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Abstract  

The Munich Procedure, a protocol presented as R code and initially developed on the basis of 

archaeometric portable X-ray fluorescence (p-XRF) data, offers adaptability and standardisation to 

evaluate coefficient corrections. These corrections are derived from linear regressions calculated by 

comparing p-XRF values with laboratory chemical analyses of the same sample set. The versatility of this 

procedure allows collaboration and ensures consistent data structure. Not tied to specific 

instrumentation, this approach helps to universally improve the accuracy of p-XRF data, benefiting 

specialists in a variety of industries. By providing a common baseline for performance evaluation, it 

enables discussion across different applications. 
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questions 
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Introduction 

The use of linear regressions for instrument calibration and/or the development of coefficient 

corrections (coefcor) – also known as is type standardisation, user factors, secondary calibration, 

calibration correction or post-processed slope correction [1–7] – is a standard procedure used in many 

disciplines and for a variety of analytical methods [8,9]. This is also true for portable X-ray fluorescence 

(p-XRF) devices for which linear regressions [10]are performed foremost to compensate for element 

interferences and matrix effects, but also to assess the accuracy of the instrument by determining the 

agreement of its output with that of other analytical methods [8,11–21]. Yet, unlike calibrations that do 

consider interferences like peak overlaps, background scatter and matrix effects [8,16,21–23], 

empirically developed coefcors offer a straightforward comparisons of measurements taken on the 

same set of samples which can be performed using simple software such as Excel but also, more 

continently, R [24,25]. Coefcors are applied to compare data from different settings, instruments, or 

methods to adjust the data given by the p-XRF instrument to the samples surface and matrix properties: 

For example data collected on archaeological pottery, due to its composition, does need a different 

coefcor then environmental hazard samples even if the same measurement mode was used. However, 

even if regularly used, the descriptive potential of linear regression for calibrations as well as coefcors in 

p-XRF studies has yet not been fully exploited. Particularly important information to precisely define and 

assess the accuracy of the given instrument and measurement procedure is lacking [1,13,26–28]. 

Additionally, there is no standard procedure with benchmarks to define a sufficiently accurate linear 

regression. Therefore, this paper describes an algorithm, the Munich Procedure, which fills this gap with 

respect to coefcors of p-XRF data and is made available as R code for further use and improvement 

[28,29]. This protocol offers a standardised, robust, transparent, and consistent approach to data 

processing that can be applied to various datasets and instruments, ensuring that the resulting data is 

comparable across studies. 

The status quo - linear regressions in p-XRF studies 
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Linear regressions [10] are commonly used to enhance and define the accuracy of measurement data by 

adjusting p-XRF measurements using samples with known compositions and a matrix matching those of 

the samples to be analysed. For example, archaeological samples like the Frankfurt Pottery Sample Set 

[15,30] are often employed to develop linear regressions for archaeological pottery while powdered 

samples are employed for the analysis of soils. The calculations themselves then compare values or in 

some cases intensities measured by p-XRF (x-values or independent variable) with values obtained from 

the same samples by laboratory methods (such as ED-XRF, WD-XRF, NAA or ICP-MS; y-values or 

dependent variable) which are traditionally taken as ‘true’ values [8,13–18,26,27]. The slope (a) and, if 

applicable, intercept (b) derived from these comparisons are then used to calculate corrections for data 

sets generated by the specific device on similar matrices. This results in the creation of coefcors tailored 

to specific sample types, such as pottery or obsidian. To define the quality of a linear regression that 

best corrects p-XRF, the coefficient of determination (r²) and the coefficients (a, b if applicable) are 

usually reported  [5,6,13–19,21–23,27,31–33]. The exclusion of samples from the calculation to obtain 

the best possible equation is normally based on the operator's judgment, with the emphasis on 

introducing as little change as possible to the original p-XRF values and keeping r² as close to 1 as 

possible. This process helps not only to obtain the best correction factors but also to decide whether to 

use Regression Through Origin (RTO) or Ordinary Linear Regression (OLR) [33–35].  

An improved approach – the Munich Procedure 

Building on the previously described approach (in the archaeometric Niton-user community also know 

as the Frankfurt Procedure) the Munich Procedure not only includes additional quality criteria such as 

the standard error of the estimate (SEE) which indicates the average distance of the observed values 

from the regression line [33,35] but also uses a Bonferroni outlier test to identify outliers and a 

bootstrap algorithm to test for reproducibility [28,33]. Yet, as the SEE is given in the unit of the 

measurement, to ensure comparability within a data set containing very different concentrations of 

major (e.g. compositional, % level or ppm) and trace elements (e.g. ppm level), the relative SEE (rSEE) is 

introduced. This criterion is calculated as a percentage of the mean value: rSEE= (SEE/mean)*100. To 

accept a linear regression, the rSEE must be less than 10% and the r² greater than 90%. These threshold 

values are based on many years of experience working with archaeological pottery and are specific for 

the application of the Munich Procedure to this type of material. Other benchmarks may be defined for 

other materials or disciplines as no universally applicable threshold can exist [28,36]. In order to 

establish reproducibility, such as ensuring that the exclusion of samples does not significantly alter the 

linear regression, the bootstrap confidence intervals for the slope are calculated using the BCa approach 

(bias-corrected and accelerated, confidence level 0.9). Hereby random samples are drawn 2500 times 

from the provided sample set allowing to re-draw samples [35,37,38]. The values obtained by the 

bootstrap method and those calculated on the basis of the linear regression should be as close as 

possible (± 0.05) to the 5 % and 95 % confidence levels. To ensure that the best possible linear 

regression is selected for the data in question, both a RTO and an OLR are calculated and compared [28]. 

Additionally, factors such as the range of variation of residuals, percentage of excluded samples, and the 

root mean squared error (RMS or RMSE) should be taken into consideration: The RMS quantifies the 

deviation of values in their unit of measurement from their true position (e.g., the value obtained from a 
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laboratory method) [33,34,36]. In this instance, the RMS is preferred over the mean absolute error 

(MAE) to take outliers into account [36]. 

In the Munich Procedure, both linear regressions can be refined by excluding samples that are identified 

as significant outliers through the Bonferroni outlier test [28,33]. To accept a linear regression, no 

significant outliers should remain. In addition, different outliers should be reported for RTO and OLR. Yet, 

the later is no hard criterion – if the other criteria are met well enough or excluding the sample results in 

a worsening of r² and/or rSEE this can be disregarded. A decision on the most appropriate linear 

regression, and thus the coefficients for a particular element, is made when one or both of the 

regressions meet the benchmarks described above. All the named factors play a crucial role in 

comparing coefcors and documenting their quality transparently – which is up to now only rarely the 

case. Therefore, using the Munich Procedure does provide a broader basis to identify but also produce 

high quality coefcor. This is especially true as the whole procedure is provided as R-code [25,28,29].  

Impact Overview: Application of the Munich Procedure, potentials and limitations 

Since the Munich Procedure was only published in February 2024, it is too early to assess its reception. 

An extensive application of data from the Niton XL3t (No. 97390), owned by the Department of Cultural 

Sciences at Ludwig-Maximilians-Universität München, was used to generate a total of 9 coefficients 

[28,29]. These coefficients pertain to both internal instrument adjustments and the comparison of p-XRF 

measurements with laboratory methods, offering a comprehensive example dataset for understanding 

how to implement the method. Furthermore, future publications utilizing data from this instrument will 

have access to the coefficients presented transparently. This utilization of the Munich Procedure can 

thus serve as a reference and starting point for further applications. 

The Munich Procedure is designed to generate coefcors using R [28,29]. The straightforward code to 

compare measurements can be used to align different settings, instruments, or methods but also to 

adjust the values of an instrument after a necessary recalibration due to an instrument defect. Thus, the 

produced coefcors can be used to compare the performance of the same instrument before and after 

certain events, but also to correlate the measured values with those obtained by other analytical 

methods. This process documented by the Munich Procedure enhances the accuracy of p-XRF data (Fig. 

1), making it a crucial step in data processing. Incorporating factors such as rSEE and reproducibility 

testing with bootstrap methods not just into coefcor but also calibration procedures would be highly 

advantageous. However, calibrations are typically conducted by manufacturers or specialized programs 

provided by them, which may not allow for customization in terms of statistical values and procedures. 

This is particularly unfortunate as customized corrections are almost always necessary as the 

manufacturer's own calibrations are not tailored to the matrices or surfaces encountered in real-life 

settings by users [1–7]. Therefore, this limitation currently restricts the application of the Munich 

Procedure to analytical data provided by the instrument after method-specific calculations (black box) 

or analytical data pre-processed by manufacturer-specific software and customised algorithms (such as 

Bayesian deconvolution in the Artax software 8.0.0.46). 
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Fig. 1: Comparison of data documented by the Munich Procedure before (left) and after (right) aligning it with the benchmarks 

and criteria. The table displays slope (a) and intercept (b) corrections, values of rSEE, SEE, RMS, as well as the lowest (start) and 

highest (end) concentrations covered by the coefcor. It also includes the 0.5 and 0.95 confidence intervals calculated by the 

linear regression (CILS) or bootstraph algorithm (CIBS). Additionally, it provides row numbers (out) and the percentage (outpct) 

of excluded samples (data = Zn of coefcor III [28,29]) 

Another key strength of the Munich Process is its versatility: Because it is available as R code, sharing 

and collaboration within the scientific community is strongly encouraged: Researchers can easily add to 

and improve the method. This could include, for example, developing a more elegant way of coding, 

adding criteria that improve the results when the Munich Procedure is applied to a variety of datasets, 

but also automating aspects of the algorithm that currently need to be individually monitored and 

adjusted by the user. For the latter aspect in particular, AI learning algorithms could play an important 

role. In addition, the code could be integrated into existing calibration routines, such as those provided 

by manufacturers, but also open source programs like CloudCal [39]. In addition, the use of an R code 

ensures a consistent data structure, as maintaining uniformity in file organisation and spreadsheet 

format is essential for error-free execution of the code. Users only need to familiarise themselves with 

the code and structure once, while being able to work with datasets produced by different researchers. 

Moreover, the code is not tied to a specific instrument or manufacturer; the Munich procedure can 

improve the accuracy of p-XRF data universally, across specific materials or scientific disciplines. 

Therefore, this standardised approach can serve as a common reference point for p-XRF specialists 

across industries and professions.  

By adhering to a standardised procedure and utilizing criteria that are comparable regardless of the 

instrument or material under study, discussions on instrument performance can be conducted 

consistently across diverse applications and research fields. The Munich Procedure therefore has the 

potential to establish a solid foundation for understanding the functionality and utility of p-XRF in 

greater detail by defining accuracy for chemical elements in a concise and directly comparable and 

reproducible manner (Fig 1 and 2). Sharing the data used to create coefcors (or calibration) following the 

Munich Procedure protocol, along with the related R-scripts and their output, through online 

repositories will offer direct access to essential information. This will provide transparent and consistent 

documentation, making it easier to understand the quality of the provided coefcors (or calibrations). 

 

Fig. 2: Table summarizing the criteria for linear regressions of Zn according to the Munich Procedure. The R script also provides 

the option of producing and comparing graphs as in Fig. 1 (data = coefcor I to IV (p-XRF to WD-XRF), coefcor ItoII, ItoIII, IItoIII, 

IIItoII, IVtoIII (instrument internal) [28,29]) 
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Highlights  

 
• The Munich Procedure, developed for p-XRF data, standardises coefficient corrections.  

• It ensures consistent, reproducible data, benefiting specialists in various industries.  

• The protocol, documented as R-Skript, enhances accuracy and transparency of p-XRF data.  

• Establishing a common baseline fosters discussion and improves the overall understanding of p-XRF. 
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