. Die Rekonstruktion der Zustandsgleichung extrem dichter Materie aus Beobachtungs-
daten von Neutronensternen. Dies ist eine teilüberwachte Lernmethode, in welcher
die Zustandsgleichung mithilfe von automatischem Differenzieren optimiert wird.
Ausführliche Erklärungen werden in Kapitel 4 gegeben.

2. Die Analyse von Gravitationswellendaten, um die Parameter der Quelle dieser Wellen
abzuschätzen. Hierfür werden überwachte Lernmethoden für die Klassifikation von
Quellen und die Regression der Eigenschaften dieser Quellen verwendet. Details dazu
werden in Kapitel 5 präsentiert.

0.1 Rekonstruktion der Zustandsgleichung dichter Ma-
terie

In Kapitel 4 stellen wir die neu entwickelte Deep Learning Methode für die Rekonstruk-
tion der Zustandsgleichung stark wechselwirkender Materie aus Masse-Radius Beobach-
tungsdaten von Neutronensternen vor. Dieser einzigartige Algorithmus beinhaltet eine
modellunabhängige und flexible Darstellung der Zustandsgleichung mithilfe von neurona-
len Netzwerken, welche letztlich den Druck, P , als Funktion der Dichte, ρ, bestimmen. Die
Zustandsgleichung wird mithilfe einer bayesianische Perspektive optimiert und die damit
verbundenen Unsicherheiten werden durch Importance Sampling bestimmt. Dieser Ansatz
ist bedeutend effizienter als eine vollständige Bayes’sche Analyse im multidimensionalen
Parameterraum.

Konkret führen wir zwei verschiedene neuronale Netzwerke ein, welche wir mit EoS Network
und TOV-Solver Network bezeichnen. Mit dem EoS Network wird die Zustandsgleichung
modellunabhängig dargestellt. Wie der Name schon vermuten lässt, wird das TOV-Solver
Network mit herkömmlichen, überwachten Lernmethoden darauf trainiert, die Tolman-
Oppenheimer-Volkoff (TOV) Gleichungen zu lösen. Diese Gleichungen beschreiben die
Struktur von statischen und sphärisch symmetrischen Neutronensternen im hydrostati-
schen Gleichgewicht. Die Grundlage des Algorithmus besteht darin, das EoS Network mit
dem vorab trainierten TOV-Solver Network zu einer Pipeline zu kombinieren. Die einzel-
nen Wichtungen des EoS Network werden mithilfe eines gradientenbasierten Ansatzes im
sogenannten Automatic Differentiation Framework durch unüberwachtes Lernen so opti-
miert, dass die Masse-Radius Kurve der resultierenden Zustandsgleichung am besten zu
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den Beobachtungsdaten passt. Die Masse-Radius Kurve wird dabei mit dem TOV-Solver
Network bestimmt. Mit diesem Algorithmus führen wir mehrere Tests mit simulierten
Daten sowohl aus stückweise polytropen (Englisch: piecewise polytropes) als auch aus
mikrophysikalischen Zustandsgleichungen durch. Dabei zeigt sich, dass sich die Leistung
des Algorithmus verbessert, je geringer das Rauschen in den simulierten Daten ist. Eine
verbesserte Präzision bei zukünftigen Messungen globaler Eigenschaften von Neutronen-
sternen mit Teleskopen der nächsten Generation kann daher die Grundlage für eine bessere
Rekonstruktion der Zustandsgleichung dichter Materie bieten. Anschließend wenden wir
den entwickelten Algorithmus auf aktuell verfügbare, echte Beobachtungsdaten aus ver-
schieden Quellen an. Die rekonstruierte Zustandsgleichung im Dichtebereich 1-7ρ0 ist in
Abbildung. 1 dargestellt. Die Ergebnisse sind mit Rekonstruktionen der Zustandsgleichung
aus früheren Arbeiten mit konventionellen Methoden und den Einschränkungen der Gezei-
tenverformbarkeit durch die Beobachtungen des Gravitationswellenereignisses GW170817
kompatibel. Wir beobachten außerdem ein lokales Maximum in der quadratischen Schall-
geschwindigkeit (Englisch: speed of sound squared, c2s) bei Dichten von ∼ 5 ρ0. Die Schall-
geschwindigkeit scheint für höhere Dichten wieder abzunehmen (für ρ > 5 ∼ 6ρ0). Eine
solche glatte Änderung von c2s könnte zu einer Kurve führen, welche bei extremen Dichten
das sogenannte conformal limit erreicht. Es muss hierbei betont werden, dass die in die-

200 400 600 800 1000 1200
Energy Density (MeV/fm3)

100

101

102

103

Pr
es

su
re

 (M
eV

/fm
3 )

EFT+Astro
PRD.101,054016
AJ.765,L5
ARAA.54,401
68% CL (This Work)

Figure 1: 68% Konfidenzintervall der aus Beobachtungsdaten von 18 Neutronensternen
rekonstruierten Zustandsgleichung (rotes Band). Die grauen Bänder markieren die Ein-
schränkungen der Zustandsgleichung aus der χEFT. Gezeigt werden außerdem Resultate
anderer Methoden basierend auf Bayes’scher Inferenz und direkter Invertierung mit neu-
ronalen Netzwerken. Details hierzu finden sich in Kapitel 4. Die Abbildung wurde aus
Ref. [3] entnommen. (DOI:10.1103/PhysRevD.107.083028).

https://doi.org/10.1103/PhysRevD.107.083028
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sem Kapitel verwendeten Daten zur Rekonstruktion der Zustandsgleichung dichter Materie
auf Massen- und Radienbeobachtungen von Neutronensternen beschränkt sind. Mit einer
Zunahme der Gravitationswellendaten aus Kollisionen von Neutronensternbinärsystemen
kann der Algorithmus in Zukunft erweitert werden, um zusätzlich die Beziehung zwischen
der Gezeitenverformbarkeit und der Masse eines Neutronensterns zu berücksichtigen.

0.2 Gravitationswellenanalyse mit Deep Learning

In Kapitel 5 demonstrieren wir die Leistungsfähigkeit von neuronalen Netzwerken bei der
Analyse simulierter Gravitationswellendaten anhand zwei verschiedener Aufgaben:

(i) der Klassifizierung von Gravitationswellensignalen aus der Verschmelzungen zweier
schwarzer Löcher, zweier Neutronensterne und von Signalen aus reinem Rauschen;
und,

(ii) der Regression der sogenannten Chirpmasse (M) und der kombinierten Gezeitenver-
formbarkeit (Λ̃) aus simulierten Gravitationswellensignalen von der Verschmelzung
zweier Neutronensterne.

Idealerweise sollten zur Analyse von Gravitationswellen aus Neutronensternverschmelzun-
gen Modelle basierend auf dreidimensionalen, magnetohydrodynamischen Simulationen im
Rahmen der Allgemeinen Relativitätstheorie verwendet werden. Diese sind zwar einerseits
akkurater und modellunabhängiger, andererseits aber auch extrem rechenaufwändig und
eignen sich weniger für diese Arbeit. Um die künstlichen Gravitationswellensignale zu gene-
rieren, verwenden wir daher das approximative Wellenformmodel der LALSuite Bibliothek.
Der verwendete Frequenzbereich wird außerdem auf Frequenzen unterhalb von 2048 Hz be-
schränkt. Dies schließt eine Analyse der sogenannte Ringdown-Phase des Überrests nach
der Verschmelzung aktuell aus. Für eine Erweiterung der entwickelten Algorithmen hin zu
höheren Frequenzen ist weitere Arbeit nötig.

Der in diesem Kapitel präsentierte Deep Learning Klassifizierer ist in der Lage, die verschie-
denen Signalarten mit einer sogenanten Macro-Averaged Genauigkeit (Englisch: macro-
averaged precision) von 0,99 und 0,96 für ein optimales Signal-zu-Rausch Verhältnis (Eng-
lisch: optimal signal to noise ratio, oSNR) von jeweils 25 und 20 zu identifizieren.

Zusätzlich zum Klassifizierer entwickeln wir einige Deep Learning Regressoren, um M
und Λ̃ aus Signalen von Neutronensternverschmelzungen zu bestimmen. Dabei erreicht
das Netzwerk hohe R2-Werte von jeweils 0,98 und 0,97 für die Regression von M und
Λ̃ aus Testdaten. Für diese Testdaten wurde weißes und farbiges Rauschen des Gravi-
tationswellendetektors aLIGO auf simulierte Signale von Neutronensternverschmelzungen
addiert. Die Bestimmung des Gezeitenparameters ist dabei besonders wichtig, um die
Zustandsgleichung von Neutronensternmaterie zu einzuschränken. Hierbei ist zu beach-
ten, dass das Regressionsnetzwerk weder die Gezeitenverformbarkeiten noch die Massen
der einzelnen Sterne aus der Chirpmasse und der kombinierten Gezeitenverformbarkeit
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ausgibt. Dies stellt ein aktuell realistisches Szenario dar, bei der Informationen über die
Neutronensternzustandsgleichung aus M und Λ̃ bestimmt werden müssen. Dies ist mit ei-
ner ausreichenden Anzahl an Beobachtungen möglich. Die in diesen Kapitel vorgestellten
Klassifikatoren und Regressoren können in eine umfassende Pipline für die Analyse zukünf-
tiger Gravitationswellensignale integriert werden. Nach der Identifikation eines Ereignisses
mit dem Klassifikationsnetzwerk können die relevanten Parameter direkt mit dem Regres-
sionsnetzwerk bestimmt werden. Dieser nahtlose Übergang bildet somit eine ganzheitliche
Pipeline für die zukünftige Analyse von Gravitationswellen mit den geplanten Detektoren
der nächsten Generation. Von diesen wird erwartet, dass ihre Sensitivität die der heutigen
Detektoren um etwa eine Größenordnung übertrifft.

0.3 Thermische Effekte in Kollisionsüberresten
In Kapitel 6 untersuchen wir die Auswirkungen endlicher Temperaturen auf Eigenschaf-
ten des Überrests einer Neutronensternverschmelzung. Hierzu verwenden wir verschiedene
isentrope Zustandsgleichungenm mit einer konstanten Entropie pro Baryon von s = 2,
um das Trägheitsmoment und die Kepler-Frequenz des starr rotierenden Überrests des
Ereignisses GW170817 zu untersuchen. Dabei ergibt sich eine erhebliche Abnahme der
Kepler-Frequenzen verglichen mit den Berechnungen für einen kalten Überrest (s = 0).

Wir folgern daraus, dass die Frequenzen in Ref. [7] deutlich überschätzt werden, da diese
mit einer kalten Zustandsgleichung berechneten wurden. Zusätzlich geben wir Abschät-
zungen für die Radien der beiden Neutronensterne an, die im Ereignis GW170817 kollidiert
sind. Hierzu verwenden wir die analytischen Beziehungen aus Ref. [8] mit einer größeren
Anzahl an kalten Modellen für die Zustandsgleichung. Unter Verwendung der Abschätzun-
gen für die effektive Gezeitenverformbarkeit berechnen wir eine obere und untere Grenze
für die Radien der Sterne von etwa 13 km bzw. 8,85 km. Darüber hinaus verwenden wir
verbesserte Fitrelationen für die R − Λ̃ Beziehung, um die Radien von Neutronensternen
mit Massen von 1,2 M⊙ und 1,55 M⊙ zu bestimmen. Es ergeben sich Werte von 13,08 km
bzw. 12,99 km. Dabei ist zu beachten, dass diese Abschätzungen unter der Annahme
getroffen werden, dass sich die Radien von Sternen im Massenbereich von 1, 17− 1, 6 M⊙
kaum unterscheiden. Diese Annahme wäre in Szenarien mit einem großen Dichtesprung
der Zustandsgleichung durch einen Phasenübergang erster Ordnung höchstwahrscheinlich
nicht mehr zutreffend. Die in dieser Studie verwendeten Relationen für R − Λ̃ basieren
hauptsächlich auf nukleonischen Zustandsgleichungen.

Zusammengefasst stellt diese Arbeit neuartige Deep-Learning-Methoden vor, die Beobach-
tungsdaten von Neutronensternen nutzen, um damit die zugrunde liegende Zustandsglei-
chung einzuschränken.
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Chapter 1

Introduction

The behaviour of matter under extreme conditions, such as high densities and tempera-
tures, is currently not completely understood. An accurate description of matter follows
from the determination of the equation of state (EoS), which is the relationship between
pressure and energy density at variable temperatures and entropies. In other words, the
EoS is a mathematical representation of how matter responds to changes in its environ-
ment. At densities above saturation density (∼0.16 fm−3), however, the equation of state
remains poorly known and is a central topic across various fields of physics. The relevant
microscopic degrees of freedom and their fundamental interactions at such high densities
are unresolved. While a phase transition from hadronic to deconfined quark matter is
expected to occur at high densities or temperatures, it has not been discovered yet. Un-
der such conditions, the matter can described by Quantum Chromodynamics (QCD), the
theory of strong interactions.

In terrestrial laboratories, heavy ion collisions (HIC) provide means to create a localized
region of hot and dense QCD matter. By varying the collision energies, different tem-
peratures and densities of the QCD matter can be probed. Several experiments like the
Large Hadron Collider (LHC) and Super Proton Synchrotron (SPS) at CERN, Relativis-
tic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and the Schwerionen
Synchrotrons (SIS) at GSI and FAIR, are designed to probe different regions of the QCD
phase diagram (see Refs. [9,10] for a review on the phase diagram of QCD). Detailed infor-
mation can be found in the following references [11–30]. The conditions created in heavy
ion collisions, however, exist only for timescales typically on the order of 10−15s and involve
moderate to high temperatures (≳ 50-300 MeV [31]).

Neutron stars (NSs), on the other hand, provide an opportunity to study cold dense mat-
ter. The timescales of long-lived neutron stars can vary from several million to billion
years, making it possible to gain an understanding of stable equilibrated high density mat-
ter. Despite the huge differences in scales, i.e., 1fm (=10−15m) in nuclear collisions, and
10km (=104m) in neutron stars, the microscopic and bulk properties of matter are sim-
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ilar: it is a dense composition of strongly-interacting particles. In this thesis, we focus
on studying neutron stars and their properties to gain a deeper understanding into their
composition and the properties of strongly interacting matter.

1.1 Neutron Stars

Neutron stars (NSs) were first hypothesized in 1931, long before their discovery [32, 33].
In his article which was published in 1932, Lev D. Landau had proposed the existence of
dense astrophysical objects which looked like giant nuclei [32]. Interestingly, this occurred
prior to Chadwick’s discovery of the neutron, which coincidentally took place in the same
year [33–35]. A few years later, in 1933, the term ‘neutron star’ made its first appearance
in an article by Baade and Zwicky [36]. This was the first explicit prediction of neutron
stars, which resulted from an attempt to explain the immense energy released in supernovae
explosions [36–38]. These developments marked the onset of research into the physics of
neutron stars. It was Landau’s original work that inspired the study of neutron stars within
general relativity, by Oppenheimer and Volkoff [39, 40]. An extended explanation of the
Tolman-Oppenheimer-Volkoff equations [39,41] can be found in section 2.2.1 of chapter 2.

It was only after three subsequent decades, in 1967, that the serendipitous discovery of a
neutron star was made by Jocelyn Bell-Burnell [42], a graduate research student at that
time. It was observed as a pulsar, or a rapid pulsating radio signal. The pulse period
was noted to have a precision so high, that initial suspicions included a possible intelligent
origin. For this discovery, Jocelyn Bell’s supervisor, Anthony Hewish was awarded the
Nobel prize in 1974. Several years later, Bell Burnell was awarded the Special Breakthrough
Prize in Fundamental Physics in 2018, and the Copley Medal for her work on the major
astronomical discovery. Following their finding, research in the field of NSs and their
interior composition gained momentum.

Neutron stars are formed in the aftermath of Type II supernovae explosions of massive stars
with initial mass of above 8M⊙ (see Ref. [43] for a review on core collapse supernovae).
When the iron core of the massive star achieves the Chandrasekhar mass, the collapse is
initiated [44]. During the compression of the massive star’s core and subsequent collapse
to a neutron star, most of the angular momentum is retained. This leads to very high
rotation speeds in NSs (rotation periods of ∼1.4ms-30s). Similarly, the strong magnetic
fields in NSs (∼1012G) are a result of the conservation of magnetic flux [45]. The newly
born NS, also known as a proto-neutron star, typically has a mass of 1.4M⊙, and a radius
of ∼10-12km. Therefore, NSs constitute the most dense compact objects in our universe.
An extensive review on neutron stars and their properties can be found in Refs. [40,46–48].

The structure of a neutron star is ultimately governed by the properties of dense matter,
or the EoS of strongly interacting matter; and by the influence of gravity. Hence, it is
interesting to look at characteristics of neutron stars to constrain the underlying EoS at
these densities. In the following sections, we discuss three NS observables, namely the mass,
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radius and tidal deformability. This thesis is structured around using these NS properties
to constrain the EoS. Consequently, the rest of the chapter contains a brief description of
the different techniques that allow for these measurements.

1.1.1 Mass Measurements

The neutron stars’ strong magnetic fields coupled with their rapid rotation, yields a promi-
nent observable signature that enables their detection. As the NS rotates around its spin
axis, the charged particles experience an acceleration along magnetic field lines within the
magnetosphere, resulting in the emission of electromagnetic radiation. Due to the mis-
alignment of the magnetic axis and the spin axis, we observe the so called ‘light-house’
effect, where the electromagnetic radiation can be detected at every rotation as it crosses
the observer’s line of sight as a sequence of pulses.

Following their discovery [42], it became evident that pulsars serve as exceptional cosmic
clocks. The identification of the millisecond pulsar B1937+21 in 1982 [49], showcased that
its period could be gauged with precision down to one part in 1013 or more [50]. This
exceptional stability of the pulse period gives rise to a multitude of uses, one of which is
timekeeping. Therefore, pulsar timing is one of the principal means of measuring neutron
star masses precisely. See Refs. [51,52] for detailed reviews on pulsar timing.

Depending on their evolutionary scenarios, pulsars can exist as isolated objects as well as
in binaries with white-dwarf or neutron star companions. The most precise measurements
of neutron star masses have been accomplished through radio timing of pulsars situated
in binary systems [53, 54]. Most of these known binary pulsar systems can be described
by the Keplerian parameters [55], namely, the orbital period (Pb), the projected semi-
major orbital axis (x ≡ ap sin i), the eccentricity (e), the longitude of periastron (ω), and
the epoch of periastron (T0). However, it was observed that for several systems, a fit to
one or more relativistic corrections to the Keplerian parameters is required (for example,
see Ref. [56]). Therefore, recent timing models incorporate an additional set of “post-
Keplerian” parameters [56], which according to Einstein’s general relativity [57–59], are
given by,

1. the advance of the periastron of the orbit,

ω̇ = 3

(
Pb

2π

)−5/3

(T⊙M)2/3
(
1− e2

)−1
, (1.1)

2. the combined effect of the gravitational redshift and transverse Doppler shifts due to
the pulsar’s orbit,

γ = e

(
Pb

2π

)1/3

T
2/3
⊙ M−4/3mc (mp + 2mc) , (1.2)
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3. the orbital period decay due to the emission of gravitational radiation,

Ṗb =
−192π

5

(
Pb

2π

)−5/3(
1 +

73

24
e2 +

37

96
e4
)
(1− e2)−7/2T

5/3
⊙ mpmcM

−1/3, (1.3)

4. the range of Shapiro delay,
r = T⊙mc, (1.4)

and,

5. the shape of Shapiro delay,

s = x

(
Pb

2π

)−2/3

T
−1/3
⊙ M2/3m−1

c . (1.5)

Shapiro delay is the delay caused in the pulsar signal’s time of arrival due to its propagation
through the gravitational field of its companion [60,61]. In these equations, mp denotes the
pulsar mass; mc denotes the orbiting companion mass; andM ≡ mp+mc. In addition, T⊙ ≡
GM⊙/c

3 = 4.9255µs and s ≡ sin i, where i is the inclination angle or the angle between
the orbital plane and the plane of the sky. Since the masses of the binary components
constitute the sole unknowns in the equations, it is sufficient to obtain the measurements
for any two post-Keplerian parameters. This provides us with the two mass estimates, mp

and mc. Measurements of three or more post-Keplerian parameters therefore allow for a
consistency check. Although only a small fraction of pulsars in binaries have two or more
well-measured relativistic effects, these techniques can facilitate precise measurements of
pulsar masses. There have been relatively precise mass measurements of more than a
few dozen neutron stars in binary systems [62, 63], most of which are listed in Ref. [64].
Accurate measurements of the most massive pulsars include PSR J0740+6620, with a mass
of 2.08±0.07 M⊙ [53] and PSR J0348+0432, with a mass of 2.01±0.04 M⊙ [54]. With the
observational support of such massive pulsars, many EoSs were ruled out for being unable
to produce such high maximum masses [65–70]. Simultaneously, several microphysical EoS
models have been developed to satisfy these constraints, some of which will be introduced
in chapter 2.

Note that the masses of isolated neutron stars can also be measured through pulsar glitches,
as demonstrated in Ref. [71]. However, this method assumes a prior knowledge of the
correct EoS. Additionally, neutron stars with higher masses have been measured more
recently through Keck-telescope spectrophotometry [72,73].

1.1.2 Radii Measurements

Radii measurements of neutron stars are crucial to obtain constraints on the underlying
equation of state. However, due to their incredibly small sizes (∼12 km), it is extremely
challenging to obtain precise measurements of NS radii. Nevertheless, several astrophysical
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observations with the potential to facilitate the determination of neutron star radii were
proposed.

The Neutron Star Interior Composition Explorer, or NICER [74], as the name suggests,
is an X-ray telescope, developed to probe the interior structure of neutron stars. It was
installed on the International Space Station (ISS) in 2017. NICER uses pulse-profile mod-
eling of nearby rotation-powered millisecond pulsars (MSPs) to estimate their radii (Refer
to the paragraph on ‘Rotation-powered Millisecond Pulsars’ in this section). Prior to the
era of NICER, however, the leading candidates for inferring the radii of neutron stars were
quiescent low-mass X-ray binaries and thermonuclear bursters [62, 63, 75]. In both these
cases, measurements of the radii rely on the detection of thermal emission from the neu-
tron stars’ surfaces. The study of these emissions is benefited by observations from X-ray
instruments like the Rossi X-ray Timing Explorer (RXTE), Chandra X-ray Observatory
and XMM-Newton.

Thermonuclear Bursters

Thermally unstable helium (or hydrogen) ignition in the accreted envelope of a neutron
star results in X-ray bursts [76]. The ignition triggers a thermonuclear explosion which is
observed as an X-ray burst [62,77]. The rise time of the X-ray burst is ∼1s, and is followed
by a cooling decay with a period ∼ 10 − 100s. During the rise period, these sources
are believed to have a radiation pressure large enough to temporarily lift the neutron star
atmosphere off the surface. Therefore, the photosphere at that time, has a peak luminosity
that approaches the Eddington limit,

LEdd = 4πcGMκ−1. (1.6)

Note that the Eddington limit is defined as the maximum luminosity that a body can
achieve when there is a balance between two opposing forces, namely, the outward radiation
pressure and the inward gravitational force. In Eq. (1.6), M is the mass of the star, and
κ is the opacity of the atmosphere. Conversely, the luminosity on the tail of the burst is
attributed to the thermal radiation emanating from the cooling star and follows,

L = 4πf−4
c R2T 4

eff. (1.7)

Here, the radius of the neutron star is denoted by R; Teff is the effective blackbody tem-
perature; and the factor fc accounts for color correction, which approximates the influence
of stellar atmospheric conditions on distorting the observed temperature from the effective
blackbody temperature. The observed parameter is the flux, so an estimation of the lumi-
nosity requires knowledge of the source distance, D. Another observed parameter is the
angular area of the photosphere, A. Furthermore, κ and fc are obtained from atmospheric
models. Therefore, assuming a knowledge of D, κ and fc, the mass and radius of the source
can be determined. A few observations were used to extract radii measurements of NSs
using this technique, and are catalogued in Ref. [75].
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Quiescent Low-Mass X-ray Binaries

Many neutron stars within binary systems are transients, i.e., they might undergo periodic
episodes of accretion from a companion star in evolution. These episodes of accretion
are separated with extended periods (months to years) of quiescence, i.e., when accretion
either ceases or continues at very low levels [62,63,78]. Electron capture and pycnonuclear
fusion reactions at densities exceeding 1012g cm−3 of a transiently accreting neutron star
release energy in the deep crust of the NS [79, 80]. It is possible that a fraction of this
energy is deposited as heat if it is not lost through neutrino emission [81]. Therefore, as
accretion stops and the NS goes into quiescence, the crust reradiates the deposited energy.
As opposed to the emission from the accretion disk at the high mass accretion rates, during
quiescence, the observed X-ray emission originates primarily from the neutron star surface.
The extracted emission spectra of these NSs is then fitted with well-understood hydrogen
atmosphere models (due to the very short timescale for heavier nuclei to sink below the
photosphere, the atmosphere envelope is expected to be composed of hydrogen, or helium
if the companion star is hydrogen-poor). Atmosphere modeling is then used to infer the
apparent angular emitting area, which is a function of the mass and size of the neutron
star. See Refs. [75,82] for a list of radius measurements obtained using this method.

Rotation-powered Millisecond Pulsars

Rotation-powered millisecond pulsars (MSPs) originate as an outcome of accreting millisec-
ond pulsars once the accretion process comes to a halt. The magnetic field of an accreting
MSP directs infalling material toward the magnetic poles of the star. As a result, a con-
fined region on the surface of the pulsar is heated up, forming a ‘hot spot’, which is much
brighter than its surroundings. NICER targets rotation-powered MSPs to map these sur-
face hotspots through modeling of their X-ray pulses [74,83–85]. Depending on the fraction
of the hot spot visible to the observer, an apparent oscillation in the intensity is expected at
the rotation period of the pulsar. The pulse waveform has a shape that depends not only on
the orientation of the neutron star relative to the observer, but also on physical processes
like gravitational light-bending and relativistic Doppler boosting. These relativistic effects
are intensified by higher values of NS compactness (C =M/R), and therefore enable us to
relate to their masses and radii. A major challenge faced in extracting the radii, is due to
a lack of understanding in the surface emission patterns. Due to this uncertainty, the data
obtained by NICER is independently analyzed by two different groups, leading to the use of
different hotspot models. The first mass and radius measurements extracted from NICER
were reported in 2019, for the pulsar PSR J0030+0451. The independent analyses by the
different groups, however, led to similar radius and mass estimates, i.e., 12.71+1.14

−1.19km and
1.34+0.15

−0.16M⊙, respectively, by Ref. [86]; and 13.02+1.24
−1.06km and 1.44+0.15

−0.14M⊙, respectively, by
Ref. [87]. It is worth mentioning that an updated analysis of the NICER data for the
pulsar was recently carried out using an upgraded framework. The adopted models were
expanded and jointly analyzed with XMM-Newton data to obtain new mass-radius esti-
mates. Details can be found in Ref. [88]. Furthermore, radii measurements for the massive
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pulsar PSR J0740+6620 were reported by the two NICER groups in 2021 [89,90]. Despite
being 4 times more distant than PSR J0030+0451, and 20 times fainter, PSR J0740+6620
serves as an interesting target, due its precise high mass measurement [53]. Note that the
first results of PSR J0740+6620’s radius measurement included joint fits of NICER and
XMM-Newton data. Therefore, a reanalysis was carried out using NICER background es-
timates to avoid cross correlations between the two instruments [91]. If NICER attains the
originally targeted precision of 5% relative error on radii measurements, strong constraints
can be applied on the underlying EoSs in future.

1.1.3 Tidal Deformability from Gravitational Waves

Neutron stars in binary systems lose substantial amounts of energy via the emission of
gravitational waves (GWs). This leads to a continuous decrease in their orbital separa-
tion and an eventual merger of the binary components. This effect of orbital shrinkage
was first observed in the Hulse-Taylor binary pulsar [92–96], resulting in the first indirect
detection of gravitational waves. During the late inspiral stage, both components in the
binary neutron star (BNS) system encounter a perturbing tidal gravitational field from
their companion star. As a result, the stars experience tidal distortions through an in-
duced quadrupole moment. This subsequently influences the binding energy of the binary
system and enhances the gravitational wave emission rate [97, 98]. Therefore, the emitted
gravitational waves carry an imprint of the tidal properties of the neutron stars. Conse-
quently, the detection of gravitational waves from BNS inspirals and subsequent mergers
is crucial to constrain the tidal parameter.

A direct measurement of gravitational waves is now possible by the existing gravitational
wave detectors on Earth. These include the ground-based detectors, namely, advanced
LIGO (Livingston and Hanford) and advanced Virgo; as well as the underground Kamioka
Gravitational Wave detector, KAGRA. A passing gravitational wave causes space to stretch
in one direction and simultaneously squeeze in the perpendicular direction. This effect,
though extremely miniscule, can be detected on Earth with the help of an interferometer.
The above-mentioned GW detectors are large Michelson interferometers, designed to detect
strains of the order of magnitude ∼ 10−21 − 10−22. A simple interferometer comprises a
laser source, a photodetector, and two mirrors at the ends of two arms placed perpendicular
to each other. A beam-splitter is used to split a laser beam into both these arms. The laser
beams from both arms get reflected at the mirrors placed at the end and recombine on a
screen to form an interference pattern. Any changes in the length of either of the arms are
reflected by changes in the interference pattern. A GW in transit results in an oscillating
interference pattern, thereby allowing for a measurement of the waveform signal.

The tidal effects during the inspiral phase leave an imprint on both the amplitude and the
phase of the emitted GW signal. The phase, however, is a better measure for harmonic
functions such as waves [99]. The gravitational wave phase evolution can be obtained from
a post-Newtonian (PN) expansion of the binary orbital frequency [100] (see Ref. [101] for
a detailed review on post-Newtonian methods). In this framework, the tidal correction to
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the quadrupole appears only at 5PN order [99, 102], and is expressed as a combined tidal
parameter, i.e.,

Λ̃ =
16

13

[(M1 + 12M2)M
4
1Λ1 + (M2 + 12M1)M

4
2Λ2]

(M1 +M2)5
, (1.8)

where Λ1 and Λ2 are the individual tidal deformabilities of the binary NSs with masses
M1 and M2, respectively (see chapter 2, section 2.2.2 for a mathematical definition of
tidal deformability). Therefore, the 5PN tidal correction term is not sufficient to extract
the individual tidal deformabilities. The 6PN tidal correction term, however, is a linear
combination of Λ̃ and δΛ̃ [102, 103]. An estimation of both Λ̃ and δΛ̃ from the 5PN and
6PN terms can provide us with the individual tidal deformabilities, {Λ1,Λ2}. The first
tidal deformability estimates emerged from the gravitational wave event, GW170817 [104].
This event was the first detection ever of a binary neutron star merger. An analysis of the
event sets limits on the estimated combined tidal deformability, i.e., 70 ≤ Λ̃ ≤ 720 [105] for
neutron star components within mass ranges, 1.16 ≤M2/M⊙ ≤ 1.36 and 1.36 ≤M1/M⊙ ≤
1.6. Therefore, GW170817 could rule out a number of extremely stiff EoSs that do not
satisfy this constraint [1, 8].

The sensitivity of the existing gravitational wave detectors is however expected to improve
in the near future with the implementation of regular upgrades. In the current run, O4,
advanced LIGO has the capacity to detect binary neutron star mergers at distances in the
range of 130-150 Mpc. The target of the O4 run, however, is to reach 160-190 Mpc [106].
This implies an increased number of BNS merger detections. Therefore, an estimate of
the tidal deformability from these events, could help to further constrain the dense matter
EoS in NSs. The new gravitational wave detector, IndIGO (LIGO India), is expected to
be added to the grid in 2030s. Moreover, third generation telescopes, like the Einstein
Telescope (ET) and the Cosmic Explorer (CE) are anticipated to have sensitivities that
are an order of magnitude better than the current generation GW detectors. Together, the
ET and CE are expected to detect over 100 BNS merger events per year with an oSNR
value >30 [107].

1.1.4 Other Properties of Neutron Stars

Apart from the three observable parameters (mass, radius and tidal deformability) used in
this thesis, we discuss additional neutron star properties that can help us gain a further
understanding of these objects. Some of the astrophysical observations that lead to the
extraction of additional NS properties include the following:

1. Spin-orbit coupling

Rapidly rotating NSs can carry a spin-induced quadrupole moment, which causes
changes in the orbital dynamics of a binary system [108,109]. A spin-orbit coupling
is realized through the precession of the orbital plane about the direction of the total
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angular momentum of the system. This is termed ‘geodetic precession’. Due to the
conservation of total angular momentum of the system, compensating precessions of
the NSs’ spins are expected. The resulting spin precessions lead to observable effects
like, (i) a change in the spin axis orientation in space through pulsar timing, and (ii)
a change in the inclination angle of the orbital plane orientation [110]. See Ref. [111]
for how these effects influence pulsar timing. The change in inclination angle provides
an estimate for the moment of inertia. Universal relations between moment of inertia
and compactness (ratio of mass and radius) of NSs, can in turn be used to derive
the radii, given precise mass measurements [8]. Future measurements of moment of
inertia are expected by 2030 [112] and can help constrain the underlying NS EoS.

2. Pulsar glitches

In some isolated neutron stars, abrupt changes in the spin, or the so called ‘pulsar
glitches’, have been observed. These glitches are believed to occur due to the transfer
of angular momentum between the crust and the liquid interior [113–115]. By study-
ing these glitches, one can gain insights into the properties of neutron star crusts,
and the dynamics of the superfluid interiors [113–115].

3. Neutron star seismology

The aim of NS seismology is to probe the dense matter physics through observations
of various modes of vibration. Quasi-periodic oscillations observed in the aftermath of
giant flares in soft gamma-ray repeaters1 indicate a correlation between the seismic
motion of the NS crust after a major quake and the modes of oscillations in the
NS [116]. Such modes can be used to deduce global properties of the NSs, thereby
adding constraints to the dense matter EoS [116].

Research on neutron stars has benefited from several observations in the past decades. We
utilize some of the observations in this thesis, in order to constrain the cold dense matter
EoS, using deep learning techniques.

The thesis is organized as follows:

(i) Chapter 2 provides a brief introduction to the equation of state. We describe the
theoretical models utilized in this thesis for the EoS.

(ii) Chapter 3 focuses on the deep learning techniques used for this thesis. We provide
an introduction to neural networks and their utility for this work.

(iii) Chapter 4 details a deep learning algorithm based on automatic differentiation to
reconstruct the dense matter EoS from mass-radius observations of neutron stars. We
further present results based on current NS mass-radius observations. In addition,
we show that the resulting EoS is compatible with the tidal deformability constraints
obtained from GW170817.

1Soft gamma-ray repeaters are NSs or magnetars that emit intense bursts of soft gamma-ray radiation
in irregular intervals.
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CHAPTER 1. INTRODUCTION

(iv) Chapter 5 introduces deep learning algorithms developed to analyze gravitational
waves. We introduce an method to overcome the computational inefficiency in con-
ventional Bayesian analyses to extract tidal deformability from GWs of binary neutron
star mergers.

(v) Chapter 6 is centered around the impact thermal effects can have on a binary neutron
star merger remnant. We also discuss the properties of the binary components and
merger remnant involved with the event GW170817.

(vi) Chapter 7 summarizes the results from this thesis. We offer a perspective on how this
work can be further extended and integrated into forthcoming research endeavors.

10



Chapter 2

Theoretical Models for Neutron Stars

Neutron stars and their properties can be described from the underlying equation of
state (EoS). This chapter provides a theoretical description of several EoS models used
throughout this thesis. As mentioned in the previous chapter, the equation of state de-
scribes matter under different conditions. It is generally a thermodynamic relation between
pressure (P ) and energy density (ϵ) or baryon density (nb) at variable temperatures (T )
or entropies (S) and composition (Ye, or electron fraction). Up to nuclear saturation den-
sity (n0 = 0.16 fm−3), the equation of state of matter can be constrained by experiments on
finite nuclei [117–119] and chiral effective theory [120–125]. However, for densities beyond
saturation density, the equation of state is not completely understood due to the limita-
tions on the availability of experimental data. In this regime, several different theoretical
approaches to describe the EoS exist. The fundamental physical requirements are,

(i) the causalty of an EoS, i.e., the speed of sound in matter (cs =
√
dP/dϵ) cannot be

greater than that of light (c),

(ii) and, a monotonically increasing pressure with increasing energy density, in order to
ensure thermodynamic stability.

Further constraints on these theoretical models arise from astrophysical observations. A
stringent constraint on the EoS emerges from the pulsar observation with the maximum
mass, i.e., currently PSR J0740+6620, with a mass of 2.08±0.07M⊙ [53]. All theoretical
models discussed in this thesis satisfy this constraint1. Additional constraints are incorpo-
rated from tidal deformability measurements obtained from gravitational waves of binary
neutron star mergers. Sections 2.2.1 and 2.2.2 of this chapter are devoted to theoretical
calculations of structural properties and tidal deformability of a neutron star, respectively.
The rest of the thesis is based on the EoSs described in this chapter, and their compatibility
with other observational constraints will be tested.

1Note: For the polytropic EoSs in section 2.1.2, we use a less conservative bound of 1.9M⊙. The reasons
for this choice are explained in chapter 4.
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CHAPTER 2. THEORETICAL MODELS FOR NEUTRON STARS

2.1 Models for the Equation of State

Theoretical models which can generate possible equations of state (EoSs) that attempt
to describe the dense matter inside neutron stars (NSs) incorporate different physical as-
sumptions for the strongly interacting dense matter. Non-relativistic and relativistic model
EoSs may include only purely nucleonic degrees of freedom [126–135], hybrid (hadrons and
quarks) models [31, 136–142], models with hyperons [143–149], models with kaon conden-
sates [150] or pure quark models [151,152].

Alternatively, EoSs can be parameterized with piecewise polytropes [153–157], speed-of-
sound [158–161], or spectral representations [162–164]. Such models benefit from their
simplicity. The so-called ‘nonparameteric’ models for the EoS overcome this by increasing
model freedom at the cost of increased complexity. This alternative approach targets higher
model flexibility by making use of Gaussian processes (GPs) [165–170]. All these mentioned
parameteric and nonparametric models are useful for generation of EoSs in bulk. These
EoSs can be used to calculate the global properties of NSs, which can then be confronted
with observational data. This way, we can directly constrain the EoS or its parameters
through NS properties like maximum mass, radius, and tidal deformability, which are all
dependent on the EoS.

2.1.1 Microphysical EoS Models

In this section, we describe some of the theoretical microphysical EoS models used in the
thesis. We adopt β-equilibrated and charge neutral EoSs at zero and finite temperatures
constructed within the framework of relativistic mean field (RMF) models with and without
density dependent (DD) couplings. The baryon-baryon interaction in RMF models is
mediated by the exchange of σ-, ω- and ρ-mesons; while the hyperon-hyperon interaction
is mediated by the exchange of ϕ-mesons. Furthermore, we consider two classes of EoSs,
namely, the unified EoSs and the non-unified EoSs. Unified EoSs refer to those EoSs where
the same nucleon-nucleon interaction of RMF models is employed in low and high density
matter. For non-unified EoSs, we use the RMF model including non-linear σ-meson self-
interaction terms to describe the neutron star matter EoS in the core. This high density
EoS is matched with the Baym-Pethick-Sutherland (BPS) outer crust EoS [171] and the
Negele-Vautherin (NV) inner crust EoS [172]. On the other hand, for unified EoS, an
extended version of the nuclear statistical equilibrium (NSE) is used for matter made of
light and heavy nuclei, and unbound nucleons at low temperatures and below the saturation
density [173]. The interaction among unbound nucleons is dictated by the RMF models
which are also used to describe the matter at high densities.

We exploit different parametrizations of RMF models such as DD2 [131], SFHo [133],
SFHx [133], TM1 [128], and TMA [129] EoSs for nuclear matter; BHBΛϕ EoS [144] for
hyperonic matter; and a hybrid EoS undergoing a first order phase transition from hadronic
to deconfined quark matter [140]. In the following paragraphs, we discuss the unified
and non-unified EoSs based on the Boguta model [174]. The Boguta model [174] is also
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2.1. MODELS FOR THE EQUATION OF STATE

commonly referred to as the ‘non-linear Walecka’ model due to the inclusion of non-linear
self-interactions which were omitted in the Walecka model [175, 176]. We also discuss
the density dependent relativistic hadron (DDRH) field theory model for EoSs at finite
temperature, and additionally, the hybrid EoS.

Unified EoSs in the Boguta model

Here we introduce some of the unified EoSs based on the NSE model for matter below
the saturation density, and the Boguta (non-linear Walecka) model [174] with additional
meson couplings [173,177]. The non-linear Walecka model with cross meson terms is given
by [177],

L = ψ̄B(iγµ∂
µ −mB + gσBσ − gωBγµω

µ − 1

2
gρBγµτ̄B · ρ̄µ)ψB

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρ̄µν ρ̄

µν +
1

2
m2

ρρ̄µ · ρ̄µ − U(σ)

+
κ

24
g4ωB(ω

µωµ)
2 +

λ

24
g4ρB(ρ̄

µ · ρ̄µ)2 + g2ρBf(σ, ω
µωµ)ρ̄

µ · ρ̄µ . (2.1)

τ̄B is the isospin operator, and U(σ) represents the self interaction terms, and can be
expanded as

U(σ) =
ζ

6
(gσBσ)

3 +
ξ

24
(gσBσ)

4 , (2.2)

and

f(σ, ωµωµ) =
6∑
1

aiσ
i +

3∑
1

bj(ω
µωµ)

j . (2.3)

There are 17 parameters in this model, which provide sufficient freedom to fine-tune the
low and high density parts of the isospin sector independently [133]. The two EoSs derived
from this Lagrangian density are known as SFHo and SFHx where ‘o’ stands for optimal
and ‘x’ stands for extremal. For the SFHo EoS, the most probable mass-radius curve
of Ref. [156] was fitted whereas for the SFHx EoS, the radius of low mass neutron stars
was minimised resulting in a low value for the density slope of the symmetry energy at
saturation density (23.18 MeV) [133]. By neglecting the last two terms of the Lagrangian
density given by Eq. (2.1), it reduces to the TM1 and TMA EoSs [128,129,178]. In this case
too, a unified EoS was constructed based on the NSE model for the low density matter.
All four EoSs are publicly available on CompOSE [179].

Non-unified EoSs in the Boguta model

We also use non-unified EoSs where the high density part is based on the Boguta model.
For these EoSs, we use the model description given by Eq. (2.1), however excluding the
last three terms. In other words, we use the Boguta model with self-interaction terms of
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CHAPTER 2. THEORETICAL MODELS FOR NEUTRON STARS

only the σ-mesons. As mentioned earlier, the low density part of the EoS is described
by the BPS model [171] for the outer crust and NV model [172] for the inner crust. We
construct few such non-unified EoSs using different values of incompressibilty and effective
mass. In this thesis, we denote these EoSs as Glendenning (G) followed by the value of
incompressibility and either ‘a’ or ‘b’ for the two values of effective masses, 0.78 and 0.7,
respectively. For example, the EoS with incompressibility, K = 240 MeV, and effective
mass, m∗/m = 0.78, is denoted as G240a.

EoSs in the DDRH field theory model at finite temperature

The Lagrangian density of this model is given by [131,144],

LB =
∑

B=n,p,Λ

Ψ̄B (iγµ∂
µ −mB + gσBσ − gωBγµω

µ − gρBγµτB · ρµ − gϕBγµϕ
µ)ΨB

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ

−1

4
ϕµνϕ

µν +
1

2
m2

ϕϕµϕ
µ . (2.4)

Here mB is the bare baryon mass, τB is the isospin operator and ΨB denotes the isospin
multiplets for baryons. The parameterization of this model involving only nucleons is the
DD2 EoS [131]. The Lagrangian can be extended to include Λ hyperons and the resulting
model is the BHBΛϕ EoS [144].

The partition function in the mean field approximation can be written as,

lnZB = βV [−1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03 +

1

2
m2

ϕϕ
2
0 + Σr

∑
B=n,p,Λ

nB]

+2V
∑

i=n,p,Λ

∫
d3k

(2π)3
[ln(1 + e−β(E∗−νi)) + ln(1 + e−β(E∗+νi))] , (2.5)

where the temperature appears as β = 1/T , E∗ =
√

(k2 +m∗2
B ) and effective baryon mass

m∗
B = mB − gσσ. The chemical potential of i-th baryon is given by

µi = νi + gωBω0 + gρBτ3Bρ03 + gϕBϕ0 + Σr , (2.6)

and the rearrangement term which takes care of many-body correlations, has the form,

Σr =
∑

B=n,p,Λ

[−∂gσB
∂nB

σns
B +

∂gωB
∂nB

ω0nB +
∂gρB
∂nB

τ3Bρ03nB +
∂gϕB
∂nB

ϕ0nB] . (2.7)

The total partition function of the system is Z = ZBZL where ZL denotes the partition
function for non-interacting leptons.

We obtain the equations of motion for the meson fields by extremising the partition function
ZB. Furthermore, we can compute all the thermodynamic quantities of baryonic matter
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using the partition function ZB. The baryon pressure is written as P = TV −1 lnZB and
the energy density of baryons is given by,

ϵ =
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03 +

1

2
m2

ϕϕ
2
0

+2
∑

i=n,p,Λ

∫
d3k

(2π)3
E∗
(

1

eβ(E∗−νi) + 1
+

1

eβ(E∗+νi) + 1

)
. (2.8)

The number density of i(= n, p,Λ)-th baryon is,

ni = 2

∫
d3k

(2π)3

(
1

eβ(E∗−νi) + 1
− 1

eβ(E∗+νi) + 1

)
. (2.9)

The scalar density, ns
B, for baryon B is

ns
B = 2

∫
d3k

(2π)3
m∗

B

E∗

(
1

eβ(E∗−νB) + 1
+

1

eβ(E∗+νB) + 1

)
. (2.10)

The entropy density of baryons follows from the relation,

S = β

(
ϵ+ P −

∑
i=n,p,Λ

µini

)
, (2.11)

and the entropy density per baryon is s = S/nb where nb is the total baryon density.

The nucleon-meson couplings in the DDRH model are density dependent. The DD2 pa-
rameter set of nucleon-meson couplings is used to describe the nuclear matter proper-
ties [131, 180]. The functional forms of density dependent couplings gσN and gωN are
given by,

gαN = gαN(n0)fα(x), where fα(nb/n0) = aα
1 + bα(x+ dα)

2

1 + cα(x+ dα)2
. (2.12)

Here, n0 is the saturation density, α = σ, ω and x = nb/n0. For the ρ-mesons, we have,

gρN = gρN(n0) exp [−aρ(x− 1)]. (2.13)

The coefficients in both Eqs. (2.12) and (2.13), saturation density, nucleon-meson couplings
at the saturation density, mass of the σ-mesons, are all obtained by fitting the properties
of finite nuclei [131]. The properties of symmetric nuclear matter at the saturation density
(n0 = 0.149065 fm−3) are consistent with the experimental values [119]. The symmetry
energy (32.73 MeV) and its density slope (57.94 MeV) are in consonance with current
experimental constraints and observations of neutron stars [118, 181, 182]. Furthermore,
the DD2 EoS is reasonably compatible with that of pure neutron matter obtained in the
chiral effective field theory [119,122].
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On the other hand, Λ hyperon-vector meson couplings are determined from the SU(6) sym-
metry relations [183, 184] and the Λ hyperon-scalar meson coupling is extracted from the
hypernuclei data. A potential depth of -30 MeV is considered for the Λ hyperon in normal
nuclear matter [185–187]. The hyperon-meson couplings used in this thesis are taken from
Ref. [144]. Both DD2 and BHBΛϕ EoSs are publicly available from CompOSE [179].

Hybrid EoS at zero temperature

We also consider an EoS undergoing a first order phase transition from hadronic to quark
matter governed by the Gibbs phase rules [46]. In this case, the hadronic matter is described
by an extended version of the DD2 Lagrangian density of Eq. (2.4). The Lagrangian density
is extended to include all hyperons of the 1/2-spin baryon octet and ∆ resonance [140].
The three flavour quark matter is described by the nonlocal extension of the Nambu-Jona-
Lasino (NJL) model as introduced in Ref. [140]. This hybrid EoS is calculated at zero
temperature.

Chiral Mean Field model at finite temperature

The Chiral Mean Field (CMF) is an effective relativistic field theory model that is chirally
invariant [188]. This model is based on the non-linear realization of SU(3) σ-model. Pseu-
doscalar mesons in this model act as angular parameters for chiral transformation. The
CMF Lagrangian density in the mean field approximation is given by,

L = Lkin + Lint + Lself + LSB , (2.14)

where Lkin corresponds to the kinetic energy term, Lint to the interaction term for baryons
interacting with vector and scalar mesons, Lself to the self-interaction term of vector and
scalar mesons, and LSB to the explicit chiral symmetry breaking term generating masses
of pseudoscalar mesons [189]. These terms can be expanded as,

Lint = −
∑
i

ψ̄i[γ0(giωω + giϕϕ+ giρτ3ρ) +M∗
i ]ψi ,

Lself =
1

2

(
m2

ωω
2 +m2

ρρ
2 +m2

ϕϕ
2
)
+ g4

(
ω4 + 3ω2ϕ2 +

ϕ4

4
+

4ω3ϕ√
2

+
2ωϕ3

√
2

)
− k0

(
σ2 + ζ2 + δ2

)
− k1

(
σ2 + ζ2 + δ2

)2
− k2

(
σ4

2
+
δ4

2
+ 3σ2δ2 + ζ4

)
− k3

(
σ2 − δ2

)
ζ − k4 ln

(σ2 − δ2)ζ

σ2
0ζ0

,

LSB = −m2
πfπσ −

(√
2m2

kfk −
1√
2
m2

πfπ

)
ζ . (2.15)

The CMF EoS as a function of density, temperature and positive charge fraction is pub-
licly available in a tabular form on CompOSE [189]. Additionally, see Refs. [31, 190] for
adaptations of the described model.
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Table 2.1: Saturation properties of nuclear matter such as saturation density (n0), di-
mensionless effective nucleon mass (m∗/m), binding energy (BE), incompressibility (K),
symmetry energy (S), and density slope of symmetry energy (L) are obtained using the dif-
ferent parameters for the EoSs listed below. The maximum mass of non-rotating neutron
stars and the corresponding baryonic mass of the EoSs are also mentioned. The experi-
mental values of nuclear matter properties at saturation density (n0), as indicated in the
final row, are sourced from Refs. [119, 191–193]. For the maximum mass, we quote the
mass of the pulsar PSR J0740+6620 [53]. See Ref. [1] for the original publication.

EoS n0 m∗/m BE K S L Mmax MB

(fm−3) (MeV) (MeV) (MeV) (MeV) (M⊙) (M⊙)

DD2 0.149 0.56 16.02 243.0 31.67 55.04 2.42 2.89

BHBΛϕ 0.149 0.56 16.02 243.0 31.67 55.04 2.10 2.43

SFHo 0.158 0.76 16.19 245.4 31.57 47.10 2.06 2.43

SFHx 0.160 0.72 16.16 238.8 28.67 23.18 2.13 2.53

TM1 0.146 0.63 16.30 281.6 36.95 110.99 2.21 2.30

TMA 0.147 0.64 16.03 318.2 30.66 90.14 2.02 2.30

G230a 0.153 0.78 16.30 230.0 32.50 89.76 2.01 2.31

G230b 0.153 0.70 16.30 230.0 32.50 94.46 2.33 2.75

G240a 0.153 0.78 16.30 240.0 32.50 89.70 2.02 2.75

G240b 0.153 0.70 16.30 240.0 32.50 94.39 2.34 2.75

G300a 0.153 0.78 16.30 300.0 32.50 89.33 2.08 2.40

G300b 0.153 0.70 16.30 300.0 32.50 93.94 2.36 2.78

Hybrid 0.149 0.56 16.02 243 31.67 55.04 2.05 2.39

Exp. 0.151 0.55-0.75 16.00 240±10 29-31.7 45-61.9 2.08±0.07 -

We present the saturation properties of the EoSs described above in Table 2.1. The empir-
ical values of nuclear matter properties are reported in the last row. The reported range
of incompressibility (K) values of nuclear matter at the saturation density can be found
in Refs. [119, 191]. It was demonstrated that the effective masses of nucleons in the range
0.55 ≤ m∗/m ≤ 0.75 lead to the physical solution for pure neutron matter which is com-
patible with the chiral effective field theory [192]. The bounds on the symmetry energy (S)
and the symmetry energy slope (L) are taken from Ref. [181]. From Table 2.1, it is evident
that the symmetry energy and slope parameter of several EoS models (SFHx, TM1, TMA,
G230a, G230b, G240a, G240b, G300a, G300b) are in tension with the new bounds from
Ref. [181] and state-of-the-art calculations in chiral effective field theory [119, 181, 182].
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Figure 2.1: Pressure plotted as a function of energy density, for the microphysical EoS
models in β-equilibrium, described in this section, at zero temperature. See Ref. [1] for
original figure (DOI:10.3847/1538-4357/ab6a9e).

Note that the low value of slope parameter in the SFHx EoS model was obtained in an
attempt to minimise the radii of low mass neutron stars [133]. This effect can also been
seen in the depiction of the SFHx EoS in figure 2.1. Additionally, figure 2.1 contains other
EoS models described in this section, where pressure is plotted as a function of energy
density, at zero temperature. The low-density part of the SFHx EoS deviates significantly
from other EoSs. Furthermore, it can be seen that the pressure around the saturation
density remains constant. This kind of behavior was also noted in the SFHx EoS for pure
neutron matter [194]. In addition, the beginning and ending of the mixed phase in the
hybrid EoS are observed as two kinks. It can be observed that the hybrid EoS becomes
softer once the mixed phase ends. We also plot the results of the Glendenning EoS models.

2.1.2 Piecewise Polytropic EoS Models

We can generate a multitude of equations of state spanning wide ranges in the pressure-
density (P − ρ) space by parameterizing the EoSs in terms of piecewise polytropes. For
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2.1. MODELS FOR THE EQUATION OF STATE

the work carried out in this thesis, the low-density part of each EoS (ρ < ρsat, where
ρsat ∼ 2 × 1014 g cm−3 is the nuclear saturation density) is assumed to conform to a
conventional nuclear EoS. Nevertheless, in order to introduce robustness in the generated
dataset, the low-density regime of the EoSs in the present thesis is assumed to comply
with one of SLy [130], PS [126], DD2 [131] or TM1 [128] EoSs. For densities greater than
the saturation density (ρ > ρsat), one can use n-number of piecewise segments, stitched
together to describe the EoS. For the purpose of adding constraints on the NS EoS, several
studies with n > 1 segments exist in literature [153–157]. Here, we adopt the density
segmentation scheme from Ref [157], i.e., any EoS can be reasonably well parameterized
with five polytropic segments. The density region of the EoSs for parameterization is
chosen within the range [ρsat, 7.4ρsat]. This upper limit follows from the evidence that
the pressure at this density, P (ρ = 7.4ρsat), affects the maximum mass of the neutron
star [154]. The densities are uniformly spaced on a logarithmic scale. The five segments
are separated at densities (1.0, 1.4, 2.2, 3.3, 4.9, 7.4) ρsat, as in Ref. [157]. The pressure in
the ith segment is given as a function of the density ρ,

P = Kiρ
Γi for i = [1,5], (2.16)

where,

(i) ρ ∈ [ρi−1, ρi], with ρi−1 and ρi being the minimum and maximum densities of seg-
ment i.

(ii) Ki = Pi−1/ρ
Γi
i−1.

(iii) Following Ref. [157], the adiabatic index, Γi is assigned random values in the range
[1, min{5, Γluminal}), where Γluminal sets the limit for the causal condition, i.e., the
speed of sound, cs, does not exceed the speed of light, c. Hence, cs =

√
dP/dϵ < 1,

or
Γ ≡ Γ luminal when

dP

dϵ
= 1. (2.17)

Here, ϵ is the energy density, given by

ϵ =

(
ϵ(ρi−1)

ρi−1

− Pi−1

(Γi − 1)ρi−1

)
ρ+

Ki

Γi − 1
ρΓi , (2.18)

for Γ ̸= 1, and

ϵ =
ϵ(ρi−1)

ρi−1

ρ+Ki ln

(
1

ρi−1

)
ρ−Ki ln

(
1

ρ

)
ρ , (2.19)

for Γ = 1 (see Ref. [157] or [154] for details).

With this prescription, we can generate several hundred thousands of polytropic EoSs.
These EoSs may be flexible enough to model multiple stars’ masses and radii within known
constraints. A few of the generated EoSs are depicted in Figure 2.2.
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Figure 2.2: A few examples of piece-wise polytropic EoSs that were generated using
PS (red), SLy (blue), DD2 (green) or TM1 (gold) EoSs for the low-density region. A
major portion of the pressure range is spanned by the several polytropic EoSs. See Ref. [2]
for original figure (DOI:10.1088/1475-7516/2022/08/071).

2.2 Neutron Star observables from EoS

The EoS models described in this chapter can be directly translated to observable quantities
of neutron stars. Assuming gravity is described by the theory of general relativity [57–59],
we provide the theoretical calculations of three observable quantities in the subsections
below, namely, mass, radius and tidal deformability.

2.2.1 Stellar Structure from EoS: the TOV equations

The line element of a system containing a static, spherically symmetric star in general
relativity is given by,

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2. (2.20)
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This can be compared to the first solutions to Einstein’s equations, which were provided by
Karl Schwarzschild [195,196]. Based on the Birkhoff theorem [197,198], the Schwarzschild
solution describes the metric outside of a single non-rotating star. Therefore, for neutron
stars, the exterior solution is given by the Schwarzschild metric which is connected to
the interior solution, obtained by assuming a static, ideal fluid in hydrostatic equilibrium.
Thus, we can derive the so-called the Tolman–Oppenheimer–Volkoff (TOV) equations from
this metric, which describe the stellar structure of non-rotating NSs [39, 41]. See Ref. [46]
for a detailed explanation. The TOV equations are given as,

−dP
dr

=

[
ϵ(r) + P (r)

][
m(r) + 4πr3P (r)

]
r[r − 2m(r)]

, (2.21)

and
dm(r)

dr
= 4πr2ϵ(r). (2.22)

Here, r is the radial coordinate from the centre of the star, and m(r) is the mass enclosed
within the radial coordinate, r. In order to determine the observables, mass (M) and radius
(R) of the star, the TOV equations are integrated radially outwards from the centre. The
initial conditions taken at the centre of the star are, r = 0, m(r = 0) = 0, ϵ(r = 0) ̸=
0, P (r = 0) = Pc, where Pc is the central pressure, obtained from the EoS, usually given
as a table. The radius, R, of the star is defined by the vanishing pressure condition at
the surface (P (r = R) = 0), and the mass enclosed in R is the total mass of the star, i.e.
M = m(R). Thus, the TOV equations provide a direct one-to-one mapping between the
neutron star EoS and the mass-radius relation. Determining the mass and the radius of a
neutron star therefore provides insights on the underlying EoS. Figures 2.3 and 2.3 depict
the M − R relations of the microphysical and polytropic EoSs described in the previous
section. The gray region on the top left corner of the bottom figure represents the causalty
limit. We generate the piecewise polytropic EoSs such that they all obey this limit as
mention in section 2.1.2.

2.2.2 Tidal Deformability from EoS

In a neutron star binary system, each star experiences tidal effects from its companion.
These tidal effects deform the stars by inducing a quadrupole moment which leaves an
imprint on the gravitational wave signal (see chapter 1, section 1.1.3). The parameter
describing this effect is the so-called tidal deformability.

Mathematically, the tidal deformability (λ) of a neutron star can be expressed as the ratio of
the induced quadrupole (Qij) to the external tidal field (Eij) exerted by its companion [100,
199,200], i.e.,

λ = −Qij

Eij
. (2.23)
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Figure 2.3: Mass-Radius (M −R) relations corresponding to the microphysical EoSs (top)
and the polytropic EoSs (bottom) shown in figures 2.1 and 2.2 respectively. The gray
region in the bottom figure represents the causalty limit. See Refs. [1] and [2] for original
figures (DOI:10.3847/1538-4357/ab6a9e, DOI:10.1088/1475-7516/2022/08/071).
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2.2. NEUTRON STAR OBSERVABLES FROM EOS

Note that λ is a constant, and can be derived as an inherent property of the NS based on
the underlying EoS. It can be expressed as a function of the gravitational Love number (k2)
and the NS radius (R),

λ =
2

3
k2R

5. (2.24)

λ is commonly used in its dimensionless form (Λ), defined as Λ ≡ λ/M5, where M is the
mass of the NS. The term tidal deformability in this thesis usually refers to the dimension-
less quantity.

The external tidal field, Eij, and the induced quadrupole moment, Qij, emerge from the
time-time component of the metric (gtt) in the local asymptotic rest frame of a spherically
symmetric static star of massM , at large distances to the star r, in mass-centered Cartesian
coordinates [201].

It is given by,

1− gtt
2

= −M
r

− 3Qij

2r3

(
ninj − 1

3
δij
)
+O

(
1

r4

)
+

1

2
ninjEijr2 +O(r3). (2.25)

Here, ni = xi/r and δij is the Kronecker delta. See Ref. [202] for a review.

The metric of a linear l = 2 perturbation on a spherically symmetric star is given by,

ds2 = e2ν(r)
[
1 +H(r)Y20(θ, ϕ)

]
dt2

− e2λ(r)
[
1−H(r)Y20(θ, ϕ)

]
dr2

− r2
[
1−K(r)Y20(θ, ϕ)

]
(dθ2 + sin2 θdϕ2), (2.26)

where,
K ′(r) = H ′(r) + 2H(r)ν(r), (2.27)

and,

H ′′+H ′
(2
r
+ν ′−λ′

)
+H

(
− 6e2λ

r2
−2ν ′2+2ν ′′+

3

r
λ′+

7

r
ν ′−2ν ′λ′+

f

r
(ν ′+λ′)

)
= 0. (2.28)

Here, f = dϵ/dp, and the second order differential equation can be written as two first
order differential equations. They are given by,

dH

dr
= β, (2.29)

and,

dβ

dr
= 2

(
1− 2

M(r)

r

)−1

H
{
− 2π[5ϵ+ 9p+ f(ϵ+ p)]

+
3

r2
+ 2
(
1− 2

M(r)

r

)−1(M(r)

r2
+ 4πrp

)2}
+
2β

r

(
1− 2

M(r)

r

)−1{
− 1 +

M(r)

r
+ 2πr2(ϵ− p)

}
. (2.30)
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Eqs. (2.29) and (2.30) can be solved simultaneously with the TOV equations (2.21) and (2.22),
where the boundary conditions H(r) = r2 and β = 2r are applied at r → 0. This way, we
can solve for the tidal love number, k2, which is given by,

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y] ×{

2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]

+3(1− 2C)2[2− y + 2C(y − 1)] log(1− 2C)
}−1

, (2.31)

where, y = Rβ(R)/H(R) and the compactness, C = M/R. Using the estimate for k2 in
Eq. (2.24), we obtain the value for tidal deformability (Λ).

Since the tidal deformability is directly linked to the EoS, a measurement of Λ from gravi-
tational wave observations provides observational constraints on the neutron star EoS. The
M − Λ relations corresponding to the EoSs in figure 2.1 are depicted in figure 2.4.

Figure 2.4: Mass-Tidal deformability (M-Λ) relations corresponding to the microphysical
EoSs depicted in figure 2.1. See Ref. [6] for original figure.

The next chapter provides a brief introduction to common deep learning methods required
for the algorithms used in the thesis.
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Chapter 3

Deep Learning

Artificial Intelligence (AI) has been one of the most efficient tools used in the past few
years while dealing with the analysis of large amounts of data. The field of AI involves
Machine Learning (ML) and Deep Learning (DL), which have gained popularity in the
past decade and are well acclaimed in the contemporary world [203].

Machine Learning encompasses a wide range of algorithms that enable computers to learn
from data and make predictions or decisions without being explicitly programmed. It is
well-suited for a wide range of tasks, including the traditional supervised learning, un-
supervised learning, and reinforcement learning. Supervised learning entails algorithms
which are trained to learn and make predictions based on labeled training data. The name
supervised arises because the process involves a ‘supervisor’ who presents a set of input-
output pairs (input data with corresponding labels or target values) to the algorithm to
learn from. In contrast to supervised learning, unsupervised learning involves algorithms
that are trained to analyze and find patterns in data without explicit supervision or labeled
target outputs. In this thesis, we employ both supervised as well as unsupervised learning
algorithms, as we will see in the next chapters (see chapters 4 and 5).

Deep Learning is a subset of Machine Learning that employs artificial neural networks with
several interconnected layers or ‘deep neural networks’ (DNNs). It has been particularly
influential in recent AI advancements, enabling breakthroughs in image recognition, natural
language processing, and speech recognition. In this thesis, we utilize DL to develop
algorithms to perform two different tasks:

1. To reconstruct the dense matter EoS from observational data of neutron stars. This is
a semi-supervised learning method that employs automatic differentiation to optimize
the EoS. See chapter 4 for detailed explanations.

2. To analyze gravitational wave (GW) data to estimate the source parameters. Here,
we employ supervised learning methods to perform classification (of GW signals from
different sources) and regression (of source properties). Refer to chapter 5 for details.
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This chapter introduces the fundamental concepts and basic essentials required for imple-
menting the tasks mentioned above.

3.1 Artificial Neural Networks
Artificial neural networks are computational models inspired by the structure and function
of biological neural networks in the brain. They are powerful machine learning algorithms
capable of learning complex patterns from data. A typical neural network comprises of
several interconnected nodes called neurons. These neurons are organized into layers, typ-
ically consisting of an input layer, one or more hidden layers, and an output layer. Each
neuron receives input signals which are then processed using weighted connections to pro-
duce an output signal. During the learning process, neural networks adjust the weights
assigned to connections between neurons to optimize their performance. This adjustment
is achieved through a training phase, where the network learns to map the input to the
desired output. The universal function approximation theorem ensures that artificial neu-
ral networks can approximate any kind of continuous function with nonlinear activation
functions [204–208]. In this section, we introduce a few neural networks that will be used
in the upcoming chapters. The sections following briefly describe commonly used activa-
tions (Section 3.2), loss functions (Section 3.3) and optimization algorithms (Section 3.4)
used in neural networks.

3.1.1 Fully Connected Neural Networks

A fully connected neural network (FCN) as the name suggests consists of layers that are
fully connected. In other words, in fully connected layers (also known as dense layers),
each neuron is connected to every neuron in the previous layer. A neuron performs a linear
transformation on the input vector using a weight matrix. Given an input vector x of size
N , and assuming the layer has M neurons, the output vector y of the fully connected layer
can be computed as,

y = W · x+ b. (3.1)

Here, W is the weight matrix of size M×N , where each element Wij represents the weight
connecting the ith neuron in the layer to the jth neuron in the previous layer. The vector
b represents the bias term of size M , which provides an additional learnable parameter for
each neuron in the layer. Subsequently, a non-linear transformation is applied element-wise
to the resulting product, i.e., the output vector y. This transformation is done using a
non-linear activation function denoted as f , and can be written as,

z = f(y). (3.2)

The output vector z serves as the input to the next layer in the neural network architecture.
By stacking multiple fully connected layers with appropriate activation functions, neural
networks can learn hierarchical representations of the input data, enabling them to model
intricate patterns and make accurate predictions.
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3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used when dealing with structured
grid-like data, such as images, audio, and time series data, as they have the potential to
extract key features or patterns in the input data. A CNN consists of multiple layers,
including convolutional layers, pooling layers, and fully connected layers. Here, we denote
the input as X and the output feature maps as Y. In a convolutional layer, we convolve
the input X with a set of K trainable filters or kernels, denoted as W. Each filter generates
a corresponding feature map. Assuming the kernel has a size of k × k, the convolution
operation is represented as,

Yi,j = f

(
K∑

m=1

k∑
p=1

k∑
q=1

Wp,q,m ·Xi+p−1,j+q−1,m

)
, (3.3)

where Yi,j is the element at position (i, j) in the output feature map, Wp,q,m is the weight
at position (p, q) of the mth filter, Xi+p−1,j+q−1,m is the input value at position (i + p −
1, j + q − 1,m), and f is the non-linear activation function. Note that this convolution
operation can be generalized and carried out in 1D, 2D or 3D. The feature maps output
from the convolutional layers are usually fed as input to pooling layers. A pooling layer
reduces the spatial dimensionality of the feature maps while retaining important features.
Different kinds of pooling layers include max pooling, average pooling, global pooling, sum
pooling, adaptive pooling, etc. In this thesis, we make use of max pooling and average
pooling layers. The max pooling operation selects the maximum value within a pooling
region, and can be expressed as,

Yi,j = max(Xp,q), (3.4)

where Yi,j is the element at position (i, j) in the pooled feature map, and Xp,q represents
the elements within the pooling region. Similarly, the average pooling operation takes the
mean of the elements in the pooling region. The output feature maps of the final convolu-
tional/pooling layer are flattened into a vector v. This is followed by the fully connected
layer(s). As discussed in section 3.1.1, a fully connected layer applies a linear transforma-
tion on vector v, followed by a non-linear activation function. Therefore, by assembling
few/several convolutional, pooling, and fully connected layers, CNNs can extract features
from raw input data, making them powerful tools for tasks like image classification, object
detection, and more.

3.1.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are typically used for sequential or time series data.
They are different from traditional feedforward neural networks in the sense that they
have a feedback connection that allows them to maintain an internal state or memory.
This allows RNNs to handle sequential information effectively. The key feature of an RNN
is the recurrent connection, which allows information to be passed from one step to the
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next. This feedback loop enables the network to process input sequences of variable lengths
and capture dependencies between elements in the sequence.

At each time step t, the RNN takes an input vector xt and the previous hidden state ht−1

as inputs and produces an output yt and an updated hidden state ht. The hidden state
serves as the memory of the network, capturing information from past time steps. The
update equations for a simple RNN can be written as,

ht = f(xt,ht−1) (3.5)

and

yt = g(ht). (3.6)

The functions f and g represent non-linear activation functions, where f is the transition
function that updates the hidden state, and g is a function that maps the hidden state
to the output. The RNN’s hidden state ht is a representation of the previous information
and is influenced by both the current input xt and the previous hidden state ht−1. This
permits the network to capture temporal dependencies and learn patterns in the sequential
data. The output yt can be used for tasks such as sequence prediction or generating new
sequences.

However, standard RNNs often suffer from the vanishing or exploding gradient problem,
where the gradients become extremely small or large during training, making it difficult
to learn long-range dependencies. One solution to these issues is to reduce the number of
hidden layers within the neural network. However this approach reduces the complexity in
the RNN model. Therefore, various advanced RNN architectures such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) have been developed to incorporate
gating mechanisms to improve the flow of information over time. In one of the upcom-
ing chapters in this thesis, we make use of a variant RNN, namely the LSTM. A brief
description of the LSTM is given below.

Long Short Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architec-
ture that counteracts the vanishing gradient problem and is capable of capturing long-term
dependencies in sequential data. LSTMs address this issue by introducing a more complex
cell state ct that allows the network to learn when to forget or remember information over
long sequences. The LSTM cell has three main components that include an input gate, a
forget gate, and an output gate. The cell state ct is updated based on these gates, which
control the flow of information. The update equations for an LSTM cell at time step t can
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be described as follows,

it = f(Wixt +Uiht−1 + bi) (input gate)
ft = f(Wfxt +Ufht−1 + bf ) (forget gate)
ot = f(Woxt +Uoht−1 + bo) (output gate)
c̃t = g(Wcxt +Ucht−1 + bc) (candidate cell state)
ct = ft ⊙ ct−1 + it ⊙ c̃t (update cell state)
ht = ot ⊙ g(ct) (output).

Here, x is the input vector, and h is the hidden state. Furthermore, W’s and U’s are the
weight matrices; and b’s, represent the bias vectors. We use f and g to represent non-
linear activation functions, and ⊙ denotes element-wise multiplication. The input gate it
controls the extent to which the candidate cell state c̃t is incorporated into the updated
cell state ct. The forget gate ft determines the extent to which the previous cell state ct−1

is retained. The output gate ot regulates the amount of information that is output from
the cell. By dynamically updating the cell state and selectively incorporating or forgetting
information, LSTMs can capture long-range dependencies and store relevant information
over extended sequences.

LSTMs have proven to be effective in various tasks that involve sequences. These include
language modeling, machine translation, speech recognition, and time series prediction.

3.2 Activations
Activation functions are significant when it comes to introducing add non-linearities to
neural networks. Therefore, they can allow complex functions and let the neural networks
learn these powerful operations. In this section, we list the different activation functions
used for the different neural networks in this thesis.

1. Sigmoid Activation:
The functional form of the sigmoid activation is,

f(X) =
1

1 + e−X
. (3.7)

Therefore, the output lies within the range (0,1) for all X.

2. Tanh Activation:
The hyperbolic tangent activation function is defined as,

f(X) =
eX − e−X

eX + e−X
. (3.8)

In this case, the output lies within the range (-1,1).
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3. ReLU Activation:
The standard Rectified Linear Unit or ‘ReLU’ activation has the functional form,

f(X) = max(0, X). (3.9)

It is a piecewise linear function which outputs zero for all negative values of X, and
the value itself for non-negative X.

4. ELU Activation:
The Exponential Linear Unit or ‘ELU’ activation is based on the ReLU function. A
constant α is introduced to induce smoothness to the function. The ELU activation
is defined as,

f(X) =

{
X, if X > 0
α(eX − 1), if X <= 0

where α > 0. The default value of α is set to 1.

5. SELU Activation:
The functional form of the Scaled Exponential Unit or ‘SELU’ is,

f(X) =

{
sX, if X > 0
sα(eX − 1), if X <= 0

(3.10)

where s is the scale. Note that when s = 1, we get the ELU activation. By default,
the Keras Library uses s ≈ 1.05 and α ≈ 1.67.

6. Softmax Activation:
The softmax function converts a vector of values to a probability distribution, with
values in the range (0,1) and a unit sum. It is defined as,

f(X)i =
eXi

N∑
j=1

eXj

(3.11)

where X = (X1, X2, ..., XN) is the input vector and i = 1, 2, ..., N . The output
is then a vector of probabilities. Therefore, the softmax function can be used for
classification problems (as we will see in chapter 5).

Figure 3.1 summarizes four different activation functions. All four subplots are shown for
input values in the range [-10,10]. On the top panels, we present the Sigmoid and Tanh
functions. The sigmoid function’s output is bounded between (0,1), and the tanh output
lies within (-1,1). On the bottom panels, we show the ReLU and ELU activation functions.
The output values on the bottom panels are displayed within range [-10,10].
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(0,0)

Tanh
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Figure 3.1: Common activation functions used for different layers of neural networks de-
scribed in this thesis. All activations are displayed for input values in the range [-10,10].
The figures in the top panel depict the sigmoid and tanh activations. The outputs are
bounded within (0,1) and (-1,1) for the sigmoid and tanh functions, repsectively. The
ReLU and ELU activations are displayed on the bottom panel. The displayed range of the
output on the bottom panels is [-10,10].
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3.3 Loss Functions

The optimization of the neural networks during the learning process involves the adjust-
ment of the network weights. This is called the training phase, and weights are updated to
minimize the error in the network predictions. The quantification of this error is achieved
through loss functions. The loss functions used in this thesis are listed below.

1. MSE Loss:
The Mean Squared Error or ‘MSE’ loss function, as the name suggests, is the mean
of the squared difference between the true and predicted values. Mathematically, it
is written as,

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.12)

where yi and ŷi are the true and predicted labels respectively.

2. R2 Loss:
The R2 loss function is given by,

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳ)2 + δ

, where ȳ =
1

N

N∑
i=1

yi. (3.13)

Here, yi is the true label, ŷi is the corresponding prediction, and ȳ is the mean of the
true labels. A perfect prediction, i.e., ŷi = yi yields R2 = 1. On the other hand, if
the predictions are centered around the mean, ȳ, we obtain R2 = 0. .When applying
the R2 loss numerically, we use small values of δ = 10−7 to avoid undefined values
when encountered with a division by zero.

3. Cross Entropy Loss:
The cross-entropy loss is used for classification tasks. Assuming a total number of
‘C’ classes, the CE loss function of a single vector label for each class i ∈ C is defined
as,

CE = −
C∑
i=1

yi ln(ŷi) (3.14)

where yi is the true label and ŷi is the corresponding predicted probability. The loss
is averaged over all the vector labels. For a binary classification, where the target
labels are either 0 or 1, the CE loss is termed binary cross-entropy. Note that for
the multi-class classification implemented in chapter 5 of this thesis, the labels are
one-hot encoded. This implies that there is only one element of the true vector
label which is non-zero. This is a special case of CE loss, called the ‘categorical
cross-entropy’ loss for multi-class classification.
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3.4 Optimization

Before beginning the optimization of the neural network, the first iteration utilizes network
weights that are initialized randomly (for example, Xavier initialization [209] or He Normal
initialization [210]). With each iteration in the training process, the weights are updated
using the concept of loss functions and their minimization. There are numerous algorithms
that are designed to optimize functions [211]. One of the simplest optimization algorithm
is the gradient-descent.

3.4.1 Gradient-Descent

The gradient-descent algorithm iteratively calculates the updated weights using the scaled
gradients of the loss function with respect to the current weights. Mathematically, it can
be written as,

Wnew = Wold − α
∂L

∂Wold
. (3.15)

The scale, α, is referred to as the learning rate. Wnew and Wold are the new and old weights,
respectively. The loss is denoted by L.

However, in order to calculate the derivatives of the loss function, it is necessary to compute
it for each example of the training dataset. This is inefficient and a major drawback of the
gradient-descent algorithm. Therefore, to overcome this problem, there is an adaptation
to the gradient-descent algorithm, known as the mini-batch gradient-descent.

Mini-batch Gradient-descent

The underlying principle of updating the weights in a mini-batch gradient-descent algo-
rithm remains consistent with the gradient-descent algorithm, but the derivative of the
loss function is an approximated value, i.e., it is computed only on a small batch (a mini-
batch) from the dataset. The choice of batch size for derivative estimation is one of the
hyperparameters in building the neural network.

Stochastic Gradient-descent

An extreme alteration of the mini-batch gradient-descent is the stochastic gradient de-
scent (SGD). Here, the batch size is 1, i.e., the weights are updated based on every training
sample. Since the derivative in SGD is not exact, the descent is not always in the optimal
direction. In order to resolve this issue, a momentum term can be added to the SGD
algorithm, giving rise to SGD with momentum1.

1Note that stochastic gradient descent can sometimes be used to refer to the mini-batch gradient descent
in references.
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Stochastic Gradient-descent with Momentum

Stochastic gradient-descent with momentum is a stochastic optimization method that helps
accelerate gradient descent vectors in the optimal directions. Momentum, or the moving
average of the gradients, essentially accumulates the gradient of the past steps to determine
the right direction. This leads to a quicker convergence. Mathematically, the momentum
vector (mt) at time-step t, can be written as,

mt = ηmt−1 − α
∂L

∂Wold
, (3.16)

where η ∈ [0, 1] is a hyperparameter, and α is scaled with (1-η). The weight is updated as,

Wnew = Wold +mt. (3.17)

Note that the advantage of SGD with momentum is realized only after the first few up-
dates when the knowledge of the previous gradients is utilized to accelerate to the optimal
direction.

3.4.2 Root Mean Square Propagation

The fundamental principle of the Root Mean Square Propagation (RMSProp) algorithm,
is to use the moving average of the squared gradients for each network weight, and then, as
the name suggests, to divide the gradient by the root mean square. RMSProp is an adaptive
learning rate optimization method. The mathematical representation of the algorithm is
given by the equations,

E[g2]t = βE[g2]t−1 + (1− β)g2t (3.18)

and,
Wt = Wt−1 −

η√
E[g2]t + ϵ

gt. (3.19)

Here, E[g2]t is the moving average of the squared gradient at time step t, and,

gt =
∂L

∂Wt

, (3.20)

is the gradient of the loss function with respect to the weight W , at time-step t. The
hyperparameter β is called the decay rate, and η is the learning rate. In order to prevent
divisions by zero, ϵ is introduced as a smoothing term. This way, the learning rate is
divided by an exponentially decaying value, making the learning process adaptive.

3.4.3 Adaptive Moment Estimation (Adam)

Adam is an adaptive learning rate optimization algorithm that combines RMSProp and
SGD with momentum [212]. Adam uses the moving average of past gradients to compute
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the direction of parameter update, similar to momentum. Just like RMSProp, Adam also
utilizes an exponentially decaying average of past squared gradients, essentially resulting
in an adaptive learning rate method. The update equations of the Adam optimizer can be
expressed as,

mt = β1mt−1 + (1− β1)gt, (3.21)

and,
vt = β2vt−1 + (1− β2)g

2
t . (3.22)

mt and vt are the first and the second moment estimates of the gradients, respectively.
These estimates are not perfect, and are biased towards zero due to the initialization of
the mt and vt vectors as zeros. Therefore, bias-correction terms to the first and second
moment estimates can be written as,

m̂t =
mt

1− βt
1

, (3.23)

v̂t =
vt

1− βt
2

. (3.24)

Finally, we get the weight update equation as,

Wt = Wt−1 −
η√
v̂t + ϵ

m̂t. (3.25)

Throughout this thesis, we utilize the Adam optimizer. Additional details on optimizers
can be found in Ref. [211]. The computation of gradients in all these methods is carried out
via backpropagation [208,213]. Backpropagation involves the gradient calculation starting
with respect to the weights of the penultimate layer, and eventually proceeding backwards,
propagating the error through the hidden layers to consequently estimate all the gradients.

Ultimately, the optimization of the weights is an iterative process, where the network learns
with the entire training dataset multiple times or ‘epochs’. The training process typically
includes as many epochs as required until the loss no longer decreases with additional
training. The quality of the trained network can then be evaluated on a validation dataset,
and higher level hyperparameters can be updated at this stage. Finally, a testing dataset
is used to obtain an unbiased evaluation of the trained network. The learning curves,
which are a function of the training and testing losses (or accuracies) and epochs, provide
us with information on whether the network is overfitting or underfitting the data. A
network that overfits the data has a decreasing training loss, but an increasing testing loss
as the number of epochs increases. Similarly, if the training loss has not yet reached a
plateau, the network is underfit to the data. Therefore, the learning curves are used to
monitor the network training process. In order to achieve the best network performance,
methods like early stopping can be applied, i.e., the training is discontinued at the epoch
when the error on the validation set grows. This way, deep learning applications have
the capability to capture complex nonlinear correlations in data, and hence have been
employed to solve a number of physical problems. Some of them include: determining
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the parton distribution function [214, 215], reconstructing the spectral function [216–218],
identifying phase transitions [219–224], assisting lattice field theory calculations [225–228],
evaluating centrality distributions for heavy ion collisions [229–231], parameter estimation
under detector effects [232,233], and speeding up hydrodynamic simulations [234].

In this thesis, we apply the deep learning concepts introduced here to develop novel al-
gorithms and achieve high performances of NNs for constraining the dense matter EoS.
Chapters 4 and 5 are dedicated to the development of these algorithms.
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Chapter 4

A DL Reconstruction of the NS EoS
from Observations

In the first two chapters, we have discussed the observable quantities of neutron stars and
the theoretical EoS models used to predict the global properties of NSs. Traditionally, the
theoretical models are developed and confronted with the available observational data, to
either fulfill the current constraints or are ruled out. This method can however be strongly
model-dependent. It is also possible that the existing NS observations are not systemati-
cally translated to the EoS or the dense matter properties. Other approaches to study dense
matter properties include reconstructing the EoS from NS observables. The most conven-
tional method is the widely recognized Bayesian inference method [156, 235, 236]. This
statistical method, however, typically also rely on parameterizations of the EoS, like piece-
wise polytropic EoSs [153, 157] or spectral representations [162]. These parameterizations
of the EoS, therefore, make the Bayesian methods model-dependent as well. Alternatively,
one could use Gaussian processes [168, 169] or neural network representations of the EoS
in order to overcome this model-dependency.

An effective approach to directly exploit the non-linear mapping between a neutron star’s
structural properties (specifically, the mass-radius or M −R relations) and its underlying
EoS, is the machine learning inference in the sense of supervised learning. Recent studies
based on this approach include works by Fujimoto et al. [159–161], Morawski et al. [237],
Ferreira and Providência [238], and Krastev [239]. However, the method in Refs. [159–161]
utilizes the speed of sound representation for the EoS, integrating a model-dependency. In
Ref. [237], Morawski et al. employed the encoder-decoder architecture of an Auto-Encoder
to reconstruct the EoS without relying on any parametric representation. Ferreira and
Providência utilized Support Vector Machines to regress the EoS in terms of nuclear matter
parameters in Ref. [238]. Krastev demonstrated in Ref. [239] that, a trained feedforward
neural network, when given observational neutron star data, is capable of extracting the
density dependence of the nuclear symmetry energy and therefore indirectly the EoS.
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In this chapter, we implement for the first time, an unsupervised deep learning algorithm
to reconstruct the dense matter EoS. It has been shown in earlier works which incorporated
DL methods that deep neural networks (DNNs) can potentially surpass traditional methods
in solving inverse design problems [240–242]. Here, we test a DNN’s capacity to invert the
TOV equations (see section 2.2.1 of chapter 2), in order to reconstruct the dense matter
EoS from a limited number of M − R observations of NSs. A physics-based method is
introduced in the Automatic Differentiation (AD) framework. We use a neural network
representation of the EoS, called the EoS Network for model-independency. The EoS
reconstruction is achieved through the statistical inference from M −R observations in an
unbiased manner. The design of the inverse problem stated necessitates a functional form
of the TOV equations that is easily differentiable. For this purpose, we train a DNN to
solve the TOV equations, essentially creating an emulator that is called the TOV-Solver
Network. Details on the implemented method follow in the next section.

4.1 Automatic Differentiation to reconstruct the EoS

Figure 4.1 summarizes our designed scheme in a flow-chart. We introduce a primary
neural network called the TOV-Solver Network, in Part(a) of figure 4.1. The TOV-Solver
Network, as the name suggests, is trained using supervised learning methods, to solve the
TOV equations, i.e. to map an EoS to its corresponding M−R curve. The trained network
model is then saved as a mapping from the EoS (x) to its mass-radius curve (z), where z =
f(x). Here, the EoS is input to the TOV-Solver Network, represented as x = Pi(ρi), where
Pi is the pressure at density ρi (Note that ρ is a 1D array of densities arranged in increasing
order). The output of the network, z = (Mi, Ri), represents the corresponding mass-radius
pairs. Furthermore, the TOV-Solver Network is designed with several layers, a series
of differentiable modules, which incorporate both linear transformations and nonlinear
activation functions. The pre-trained network is then loaded into the next step of our
scheme, as shown in Part(b) of figure 4.1. This means that the well-trained parameters
of the TOV-Solver Network are frozen in subsequent procedures, and are not subject to
further training. Figure 4.1(b) additionally depicts a secondary neural network, the EoS
Network, which is tailored to permit unbiased and flexible representations of the EoS.
The EoS representation can be written as Pθ(ρ), where {θ} is the parameter set of the
EoS Network. The output of the EoS Network is linked to the well-trained TOV-Solver
Network, as shown in figure 4.1(b), and is optimized in an unsupervised manner to fit the
output of the TOV-Solver Network to M−R observations. The optimization procedure of
the EoS Network involves reducing the loss function, which is the standard χ2 between the
observations and the predictions of our designed pipeline “EoS Network → TOV-Solver
Network”. Assuming we have Nobs number of M − R observations, the loss function is
defined by

χ2 =

Nobs∑
i=1

(Mi −Mobs,i)
2

∆M2
obs,i

+
(Ri −Robs,i)

2

∆R2
obs,i

. (4.1)
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Figure 4.1: Flow chart outlining the methodology implemented toreconstruct the EoS.
It consists of two main stages: training a TOV-Solver Network (a) and training an EoS
Network (b). Note that in (b) the TOV-Solver Network is well-trained and the weights
are frozen. The architectures of the TOV-Solver Network and EoS Network are illus-
trated in (c) and (d) respectively. The network nodes are represented by colored spheres,
and the colors indicate the indices across the width of each layer. The connections be-
tween nodes across layers are depicted as shadow lines, representing a 1D convolutional
kernel operation with trainable parameters. Figure taken from Ref. [2] (DOI:10.1088/1475-
7516/2022/08/071).
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In Eq. (4.1), if the M−R observations are denoted as (Mobs, Robs), and their corresponding
uncertainties as (∆Mobs,∆Robs), then (Mi, Ri) denotes the predicted output of the ith

observation, i.e. (Mobs,i, Robs,i). Since the parameters of the TOV-Solver Network are
fixed, we can derive their gradients as

δχ2

δθ
=
δχ2

δz

δz

δPθ

δPθ

δθ
. (4.2)

The last two terms of Eq. (4.2) by definition, are computed in the back-propagation algo-
rithm [208] within the AD framework for the designed scheme in figure 4.1(b).

In other words, we are essentially fine-tuning the parameters of the EoS Network to ob-
tain the desired M − R curve, after going through the frozen TOV-Solver Network, with
guidance from a limited set of observational data. The architectures of the TOV-Solver
Network and the EoS Network are shown in Figure 4.1 as part (c) and (d), respectively. We
utilized the Python Library Keras [243], which is built on the Tensorflow platform [244], to
setup the network models and to perform the AD calculations for optimizing the NS EoS.

4.2 TOV-Solver Network
In this section, we provide details on the TOV-Solver Network like data generation and
network architecture. The data preparation includes techniques described in chapter 2.

4.2.1 TOV-Solver Network: Data Generation

In order to train the TOV-Solver Network on mapping any given EoS to its corresponding
M−R curve, we need sufficient training data. Since the number of available microphysical
EoS models are limited, we use parameteric representatinons to generate EoSs in bulk.
In particular, we employ the piecewise polytropic EoS model. The description of these
parameterized EoS models is detailed in section 2.1.2 of chapter 2. Note that we initially
use only 3 different EoSs (SLy [130], PS [126], or DD2 [131] EoS) to describe matter at low
densities (ρ < ρsat). For training the TOV-Solver Network, we generate 100,000 polytropic
EoSs for each category of low-density EoSs (SLy, PS, and DD2), leading to a total of
300,000 EoSs. These EoSs serve as training and testing input to the TOV-Solver Network.
The M − R sequences corresponding to these EoSs are calculated using the Tolman–
Oppenheimer–Volkoff (TOV) equations [39, 41], which are described in section 2.2.1 of
chapter 2.

This way, we prepare the data for the TOV-Solver Network. From this set of generated
data, we exclude all the EoSs (and their corresponding M − R sequences) which fail to
accommodate a neutron star of mass 1.9M⊙. This preference of a conservative limit follows
from the observations [53,54,245]. Moreover, the data is merely used to create an emulator
for solving the TOV-equations, irrespective of the validity of the EoS. A lower limit how-
ever, can be used as the lower bound output by the network. On applying the cut-off, we are
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Figure 4.2: A few hundred piecewise polytropic EoSs (top) and their corresponding M −R
curves (bottom) for training/testing the TOV-Solver Network. At sub-saturation densi-
ties, the EoSs are fixed as either PS (red), SLy (blue) or DD2 (green). The boundary to
the grey region on the M−R plot depicts the causalty limit. See Ref. [2] for original figure.
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left with the remaining EoSs. This includes 94,462 EoSs corresponding to PS; 61,273 EoSs
corresponding to SLy; and 72,834 EoSs corresponding to DD2; implying a total of 228,569
EoSs for training and validating the TOV-Solver Network. A few hundred of the EoSs and
their corresponding M −R curves are depicted in figure 4.2 in the top and bottom panels,
respectively. The boundary to the grey region on the M−R plot depicts the causalty limit.

4.2.2 TOV-Solver Network: Architecture

The input to the TOV-Solver Network, i.e., the EoS, is represented in a discretized format,
denoted as Pi ≡ P (ρi). The contribution to the EoSs from the low density region (ρ < ρsat)
are omitted in the network as these values have been established in the initial TOV-Solver
Network to follow one of the three conventional nuclear EoSs: PS, SLy or DD2. Thus, we
designate the input layer as an array of pressure values, Pi ≡ P (ρsat ≤ ρi ≤ 7.4ρsat), i.e., a
single channel with shape (Nρ, 1). Here, Nρ is the number of discrete density values. The
output however has a shape (Nρ, 2), i.e., it has two channels for the mass M , and radius,
R, respectively. Two different resolutions for the EoS representation are used here, namely
Nρ = 128 or 32. It was realized in subsequent assessments that a coarse resolution suffices
to accomplish the desired results (see figure 4.4). The model uses logarithmic values of
pressure as the input. Both the input and the output arrays are normalized as,

ynorm = (y − ymin)/(ymax − ymin), (4.3)

where y = {log(P ), (M,R)}. Therefore, the normalized arrays constitute elements that lie
within the range (0, 1).

We construct several neural network architectures for the TOV-Solver Network. More
specifically, we employ the Fully Connected neural network (FCN), Convolutional neural
network (CNN), Long Short Term Memory (LSTM) and WaveNet. A brief description of
the different neural network structures is given below. See section 3.1 of chapter 3 for a
description of the CNN, FCN and LSTM models. WaveNet is a generative neural network
model that is a modification of the CNN, with autoregressive properties, which mimics the
concept of autoregression utilized in solving the TOV equations (refer to section 2.2.1).
This model is therefore chosen here to resemble the conventional numerical methods.

WaveNet for TOV-Solver Emulator

WaveNet was first introduced in the year 2016, for generating raw audio waveforms [246].
It is based on a specific design of the convolutional neural network (see section 3.1.2 of
chapter 3 for an introduction to CNNs). It is a deep neural network with autoregressive
properties, meaning that the predictive distribution for each audio sample is conditioned
on all previous ones.
The model operates directly on the raw audio waveform. The joint probability of a wave-
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form x = {x1, ..., xT} can be factorised as a product of conditional probabilities:

p(x) =
T∏
t=1

p(xt | x1, ..., xt−1). (4.4)

Therefore, each audio sample xt is conditioned on the samples at all previous timesteps.

The autoregressive property of WaveNet comes in handy for the TOV-Solver Network.
This is because the same concept of autoregression is exercised in solving the TOV equa-
tions. Therefore, we model and test a neural network, based on WaveNet, to map an EoS
to its corresponding M − R curve. The concept of autoregression in WaveNet is repro-
duced by using causal, dilated convolutional layers [246, 247] in the network. A dilated
convolution effectively allows the network to operate on a coarser scale than with a normal
convolution. This is similar to pooling or strided convolutions, but here the output has
the same size as the input. The causal convolutions ensure that the model does not violate
the ordering of the input data, which in this case is the EoS, or x = P (ρ). In other words,
the prediction output by the model at timestep t, i.e. p(xt+1 | x1, ..., xt), depends only on
the previous ones and cannot depend on any of the future timesteps xt+1, xt+2, ..., xT . The
same goes for the M − R pair, (Mi, Ri), predicted at central density ρi : the prediction
of the M − R pair with central density ρi, depends on the EoS until ρi and not at higher
densities (ρ > ρi). Additionally, in order to ensure information from the lowest densities
is efficiently captured to make an M − R prediction, we use dilated convolutions. A di-
lated convolution, also known as atrous convolution, capacitates the TOV-Solver Network
to have a larger receptive field without increasing the number of parameters at the same
rate [248]. It is a convolution which makes use of a kernel that is inflated by inserting holes
between its consecutive elements. Therefore, the kernel is applied over a larger length
(area/volume if the convolutions are 2D/3D respectively) by skipping input values with
a step (this step corresponds to the dilation factor, described below). This is an efficient
way of replacing a convolution that uses a larger kernel (derived from the original one by
dilating it with zeros) with a convolution that uses inflated kernels. The dilation factor
tells us how much a kernel is inflated, or how many step to skip in the input values, while
applying the convolution operator. If F (s) is the input, and k(t) is the kernel, we can
define the convolution operator as,

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t). (4.5)

This formula can be generalized as,

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t). (4.6)

On keeping the value of l = 2, we skip 1 pixel (l − 1 pixels) while mapping the filter onto
the input, thus covering more information in each step.
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Therefore, a 1-dilated convolution is the standard convolution we described in chapter 3.
By applying a series of dilated convolutional layers (with different dilation factors as shown
in table 4.1), along with a ‘causal’ padding, we ensure the autoregressive behaviour of the
network, without forfeiting any information. The network architecture is presented in
Table 4.1, for both Nρ = 128 and 32.

The kernel parameters are initialized from the Xavier or Glorot uniform distribution [209],
and the L2 regularization (λ = 10−7) is applied. The ELU activation function is applied
on the all the layers but the last (Sigmoid activation).

Table 4.1: The WaveNet model architecture used for the TOV-Solver Network. Table
taken from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).

Layer Index Layer Dilation Dimension

Nρ = 128 Nρ = 32

Input - - (128,1) (32,1)

1 Convolution 1D - (128,128) (32,32)

2 Convolution 1D 1 (128,128) (32,32)

3 Convolution 1D 2 (128,128) (32,32)

4 Convolution 1D 4 (128,128) (32,32)

5 Convolution 1D 8 (128,128) (32,32)

6 Convolution 1D 16 (128,128) (32,32)

7 Convolution 1D 32 (128,128) (32,32)

8 Convolution 1D 16 (128,128) (32,32)

9 Convolution 1D 32 (128,128) (32,32)

10 (Output) Convolution 1D 64 (128,2) (32,2)

Alternatives for the TOV-Solver Emulator

In this section, we describe three other neural networks trained to map the EoS to its
corresponding M−R curve. We describe their network architectures in the following para-
graphs. Note that for each DL model, we design architectures with both Nρ = 128 and 32.

Fully connected Neural Network for the TOV-Solver Emulator

The fully connected neural network (FCN) was introduced in section 3.1.1 of chapter 3.
Here, we test the use of a FCN or the basic dense neural network for the TOV-Solver
Network. The network models pertaining to the task were designed to have the architec-
tures as detailed in Table 4.2 for both Nρ = 128 and 32. In both cases, the ELU activation
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function was applied on the hidden layers, and Sigmoid on the output layer. The model
weights were initialized with the He normal distribution [210]. An L2 regularization penalty
(λ = 10−7) was applied on the layer weights. The FCN models were trained for 15,000
epochs, given their significantly superior training times when compared to the rest of the
DL models. Further details of performance are given in Table 4.5.

Table 4.2: The FCN model architecture used for the TOV-Solver Network. Table taken
from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).

Layer Index Layer Dimension

Nρ = 128 Nρ = 32

Input - 128 32

1 Dense 128 32

2 Dense 64 64

3 Dense 32 128

4 Dense 64 64

- Add (2,4) 64 64

5 Dense 128 32

- Add (1,5) 128 32

6 Dense 256 64

Output Reshape (128,2) (32,2)

Convolutional Neural Network for the TOV-Solver Emulator

Convolutional Neural Networks (CNNs) are widely exploited for their potential to extract
key features or patterns in the input data (see section 3.1.2 of chapter 3 for an introduction
to the functionality of CNNs). This type of a DL model is explored for the TOV-Solver
Network to ensure that the network is not rendered obsolete when encountered with stark
changes in the pressure gradient. The number of layers in the two CNN models that we
built and their dimensions are listed in Table 4.3. A kernel size of 3×1 is used for both the
models, with the weights initialized from the He normal distribution [210], and penalized
with the L2 regularizer (λ = 10−6). Stride values of 1 and 2 are applied alternatively on
the convolutional layers. We employ the ELU activation function on the hidden layers and
Sigmoid on the output layer. The padding ‘same’ is applied to the convolutional layers to
disallow loss of information at the boundaries or a change in dimension of the following
layer. The performance of CNNs for the TOV-Solver Network in comparison to other
networks can be found in table 4.5.
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Table 4.3: The CNN model architecture used for the TOV-Solver Network. Table taken
from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).

Layer Index Layer Dimension

Nρ = 128 Nρ = 32

Input - (128,1) (32,1)

1 Convolution 1D (128,128) (32,32)

2 Convolution 1D (64,64) (16,64)

3 Convolution 1D (64,64) (16,64)

- Add (2,3) (64,64) (16,64)

4 Convolution 1D (32,64) (8,64)

5 Convolution 1D (32,64) (8,64)

- Add (4,5) (32,64) (8,64)

6 Convolution 1D (16,32) (4,32)

7 Convolution 1D (16,32) (4,32)

- Add (6,7) (16,32) (4,32)

- Reshape 512 128

8 Dense 128 32

9 Dense 256 64

Output Reshape (128,2) (32,2)

Long Short Term Memory Network for the TOV-Solver Emulator

The Long Short Term Memory (LSTM) network is variant of the recurrent neural network
(RNN) as introduced in section 3.1.3 of chapter 3. Due to the fact that the output layer is
an M − R sequence, the prospects of LSTM for the TOV-Solver Network are examined.
The recurring units or memory cells in LSTM carry the dependency across time sequences,
leading to longer training times (see Table 4.5 for a comparison to other models). The
model descriptions are given in Table 4.4 for Nρ = 128, 32. The kernel parameters of all
the layers were initialized from the Xavier or Glorot uniform distribution [209], and the L2

regularization (λ = 10−7) was applied. In this case, we used the Tanh activation function
for the LSTM layers. We provide the details on the network performance in table 4.5. Note
that the use of recurrent neural networks for sequence based data outputs the minimum
error.
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Table 4.4: The LSTM model architecture used for the TOV-Solver Network. Table taken
from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).

Layer Index Layer Dimension

Nρ = 128 Nρ = 32

Input - (128,1) (32,1)

1 LSTM (128,128) (32,32)

2 LSTM (128,64) (32,64)

3 LSTM (128,128) (32,64)

4 LSTM (128,128) (32,32)

- Add (1,4) (128,128) (32,32)

5 (Output) LSTM (128,2) (32,2)

4.2.3 TOV-Solver Network: Performance

The generated EoSs and corresponding M − R sequences from the previous section 4.2.1
are used to train and test the TOV-Solver Network. We use 52,000 samples from each
low-density EoS, for training, i.e., 156,000 training samples in total. The remaining 72,569
EoSs are used for testing. This implies a 68%-32% segregation of the training-testing
data. All four neural network models are tested on two different resolutions, and their
performances are tabulated in table 4.5.

Table 4.5: Comparison of the performance of different Neural Networks for solving the
TOV equations. Table taken from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).

Nρ NN R2 MSE Parameters Epochs Time

(×10−5) (#) (×103) (×103sec)

128

CNN 0.9999 1.743 170,176 3.5 7.35

FCN 0.9999 1.052 70,304 15 4.91

LSTM 0.9998 0.741 347,416 3 32.5

WaveNet 0.9998 3.003 296,706 3 64.7

32

CNN 0.9999 3.019 58,912 3.5 2.15

FCN 0.9999 1.179 23,936 15 2.79

LSTM 0.9999 0.814 74,904 3 4.03

WaveNet 0.9999 3.047 18,882 3 10.7

Table 4.5 shows that all the DNNs are capable of finding the TOV solutions of the testing
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input EoS samples at precisions that reach R2=99.9%. The LSTM and WaveNet models
are typically used for training series or sequences. Therefore, we observe a boost in their
performances when combined with the EoS-Network (described in section 4.3 below). The
network predictions for Nρ = 32 and the true TOV solutions to a few testing EoS samples
are presented in figure 4.3.
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Figure 4.3: Predictions of the four different neural network models for the TOV-Solver
Network with resolution Nρ = 32, represented by different colored markers. The true TOV
solutions to the EoSs are shown as dashed black lines and labelled ‘TOV’.

Figure 4.3 depicts the performance of all the four neural networks employed for mapping
an EoS to its corresponding M−R curve. The results from the networks overlap. For EoSs
that incorporate stark gradients in pressure, we observe that the predicted M − R curves
from the different DL models cannot all capture the kinks resulting from the pressure
gradient. For these kinds of EoSs, we also observe a better performance from WaveNet
compared to LSTM.

Furthermore, we depict the performance of one of the four NN models, in particular, the
LSTM model for Nρ = 128 and 32 in figure 4.4. We observe that the performance of the
TOV-Solver Network on M − R curves with kinks reduces very slightly as Nρ is reduced
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Figure 4.4: Comparison of the LSTMs’ predictions for different input-output resolutions,
Nρ = 128 and 32, in the left and right panels, respectively.
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Figure 4.5: Learning curves of the WaveNet model show no signs of overfitting.

from 128 to 32. For this reason, we continue to work with the lower resolution, i.e., Nρ =
32.

Based on the results of the NN models for the TOV-Solver Network, we employ the
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WaveNet deep learning model as an emulator for this task. The WaveNet model is trained
for 3000 epochs (the learning curves are shown in figure 4.5, and prove that the model does
not overfit to the training data). We present the results from the trained network on a few
testing samples in figure 4.6.
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Figure 4.6: The TOV-Solver Network predictions using the WaveNet model for a few
unseen test EoSs are shown against the ground truth values of the M − R curves. The
dashed black line is output from TOV equations and the markers denote the network
predictions. The blue and green dotted M − R curves represent the network predictions
for the BHBΛϕ and SFHo EoSs respectively. Figure taken from Ref. [2] (DOI:10.1088/1475-
7516/2022/08/071).

We observe from figure 4.6 that the trained TOV-Solver Network is successful in capturing
the mapping of randomly given EoSs to the corresponding M − R curves. It can also be
seen that the trained WaveNet also predicts the M − R curves of the SFHo and BHBΛϕ
EoSs up to a high precision as shown in Figure 4.6. The M −R curves of all the test EoSs
are successfully reproduced by the DL models with the coefficient of determination R2 ∼
99.9%. This illustrates that DNNs have the capacity to replace conventional numerical
methods used for solving the TOV equations. In comparison to numerical calculations
like the Euler or Runge-Kutta methods, the network emulator used here, is (i) superior in
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computational efficiency, (∼ 106 sec faster), and (ii) easily differentiable. This is critical
for applying back-propagation in the AD framework, deployed in the following section for
statistical inference of the EoS reconstruction. The trained TOV-Solver Network model
and weights are frozen and saved for the forthcoming procedures.

4.3 EoS Network

Once the TOV-Solver Network is trained, the EoS Network is introduced into the pipeline
(see Figure 4.1(b)). The EoS Network takes density, ρ, as input and produces the corre-
sponding pressure, Pθ(ρ), as output, effectively modeling the equation of state. The EoS
output (Pθ(ρ)) from the EoS Network is further input to the well-trained TOV-Solver
Network, thus connecting the two networks. This integration allows the TOV-Solver
Network to incorporate the learned EoS at every iteration step and employ the saved
weights to output the mass-radius sequence. The TOV-Solver Network parameters are set
as non-trainable weights prior to the EoS optimization process. The trainable weights of
the EoS Network are then optimized in this pipeline to fit the predicted M − R output
to mock observational data, thereby inverting the TOV equations. Compared to other
studies which captured the inverse mapping from M−R observations to the EoS [159–161,
237–239, 249–251], the proposed method belongs to the unsupervised learning paradigm.
The unsupervised learning algorithm developed in this thesis can be cast as a generalized
Bayesian inference, with augmentations in the following aspects: (i) the EoS is represented
in an unbiased manner as a DNN, thus the parameters to optimize are the network weights
and biases; (ii) the traditional numerical methods to solve the TOV equations are replaced
by a well-trained TOV-Solver network, thus simplifying and speeding up the following AD
process; and (iii) the optimization uses a gradient-descent based approach within the AD
framework as depicted in Figure 4.1(b). The network architecture and the optimization
procedure are described in the following section.

4.3.1 EoS Network: Architecture and Optimization

The input density to our pipeline consists of a 1D array of length Nρ= 32, evenly spaced on
the linear scale and normalized to range between (0, 0.1). As mentioned earlier, the trained
WaveNet model of the same resolution is deployed as the TOV-Solver Network. The
architecture of the EOS Network includes three 1D convolutional layers: two hidden layers
and one output layer, as illustrated in Figure 4.1(d). Each of the hidden layers consists of
64 feature maps. We employ a 1×1 kernel size, with the kernel weights initialized from a
He normal distribution [210]. Regularization with L2 penalty (λ = 10−8) is exercised on
the weights, and the same padding is applied to all layers. The output layer employs the
Sigmoid activation function, while the hidden layers utilize the ELU activation function. By
using kernel size 1×1, we ensure that each input element shares the same parameters in the
above architecture. Hence, the induced relationship between the ith input density neuron,
ρi, and corresponding output pressure, Pi, follows a structure similar to a fully connected
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neural network with two hidden layers, each comprising 64 neurons. Consequently, the
EoS Network is characterized by a total of 4353 parameters, defining Pθ(ρ). We further
specify the weights of each layer in the EoS Network to be non-negative. This preserves
the order of the input layer sequence up to the output layer, P (ρ). As a consequence, we
establish monotonicity in the represented function P (ρ), a condition that is required by
any physical EoS. Additionally, this approach guarantees a well-correlated function for the
reconstructed EoS. Contrary to the common practice of utilizing large datasets for training
neural network, the approach designed here uses an optimization process that necessitates
only one mass-radius (M −R) sequence. Hence, each training epoch operates with a batch
size of 1, i.e, in the ideal situation, we are required to only optimize the unique dense
matter EoS to fit M−R observations. However, we take into account the realistic scenario
where all observational data comes with sizeable uncertainties and adapt the developed
scheme to meet the associated requirements (see section 4.3.2 for further details).

If we denote Nobs as the number of reliable M − R observations, the loss function for
the training the EoS Network is given by Eq. (4.1). It is defined as the distance between
the observations and the M − R curve as predicted from the network pipeline above, i.e.
the likelihood of observations given an EoS and its corresponding M − R curve from the
TOV-Solver Network. Nevertheless, the observational data is unevenly distributed in the
M −R space, potentially causing discontinuities in the M −R curve due to measurement
uncertainties. Furthermore, the data is limited and the central density, (ρci), corresponding
to an uncertain observation is unknown. In other words, the ith M − R observation,
(Mi, Ri), does not necessarily correspond to the ith central density, ρci, in the input layer 1.
In order to optimize the loss function effectively, we employ the ‘closest approach’ method
as implemented in Ref. [235]. Thus, during each iteration of the training process, we
evaluate the loss by,

χ2 =

Nobs∑
i=1

(M(ρci)−Mobs,i)
2

∆M2
i

+
(R(ρci)−Robs,i)

2

∆R2
i

. (4.7)

Here, ρci for each ith observation is updated according to the formula,

ρci = argmin
ρc

(M(ρc)−Mobs,i)
2

∆M2
i

+
(R(ρc)−Robs,i)

2

∆R2
i

. (4.8)

Hence, Eq. (4.8) is employed to calculate the central densities of (Mobs, Robs) that result in
the minimal distance between the M−R curve generated by the TOV-Solver Network and
the actual M −R observations. The Adam optimizer [212] was utilized here, with varying
learning rates (α’s) or different stages of the training process. Usually, smaller learning
rates are used at later stages to stabilize the training. The network’s learning process is
regulated by reducing the loss function χ2. The learning rate for one such reconstruction in
our study, was scheduled as follows: 1000 epochs (α = 0.001), 1000 epochs (α = 0.005), 1500

1In such circumstances, a finer resolution (Nρ = 128) might prove useful.
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epochs (α = 0.003), 1600 epochs (α = 0.0001) and, finally, 2000 epochs (α = 3 ×10−5), in
the order specified. The choice of applying small changes in the learning rates is attributed
to the minimal impact they have on the final results. Through this approach, the EoS
is reconstructed with an uncertainty which is proportional to the statistical uncertainty
of the observations. In certain situations where the causal condition is not fulfilled, the
DNN fails to produce a realistic EoS. This lack of convergence is evident from the non-
decreasing loss during the optimization process. To address this problem, we enforce the
causal condition to reject EoS solutions that do not fulfill the physical constraints. The
next section describes the reconstruction of the EoS using mock M −R data.

4.3.2 Tests on Mock Mass-Radius data

Ideal Scenario

The reconstruction method presented in this work is validated by closure tests that are
first performed in an ideal case of mock data, i.e, synthetically generated M − R mock
data without systematic and statistical uncertainties. We use two example sets of such
mock data from M − R curves which correspond to two randomly chosen EoSs (labelled
Mock Test I and II) as depicted in Figures 4.7 and 4.8. The black solid lines in both the
figures are the true curves used to test the reconstruction method. We are compelled to
use mock NS data with masses above 1M⊙ due to the absence of naturally occurring low-
mass (< 1M⊙) neutron stars. Figure 4.7 depicts two example sets of mock observations
each containing 11 M − R points, which are chosen from the region M > 1M⊙ along the
M − R curve. These 11 highlighted black points lie on the M − R curve (ground truth).
Note that the mock observations are spread quite uniformly on the mass scale in the left
panel of figure 4.7. However, this is a very unlikely situation in real observational data.
Therefore, we ensure that the mock data is randomly spread on the mass scale in the right
panel of figure 4.7. With the proposed method, we reconstruct the EoSs from these two
example sets of mock M − R data. The EoSs reconstructed by the DNN in this work are
plotted as dashed red lines in the left and right panels of Figure 4.8. These reconstructed
curves are compared to the ground truth EoSs, which are displayed as solid black lines.
Evidently, for ideal scenarios, the reconstruction of the EoSs is fairly successful in the range
M > 1M⊙. The EoSs predicted by the DNN are remarkably close to the ground truth EoSs
in the high-density region (i.e., corresponding to the high mass region in M − R curve).
In the left panel of figure 4.8, the deviation of the reconstructed EoS from the ground
truth in the low-density regime is attributed to the lack of mock data below 1M⊙. This
is also demonstrated in figures 4.8 and 4.7, where the 11 black solid points on the EoSs
correspond to the 11 mock data points on the M − R curves. The red dashed curves in
figure 4.7 are the M − R curves corresponding to the reconstructed EoSs as predicted by
the TOV-Solver Network. The two M − R curves agree with each other reasonably well
in the region where the mock data is sufficiently available. For further validation, one can
produce the M −R curve of the reconstructed EoS by directly solving the TOV equations
and then compare the obtained results.
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Figure 4.7: Examples of ideal mock M − R data used to test the reconstruction of the
corresponding EoSs with the method proposed in this work. The 11M−Rmock data points
(black markers) are located in the region M > 1M⊙ along the ground truth M − R curve
(black solid line). A reasonable agreement of the M−R curves from the reconstructed EoSs
(red dashed line) with the ground truth curves is observed in the mass region M > 1M⊙.
Figure taken from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).
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Figure 4.8: Comparison of the EoSs reconstructed by the described method (dashed red
lines) and the ground truth EoSs (solid black lines) using ideal mock M − R data. The
black points shown are central densities of the NSs corresponding to the mock M −R data
in figure 4.7. Figure taken from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).
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Realistic Scenario

We now proceed to the practical situation where observations inevitably involve uncer-
tainties. In the next step, the proposed method is evaluated on the same mock M − R
data as in figure 4.7, albeit with uncertainties included. We incorporate statistical noise,
for both the mock tests, by sampling multiple M − R curves from a normal distribution
centered around the true M−R values, N (Mi;Ri;σMi

;σRi
). A relative standard deviation

of 10% is applied to both mass and radius, represented as ∆Mi = 0.1Mi and ∆Ri = 0.1Ri.
Consequently, 500 sets of mock M −R data samples are drawn from a normal distribution
with σM = 0.1M , σR = 0.1R. The true M − R curve is represented by the black solid
line in figure 4.9, and the highlighted black circles mark the 11 M − R mock data, which
are the mean values of the respective normal distributions. The blue point-cloud in the
figure depicts all 500 sampled sets of the mock data points resulting from the true M −R
curve, where each sampled set contains just 11 M − R pairs, all above ∼ 1M⊙, to be
consistent with the current real observations. The optimization procedure is carried out
for all 500 samples. The results of the optimization are shown in figure 4.10. For every
sampled set of mock data, the proposed algorithm can reconstruct exactly one EoS based
on the maximum a posteriori probability (MAP). During this closure test, the uncertainty
of the reconstruction method is evaluated by fitting the reconstructed EoSs to a uni-variate
normal distribution, denoted as N (µi, σi). This process is straightforward and the recon-
structed, model-independent EoS is shown in figure 4.10. The 2σ, 95% confidence level
of the EoS is depicted as the orange shaded region. The dashed red curve in the shaded
region of the figure is the mean of the reconstructed EoS. The TOV-Solver Network pre-
dicts the M −R curves corresponding to each of the 500 reconstructed EoSs. The M −R
predictions of the TOV-Solver Network from the reconstructed EoSs are first filtered to
satisfy the causal limit and then subject to a normal distribution fit. In this case, all
M − R points with the same central density ρc,i (i.e. the ensemble of each element from
the output sequence) are fitted with individual bi-variate Gaussian distributions, given by
p((Mi, Ri)|Pj) = N (µi, σi). The 95% confidence level is determined from the 2.44σi inter-
val for 2D distributions. This uncertainty band of the M − R curve is illustrated by the
orange band in figure 4.9. The mean of the resulting M−R curve band from the bi-variate
distribution is represented by the dashed red line in the figure. It is evident that the width
of the M − R curves obtained from the reconstructed EoSs is considerably smaller, when
compared to the width spanned by the uncertainty of the mock M −R data samples, rep-
resented as blue point clouds. This illustrates the potential of the novel algorithm for the
EoS reconstruction from NS observables. We demonstrate its effectiveness in the presence
of large uncertainties associated with the mock M − R data. In a few instances of the
sampled M − R curves, however, the NN fails to produce a realistic EoS. The failure can
be attributed to the large uncertainties of individual M − R pairs, causing outliers in the
M − R curve. Moreover, the points on the M − R curve are assumed to be ordered in
the ascending order of their mean mass. However, accounting for large uncertainties while
sampling from a Gaussian distribution, may result in a disordering of the M − R pairs.
The causal condition is employed to filter out these EoSs which fail to converge.
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Figure 4.9: The blue point cloud represents the M−R mock data ensembles, sampled with
10% uncertainties from the ground truthM−R curve (black solid line). The 95% confidence
level of the M − R band from the reconstructed EoSs is depicted as the orange shaded
region, and the mean as a red dashed line. Figure taken from Ref. [2] (DOI:10.1088/1475-
7516/2022/08/071).
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Figure 4.10: Comparison of the ground-truth (black solid line) and the reconstructed EoS
(red dashed line) with uncertainty (orange band), using M −R mock data from figure 4.9.
Figure taken from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).
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Additional results are presented in figures 4.11 and 4.12. In these figures, we demonstrate
the performance of the EoS reconstruction for both mock test I and II (the same EoSs and
M − R curves used in figures 4.8 and 4.7). However, different observational uncertainties
are assumed here: the relative noise level of mock data are set to 10% and 5% of the
mean M −R mock data. For this method, the systematic error can be quantified based on
both the uncertainty of the TOV-Solver Network, and of the EoS Network. The results
shown in figure 4.12 demonstrate that the mean of the reconstructed EoSs is closer to the
ground truth in the case with 5% error as compared to the case with 10% error. The
uncertainty band narrows down with decreasing error. Hence, the availability of more
precise observations in future offers significant potential for the reconstruction of a better
constrained EoS using the described method. All the closure tests described above confirm
that the Automatic Differentiation method developed in this work, utilizing deep neural
networks, effectively reconstructs the underlying EoS for dense neutron star matter. This
is achieved even with limited mock M − R observations of neutron stars that contain
substantial measurement errors.
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Figure 4.11: The ground truth M − R curve is depicted as a black solid line and the
black dotted markers represent mean of the individual M − R mock data points used
for reconstructing the EoS. The M − R relationships from the reconstructed EoSs with
means (red dashed line for 10% noise level, blue for 5%) and uncertainties (orange band
for 10% noise level and blue for 5%) are also depicted. Note that the M − R bands are
an output from the TOV-Solver Network. The left and right panels represent the Mock
Test I and Mock Test II, respectively. Figure taken from Ref. [2] (DOI:10.1088/1475-
7516/2022/08/071).
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Figure 4.12: The EoSs reconstructed using different levels of uncertainties on the M − R
mock data, with the blue band denoting a 5% noise level and the orange band denoting
a 10% noise level. The corresponding dashed lines represent the respective mean of the
reconstructed EoSs. The left and right panels represent the results for the Mock Tests I
and II, respectively. Figure taken from Ref. [2] (DOI:10.1088/1475-7516/2022/08/071).

Mock Tests on SFHo and BHBΛϕ EoSs.

So far, we have presented results of the reconstructed EoSs that used a few M − R curve
examples from the testing data set (piecewise-polytropes), selected at random. In this
section, we test the performance of the neural networks in the developed method on two
microphysical EoSs, namely the SFHo [133] and BHBΛϕ [144] EoSs (see section 2.1.1 of
chapter 2 for a description of these EoS models). We use randomM−R points on theM−R
curves, such that M > 1M⊙, corresponding to the SFHo and BHBΛϕ EoSs. We repeat the
optimization procedure to reconstruct the two EoSs without assuming any uncertainties.
The reconstructed SFHo and BHBΛϕ EoSs obtained from the EoS Network are depicted as
red dashed curves in the left panels of figure 4.13 and figure 4.14 respectively. The results
are compared with the true EoSs which are also depicted in the figures as solid black curves.
Furthermore, we depict the M −R curves obtained from the reconstructed EoSs using the
TOV-Solver Network (red dashed curves) against the true M − R curves (solid black
curves) in the right panels of figure 4.13 and figure 4.14, for the SFHo and BHBΛϕ EoSs,
respectively. It can be observed from figure 4.14 that the reconstructed EoS deviates from
the true EoS only at densities larger than the central density corresponding to the maximum
mass neutron star produced by the EoS. The EoS Network outputs an EoS that reproduces
the trueM−R curve until the maximum mass, up to a very high precision. Therefore, these
figures showcase a drawback of the proposed method. The lack of information regarding
whether or not the maximum mass is reached for a given M − R curve affects the EoS
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Figure 4.13: EoS reconstruction test on the SFHo EoS [133]. Figure taken from Ref. [2]
(DOI:10.1088/1475-7516/2022/08/071).
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Figure 4.14: EoS reconstruction test on the BHBΛϕ EoS [144]. Figure taken from Ref. [2]
(DOI:10.1088/1475-7516/2022/08/071).

reconstruction. This remains unknown for real observations. Nevertheless, several attempts
have been made to predict the maximum mass of NSs [252–255].
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4.3.3 Application on Real Mass-Radius Observations

In this section, we apply the physics-based DL algorithm to reconstruct the dense matter
EoS using real M −R observations of NSs. For this, we re-train the TOV-Solver Network
with additional data. It can be seen from the lower panel of figure 4.2 that for NSs
with M ≊ 1M⊙, there is insufficient data in the region where radius R ≊ 13 − 15km.
Therefore, we prepare additional training data that is based on the TM1 EoS [128] for sub-
saturation densities (more specifically, we prepare 100,000 piece-wise polytropic EoSs and
apply the 2M⊙ constraint to obtain 90,234 additional EoSs). See figure 2.2 and lower panel
of figure 2.3 for a few examples. Hence, we now have four different low density (ρ < ρ0)
EoSs included in the data generation for re-training the TOV-Solver Network: PS, SLy,
DD2 and TM1. The TOV-Solver Network is updated in the pipeline (see figure 4.1), with
this modification.

We now present the list of current M − R observations [75, 82, 86, 87, 89, 90] used in this
thesis in table 4.6. The first six observations in the table come from NSs in low mass X-ray
binaries in quiescence [75] (see section 1.1.2 for an introduction). The next six observations
in the list are observations from thermonuclear bursters [75] (see section 1.1.2). X5 and
X7 are quiescent neutron star low-mass X-ray binaries in the globular cluster 47 Tuc [82].
By fitting the atmosphere models of X-ray bursting NSs directly to the observed spectra,
mass and radius measurements of the pulsar 4U 1702-429 were obtained [256]. A radius
measurement of PSR J0437–4715 is obtained from its ultraviolet and soft X–ray thermal
emissions [257]. The last two pulsars in the table (PSR J0030+0451 and PSR J0740+6620)
are observations from NICER [86, 87, 89, 90], which targets rotation-powered millisecond
pulsars for radii estimations (see section 1.1.2 for more information on the measurement
techniques). It is important to note that the systematic uncertainties vary for the different
measurements. Therefore, the joint analysis of the observations listed in the table would
provide results in this work that are not completely accurate for interpretation. Further-
more, there have been revisions on the radius measurement of pulsars, PSR J0030+0451
and PSR J0740+6620, so as to have estimates from combined analyses with XMM-Newton
data, as well as without [88, 91]. We use the first results on both pulsars. Due to limited
number of observations by NICER, whose systematic uncertainties are believed to be bet-
ter accounted for, we utilize all the observations listed in table 4.6 for reconstructing the
dense matter EoS.

The masses and radii measurements of some of these pulsars are provided as 2D confidence
contours [75, 82]. In such cases, we integrate the 2D distribution onto 1D for both M and
R, by integrating over the probability distributions of R and M , respectively (we follow a
similar procedure from Refs. [160,161]). Normal distributions are then used to fit the masses
and radii individually. We repeat this for the first 14 observations in the list. Regarding
the NICER observations, we take an average of the results from the two independent
groups. The Gaussian fitted masses and radii observations of neutron stars based on
their marginalized distributions are presented in the second and third column of table 4.6,
respectively. We use this data to reconstruct the EoS and adopt Importance Sampling (a
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Bayesian perspective) to the estimate the uncertainty of the NN reconstruction.

Table 4.6: The individual 1D Gaussian fitted M − R observations of neutron stars based
on their marginalized distributions [75, 82,86,87,89,90,256,257].

Pulsar Mass (M⊙) Radius (km)

M13 1.42±0.49 11.71±2.48

M28 1.08±0.30 8.89±1.16

M30 1.44±0.48 12.04±2.30

NGC 6304 1.41±0.54 11.75±3.47

NGC 6397 1.25±0.39 11.48±1.73

ωCen 1.23±0.38 9.80±1.76

4U 1608-52 1.60±0.31 10.36±1.98

4U 1724-207 1.79±0.26 11.47±1.53

4U 1820-30 1.76±0.26 11.31±1.75

EXO 1745-248 1.59±0.24 10.40±1.56

KS 1731-260 1.59±0.37 10.44±2.17

SAX J1748.9-2021 1.70±0.30 11.25±1.78

X5 1.18±0.37 10.05±1.16

X7 1.37±0.37 10.87±1.24

4U 1702-429 1.90±0.30 12.40±0.40

PSR J0437–4715 1.44±0.07 13.60±0.85

PSR J0030+0451 1.44±0.15 13.02±1.15

PSR J0740+6620 2.08±0.07 13.70±2.05

Uncertainty Estimation: Importance Sampling

The optimization of the EoS Network to reconstruct the EoS corresponding to the observa-
tional data follows from section 4.3.1. In order to evaluate the uncertainty of the reconstruc-
tion, we employ the Bayesian approach, focusing on the posterior distribution of the EoSs
given the astrophysical observations under consideration, denoted as Posterior(θEoS|data).
We first draw an ensemble of M − R samples from the fitted Gaussian distributions for
the real observations listed in table 4.6. From these Gaussian distributions, we determin-
istically infer the corresponding EoS with maximum likelihood estimation. This can be
termed the ‘proposal’. Given the ensemble of reconstructed EoSs, we apply importance
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Figure 4.15: 2D contour distributions of mass and radius for pulsars KS 1731-260 (left)
and 4U 1724-207 (right) depicted as blue shaded regions. The marginalized distributions
of M and R are obtained by integrating over the probability distributions of R and M ,
respectively (see Refs. [160, 161] for similar procedure) and plotted as blue curves outside
the center plots. Normal distributions (red curves) are then used to fit the marginalized
distributions of masses and radii individually.

sampling (see Ref. [258] for a review on importance sampling) to estimate the uncertainty
related to the desired posterior distribution, where a proper weight (w) is evaluated to
each EoS.

In general, a physical variable Ô can be estimated as,

Ō = ⟨Ô⟩ =
Nsamples∑

j

w(j)O(j), (4.9)

and the standard deviation can also be estimated as (∆O)2 = ⟨Ô2⟩ − Ō2. The weights are
given by,

w(j) =
Posterior(θ(j)

EoS|data)

Proposal(θ(j)
EoS)

∝ p(data|θ(j)
EoS)Prior(θ(j)

EoS)

p(θ
(j)
EoS|samples(j))p(samples(j)|data)

, (4.10)
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where, j indicates the index of reconstructed EoS samples; θEoS is the parameters set for
representing the EoS; and p(samples|data) = N (Mobs,∆M

2)N (Robs,∆R
2) dictates the

probability for samples we draw from the fitted Gaussian distributions for the observations
in table 4.6. Furthermore,

p(θ
(j)
EoS|samples(j)) = 1,

since the reconstruction technique is capable of locating the deterministic corresponding
EoS given the sampled M-R points; and

p(data|θ(j)
EoS) ∝ exp (−χ2(M

θ
(j)
EoS
, R

θ
(j)
EoS

)),

is the likelihood function of EoS parameters invoked here (see Eq. (4.7) for the loss func-
tion). In practical calculations, weights should be normalized as w̃(j) = w(j)/

∑
j w

(j). In
addition, a cut-off is applied to avoid outliers in samples. Consequently, note that dur-
ing the training process, target observables of χ2-fitting in Eq. (4.7) are changed from
(Mobs,i, Robs,i) to (M̃ (j)

i , R̃
(j)
i ). Based on this approach, we sample 10,000 M − R curves

and reconstruct the EoS with uncertainties based on importance sampling. The results are
presented in figure 4.16 and are labelled as ‘This Work’.
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Figure 4.16: 68% confidence level (CL) of the EoS reconstructed from observational data
of 18 neutron stars, depicted as a red shaded band. The gray band depicts the con-
straints on the EoS from χEFT [122]. Results from Bayesian methods (AJ.765,L5 [259]
and ARAA.54,401 [260]) and the direct inverse mapping using NNs (PRD.101,054016 [160])
are also included here. Figure taken from Ref. [3] (DOI:10.1103/PhysRevD.107.083028).

The red band in the figure depicts the 68% confidence level (CL) of the reconstructed EoS.
Constraints on the EoS from χEFT [122] are presented as a gray band. In addition, we com-
pare our results with previous works based on Bayesian methods labelled ‘AJ.765,L5’ [259]
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and ‘ARAA.54,401’ [260]. The results from the direct inverse mapping using NNs are also
shown as ‘PRD.101,054016’ [160].

The M -R band and contours corresponding to the reconstructed EoS results from fig-
ure 4.16 are demonstrated in figure 4.17. The M −R observations with their uncertainties
from table 4.6 are illustrated as gray points. It can be observed that the reconstructed
EoS strongly supports the existence of massive neutron stars (>2M⊙). Moreover, the EoS
yields R1.4 = 11.6± 0.43,km (at 68% CL) for a canonical 1.4M⊙ neutron star. This result
is in agreement with recent constraints derived from multi-messenger observations [261].
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Figure 4.17: 68% CL of the M -R band corresponding to the reconstructed EoS in fig-
ure 4.16, shown as a red band. The M -R contours corresponding to the other EoS
results from figure 4.16 are also depicted. The gray points with uncertainties are the
M − R observations with uncertainties listed in table 4.6. Figure taken from Ref. [3]
(DOI:10.1103/PhysRevD.107.083028).

We further validate the proposed method by confronting the tidal deformability, Λ, pre-
dicted from the reconstructed EoS, with the constraint obtained from the gravitation wave
event, GW170817 [262, 263] (see section 1.1.3 of chapter 1 for an introduction to tidal de-
formability). Since the EoS output by the EoS Network corresponds to densities greater
than the saturation density, we adopt the DD2 EoS for sub-saturation densities. Conse-
quently, we compute the corresponding Λ from the reconstructed EoSs. The resulting curve
as a function of NS mass is shown in figure 4.18. Note that the constraint from GW170817,
on a canonical 1.4M⊙ NS, Λ1.4 = 190+390

−120 [262] at 90% credible level, is also shown. For this
reason, we also depict the 90% CL band in a fainter shade of red. The tidal deformability
of a 1.4M⊙ NS obtained from the reconstructed EoSs in this work, Λ1.4 = 209.12+110.8

−110.8 (at
90% credible level) is in agreement with the bounds estimated from GW170817.
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Figure 4.18: 68% and 90% CLs of tidal deformability, Λ, derived from the reconstructed
EoS as a function of mass, depicted as darker and fainter shades of red, respectively.
The 90% CL constraint from GW170817 is also shown here. Figure taken from Ref. [3]
(DOI:10.1103/PhysRevD.107.083028).

The speed of sound in matter is an important characteristic of the EoS. Figure 4.19 dis-
plays the c2s corresponding to the reconstructed EoS (with natural unit c = 1). While
in the low and medium density regions (ρ < 3ρ0), c2s shows a slow increase and has
a relatively narrow band, it exceeds the conformal limit (an upper bound for massless
ultra-relativistic matter) in the high-density region (ρ > 3ρ0), implying the existence of
strongly interacting dense matter. In addition, it appears from the figure that c2s likely
decreases as density increases (at ρ > 5 ∼ 6ρ0). Such a smooth change for c2s might result
in the curve that eventually reaches the conformal limit. These findings were also pub-
lished in other recent works [160, 264]. The explanation follows as a consequence of the
perturbative-QCD (pQCD) constraint, where the asymptotically free quarks and gluons
exist in the picture of hadron-quark continuity [265, 266]. Note that in this work, the
conformal limit/pQCD constraint was not used as a prior for reconstructing the EoS, but
is rather a possible outcome of the reconstructed EoS. Furthermore, from the results ob-
tained in this work, there is no significant trace of a phase transition from the hadronic
to deconfined quark matter at densities below ≈ 7ρ0. However, due to limited number of
observations and the huge uncertainties that accompany them, the possibility of a phase
transition remains ambiguous. If the number of observations and their accuracy are both
improved significantly in the near future, the existence and order of possible phase transi-
tions can be recognized in the developed framework. We demonstrate this in figures 4.20
and 4.21. In figure. 4.20, we illustrate that the EoS Network, with the same network struc-
ture, is capable of producing an EoS which contains a phase transition. We use one of the
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Figure 4.19: Speed of sound (68% CL) corresponding to the reconstructed EoS in fig-
ure 4.16. The dotted horizontal line represents the conformal limit, c2s = 1/3.

DD2F-SF EoS models [141] here. In this case, we merely fit the network to the DD2F-
SF EoS and observe that the kinks in the curve can be represented by the EoS Network
output.

Figure 4.20: Demonstration that the EoS Network is capable of represent an EoS with
phase transition. We use the DD2F-SF model here as an example.

In figure. 4.21, we employ the developed framework to test its ability in reconstructing a
test EoS with a phase transition. We use the same DD2F-SF EoS [141], as in figure 4.20. It
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is evident from the left panel of the figure that the EoS Network is capable of reconstructing
the EoS (dashed red line) when compared with the true EoS (solid black line). On the right
panel, we present the M−R curve corresponding to the reconstructed EoS as a dashed red
line, compared to the true M −R curve (solid black line). However, it must be noted that
in this case, we did not apply uncertainties to the M−R data. We also used a significantly
larger number of mock M −R points.

Figure 4.21: Testing the devised framework on an example EoS with phase transi-
tions (DD2F-SF [141]). Left: The reconstructed EoS (dashed red line) is compared to
the true test EoS that includes a phase transition (solid black line). Right: the M-R rela-
tionships corresponding to the EoSs in the left panel.

4.4 Discussions

The method developed here introduces a model-independent and flexible neural network
representation of the dense matter EoS, which is obtained from observations of structural
properties of neutron stars. While Bayesian approaches are capable of reconstructing a
model-independent or a parameterized EoS, the optimization in a multi-dimensional pa-
rameter space is computationally inefficient. Moreover, as the Automatic Differentiation
framework uses a pre-trained DNN to emulate the solving of the TOV equations, the
method proposed here is fast and efficient. When compared to supervised learning ap-
proaches on the same research problem, the proposed method possesses a natural Bayesian
picture for interpretation. Besides providing a novel alternative for the EoS reconstruction,
this physics-based unsupervised learning algorithm uses importance sampling for estimat-
ing the uncertainties related to the observational noise. This work can be further extended
to incorporate a Bayesian Neural Network in future. In such a set-up, we could include
additional priors from heavy ion collisions (HIC) (see Ref. [267] for a reconstruction of the
QCD EoS from Bayesian analysis of HIC data). A combined study with the results from
Ref. [267] is in foresight. An interesting aspect which can be explored is the inclusion of
microphysical EoSs which undergo a first-order phase transition (FOPT) or a crossover
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from hadronic matter to deconfined quark matter. There is a possibility of such an oc-
currence of a FOPT in the cores of NSs, which may have dramatic consequences also for
binary neutron star mergers, BNSMs [268], and for core collapse supernovae [269]. In the
current study we do not explicitly include such EoSs for training the TOV-Solver Network
(e.g., constant pressure with increasing energy density).

A similar study can be carried out by incorporating the M−Λ relationships of NSs in addi-
tion to the M−R relations. The tidal deformability estimates obtained from GWs however,
have even larger uncertainties. Future measurements from next generation GW detectors,
like LIGO India, KAGRA, Einstein Telescope, Cosmic Explorer and LISA, with greater
sensitivities are expected to yield better constrained estimates for the tidal deformability.
The present study is restricted toM−R observations of long-lived cold neutron stars. How-
ever, it can be further extended to observations from proto-neutron stars and to remnants
of BNSMs, where the high temperatures cannot be ignored. The thermal contributions in
the pressure can be incorporated separately in a piecewise polytropic approach, such as,
P = Pcold + Pthermal. The adiabatic index of the thermal pressure has been examined in
earlier works and can be set to Γth ∼ 1.5-2.0 [270]. With an increase in the number of GW
event detections, there is scope for the study of long-lived remnants from BNSMs using a
non-zero temperature EoS in future.
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Chapter 5

Gravitational Wave Analysis using DL

Gravitational waves (GWs) are ripples caused by the disruption of space-time, for example,
due to massive accelerating objects like neutron stars or black holes orbiting around each
other. These ripples of distorted space-time, travel through the universe carrying informa-
tion about their cataclysmic origins (see section 1.1.3 of chapter 1 for a brief introduction
to GWs and GW detectors). The first detection of GWs from the collision of a binary
black hole (BBH) system by Advanced LIGO on 14th September, 2015 [271], marked the
beginning of the gravitational wave astronomy era. Several GW events have been detected
by the LIGO-Virgo Scientific collaboration subsequently. More specifically, 11 events were
observed in the first and second observing runs (O1 and O2), and 79 in the third observing
run (O3) [272–275]. The fourth observing run, O4, was initiated on 24th May 2023, and is
expected to include 18 months of observation time [276]. The GW events observed so far
include binary black hole mergers (BBHMs), binary neutron star mergers (BNSMs), neu-
tron star-black hole mergers (NSBHMs) [277] and also mergers of component objects from
the ‘mass gap’ [278]. The first detection of a BNSM event, GW170817, by Advanced LIGO
and Virgo has opened venues for significant advancements in the ongoing study on neutron
stars (NSs) and the underlying equation of state (EoS) [104]. It was also observed across
the electromagnetic spectrum [279], making it a multi-messenger observation. This unique
event therefore provided insights not only on the maximum mass of NSs [252,253], but also
on the formation of r-process elements [280], short gamma-ray bursts (sGRBs) [281], and
the Hubble constant [282]. A significant aspect of GW170817, however, was the extraction
of tidal deformability (Λ) (see section 2.2.2 of chapter 2), for the very first time [105].

The dependence of tidal deformability on radius enables predictions for the radius of a
canonical 1.4 M⊙ neutron star [1, 283, 284]. These estimates provide information com-
plementary to the independent radii measurements by the NICER (Neutron Star Interior
Composition Explorer) collaboration (see section 1.1.2 of chapter 1 for more on NICER
and its radii measurements). The combined results from NICER and GW170817 allow
for constraints on the EoS, and provide estimates for the radius and moment of inertia
of a 1.4 M⊙ NS [285]. These serve as valuable probes for dense matter in the relatively
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low density range (ns - 3ns, where ns here denotes the nuclear saturation density) [286].
Additionally, by analyzing the electromagnetic observations post GW170817, certain stud-
ies have provided estimates on the upper limit of the maximum non-rotating neutron star
mass [252,253]. Shortly afterwards, a new lower bound on the maximum mass was evalu-
ated from the analysis of event GW190814, by assuming the secondary mass was a rapidly
spinning neutron star [287]. These results have the potential to constrain the EoS in the
high density regime (3ns - 5ns). All these findings demonstrate that gravitational waves
are instrumental in providing direct or indirect constraints on the dense matter EoS.

The large amount of data associated with GW observations calls for efficient methods
of data analysis. This makes DL techniques particularly promising in the field of GW
astronomy [288–293]. More specifically, it was demonstrated that DL is very efficient for
the real-time GW detection of BBH mergers and reliable parameter estimation [288, 294–
296], forecasting BNS mergers [297], rapid identification of transient GW signals from
BNS mergers [289], identifying glitches in GW data [298], denoising GWs [290], and for
the detection and classification of NSBH mergers [299]. So far, DL methods for GW
analysis have focused mainly on binary black hole mergers. Although deep learning has
also been used on binary neutron star mergers signals [289,297,300], the inference of tidal
deformability has received little attention as of now. In this chapter, we focus on analyzing
GWs of BNSMs for constraining the dense matter EoS from the tidal parameter, using deep
learning (DL) methods. We start by introducing a classification scheme to distinguish these
events from binary black hole mergers or noise. We then present a regression method to
infer chirp mass and combined tidal deformability from the GW signal of the BNS system.
We further illustrate that the extraction of both M and Λ̃ could provide direct constraints
on the NS EoS.

5.1 Data Generation

The standard conventional method to analyze gravitational wave data for signal-detection
and for parameter-estimation is the template matched filtering [301]. This is a technique
that employs template banks containing waveforms from a vast parameter space. However,
this method is computationally intensive. In order to circumvent this challenge, we use
deep neural networks (DNNs) to analyze simulated gravitational waveforms. The major
computational costs while using DNNs occur during the training process, which requires
large amounts of data. This GW data is generated using waveform-approximant models
from the LALSuite library [302] due to the computational expenses associated with Numer-
ical Relativity (NR) simulations. Model waveforms like the PhenomDNRT, PhenomPNRT,
SEOBNRT, etc, which use the aligned-spin point-particle model (with and without preces-
sion effects), and the aligned-spin point-particle effective-one-body (EOB) model [303–309],
perform up to a high level of accuracy when tested with NR simulations. These waveforms
are generated by adding a tidal amplitude correction to their corresponding BBH baseline
waveforms. Here, we use the inspiral-merger-ringdown (IMR) precession models “IMRPhe-
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nomPv” and “IMRPhenomPv2_NRTidalv2” [310] for simulating gravitational waveforms
of BBHMs and BNSMs, respectively. Note that for the BBHM waveforms, we use the same
baseline waveform, however, without tidal effects. We generate the signals in the frequency
domain, as opposed to Ref. [289], where the waveforms were analyzed in the time domain.
All gravitational waveforms used in this analysis are generated without spin.

For binary black hole mergers, the component masses are chosen within the range of
[5, 50]M⊙, with the mass selection following from a uniform distribution in the specified
range. The binary neutron star systems in our study have component masses ranging from
1.2 M⊙ to 2.2 M⊙, with the higher mass designated as the primary mass (m1) and the
lower mass as the secondary mass (m2). In order to generate BNS signals, we also input
the tidal deformabilities (Λ1, Λ2) of the individual stars. For this, we adopt generalized
M−Λ relations, which do not rely on specific equations of state. Note that we present two
different cases for the classifier, where one of them uses BNSMs based only on the DD2 EoS.
Further information on the second case is provided at the end of this section. To define
a broad region in the M − Λ parameter space that can include several possibilities of the
M−Λ curve, we employ two fitting functions: g1(x) = a1 exp(b1x) and g2(x) = a2 exp(b2x).
These fit functions serve as upper and lower envelopes encompassing several microphysical
EoS models, as depicted in figure 5.1. The tidal deformability for each of the binary
stars is randomly assigned a value within the range bounded by the envelopes, the dotted
(g1(x)) and dashed (g2(x)) black lines in figure 5.1. For a chosen primary mass, m1, the
corresponding tidal deformability, Λ1, is randomly assigned a value between the two fit
functions g1(m1) and g2(m1). Here, we use a1 = 6.45e+05, b1 = -4.386, a2 = 2.45e+05,
and b2 = -6.16. The tidal deformability, Λ2, of the secondary mass (m2) is then selected
from a uniform distribution within the range (Λ1, g1(m2)]. This approach ensures that Λ is
a monotonically decreasing function of M within the specified region of interest. Note that
in this approach, we ignore the possibility of stable twin stars, where the tidal deformability
depicts two distinct branches for the same mass NS [311]. Furthermore, it is important to
mention that the EoSs in figure 5.1 are not all necessarily within the Λ-constraints set by
GW170817 as shown in [1]. However, these choices of upper and lower envelopes ensure
that the relevant range of M − Λ is enclosed by the parameters we use for training the
regressor network.

All the waveforms are generated within a specified frequency range, f ∈ [flow, fhigh] Hz.
The exact frequency values for flow and fhigh are mentioned while describing the various
network architectures. To account for the encountered noise characteristics, we utilize
conventional methods for noise generation in gravitational wave astronomy. Firstly, we
generate a colored noise background based on the power spectral density (PSD) of the
"Advanced LIGO Zero-Detuned High Power" configuration. This background noise is
representative of the colored detector noise present in GW observations. Subsequently, the
simulated BBHM and BNSM signals are injected into this noise background. The injection
is performed to achieve optimal signal-to-noise ratio (oSNR) values falling within the range
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Figure 5.1: The M−Λ curves of several EoSs taken from [1] are displayed as solid colored
curves. The black dotted and dashed curves labelled as g1(x) and g2(x), respectively, are
chosen functions to span a wide range in the M−Λ space. The M−Λ data points enveloped
in this region are used to simulate GW signals of BNSMs in the regression task. See Ref. [6]
for original figure.

of 20 to 30. The optimal SNR (ρopt) is defined as

ρopt = 2

[∫ ∞

0

df
| h(f) |2

Sn(f)

]1/2
(5.1)

where h(f) is the gravitational wave signal in the frequency domain, and Sn(f) is the
detector PSD [312]. These simulated signals in the colored noise background are then
whitened for further analysis in the classification and regression networks. We present an
example each of the BBH and BNS signals generated with this quantification of noise, in
figure 5.2. We depict the clean signals in red on both panels. On the left panel, we show
a BBHM signal with m1 = m2 = 15 M⊙. The BNSM signal on the right is simulated
with m1 = 1.75 M⊙,m2 = 1.5 M⊙ and Λ1 = 176.94,Λ2 = 450.05 (note that these values
for the plot are chosen based on the DD2 EoS). The grey waveforms represent the signals
injected into aLIGO’s colored noise. We whiten these signals before using them in the
classifier/regressor networks. A total of 75,000 such waveforms are generated for each
class.
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Figure 5.2: Examples of time-domain inspiral-merger signals of a BBH and a BNS injected
in aLIGO’s noise. Here, the optimal signal to noise ratio (oSNR) is 20. The grey waveforms
represent the BBHM (left) and BNSM (right) signals injected into colored noise. The
clean signals are depicted in red. For the BBHM signal, we chose the component masses,
m1 = m2 = 15 M⊙. As for the BNSM signal, the component masses are m1 = 1.75 M⊙
and m2 = 1.32 M⊙. The corresponding tidal deformabilities for this waveform are chosen
based on the DD2 EoS, i.e., Λ1 = 176.94 and Λ2 = 450.05. See Ref. [6] for original figure.

Note that for the classifier network, we use two different cases of noise quantification. Apart
from using the oSNR, we also use the peak signal to noise ratio (pSNR) to measure the
strength of the GW signals. We follow the methods from Ref. [289] for this case (dubbed
as Case II in subsection 5.2.1). For BBH mergers, we use the same mass range [5, 50]
M⊙ in a uniform distribution. As for binary neutron star (BNS) mergers, the component
masses are based on the DD2 equation of state (EoS) [131], and are therefore selected
to lie within the range of [1, 2.4] M⊙. The corresponding tidal deformation values for
these masses are computed from the DD2 EoS and fixed accordingly. For this case of the
classifier network, a simple noise model is applied, based on the peak signal-to-noise ratio,
or pSNR. The pSNR is defined as the ratio of the peak amplitude of the simulated signal
to the standard deviation of the noise [288, 289]. Several realizations of Gaussian noise
with zero mean and unit variance, N (0, 1), are generated, and the simulated gravitational
wave (GW) signals are injected with varying amplitudes. The simulated waveforms are
scaled to achieve peak signal-to-noise ratio (pSNR) values of 0.5, 0.75, and 0.9. Similar
to figure 5.2, two examples of simulated waveforms in the time-domain are presented in
figure 5.3 using pSNR values of 0.5. On the left, we see a BBHM signal injected into
Gaussian noise. The clean signal of an equal mass BBHM (m1 = m2 = 50 M⊙) is shown
in red, while the grey waveform represents the BBHM signal injected into noise. The right
panel depicts a waveform where a BNS inspiral-merger signal is injected into Gaussian
noise. The grey waveform represents the injected BNSM signal embedded in the simulated
noise. The clean inspiral-merger signal of an equal-mass BNS system (m1 = m2 = 1.32M⊙
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Figure 5.3: Examples of inspiral-merger signals of a BBH and a BNS in the time-domain.
We choose peak signal to noise ratio (pSNR), or ratio of the peak amplitude of signal to
the standard deviation of the noise, to be 0.5 in both subfigures. Left: The grey waveform
represents the signal injected into simulated Gaussian noise. The clean BBH signal is
depicted in red, and was simulated for component masses, m1 = m2 = 50M⊙. Right: Same
as left panel for BNS signal injected into simulated white Gaussian noise. The signal in red
depicts a clean BNS signal simulated for equal component masses, m1 = m2 = 1.32 M⊙
and Λ1 = Λ2 = 964, obtained from the DD2 EoS. See Ref. [6] for original figure.

and Λ1 = Λ2 = 964, obtained from the DD2 EoS) is shown in red.

5.2 GW Signal detection from BBHMs and BNSMs

In this section, we explore the detection of signals from binary black hole and binary
neutron star mergers in gravitational wave data. The following subsections provide details
on the architecture of the classification network (subsection 5.2.1) as well as the associated
results (subsection 5.2.2).

5.2.1 Classifier: Deep Learning Models

We employ the methods described in section 5.1 to generate sufficient training and testing
data. The network architectures are based on the convolutional neural network (CNN),
first introduced in chapter 3 (section 3.1.2). The classifier networks each consist of an input
layer, multiple 1D convolutional layers, and two dense layers. The output layer of each
classifier consists of three nodes, corresponding to the classification of the input waveform
into one of three categories: binary black hole mergers, binary neutron star mergers, or
waveforms with just noise (no signals). We perform our analysis on GW simulations that
represent clean signals, i.e. they do not incorporate any noise, as well as those which

74



5.2. GW SIGNAL DETECTION FROM BBHMS AND BNSMS

incorporate noise that is increased in consecutive steps. Two cases based on the noise
quantification, i.e., oSNR and pSNR, are discussed below.

Case I: For this case, we generate the GW signals of binary black hole and binary neutron
star mergers for classification using the noise quantification method based on oSNR, as
described in section 5.1. The network designed for classification consists of the input layer,
several 1D convolutional layers and two dense layers. The output layer of the network
contains three nodes for classifying the input waveform into one of three categories: BBH
mergers, BNS mergers or no signals. The structure of the classification network is detailed
in table 5.2. We employ flow = 23 Hz, fhigh = 1024 Hz and ∆f = 1/64. Therefore, we
obtain the length of the input waveform as 64063. The convolution layers have 32 or 64
filters as mentioned in the table. In addition, these convolutional layers use kernels of size
16 and strides of 4, 4, 2, 2 and 2 in that respective order. The leaky rectified linear unit
or ‘LeakyReLU’ non-linear activation (α = 0.05) is applied to all the hidden layers, and
the ‘softmax’ function is applied to the last layer. The target labels are one-hot encoded
to facilitate the classification task. A waveform in the frequency domain, h(f), is written
as A(f) exp (iϕ(f)) where A is the Fourier amplitude or absolute value and ϕ is the phase
or argument. Both the absolute and phase values of the input waveforms are input to
the classification network. The utilization of two input channels to the network results
in the shape of the network (64063, 2). The first channel, or the Fourier amplitude is
first normalized to have a unit integral value. The waveforms are then scaled (with the
maximum values) to lie within the range [0, 1]. The second channel, i.e., the phase, ϕ, is
scaled with π, such that it also lies within [0, 1]. Furthermore, we use the cross entropy
loss function (see Eq. (3.14) of chapter 3) and an Adam optimizer [212] (see section 3.4.3
of chapter 3) with a learning rate of 10−4 for this case of the classifier. 66,000 waveforms
from each category, i.e. a total of 198,000 waveforms from the three categories, are shuffled
and used to train the classification network. A batch size of 16 is used to fit the network
model to the training data. The validation data uses 9,000 waveforms from each category,
adding up to a total of 27,000 waveforms. These validation or testing samples are used
to assess the performance of the network during training. The training is initiated with
the clean signals and then continued on signals with lower oSNR values (30, 25, and 20).
The network is trained for 15 epochs in the case of clean signals. However, we increase the
number of epochs as we include higher levels of noise. For oSNR values of 30, 25 and 20,
we train the network for 30, 60 and 100 epochs, respectively. The results of the classifier
for different oSNR values are discussed in next subsection 5.2.2. Below, we present Case
II, which uses pSNR to quantify the signal to noise ratio in the gravitational waveforms.

Case II: In this case, we use pSNR to describe the strength of the GW signals. The
detailed structure of the classification network in this case is provided in table 5.2. For
the input waveforms here, we set flow = 23 Hz, fhigh = 1024 Hz, and ∆f = 1/128.
Consequently, the length of the input waveform amounts to 128,257. Each convolutional
layer has 64 filters, and a convolutional kernel of size 3 is used here. The strides for the
convolutional layers are set to 4, 4, 2, 2, and 2 in that respective order. The rectified
linear unit (ReLU) activation function is applied to all hidden layers, while the final layer
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Table 5.1: Classification model architecture used for classifying the simulated input GW
signals into 3 classes, i.e., BBH mergers, BNS mergers or noise. The network consists of
2,094,787 trainable parameters. See Ref. [6] for the original table.

Layer Index Layer Dimension

1 Input 64063 x 2

2 Convolution 1D 16012 x 32

3 Convolution 1D 4000 x 32

4 Convolution 1D 1993 x 64

5 Convolution 1D 989 x 32

6 Convolution 1D 487 x 32

- Flatten 15584

7 Dense Layer 128

- Dropout 128

8 Dense Layer 3

- Output 3

utilizes the softmax function. The target labels are one-hot encoded. For the classifier
in this case, we only input the absolute values to the network. The input waveforms are
normalized to have an integral value of unity. However, the amplitude is then amplified
by rescaling the waveforms such that they lie within the range [0, 1]. The classifier utilizes
the cross-entropy loss function, along with the Adam optimizer [212], just as in the Case
I. The optimizer is configured with a learning rate of 10−5 and helps in effectively training
the network for accurate classification. To train the neural network, 5,000 waveforms from
each category are utilized, resulting in a total of 15,000 training samples. These waveforms
from the three categories are shuffled before being used as training data for the classifier.
A batch size of 32 is employed during the training process. For the validation set, 2,473
waveforms from each category are selected, totaling 7,419 waveforms. The training process
is initiated using clean signals and subsequently continued with gravitational waveforms
having lower pSNR values of 0.90, 0.75, and 0.50. The network is trained for 110 epochs
when using clean signals and a pSNR of 0.9. However, as the pSNR value decreases, we
increase the number of epochs. For pSNR values of 0.75 and 0.5, the network is trained
for 150 and 200 epochs, respectively. Note that the training takes ∼1 hour for about 100
epochs. The results from the trained classifier for different pSNR values are discussed in
the subsequent subsection.
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Table 5.2: Model architecture of the classifier used for segregating the simulated input GW
signals into 3 classes, i.e., BBH mergers, BNS mergers or noise. The network consists of
8,250,371 trainable parameters. See Ref. [6] for the original table.

Layer Index Layer Dimension

1 Input 128257

2 Reshape 128257 x 1

3 Convolution 1D 32064 x 64

4 Convolution 1D 8016 x 64

5 Convolution 1D 4007 x 64

6 Convolution 1D 2003 x 64

7 Convolution 1D 1001 x 64

- Reshape 64064

8 Dense Layer 128

- Dropout 128

9 Dense Layer 3

- Output 3

5.2.2 Classifier: Results

Here, we discuss the results from the trained classifier networks obtained on testing data.
For each test sample, the classifiers output a corresponding class that the waveform belongs
to, i.e., a binary black holes merger, a binary neutron star merger or a waveform that
contains neither, but only noise. We can compare the predicted classes with the true
class labels in a confusion matrix. A confusion matrix, also known as an error matrix,
of a binary classifier summarizes the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) in a table of two rows and two columns.
These values help quantify the performance of the classifier. Two common metrics used
in a binary classification are ‘Precision’, P, and ‘Recall’, R, where P = TP/(TP+FP) and
R = TP/(TP+FN). The same concept can be extended to multi-classifiers, where P and
R are computed for each class and the obtained values are then averaged over the number
of classes. This method is termed as macro-averaging and the resulting value is the macro-
average precision. We present the results obtained from the Case I and Case II classifiers
as confusion matrices in figures 5.4 and 5.5, respectively. In figure 5.4, starting from the
top row, the figure depicts the confusion matrices for clean signals and oSNR values of
30 on the left and right corners, respectively. In the bottom row, we show the classifier
results for oSNR=25 and 20 in the left and right panels, respectively. We observe a high
accuracy obtained by the classification networks in the top row. A macro-average precision
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Figure 5.4: Performance of the classification network represented as confusion matrices
for clean signals and different values of oSNR (30, 25 and 20). Moving from clean signals
to increasing levels of noise, the classifiers are trained for 15, 30, 60 and 100 epochs,
respectively. This is intuitive as a larger number of epochs are required for higher levels of
noise in data. With decreasing oSNR, the number of misclassifications increases. Macro-
average precision values of 1.0, ∼1.0, 0.99 and 0.96 are obtained for clean signals, oSNR
values of 30, 25 and 20, respectively. See Ref. [6] for the original figure.

of 1.0 is obtained for the clean signals and ∼1.0 for oSNR=30. As the signal amplitude is
further reduced with respect to the noise in the bottom row, we note that network requires
longer training times to reach higher accuracies. High precision values are nevertheless
maintained, i.e., macro-average precisions of 0.99 and 0.96 are obtained for oSNR=25 and
20, respectively. Similarly for Case II, we present the results in the four confusion matrices,
where noise levels are decreased as one moves from top to bottom row (starting from the
top left corner). The top panels include clean signals and pSNR=0.9, while the lower panels
depict the results for pSNR=0.75 and 0.5. Macro-average precisions of 0.99, 0.99, 0.99 and
0.89 are obtained for clean signals, pSNR=0.9, 0.75 and 0.5, respectively. We remark that
even in this case longer training times are required as the noise levels are increased with
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Figure 5.5: Performance of the classification network represented as confusion matrices
for four different values of pSNR (ratio of the peak amplitude of signal to the standard
deviation of noise). In the case of clean signals and pSNR=0.9, we train the classification
network for 110 epochs. With pSNR=0.75 and 0.5, the network is trained for 150 and 200
epochs respectively. We observe that with decreasing pSNR, the number of misclassifica-
tions increases. Macro-average precision values of 0.99, 0.99, 0.99 and 0.89 are obtained for
clean signals, pSNR values of 0.9, 0.75 and 0.5, respectively. See Ref. [6] for the original
figure.

respect to the signal. These longer training times are reflected in figures 5.6 and 5.7, where
we present the learning curves for the four different training processes in Case I and Case
II, respectively. Here, we observe that as we decrease the oSNR from 25 to 20, or from
pSNR=0.9 to 0.75, the performance of the classifier does not decrease but the classifiers
require a larger number of training epochs to reach a high accuracy. Moreover, the learning
curves for both cases also show that the classifiers does not overfit to the training data.
Note that due to the simplicity of the model in Case II, a larger number of training epochs
are required for reaching high accuracies. The number of samples used for training also
plays a role in the performance of the classifiers. Due to the large dataset used in Case I,
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Figure 5.6: Learning curves for Case I of the classification network for different oSNR
values (clean signals, oSNR=30, 25 and 20). Top and bottom panels depict the training
and validation accuracies and losses for the four different networks as a function of the
number of epochs, respectively. Note that for lower oSNR values, we train the network for
a larger number of epochs in order to reach higher accuracies.
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Figure 5.7: Similar to figure 5.6, we depict the learning curves for Case II of the classifica-
tion network for different pSNR values (clean signals, pSNR=0.9, 0.75 and 0.5). Note that
we use larger number of epochs for training compared to Case I, due to the simplicity of
the network structure used here. The smaller number of training samples also plays a role
in the training times.

we see that the network reaches high accuracies in the first few epochs compared to Case
II.
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5.3 Estimation of M and Λ̃ from BNSMs
In this section, we discuss the application of deep neural networks for parameter estima-
tion from gravitational wave signals of binary neutron star mergers. The estimation of the
individual binary masses in BNSMs has been studied using deep learning techniques [300].
In this study, however, instead of directly estimating the component masses, {m1,m2} and
individual tidal deformabilities, {Λ1,Λ2}, we propose the use of DL methods to estimate M
and Λ̃ from simulated GW signals of BNSMs. The reasons for this approach are the obsta-
cles faced in estimating the mass ratio, q. A precise estimation of the mass ratio is crucial
to separate the individual masses from the chirp mass. However, obtaining an accurate
estimate of q is challenging due to degeneracy with the aligned spin values in higher order
post-Newtonian (PN) expansion terms [313]. Similarly, in order to untangle the individual
tidal deformabilities, an estimate of the corrections to the tidal parameter δΛ̃ is necessary
in addition to Λ̃. However, this correction term only appears at 6PN order, making Λ̃ a
more feasible choice for regression [99,100,102,200,314]. In the following subsection 5.3.1,
we demonstrate that the estimation of the chirp mass and combined tidal deformability
can yield valuable constraints on the underlying equation of state (EoS). Details on data
generation methods for training the network are already provided in section 5.1. Specifics
of various DL models and the corresponding results follow in subsection 5.3.2.

5.3.1 Constraining the EoS from M and Λ̃ observations

The appearance of the chirp mass at the leading order in a PN expansion [99] of a gravi-
tational wave makes it an easy target. The combined tidal deformability is chosen as the
second target for the regressor. Despite appearing only at 5PN order, it helps that Λ̃ is of
the order of a few 100 or more (when compared to the mass ratio which is < 1), making it
more pronounced in a GW signal [99]. When provided with estimates of M and Λ̃ alone,
we are faced with systematic uncertainties and difficulties in disentangling the component
masses and the individual tidal deformabilities from the GW signal. Therefore, it is not
feasible to determine a unique mass-tidal deformability (M−Λ) relation. As a consequence,
the underlying EoS remains ambiguous too. However, with sufficient GW events of BNSMs,
the estimated M− Λ̃ relations can still provide valuable constraints on the properties of
dense matter. This is demonstrated in figure 5.8. The left and right sub-figures display
the M − Λ̃ relations as solid points and the M − Λ relations as dashed lines. Note that
this figure can also be compared to Fig. 3 of [99]. The M− Λ̃ relations are derived from
all possible combinations of (m1,Λ1) and (m2,Λ2) of a particular equation of state (EoS),
ensuring m1 ≳ m2. On the left panel, we present the relations for the SFHo and SFHx
EoSs [133] (see chapter 2 for a brief description of these EoSs), indicated in green and red,
respectively. A clear separation between the M− Λ̃ points from the two EoSs is evident.
We choose a small region from the M−Λ̃ relations of SFHo EoS in the inset image. Within
the chosen range, when the chirp mass is altered by M± 0.01 M⊙, only small fluctuations
of Λ̃±5, can be observed. This indicates that the analysis of gravitational wave (GW)
signals from binary neutron star (BNS) mergers can provide additional constraints on the
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EoS through the M− Λ̃ relations. The relations for the DD2 [131] and BHBΛϕ [144] EoSs
are shown in the right panel, in blue and black, respectively. In this case, the M−Λ curves
of the two EoSs overlap until they reach a certain mass. The DD2 EoS is a nucleonic model,
while the BHBΛϕ is an extension of the DD2 EoS to further include the Λ-hyperons (see
chapter 2 for more on these EoSs). Consequently, there is a corresponding overlap in the
M− Λ̃ relations as well. This results from the softening of the EoS due to the hyperons
that populate at higher densities. Nevertheless, the same argument can be made for dis-
tinct EoSs, as also shown on the right panel. It is also well-established that the parameter
Λ̃ demonstrates minimal sensitivity to the mass ratio, q [8, 99]. Hence, by considering a
given chirp mass, M, and estimates with narrow ranges for Λ̃, it becomes possible to ex-
clude numerous EoS models. Nonetheless, obtaining an adequate number of observations
is crucial to get sufficient M− Λ̃ estimates that cover a wide range in the parameter space.
Despite the relatively large uncertainties in the combined tidal deformability derived from
GW170817 and AT2017gfo ( 197 ≤ Λ̃ ≤ 720) [272, 315], these measurements are already
capable of ruling out extremely stiff EoSs [1]. Therefore, as the number of binary neutron
star merger detections and their confidence increases, the extraction of combined tidal de-
formability will play a significant role in further constraining the properties of dense matter
and the underlying EoS.

5.3.2 Regressor: Deep Learning Models and Results

The BNS waveforms generated from the inspiral-merger-ringdown approximant as de-
scribed in section 5.1, with oSNR in the range [20,30], are segregated for training and
testing the regression network. The regressor is trained and tested on data with clean sig-
nals as well as those with noise. We use convolutional neural networks (CNNs) for all DL
regressor models (see section 3.1.2 of chapter 3 for an introduction to CNNs). We begin by
training two independent networks, each to output only one of the two parameters, either
chirp mass (M) or combined tidal deformability (Λ̃). The analysis is carried forward by
training one network to regress both parameters simultaneously. Different DL models were
explored and the details are described below.

Independent Parameter Regressor

In this section, we discuss the training and testing of two independent regressors, one to
estimate the chirp mass (M), and the other to estimate combined tidal deformability (Λ̃)
from the signals of BNS mergers. This means that for training the M-regressor, for each
event, the network only learns the chirp mass. No explicit information of the Λ̃ value is
given to the M-regressor network. The same condition holds for the Λ̃-regressor. Any
information on M to the Λ̃-regressor is only implicit through the gravitational waveform
itself. Both the M-regressor and the Λ̃-regressor take as input the amplitude (A) and
phase (ϕ) of the waveform, h(f)(= A(f) exp (iϕ(f))). For this simple case, the input wave-
form is sparsely spaced on the frequency scale. We choose flow = 128 Hz, fhigh = 1024 Hz
and ∆f = 1/16. Therefore, this yields an input shape of (14336, 2) to the regressors. Note
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Figure 5.8: Left: M − Λ and M− Λ̃ curves of SFHx (green) and SFHo (red) EoSs. The
dashed lines depict the M − Λ curve. The solid points are M− Λ̃ values, obtained using
several plausible combinations of component masses and tidal deformabilities of a particular
EoS. The inset image displays a finer resolution of the M− Λ̃ space within a specific range.
The area spanned by the M− Λ̃ points of the SFHo EoS in the zoomed-in region is not
broader than ±5 dimensionless units for ±0.01M⊙. Right: Same as the left panel, but
for the DD2 (blue) and BHBΛϕ (black) EoSs. In this case, we observe the distinction of
the two M − Λ curves (dashed lines) around 1.6M⊙. This is due to the appearance of
hyperons at the corresponding density. This effect is consequently also observed in the
M− Λ̃ relations (solid points). See Ref. [6] for the original figure.

that the dimension 2 appears due to the two channels (A and ϕ) of the network input. Each
regressor is architectured with five 1D convolutional layers. We place max-pooling layers
for down-sampling (pool size = 2) following the second and the fourth convolutional layer.
Two dense layers follow the last convolutional layer, marking the ultimate and penultimate
layers of the regressor networks. Starting from the first convolutional layer and moving
deeper into the network in order, we use 16, 16, 32, 32 and 16 filters, and kernels of sizes 32,
32, 24, 24 and 16 respectively. The weights of the convolutional kernels are initialized from
a He normal distribution [210]. We use a stride of size 3 when applying the convolutional
operator for the first four layers, and a stride of 2 for the last convolutional layer. The
‘ReLU’ activation function is employed to all the convolutional layers and the penultimate
dense layer. The ultimate dense layer uses the ‘sigmoid’ activation. Here, the loss function
is defined as the mean squared error (MSE). An Adam optimizer [212] with a learning rate
of 0.0001 is applied. Accuracy of the regressors is quantified using the R2 metric1, or the
coefficient of determination (refer to Eq. (3.13), section 3.3 of chapter 3).

1Note that the R2 metric was also used in both the TOV-Solver Network and the EoS-Network in
Chapter 4 for EoS-reconstruction.
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In order to normalize the labels (here, M or Λ̃) of the regressor, we use the normalization,

ynorm = (y − ymin)/(ymax − ymin), (5.2)

where, y = {M, Λ̃}. The normalized labels then lie in the range [0,1]. The input to the
regressors is normalized too. The two channels, Fourier amplitude and the phase, use the
normalization method described for the Case I classifier, under subsection 5.2.1.

As described in section 5.1, the complete waveform data set is generated using the compo-
nent masses (m1,m2) and individual tidal deformabilities (Λ1,Λ2) of a BNS system. When
m1, m2, Λ1, and Λ2 are represented in terms of M and Λ̃, respectively, they span the
region depicted in figure 5.9.
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Figure 5.9: Training and testing data choice for independent parameter regression. Left:
Density plot displaying the distribution of chirp mass and tidal deformability (M − Λ̃)
values for all simulated gravitational wave (GW) events. The training samples for the
M-regression are located within region I, while the testing samples are represented by
region II. The total number of simulated events sum up to 75,000. Right: Individual GW
events used for training and testing the Λ̃-regressor depicted by blue and yellow points,
respectively. Note that the distribution of the events in the M−Λ̃ space for the Λ̃-regressor,
is consistent with that in the left panel. See Ref. [6] for original figure.

On the left panel of the figure 5.9, we show the data as a density plot. The plot covers a total
of 75,000 simulated BNSM events. The regions marked by I and II correspond to training
and testing data used for the M-regressor, respectively. On the right panel, we illustrate
the training and testing data for the Λ̃-regressor as blue and yellow points, respectively.
Each of the points represents the data labels (M or Λ̃) of one simulated GW event. The
distribution of the events across the parameters, M and Λ̃, is the same as on the left panel.
The data segregation implemented in both panels shows a complete range of parameters
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entirely stripped from the network during training process. These parameter values are
only used for testing. This helps asses the robustness of the regressor. A good performance
ensures that the network has the ability to extrapolate to regions that are obscured in the
training procedure. The M-regressor uses BNSM signals with M ∈ [1.45, 1.6] M⊙ as
test data, amounting to 20,224 samples. The remaining data is used for training, making
up a total of 54,776 samples. Therefore, of all the 75,000 generated events, we use 73%
for training, and 27% for testing the M-regressor. The Λ̃-regressor on the other hand is
tested on data using BNSM signals generated with Λ̃ ∈ [400, 650]. This amounts to 64,532
and 10,468 samples for training and testing, respectively. Both M- and Λ̃-regressors are
trained in batches of size 16, for 50 epochs each.

The trained M- and Λ̃-regressors produce the results on the testing samples as depicted
in the left and right panels of figure 5.10, respectively. We show the networks’ predicted
parameters plotted against the true labels. A 2D-histogram representation is used for
both subfigures. The density of the points on the plots is given by the color map. A
perfect prediction of the parameters would imply that all the points lie on the y = x curve,
illustrated by the diagonal black solid line. We observe from both the left and right panels
that a high density of parameter values fall around the solid black line. The distribution of
the data in the plots shows that the number of points decreases as we move away from the
y = x curve. The M- and Λ̃-regressors produce R2 values of 0.95 and 0.94, respectively.
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Figure 5.10: Predicted parameters plotted against true parameters for the case of indepen-
dent parameter regression (without noise) for M (left panel) and Λ̃ (right panel). Both
subfigures are shown as density plots. As seen from the distribution, the number of points
becomes sparse as one moves away from the diagonal line. The total number of testing
samples used for the independent M- and Λ̃-regressors amount to 20,224 and 10,468, re-
spectively. See Ref. [6] for original figure.

The corresponding learning curves are presented in figure 5.11. It can be observed that
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Figure 5.11: Learning curves of the M- and Λ̃-regressors shown on the left and right panels,
respectively. These curves depict that the regressors do not overfit to the training data.

the network does not overfit to the training data.

Simultaneous Parameter Regressors

Without Noise

Three distinct cases are explored for simultaneous regression without noise, Case I, II and
III. Below, we discuss each case in detail and the modifications implemented from one case
to the other. Note that while the training-testing data-segregation might differ from case
to case, the distribution of all simulated GW events in the M− Λ̃ space remains consistent
with figure 5.9.

Case I: We train the weights of the regression network to output both M and Λ̃ simultane-
ously, using the same network structure as described for independent parameter regression.
However, we make a slight modification to the last dense layer. Table 5.3 provides the net-
work structure and layer dimensions. In this case, the network is no longer a sequential
model. The last dense layer (layer index 10) branches into two dense layers (10a and 10b),
with one layer outputting the chirp mass and the other layer the combined tidal deforma-
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bility. Here, we apply the same values of flow = 128 Hz, fhigh = 1024 Hz, and ∆f = 1/16
as used for independent parameter regression. The loss functions, activations, and nor-
malization techniques for the input and labels remain the same as well. To evaluate the
network’s performance, we conduct a simple variation of data segregation. The training
and testing data are illustrated in figure 5.12, as the blue and yellow points, respectively.
The event distribution corresponds to the density plot shown in left panel of figure 5.9. For
this particular test set, we consider M ∈ [1.3, 1.57]M⊙ and Λ̃ ∈ [250, 895]. This testing
data then consists of 19,582 samples, while the remaining 55,418 samples are utilized for
training the network. We train the network for 100 epochs, using a batch size of 16.

Table 5.3: Example of a model architecture used for the simultaneous regression of chirp
mass M and combined tidal deformability Λ̃ (Case I and Case II). The network comprises
of 66,866 trainable parameters. See Ref. [6] for the original table.

Layer Index Layer Dimension

1 Input 14336 x 2

2 Convolution 1D 4769 x 16

3 Convolution 1D 1580 x 16

4 Max Pooling 790 x 16

5 Convolution 1D 256 x 32

6 Convolution 1D 78 x 32

7 Max Pooling 39 x 32

8 Convolution 1D 12 x 16

- Reshape 192

9 Dense Layer 64

10a Dense Layer 1

10b Dense Layer 1

The simultaneous regressor, for this case, outputs the results which are presented in Fig-
ure 5.13. The left and right panels of the figure depicts the network’s capability in retrieving
M, and Λ̃, respectively. It is noteworthy to mention that in this case and the subsequent
ones, both parameters are estimated simultaneously using a single network. The trained
network demonstrates high accuracy values for both parameters, with R2 = 0.99 for the
M-regression and R2 = 0.95 for the Λ̃-regression. This improved accuracy can be at-
tributed to the fact that the network is exposed to a wide range of M and Λ̃ values during
the training process, avoiding the complete absence of any specific parameter range. The
learning curves for this network are shown in figure 5.14.
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Figure 5.12: Individual training (blue) and testing (yellow) samples chosen for Case I of
the simultaneous regression of M and Λ̃. The distribution of the points is depicted as a
density plot in the left panel of figure 5.9. See Ref. [6] for original figure.
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Figure 5.13: Density plots of the predicted parameters plotted against the true parameters
in the case of simultaneous parameter regression (Case I, without noise) for M (left panel)
and Λ̃ (right panel). Testing samples amount to 19,582 in this case. An improvement in
accuracy from figure 5.10 is observed here due to the choice of test-train data segregation.
In this case, the network is not completely obscure to an entire range of parameters during
the training process, see figure 5.12. See Ref. [6] for original figure.
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Figure 5.14: The learning curves of the Case I simultaneous parameter regressor for
M (left) and Λ̃ (right) prove that no overfitting was encountered while training the net-
work.

Case II: To enhance the robustness of the simultaneous parameter regressor, we introduce a
generalized approach to segregate the training and testing data, building upon the previous
case of independent parameter regression. For this, we provide the network with training
and testing data as depicted in figure 5.15. The blue points represent the chosen training
set, accounting for 33,686 waveform samples. In order to mask an entire range of both
parameters, we exclude the points depicted in red from the training set. We choose the
testing data such that the samples are completely exclusive of the parameter ranges used
for training. Consequently, we obtain 18,718 testing samples marked in yellow. The red
points are deemed redundant for our analysis. More specifically, gravitational wave (GW)
signals generated from the parameter range M ∈ [1.4, 1.6]M⊙ and Λ̃ ∈ [150, 500] are used
as test data. This results in a 64%-36% of training-testing samples. Considering the
unusually large ratio of testing to training (∼ 0.56) in this case, we train the network for
200 epochs. The longer training duration is necessary to accommodate the aforementioned
ratio and ensure optimal performance.

The regressor is faced with new challenges when we eliminate an entire range of M and Λ̃
in the training process. The results in figure 5.16 display the true and predicted param-
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Figure 5.15: Individual training (blue) and testing (yellow) samples chosen for Case II of
the simultaneous regression of M and Λ̃. The red data points in this figure are excluded
in the training process in order to test the robustness of the regressor. See Ref. [6] for
original figure.
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Figure 5.16: Density plots of the predicted parameters plotted against the true parameters
for Case II of the simultaneous parameter regression. A total of 18,718 samples were
used for testing. The regressor is faced with challenges when an entire parameter range
is masked during the training process. Additionally, the ∼65%-35% splitting between the
training and the testing data here, leads to considerably lower accuracies in this case. See
Ref. [6] for original figure.
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eters, presented as 2D-histograms. The network outputs R2= 0.86 for the M-regression
and R2= 0.84 for the Λ̃-regression. The decrease in R2 values for both parameters can
be attributed to the challenges the network faces when it is blind to an entire range of
parameters. The small number of training samples when compared to the testing sam-
ples (or the large value of test-to-train samples) also plays a role in the reduction of R2

when compared to Case I. The regressor requires longer training times in order to reach
an optimum value of accuracy. This can be seen in figure 5.17, where the learning curves
of the network for M and Λ̃ parameters are shown in the left and right panels, respectively.
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Figure 5.17: The learning curves of the simultaneous parameter regressor (Case II) for
M (left) and Λ̃ (right), depict that the network does not overfit during the training.

Case III: In the third scenario, we further tune the hyperparameters of the network. Due
to the highly non-linear dependence of Λ̃ on M, we assess the simultaneous regression of
the parameters by substituting the scale of tidal deformability labels from linear to log,
i.e., we use log(Λ̃) as the target label. In addition, we modify the input data format for
training the network in this particular case. In contrast to the previous representation
of the frequency-domain waveforms as amplitude and phase, here, we represent the input
waveforms as real and imaginary parts. A finer resolution of the waveforms is implemented
here, i.e., we choose a frequency range [23, 2048] Hz, with ∆f = 1/128. Therefore, the
input dimension is (259454, 2). For the normalization, we ensure that the integral sum of
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the real and imaginary parts, are both of unit value. A rescaling is then applied to both
channels, so that the values lie within the range [0,1]. Normalization of the tidal parameter
is similar to Eq. (5.2), but in this case, y = log(Λ̃+1). Furthermore, we use average-pooling
layers as opposed to max-pooling layers in the previous cases. The pooling layer is used for
down-sampling, but an average-pooling layer is chosen to avoid loss of information on the
finer representation used here. We further introduce an L2 regularizer to the convolutional
kernels. The number of nodes in the dense layer (index 9 in table 5.3) is increased from
64 to 128. We modify the activation function of this particular dense layer to ‘Scaled
Exponential Linear Unit (SELU)’. Additionally, the activation functions acting on the rest
of the convolutional layers are updated from ‘ReLU’ to ‘Exponential Linear Unit (ELU)’.
Due to the unusually large ratio of testing to training samples in Case II, we reduce the
range of the testing samples in this case. We choose the ranges M ∈ [1.4, 1.55] M⊙ and
Λ̃ ∈ [150, 400], as testing data. This results in 14,808 testing samples. The training and
testing data are depicted in figure 5.18 2. This choice of testing-training data-segregation
produces 41,588 training samples. This way, we improve the ratio of the testing-training
samples to ∼ 0.36.

1.2 1.4 1.6 1.8
 [M ]

100

101

102

103

 

Excluded Data
Training Data
Testing Data

Figure 5.18: Training (blue) and testing data (yellow) for Case III of the simultaneous
parameter regression. Note that we depict the tidal parameter as a log-scale here as the
data labels for the tidal parameter are substituted with log(Λ̃) in this case. See Ref. [6] for
original figure.

The results illustrating the true and predicted parameters in this case are presented in
figure 5.19. The range of both parameters that the network is uninformed about, is reduced

2Since the network is trained on log(Λ̃) in Case III, we use a log-scale for Λ̃ in the figure

92



5.3. ESTIMATION OF M AND Λ̃ FROM BNSMS

to M ∈ [1.4, 1.55] and Λ̃ ∈ [150, 400]. Alongside several modifications to the regressor’s
hyperparameters, the update from Λ̃ labels to log(Λ̃) leads to an improvement in the R2

values for both parameters. We achieve R2 = 0.98 for the M-regression and R2 = 0.88
for the Λ̃-regression. The ratio of the test-train samples also helps producing more reliable
results. The corresponding learning curves are depicted in figure 5.20. Once again, the
learning curves prove that the model does not overfit to the data during the training
process.
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Figure 5.19: Density plots of the predicted versus true parameters for Case III of the si-
multaneous parameter regression. We use a total of 14,808 testing samples. The use of
different scaling for combined tidal deformability, apart from the updates to certain hyper-
parameters in the training process, leads to an improvement in resulting accuracies (when
compared to Case II, figure 5.16). See Ref. [6] for original figure.

With Noise

We further extend our work to incorporate noise. To achieve this, we first generate gravita-
tional waveforms using aLIGO’s detector noise, as described previously. These waveforms
are then preprocessed (whitened) to ensure that the noise contributes equally to the overall
signal at different frequency intervals. The data is fed to the network in the form of the real
and imaginary parts of the frequency domain waveform. The waveforms are simulated with
flow = 23 Hz, fhigh = 2048 Hz, and ∆f = 1/128, leading to an input dimension of (259454,
2). The same activation functions as in Case III are used here, i.e., ELU is applied on the
convolutional layers, and SELU on the first dense layer. Additionally, the activation func-
tion of the Dense layer, which outputs Λ̃, is altered from ‘sigmoid’ to ‘tangent hyperbolic
(tanh)’. The steep gradients are expected to increase the learning step size in the tidal
deformability regression. The first step in normalizing the tidal parameter is the same as
in Eq. (5.2), but in this case y = log(Λ̃+ 1) is used. The second step involves scaling ynorm

from [0, 1] to [-1, 1], which is a requirement for the ‘tanh’ activation function. Therefore,
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Figure 5.20: The learning curves for Case III of the simultaneous parameter regressor for
M (left) and Λ̃ (right). No overfitting is encountered during the training process.

we further scale the output of Eq. (5.2) as y′norm = 2(ynorm) − 1. In this case, we do not
use a specific range of parameters for the testing set. We choose the training and testing
data randomly, spread across the entire range of the simulated waveforms. We generate
a total of 48,000 waveforms with noise, where 36,000 samples are randomly selected for
training, and the remaining 12,000 samples for testing the network. We train the network
in batches of 50 samples for 80 epochs.

The results of the trained regressor on waveforms that incorporate noise are shown in
figure 5.21. The choice of random M and log(Λ̃) values permits an easier prediction of
the parameters. The inclusion of the complete range of parameters without withholding
data from a specific plausible range of M and Λ̃, produces more accurate results. This is
because the network has the capacity to interpolate between the points in the training data.
The regressor achieves R2 values of 0.98 and 0.97 for the prediction of M and Λ̃ on the
testing set, respectively. The learning curves corresponding to this regressor (with noise)
are depicted in figure 5.22. The model does not overfit to the data during the training
process, as seen from the figure.
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Figure 5.21: Density plots of the predicted parameters plotted against true parameters in
the case of simultaneous parameter regression (with noise) for M (left panel) and Λ̃ (right
panel). 12,000 samples were used for testing. In this case, we use a random segregation
of testing-training data, spanning the entire range. The network therefore does not face
challenges when dealing with testing data (as observed in figures 5.16 and 5.19, i.e., Case
II and III of simultaneous parameter regression without noise). Hence, we obtain high
accuracies for both parameters simultaneously in this case, despite the inclusion of noise.
See Ref. [6] for original figure.

5.4 Discussions

To summarize, we have analyzed simulated GW data using deep neural networks. In
particular, we develop DL algorithms for (a) signal-detection of BBHMs and BNSMs,
and (b) estimation of mass and tidal deformability from BNSMs. The efficient inference
of Λ is of specific interest here, as it carries valuable information on the NS EoS. This
observable appears at late times during the inspiral where orbital frequencies are high. At
such frequencies, the detector noise is comparatively large and hence, the inference of tidal
deformability is considerably affected [102]. With the algorithm designed here, we show
that NNs are capable of extracting the combined tidal parameter, Λ̃, of a BNS system from
its inspiral-merger GW signal.

Several universal relations have been established with the tidal parameter and other quan-
tities of interest. The famous I − Love − Q relations [316], for example, allow for the
inference of a NS’s moment of inertia (I) as well as the quadrupole moment (Q), if Λ̃ is
known. A universal relation between tidal deformability and the GW frequency at peak
amplitude was established for equal mass binaries [317]. A similar correlation was found
between tidal deformability and the dominant post-merger GW frequency for hadronic
EoSs [318–321]. However, as demonstrated in Ref. [320], this universality can be bro-
ken when a phase transition from hadronic to deconfined quark matter takes place in the
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Figure 5.22: The learning curves for the simultaneous parameter regressor (with white
noise) for M (left) and Λ̃ (right). The network does not encounter overfitting during the
training process.

merger remnant. Therefore, evaluations of the tidal parameter from GW observations are
necessary to enhance our knowledge of the dense matter EoS. With the ongoing develop-
ment of current and next-generation GW detectors and the anticipated increase in their
sensitivities, significantly more observations are expected in the near future [106,107]. The
analysis of these detections can benefit from the regressors developed in this work.
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Chapter 6

BNSM Remnant: Studies using
isentropic EoSs

In the previous chapter, we discussed the use of inspiral-merger gravitational waveforms of
binary neutron star collisions for constraining the cold dense matter equation of state (EoS).
In this chapter, we perform studies on the post-merger gravitational wave (GW) signal to
extract information on the EoS at finite temperatures. The post-merger GW signal from
the collision of binary neutron stars contains valuable information about the underlying
EoS [318–321]. During the post-merger phase, the frequency of gravitational waves can
be high, reaching a few kHz. However, the sensitivity of the current generation detectors
such as Advanced LIGO and VIRGO is limited to lower frequencies. This explains the
absence of any post-merger signal detection from the remnant of GW170817 [322]. Con-
sequently, the electromagnetic observations that followed the GW event were crucial in
providing the limited information we have about the merger remnant in GW170817. An
intriguing finding from the electromagnetic counterpart of GW170817 was the observed
kilonova ejecta [279, 323, 324]. From the amount of blue kilonova ejecta, the incompati-
bility with a prompt collapse to a black hole was deduced. Instead, three possible fates
of the binary neutron star merger (BNSM) remnant were proposed: (i) a delayed col-
lapse to a black hole, i.e., the remnant could be a hypermassive neutron star (HMNS)
supported by differential rotation, which eventually collapses to a black hole after a short
duration (approximately 1s), (ii) a supramassive neutron star (SMNS), i.e., the remnant
might be supported by rigid body rotation, surviving for a longer period before finally
collapsing to form a black hole, or, (iii) alternatively, a permanently stable neutron star,
i.e., the remnant could remain stable as a neutron star without collapsing. The actual
fate of the remnant depends on both the maximum mass of a non-rotating neutron star
and the threshold mass for prompt black hole formation. These factors play a role in de-
termining which of the three possibilities mentioned above would occur. Predicting some
properties of the remnant would be possible if it eventually settles into a state of uniform
rotation. In previous works, the LIGO-VIRGO collaboration (LVC) estimated the moment
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of inertia and maximum rotation rate of the uniformly rotating remnant based on a large
set of zero-temperature EoSs [7]. However, it has been shown that mergers of binary neu-
tron stars result in the formation of remnants characterized by extreme conditions of high
temperature and density [325, 326]. Numerical relativity simulations performed by vari-
ous research groups [268, 323, 327–330] have shed light on this phenomenon. According to
these simulations, the maximum temperature within the remnant could reach ∼ 70 MeV or
even higher, while the maximum density could reach about 5 times that of normal nuclear
matter density. Additionally, the simulations indicate that the entropy per baryon (sB)
within the central region of the remnant, shortly after the merger is ≲ 2kB [331]. The bulk
of the remnant, excluding the unshocked core, however, exhibits an entropy per baryon
few times kB [331]. Although there may be considerable variation in temperature and
entropy initially, the conditions become homogeneous at a later time. The early evolution
of the remnant is primarily driven by gravitational wave radiation, which dominates over a
timescale of 10-20 ms. Subsequently, the evolution is influenced by viscosity over a period
of about 100 ms and neutrino cooling over 2-3 s [325,328,332–334]. Furthermore, the mag-
netic field exerts a significant influence on the remnant’s evolution. An effective viscosity is
expected to be generated in the remnant through the magnetorotational instability (MRI).
The other effect competing with the MRI is the magnetic winding during differential ro-
tation of the remnant [332]. Both these effects are responsible for transporting angular
momentum and eradicating the differential rotation, making the remnant a rigidly rotat-
ing body [330]. Given these observations, it would be intriguing to explore the thermal
effects on the structures of uniformly rotating neutron stars and the associated Keplerian
frequencies. Understanding the behavior of the remnant under these extreme conditions
could offer valuable insights into the physics of neutron stars and help constrain the un-
derlying EoS. The thermal effects on the remnant in BNSMs were earlier studied using
EoSs at fixed temperatures [335]. Following the findings from the LVC on the uniformly
rotating remnant [7], our motivation is to investigate the properties of the remnant in the
numerical library LORENE [336] using EoSs at fixed entropy per baryon, as opposed to
zero-temperature EoSs.

6.1 LORENE: Formulation and Implementation
Here, we discuss the formalism implemented in the numerical library LORENE [336]. We
assume that the remnant in GW170817 becomes a rigidly rotating body once the differential
rotation of the remnant is shed over the effective viscous and magnetic winding timescale
∼ 100 ms. A stationary, axisymmetric spacetime is assumed for the study of this rigidly
rotating remnant. Such rapidly rotating star models can be studied within general relativity
in the 3+1 dimensional space plus time framework [337]. Here, the spacetime manifold
is foliated into a family of nonintersecting space-like hypersurfaces Σt parameterized by
coordinate time, t. By defining three spatial coordinates (xi) on each hypersurface, one
can write the line element in terms of lapse function N and shift vector (βi) as,

ds2 = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt) , (6.1)
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where γij is the 3-metric on each Σt [337]. For this scenario, the coordinates are chosen
based on considerations of spacetime symmetries and the foliation within the 3+1 frame-
work. The underlying assumption here is the stationarity, axisymmetry, and asymptotic
flatness of the spacetime. This implies that there are two mutually commutative Killing
vector fields, e0 = ∂/∂t and e3 = ∂/∂ϕ in the coordinates (x0 = t, x1, x2, x3 = ϕ). The
x1, x2 coordinates are cosen as spherical coordinates, i.e., x1 = r and x2 = θ. In addition,
βr = βθ = 0 and γrϕ = γθϕ = 0. In a quasi-isotropic gauge, γrθ vanishes and the line
element reduces to the form [147],

ds2 = −N2dt2 + A2(dr2 + r2dθ2) +B2r2 sin2(dϕ−Nϕdt)2 , (6.2)

where the metric functions, N, βϕ, A and B, depend on coordinates r and θ. Then, four
gravitational field equations are obtained as a set of four coupled elliptic partial differential
equations involving the energy-momentum tensor in source terms [337].

The matter is described by the energy-momentum tensor of a perfect fluid,

T µν = (ε+ P )uµuν + Pgµν . (6.3)

The fluid log-enthalpy is

H = ln

(
ε+ P

nmB

)
, (6.4)

where n and mB are baryon density and rest mass, respectively.

The equation of the fluid equilibrium follows from the conservation of energy-momentum
tensor

H(r, θ) + lnN − ln Γ(r, θ) =
Te−H

mB

∂is− uϕu
t∂iΩ, (6.5)

where Γ is the Lorentz factor of the fluid with respect to the Eulerian observer, and s is the
entropy per baryon in Boltzmann units. The last term of Eq. (6.5) is zero, as we consider
only rigid rotation, i.e., Ω = constant. Therefore, it is shown that the equilibrium Eq. (6.5)
finally reduces to the zero temperature expression [147],

H(r, θ) + lnN − ln Γ(r, θ) = constant. (6.6)

The formulation described above is implemented in LORENE. We use different equations
of state at constant entropy per baryon to calculate the properties of the rigidly rotating
remnant in GW170817.

6.2 Thermal Effects on BNSM remnant
Here, we discuss finite temperature EoSs and their impact on the properties of the remnant.
We present the plots depicting the EoSs, as well as the relationships between mass and
radius for sequences of non-rotating neutron stars in figures 6.1 and 6.2, respectively. These
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Figure 6.1: Pressure as a function of energy density for the DD2 (blue) and BHBΛϕ (black)
EoSs are shown at entropy per baryon s = 0 and s = 2 as solid and dashed lines, respec-
tively. Figure taken from Ref. [1] (DOI:10.3847/1538-4357/ab6a9e).
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Figure 6.2: Mass–Radius (M −R) sequences of the DD2 (blue) and BHBΛϕ (black) EoSs
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6.2. THERMAL EFFECTS ON BNSM REMNANT

sequences correspond to the DD2 and BHBΛϕ EoSs under two different conditions, namely,
at zero temperature (s = 0) and at entropy per baryon, s = 2.

It can be observed from figure 6.2 that the EoSs with s = 2 produce higher maximum
masses of non-rotating neutron stars due to thermal pressure. The thermal effects on the
maximum mass are however much smaller compared to the radii. The thermal effects
produce much larger radii, and the radii are significantly pronounced for the DD2 EoS.
This demonstrates the importance of thermal effects on non-rotating stars.

We further extend the study to explore the thermal effects on the properties of the remnant,
a rapidly rotating neutron star. With the assumption that the remnant in GW170817 did
not immediately collapse to a black hole, we compute the maximum rotation rate and
moment of inertia using EoSs at non-zero temperatures. These values were obtained with
the numerical library, LORENE [336], which is best suited for rapidly rotating compact
stars at a fixed entropy per baryon. The remnant properties then include thermal effects
as opposed to the calculations by the LVC [7] carried out using a large numbers of cold and
β-equilibrated EoSs. Note that the rotation rate of the remnant could exceed the Keplerian
limit of the uniformly rotating neutron star due to differential rotation. Nonetheless, the
mass-shedding limit was set as the upper limit of the remnant’s rotation [7]. The upper
bound of the remnant’s initial baryonic mass was estimated to be 3.05M⊙ [7]. Therefore,
in our analysis, we perform the calculations on the remnant with baryonic mass that does
not exceed ∼ 3M⊙ at the mass-shedding limit. Note: We find that the maximum masses
at the Keplerian speed for some EoSs are much higher than 3.05M⊙. For those EoSs,
we restrict calculations to the baryonic mass of 3M⊙. We compute the properties of the
remnant using the microphysical EoSs described in chapter 2. More specifically, we use
the DD2 [131], BHBΛϕ [144], SFHo [133], SFHx [133], TM1 [128], and TMA [129] EoSs
for these calculations. The baryonic mass, moment of inertia, and Keplerian frequency for
each EoS with a fixed entropy per baryon (s = 2) is listed in table 6.1.

These values are then compared to those obtained with zero temperature EoSs (s = 0). We
find that the Keplerian frequencies at s = 2 for all EoSs listed in table 6.1 are appreciably
lower than those with s = 0. As illustrated in figure 6.2, the impact of thermal effects
on the radii of neutron stars is significant, i.e., the stars are bigger in size compared
to their cold counterparts. This increase in size effectively compensates the increase in
mass due to thermal effects, thereby keeping the total baryonic mass close to that of the
cold remnant [335]. Additionally, this demonstrates that the Keplerian frequencies of the
remnant using zero temperature EoSs are grossly overestimated in Ref. [7].

This work can also be compared to the calculations carried out by Kaplan et al. in
Ref. [335], using EoSs at finite constant temperatures. The calculations in Ref. [335]
were carried out using a numerical method, known as the Cook, Shapiro, and Teukolsky
solver. We observe a consistency with Ref. [335] in the qualitative outcome of an extended
remnant. A lower Keplerian frequency is observed in both works due to thermal effects.

In the next section, we present a few results on the binary component NSs in GW170817.
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Table 6.1: Gravitational mass of the rigidly rotating remnant at Kepler Frequency, the
corresponding baryonic mass and moment of inertia listed for several EoSs at entropy per
baryon s = 0, and s = 2. These results show that the Keplerian frequencies at s = 2 for
all EoSs are considerably lower than those with s = 0. See Ref. [1] for original publication.

EoS s = 0 s = 2

MRot
G MRot

B I fKep MRot
G MRot

B I fKep

(M⊙) (M⊙) (1038 kg m2) (kHz) (M⊙) (M⊙) (1038 kg m2) (kHz)

DD2 2.606 3.004 5.439 1236 2.657 2.998 5.400 1109

BHBΛϕ 2.525 2.914 4.204 1424 2.427 2.717 3.755 1269

SFHo 2.444 2.856 3.214 1763 2.447 2.807 3.346 1606

SFHx 2.556 3.000 4.051 1581 2.492 2.832 3.715 1425

TM1 2.623 3.003 5.241 1228 2.634 3.001 6.767 1011

TMA 2.439 2.785 4.191 1315 2.448 2.728 4.460 1099

6.3 Binary components in GW170817 at s = 0

In this section, we focus on calculating the properties of the binary components in GW170817
using zero temperature EoSs. The range of combined tidal deformability extracted from
GW170817, i.e., 70 ≤ Λ̃ ≤ 720 [105], offers significant insights into the radii of the binary
components in the binary neutron star merger [262, 283, 284, 338–340]. This follows from
the known fact that tidal deformability is closely related to the radius of a neutron star,
as evident from the expression,

Λ =
2

3
k2

( R
M

)5
, (6.7)

where k2 is the Love number [200]. Several research groups have exploited the knowledge
of the tidal deformability estimate from GW170817 to estimate the radii of the binary
components [283, 284]. An analytical approach that relates the value of tidal deformabil-
ity obtained from GW170817 to the radius of a 1.4 M⊙ neutron star was introduced in
Ref. [284]. We extend this analytical prescription to estimate the radius of neutron stars
in the mass range 1.1M⊙ ≲M ≲ 1.6M⊙, as described in our previous work [8]. Note that
in this prescription, we assume that for a particular EoS, the change in radii of NSs in
the mass range 1.1M⊙ ≲ M ≲ 1.6M⊙ is insignificant. This may change for EoSs with a
strong first order phase transitions from hadronic to deconfined quark matter [141], but
such EoSs are not studied in this chapter.

It is known that k2 ∝ C, where C =M/R is defined as the compactness of the star. It then
follows from Eq. (6.7) that Λ ∝ C−6, for a large collection of EoSs. This relation is plotted
in Fig. 6.3 for the different EoSs introduced earlier in chapter 2. In this work, we apply

102



6.3. BINARY COMPONENTS IN GW170817 AT s = 0

 0

 300

 600

 900

 1200

2⋅10
4

4⋅10
4

6⋅10
4

8⋅10
4

1⋅10
5

 Λ-
 

 C
-6

DD2
BHBΛφ

SFHx
SFHo
TMA
TM1

Hybrid
G230a
G240a
G300a
G230b
G240b
G300b

Fit

Figure 6.3: Dimensionless tidal deformability is plotted as a function of C−6, for sev-
eral EoSs. Here, C (= M/R) is the compactness of the neutron star. The dashed
black line depicts the fitting curve (Λ = aC−6) to the EoSs. Figure taken from Ref. [1]
(DOI:10.3847/1538-4357/ab6a9e).

slight modifications to the methods described in Ref. [8]. This is done by introducing a
larger set of EoSs to estimate the fit parameter, a, that is used to fit the relation, Λ = aC−6.
Using the larger set of EoSs as shown in Fig. 6.3, we obtain an estimate of a ≊ 0.00967.

The combined tidal deformability is defined as

Λ̃ =
16

13

[(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2]

(m1 +m2)5
, (6.8)

where Λ1 and Λ2 are the dimensionless tidal deformabilities of the binary neutron star
components, m1 and m2, respectively. Using the fit relation, Λ = aC−6 in Eq. (6.8), and
assuming that the radii of binary components in the mass range 1.1M⊙ ≲M ≲ 1.6M⊙ are
nearly equal, i.e., R1 ≃ R2 ≃ R, we obtain,

Λ̃ =
16a

13
× 1

(1 + q)5
×
( R
m1

)6{(1 + 12q)

m6
1

+
(q + 12)

q2m6
1

}
, (6.9)

where q is the mass ratio of the binary components. Rewriting the expression in terms of
chirp mass yields the expression,

Λ̃ =
16a

13
×
( R
M

)6
× q8/5

(1 + q)26/5
×
[
12− 11q + 12q2

]
. (6.10)
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Since it was noted from numerical simulations that the combined tidal deformability had
no dependence on the mass ratio, q [99,341,342], we investigate the extrema of Λ̃ by taking
the derivative with respect to q at a fixed chirp mass and obtain,(∂Λ̃

∂q

)
M

= Λ̃× 1− q

5q(1 + q)
×
[96− 263q + 96q2

12− 11q + 12q2

]
. (6.11)

The roots of this derivative are then obtained as, q = 1 and q = 0.43346. Following the
same procedure in Ref. [8], we consider mmin

2 ∼ 1M⊙ and mmax
1 ∼ 2M⊙. This implies a

mass ratio, q ≥ 0.5. Moreover, the mass ratio in GW170817 was estimated as q ≥ 0.7 [104].
Rewriting Eq. (6.10) as,

Λ̃ = a′
( R
M

)6
. (6.12)

where,

a′ = a× 16

13
× q8/5

(1 + q)26/5
×
[
12− 11q + 12q2

]
, (6.13)

we estimate the value of a′ for the range of q estimated from GW170817. For q = 0.7, we
obtain a′ = 0.0043 and a′ = 0.0042 for q = 1, further proving the independence of Λ̃ on
mass ratio.

It may therefore be concluded that the effective dependence of the combined dimensionless
tidal deformability, Λ̃, on chirp mass, M, is similar to that of Λ on M , i.e., as given
by Eq. (6.12). Based on this relation, we can provide estimates on the radii of the binary
masses involved in GW170817. The components were estimated to have masses in the range
1.17− 1.6M⊙ [262], but the radii are assumed to have negligible differences. Substituting
the chirp mass, M = 1.188 for GW170817 [262], we obtain,

R = 4.36× Λ̃1/6 . (6.14)

The upper bound on Λ̃ = 720, results in a radius estimate of ∼ 13.04 km. Similarly, the
lower bound of Λ̃ = 70, provides us with a radius estimate of 8.85 km. Furthermore, if
we assume the lower limit obtained from electromagnetic observation, Λ̃ = 197 [315], we
obtain a radius of 10.52 km.

Apart from the analytical relation described above, we propose an alternative approach
that exploits the information on tidal deformability, to constrain the radii of the binary
components in GW170817. This method follows from Ref. [8], where improvisations are
implemented by using a larger set of EoSs. For this method, we assume a scenario where
m1 = 1.55M⊙, and m2 = 1.2M⊙, satisfying M = 1.18M⊙. This way, we obtain the radii
of the stars with a mass difference greater than 0.3M⊙ (a rather asymmetric mass ratio
is chosen here to obtain values close to the minimum and maximum possible radii of the
binary components in GW170817). Using several different EoSs, we plot the combined
tidal deformabilities and radii of the primary and secondary neutron stars in the right and
left panels of figure 6.4.
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Figure 6.4: Combined tidal deformability, Λ̃, as a function of radius, for the primary
mass (m1 = 1.55M⊙) and secondary mass (m2 = 1.2M⊙) in the right and left panels,
respectively. The symbols with colors correspond to different EoSs. The horizontal grey
lines represent the curve Λ̃ = 720, i.e., the upper bound obtained from GW170817 [272].
The dashed black lines are fit functions (Λ̃ ∝ R6) to the data. Figure taken from Ref. [1]
(DOI:10.3847/1538-4357/ab6a9e).

We fit the points using the relation Λ̃ ∝ R6, as seen from Eq. (6.12). This was seen as
a better fit as opposed to Λ̃ ∝ R5 from Ref. [8], where a smaller sample size of EoSs was
used. The fitting curves are depicted as dashed black lines. We plot the error bars which
are estimated with respect to the fitting curve. The upper bound on Λ̃, obtained from
GW170817 [272], is shown as a grey horizontal line. With this upper bound, we are able
to constrain the radii of 1.2M⊙ and 1.55M⊙ neutron stars at a maximum of 13.08 km, and
12.99 km, respectively. These estimates are in good agreement with the values obtained
from the analytical relation obtained in Eq. (6.14).

6.4 Conclusions

In conclusion, the post-merger gravitational wave signal provides valuable insights into the
EoS of neutron star matter, but challenges in detecting high-frequency signals limit our
understanding. By considering a uniformly rotating object, we have made predictions for
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certain properties of the remnant, therefore advancing our understanding of these enigmatic
cosmic phenomena. Electromagnetic observations also provide crucial information about
the merger remnant, which opens up intriguing possibilities regarding its fate based on its
mass and the maximum possible mass of a TOV NS. While there have been several studies
on how high the maximum mass of non-rotating NSs could be [252–255], this issue has not
been settled.

In particular, we investigated the moment of inertia and Kepler frequency of the rigidly
rotating remnant of GW170817 using EoSs at fixed entropy per baryon, s = 2. These
values were compared with those calculated at zero temperature i.e., s = 0. As estimated
in Ref. [7], we assumed a baryonic mass of the remnant ≲ 3M⊙. Furthermore, we assumed
that the remnant is rigidly rotating at the mass-shedding limit after the differential rotation
is eased out due to viscous effect. We observe that the thermal effects have negligible
impact on the remnant mass. However, the radius of the remnant increases significantly
at finite entropy. Consequently, we find that the Kepler frequencies for the sample EoSs
with s = 2 are significantly lower than those with s = 0. We conclude that Kepler
frequencies calculated with zero temperature EoSs are grossly overestimated in Ref. [7].
One can further estimate the properties of the hypermassive neutron star before it settles
into uniform rotation as done in Refs. [343,344].

Furthermore, we study the properties of the binary components in GW170817 before the
merger, using zero temperature EoSs. Using the analytic relations from Ref. [8], we increase
the EoS sample size to provide better estimates on the radii of the binary components in
GW170817. With the knowledge of the effective tidal deformability, we provide upper and
lower bounds for the radii estimates as ∼ 13 and ∼ 8.85 km, respectively. Using improved
fit relations on R− Λ̃, we also extract the radii of 1.2M⊙ and 1.55M⊙ NSs as ∼ 13.08 and
∼ 12.99 km, respectively. The choice of these masses reflects a possible combination of m1

and m2 for GW170817 that is rather asymmetric, therefore providing us with estimates of
the minimum and maximum possible radii values of the binary components.
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Chapter 7

Summary and Outlook

In this thesis we focus on developing deep learning (DL) algorithms to constrain the equa-
tion of state (EoS) of dense matter. These algorithms rely on observations of neutron
stars (NSs), like masses (M), radii (R) and tidal deformabilities (Λ). We also provide an
overview of how the developed algorithms in this thesis can be employed in future research
endeavours. We discuss possible extensions of these methods and scopes for improvement.

In chapter 4, we begin by presenting the novel physics-based DL method designed to re-
construct the EoS of strongly interacting dense matter based on M − R observations of
NSs. This unique method employs a model-independent and flexible representation of the
dense matter EoS, with neural networks (NNs) that output individual pressure (P ) points
as a function of density (ρ), i.e., P (ρ). The algorithm incorporates a Bayesian perspective,
in optimizing the EoS curve and calculating the associated uncertainties via importance
sampling. This way, the computational inefficiencies related to Bayesian analyses in a
multi-dimensional parameter space can be evaded. We introduce two NNs, namely the EoS
Network and the TOV-Solver Network. The EoS Network is used to represent the EoS, in
a model-independent way. The TOV-Solver Network, as the name suggests is trained to
solve the Tolman–Oppenheimer–Volkoff (TOV) equations using the traditional supervised
learning techniques. The EoS Network is then combined with the pre-trained TOV-Solver
Network to form the basis of the designed pipeline. A gradient-based approach is imple-
mented in the Automatic Differentiation framework to optimize the weights of the EoS
Network such that the resulting EoS produces an M − R curve (through the TOV-Solver
Network) that best fits the observation, in an unsupervised manner. We perform several
tests on simulated mock data, i.e., from piece-wise polytropic EoSs as well as from micro-
physical EoSs. We show that the performance of the algorithm improves as noise levels
in the mock data are reduced. A higher precision on future measurements of NS global
properties with next-generation telescopes can therefore provide the scope for a fine recon-
struction of the EoS of dense matter. We apply the developed scheme on available M −R
data of NSs from different instruments and present the reconstructed EoS in the density
range (1-7ρ0). The results are compatible with the EoSs reconstructed from earlier works
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that used conventional methods, and are also in agreement with the limits of tidal de-
formability obtained from the gravitational wave event, GW170817. Additional priors can
be added to the EoS from perturbative Quantum Chromodynamics (pQCD) constraints.
It has been shown that pQCD constraints the EoS from 2ns and at 5ns excludes at least
65% of the otherwise allowed area in the ϵ − P space [345]. Furthermore, the upcoming
eXTP mission [346] and the SKA telescope [347] are presumed to observe a large number
of neutron stars providing valuable information on the underlying EoS. It is also important
to note that the data used in this chapter to reconstruct the dense matter EoS is restricted
to mass and radius observations of NSs. With a rise in the number of GW detections from
BNS mergers, this study can be extended to incorporate the M − Λ relationships of NSs
in addition to the M − R relations. Current estimates of Λ from GW170817 bear larger
uncertainties. However, improved measurements of tidal deformability are expected in fu-
ture observations of GWs from next generation GW detectors, like LIGO India, KAGRA,
Einstein Telescope and Cosmic Explorer, which will have better sensitivities. Another
aspect that can be covered in future is the explicit inclusion of EoSs that undergo phase
transitions from hadronic to deconfined quark matter in the data. Moreover, the current
framework can be upgraded to include Bayesian Neural Networks, and also restrict the
usage of emulators for solving the TOV-equations for higher accuracies. Subsequently, one
would have to calculate the linear response of an M − R curve to a change in the EoS,
and use this gradient in physics-informed neural networks. Any bias introduced by the
TOV-Solver Network can also be eradicated by using the TOV-equations instead. The
scheme devised here can be generalized to and implemented in a number of fields that face
challenges with inverse-problems.

We demonstrate the capability and performance of neural networks for the analysis of
simulated gravitational wave (GW) data in chapter 5, by performing two distinct tasks:
(1) classification of GW signals from binary black hole (BBH) mergers, from binary neu-
tron star (BNS) mergers and signals which contain only noise, and (2) regression of chirp
mass (M) and the combined tidal deformability (Λ̃) from simulated GW signals of binary
neutron star (BNS) mergers. The DL classifier developed in this chapter is capable of
identifying the different kinds of signals with macro-averaged precisions of 0.99 and 0.96
for oSNR=25 and 20, respectively. In addition to the classifier, we design a few DL re-
gressors to estimate the M and Λ̃ from BNS merger signals. We show that the network
achieves high R2 values, 0.98 and 0.97, for regressing M and Λ̃, respectively, using test
samples of whitened simulated BNS merger signals injected into aLIGO’s colored noise.
Note that the prediction of the tidal parameter is vital for constraining the underlying NS
EoS. In this work, however, the regression network does not output the individual tidal
deformabilities. Nor does it unravel the individual masses in the binary system from the
estimation of M. Hence, we assume a currently achievable scenario, i.e., where we are
likely to obtain estimates only on the M and Λ̃ values to constrain the dense matter NS
EoS. We show that with sufficient number of observations, this information can also add
constraints on the NS EoS. The classifiers and regressors described here can be integrated
to establish a comprehensive pipeline for future GW signal analyses. Upon detecting a
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BNS merger using the classification network, the identified event can be passed on to the
regression network for parameter estimation. This seamless integration forms a holistic
pipeline for GW analysis in future, where GW detectors are expected to have sensitivities
that are an order of magnitude better than those from the current generation. Another
aspect to note is that the framework developed in this work aims to constrain the NS
EoS using only mass and tidal parameters. However, unlike the one-to-one correspon-
dence between the mass-radius (M − R) curve and the underlying EoS, the M − Λ curves
do not necessarily have a direct relation with the EoS [348, 349]. This has been demon-
strated with different EoS models that undergo a first-order phase transition (FOPT) at
significantly different densities, but result in identical M − Λ curves. The effect of this
degeneracy can be scrutinized in future work. Independent radius measurements from
NICER could also help break this ambiguity. Furthermore, the classification and regres-
sion networks designed in this work are elementary. They can be further developed to
incorporate additional parameters of the binary coalescing system like spins, inclinations
and distance. It’s essential to note that this work is based on a specific waveform ap-
proximant, i.e., ‘IMRPhenomPv2_NRTidalv2’ for BNS merger simulations, which could
introduce model dependence into the trained network. Full general relativistic magnetohy-
drodynamic (GRMHD) simulations of binary neutron star mergers in 3D are considerably
more accurate for modelling gravitational waveforms. However, a single simulation in-
creases the computational cost by several orders of magnitude. Therefore, full GRMHD
simulations are currently a less favourable alternative, albeit being more accurate and
model-independent. If more computational power is available in future, one could replace
the approximate waveform models with full GRMHD simulations. Another crucial open
question which can be considered in this study is again the possibility of a phase transition
from hadronic to deconfined quark matter at high densities and temperatures. Mergers
of binary neutron stars can potentially harbour such extreme conditions, rendering possi-
bilities to study these effects [268, 320, 350]. Despite employing a waveform approximant
that models the inspiral, merger, and ringdown components of a GW event, we limit our
analyses in this study to a maximum GW frequency of 2048 Hz. This restricted frequency
range excludes information from the ringdown or post-merger phase of a BNS merger. In
order to address this, the current work can be extended to include post-merger frequencies
that reach as high as 4096 Hz. A comprehensive and extensive analysis of the post-merger
GW signals of BNS mergers can enhance our understanding of the possible existence of
a first-order phase transition. Additionally, post-merger GW analyses could benefit from
deep learning techniques with exponential boosts in the associated computational costs.
Similar algorithms might also prove useful in analyzing GWs from detectors like the up-
coming space probes, LISA (Laser Interferometer Space Antenna) [351] and TianQin [352].
These missions are designed to detect gravitational waves in the low-frequency range. The
gravitational wave sources that LISA would discover include ultra-compact binaries in our
Galaxy, supermassive black hole mergers, and extreme mass ratio inspirals. TainQin on
the other hand, is used to detect GWs in the mHz range from known sources. This aspect
can also be explored in future.
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In chapter 6, we demonstrate the effects of finite temperature on BNS merger remnants. We
use different isentropic EoSs (fixed entropy per baryon, s = 2) to investigate the moment
of inertia and Kepler frequency of the rigidly rotating remnant in the event, GW170817.
When compared to the same quantities calculated at zero temperature i.e., s = 0, we
note a significant decrease in the Kepler frequencies. We conclude that Kepler frequencies
calculated with zero temperature EoSs are grossly overestimated in Ref. [7]. Additionally,
we provide radii estimates of the binary components in GW170817. We utilize analytic
relations from Ref. [8] with an increased sample size of zero temperature EoSs. Using the
effective tidal deformability estimated for the event, we calculate upper and lower bounds
as ∼ 13 km and ∼ 8.85 km, respectively, for the radii of the components. Furthermore,
we employ enhanced fit relations for R − Λ̃ to derive the radii of 1.2M⊙ and 1.55M⊙ NSs
as ∼ 13.08 km and ∼ 12.99 km, respectively. Note that we provide estimates for the radii
of the binary components in GW170817 by making assumptions that the radii of the NSs
in the mass range 1.17 − 1.6M⊙ have insignificant differences. However, this assumption
is likely to break down in situations where strong first order phase transitions occur. The
fit relations for R − Λ̃ employed in this study are based majorly on nucleonic EoSs. This
implies that the study is possibly invalid for hybrid EoSs and remains open for further
investigation.

In summary, this thesis presents novel deep learning methods that utilize observational data
of neutron stars to add constraints on the underlying equation of state. These algorithms
will prove useful in future, as more observational data is available with time.
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Appendix A

Automatic Differentiation on a Test
function

We demonstrate the efficiency of the Automatic Differentiation (AD) technique along with
the importance sampling and the uncertainty estimation used in chapter 4, on a simple test
case. We provide an example using a test function, which is a second-degree polynomial,
given as,

y = a+ b1x1 + b2x
2
2. (A.1)

In this example, we aim to infer the coefficients (a, b1, b2) of the polynomial using 18 data
samples (similar to the number of M − R observations used in chapter 4). The samples
are created by using random values for x1 and x2 from a univariate normal (Gaussian)
distribution. These data points are analogous to the mean values of the M −R data. For
each of these 18 data points, we generate 1000 samples from fixed normal distribution that
resembles its noise or uncertainty.

With this simple example, we infer the coefficients of the polynomial using the concept
of automatic differentiation (see section 4.1 of chapter 4 for a detailed description). In
addition, we use importance sampling [258] to assign proper weights to the inferred val-
ues corresponding to each of the 1000 samples generated from the noise distribution (see
section 4.3.3 on uncertainty estimation). These results are then compared to the posterior
distributions of the coefficients obtained using the Bayesian Inference (BI). The compari-
son is depicted in figure A.1, for the polynomial coefficients, a, b1, and b2 in red, green and
blue, respectively. It can be observed that the posterior distributions obtained using the
two different inference methods are rather similar. This simple test can be used to demon-
strate the utility of the uncertainty estimation used on the Automatic differentiation (AD)
inference here, i.e., importance sampling.

Note that importance sampling has also been successfully used in the inference of param-
eters from gravitational wave analyses that utilize deep learning techniques [296]. This
method can therefore be applied to all techniques that utilize ‘proposal posterior distri-
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Figure A.1: Posterior distributions obtained for the coefficients of a polynomial using (i) the
automatic differentiation method with importance sampling, denoted AD and (ii) the
Bayesian Inference (BI) method.

butions’ rather than using the exact ones that are achieved via Bayesian inference. An
application of IS to the results from chapter 5 is left for future work.
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