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A B S T R A C T   

We conducted scaled analogue modelling to show the influence of varying single layer initial orientation on the 
geometry of folds and boudins in a bulk constrictional strain field. The initial angle between the plane of 
shortening and the competent layer (θZ(i)) was incrementally increased from 0◦ to 90◦ by multiples of 11.25◦. 
While the amount of layer thickening decreased with increasing θZ(i), the deformation structures produced range 
from pure dome-and-basin folds to coeval folds and boudins. Based on the attitude of fold axes, there are 
extension-parallel (FEPR) and extension-perpendicular (FEPP) folds, with axes subparallel and subperpendicular to 
the principal stretching axis (X), respectively. Coeval growth of FEPR folds and boudins occurred when θZ(i) > ca. 
25◦. The FEPP folds can be subdivided into a first type which affect the entire layer (if θZ(i) ranges between 11.25 
and 78.75◦) and a second type, referred to as FBEPP folds, which are affecting pre-existing boudins if θZ(i) > 45◦. 
The interlimb angle of all types of folds increases with increasing θZ(i). Folds and boudins similar to the ones 
produced in this study can be found in salt domes and in tectonites of subduction zones.   

1. Introduction 

As widespread deformation structures in naturally layered rocks, 
folds and boudins occur across the whole range of structural levels and 
spatial scales within various geotectonic regimes (e.g. Ramberg, 1955; 
Rast, 1956; Smith, 1977; Hudleston and Lan, 1993; Marques and Cob
bold, 1995; Goscombe and Passchier, 2003; Druguet et al., 2009; 
Hudleston and Treagus, 2010; Marques et al., 2010, 2012; Reber et al., 
2010; Arango et al., 2013; Schmalholz and Mancktelow, 2016; 
Mukherjee, 2020; Alsop et al., 2021; Zawaski et al., 2020; Nabavi and 
Fossen, 2021; Papeschi et al., 2022). These structures play an important 
role to estimate and reconstruct the rheological properties and kine
matic conditions associated with the deformation. Buckling and 
necking, one of the most important mechanisms inducing folds and 
boudins, respectively, are the two types of preferred deformation pat
terns of rheologically stratified rocks. This preference arises because 
bucking and necking minimize the corresponding mechanical work that 
is required to extend or shorten the layers (Schmalholz and Mancktelow, 
2016; Zulauf et al., 2020b). Buckle folds and boudins are closely related 
to each other in some respects. First of all, both structures can be formed 
under the same fundamental driving mechanism of the difference in 

strain rate between the competent layer and the incompetent matrix of 
the stratified rocks (Ramberg, 1959). Secondly, both can be formed 
under the conditions related to structural softening (Schmalholz and 
Mancktelow, 2016). Thirdly, both buckle folds and boudins can be 
formed under an identical frame of mechanical instability based on the 
hydrodynamic stability theory for power-law materials, thus exhibiting 
the same dominant wavelength (Zulauf et al., 2020b). If the viscosity 
ratio and the power-law stress exponent of layer and matrix increase, the 
amplification rates also increase (Fletcher, 1974; Smith, 1975, 1977). 
However, in contrast to folding, boudinage is not recoverable (Sengupta, 
1983). Compared to boudinage, folding exhibits a greater amplification 
rate and a higher degree of structural softening (Schmalholz and Man
cktelow, 2016). Folding is applicable to both linear and power-law 
viscous rheology, while necking and related boudinage are restricted 
to the latter (Fletcher, 1974; Smith, 1977, 1979). 

Flinn (1962) carried out theoretical studies of folding and boudinage 
in three-dimensional strain fields: (1) constrictional strain (1 < k < ∞), 
(2) flattening strain (0 < k < 1), and (3) plane strain (k = 1), where k is 
the Flinn parameter (Fig. 1 in Flinn, 1962). Exhaustive research 
regarding folds and boudins developing under bulk coaxial plane strain 
has been conducted in the last decades (e.g. Zulauf et al., 2020a, 2020b, 
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2021). Cylindrical folds and boudins will grow if the layer is oriented 
perpendicular to the principal stretching axis (X) or to the principal 
shortening axis (Z), respectively (Marques et al., 2012; Zulauf et al., 
2020b). Under these conditions, the axes of both folds and boudins are 
subparallel to the intermediate strain axis (Y) (e.g. Ramberg, 1955; 
Hudleston, 1973; Schöpfer and Zulauf, 2002; Zulauf et al., 2003; 
Schmalholz, 2006b; Schmalholz et al., 2008; Hudleston and Treagus, 
2010; Reber et al., 2010; Adamuszek et al., 2011; Abe and Urai, 2012; 
Zulauf et al., 2020b). Boudins and folds can grow simultaneously if the 
competent layer is oriented perpendicular to the intermediate Y-axis 
under bulk coaxial plane strain (Grujic and Mancktelow, 1995). Under 
these conditions, the axes of torn boudins and extension-parallel folds 
are parallel to the Z- and X-axis, respectively (Zulauf et al., 2003; Enama 
Mengong and Zulauf, 2006). 

In cases of an oblique competent layer, with a general non- 
orthogonal orientation to the principal strain axes under bulk coaxial 
plane strain, the situation becomes more complex as the layer rotates 
during progressive deformation. When the oblique layer is aligned 
parallel to the Y-axis, it rotates slower than a corresponding passive 
plane (Price, 1967; Zulauf et al., 2020a). However, when the oblique 
layer is aligned parallel to the X- or Z-axis, its rotation rate is nearly the 
same as that of a passive plane (Zulauf et al., 2020b, 2021). The orien
tation and rotation of the layer can also affect the geometric parameters 
of coeval folds and boudins. When the competent layer is initially 
aligned parallel to the Y-axis and oblique to the X- and Z-axis, asym
metric folds (Price, 1967; Treagus, 1973; Anthony and Wickham, 1978; 
Zulauf et al., 2020a) and asymmetric boudins (e.g. Abe and Urai, 2012) 
will develop under coaxial plane strain. Coeval development of 
extension-parallel folds and boudins is feasible under coaxial plane 
strain, if the layer is initially parallel to the X-axis, but oblique to the Y- 
and Z-axis (Zulauf et al., 2020b). The same holds for cases where the 
competent layer is initially parallel to the Z-axis, but is oblique to the X- 
and Y-axis, and the initial angle between layer and X-axis is < 45◦. 
Competent layers inclined to the X-axis at an angle >45◦ will be con
verted into periclinal folds (Zulauf et al., 2021). 

Thus, non-cylindrical folds and boudins can grow within oblique 
competent layers, although the deformation is plane and coaxial. Such 
non-cylindrical structures, on the other hand, can develop in non- 
oblique competent single layers if the bulk strain is not plane, i.e. pure 
and general constriction or pure and general flattening (Treagus and 
Treagus, 1981; Weijermars, 1997; Kobberger and Zulauf, 1995; Zulauf 

et al., 2003, 2011, 2016; Zulauf and Zulauf, 2005). Moreover, based on 
the results of previous physical and numerical experiments mentioned 
above, coeval folding and boudinage are possible if an oblique or 
non-oblique competent layer is deformed under bulk coaxial plane 
strain, or if the competent layer has a general orthogonal orientation 
with respect to the principal strain axes in non-plane deformation set
tings. Physical and numerical experiments focusing on non-plane co
axial deformation of oblique single (and multi) layers, however, are 
entirely lacking, and the structures related to these conditions are 
largely unknown. As flattening and constrictional finite strain are 
frequent in nature, and the number of 3D folds and boudins described 
from natural tectonites increases, such experiments are essential. 

The present study concentrates on the growth of folds and boudins in 
initially oblique single layers during coaxial bulk constriction. Scaled 
analogue modelling was applied to investigate the effect of initial layer 
inclination on the geometrical parameters of folds and boudins. We 
conducted a sequence of experiments with varying initial angle between 
the competent layer and the shortening axis, while all the other pa
rameters, such as layer thickness or viscosity ratio between layer and 
matrix did not change. The results of these experiments will be described 
and discussed. Finally, examples of natural coeval folds and boudins will 
be presented that might be attributed to the deformation of oblique 
single layers under bulk constriction. 

2. Methods 

2.1. Analogue material and experimental parameters 

For the experiments, we used plasticine and modified plasticine as 
rock analogue materials, which display strain-rate softening features 
with effective viscosity decreasing with increasing strain rate. For 
further details regarding the properties of plasticine and its application 
as a rock analogue, see Zulauf and Zulauf (2004). 

Two different types of plasticine with the viscosity ratio of m = 18 
were used for the competent layer and incompetent matrix, which are 
the Kolb brown/Stange weiβ type with higher viscosity (ηLayer = 4.0 ×
109 Pa s) and stress exponent (nLayer = 6) and Beschuss-Knete type with 
lower viscosity (ηMatrix = 2.2 × 108 Pa s) and stress exponent (nMatrix =

4), respectively (Table S1, Supplement). The viscosities mentioned 
above are related to the strain rate of ė = 1.9 × 10− 5 s− 1 with finite 
constrictional strain eZ = eY = − 50%. It is suggested that the typical 

Fig. 1. (a) Experimental setup of folding and boudinage of an oblique competent layer under bulk coaxial constriction. (b) Photograph of undeformed sample when 
θZ(i) was set at 33.75◦. (c) Photograph of undeformed sample when θZ(i) was set at 45.00◦. (d) Deformed sample when θZ(i) was set at 11.25◦. 
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stress exponent of coarse-grained rocks subjected to dislocation creep is 
between 3 and 5, but as high as 8 has also been proposed (see Zulauf 
et al., 2023 and references therein) 

Nine experimental runs were conducted in bulk constrictional strain 
fields, each with a different initial angle between the competent layer 
and the Z-axis (θZ(i), Fig. 1). The initial orientation of the pre- 
deformation layer was incrementally changed by multiples of 11.25◦

(Fig. 1a), starting from the YZ-plane (θZ(i) = 0◦, dome-and-basin folding) 
until the XY=Z-plane (θZ(i) = 90◦, coeval folding and boudinage) was 
attained. We set the rock analogues as a standard cube with a side length 
of 15 cm. The layer has been set with an initial thickness (Hi) of 1.5 ±
0.1 mm and embedded within the weaker matrix (Fig. 1b and c). 
Experimental procedures were conducted at a constant temperature T =
25 ◦C (Table S1, Supplement). 

In laboratory modeling of rock deformation, the model serves as a 
small-scale geometric replica of the natural rocks and deforms at higher 
strain rates, allowing body forces such as gravity as well as inertia to be 
neglected (Zulauf et al., 2020b). To simulate deformation structures of 
natural rocks, the models in the experiments are properly scaled con
cerning the geometric, kinematic, and dynamic similarity of natural 
rocks (e.g. Hubbert, 1937; Ramberg, 1981; Weijermars and Schmeling, 
1986). Notably, the experiments feature a substantially higher strain 
rate than typically found in naturally deformed rocks. Moreover, the 
models of the present experiments were not subjected to confining 
pressure, which practically occurs in nature. Nevertheless, dynamic 
similarity is provided between the non-linear viscous analogue materials 
and natural rocks. The models can be used to model folding of rocks 
where both layer and matrix are undergoing dislocation creep. Dislo
cation creep is common as deformation mechanism in most silicate 
phases if temperature is elevated at deeper structural levels (e.g. Carter 
and Tsenn, 1987). 

Particular attention has to be paid to possible boundary effects of the 
physical experiments (e.g. Marques and Podladchikov, 2009; Marques 
and Mandal, 2016), especially for oblique layers, because the ends of the 
layer(s) tend to slide along the boundaries and parts of the layer can be 
pulled out of the sample (Zulauf et al., 2020a, 2023). Oblique loading of 
the ends introduces additional perturbation components because the 
planar boundary is no longer parallel to the axial plane of the developing 
folds (Schmalholz and Mancktelow, 2016). To reduce boundary effects 
due to friction between the specimen and the aluminium plates of the 
machine, the sides of the specimen were lubricated with vaseline. 
Moreover, to eliminate boundary effects, only the structures in the 
central part of the samples were considered during geometrical analyses, 
which are largely free from boundary effects. 

2.2. Experimental apparatus and geometrical analysis 

A three-dimensional coaxial deformation rig was used to deform the 
plasticine models as illustrated in Fig. 2. Details regarding the compo
nents, operation mechanism, and experimental procedure of the defor
mation apparatus are described by Zulauf et al. (2009). 

To visualize the deformation style and detailed 3D geometry of the 
complex structures of coeval folds and boudins, all deformed samples 
were investigated using computed tomography (CT). The distinct den
sity ratio between layer and matrix allows that deformation structures 
can be optimally visualized via CT. The CT analyses were performed in 
the Neuroradiologie Department of Frankfurt University Clinic, using a 
multislice spiral CT-scanner (Phillips Brilliance 6 CT). The following 
geometric parameters of folds and boudins have been determined 
(Table S1, Supplement): initial (Hi) and finite (Hf) layer thickness, 
amplitude (A), arc-length (L), wavelength (λ), interlimb angle (δ), 
number of folds (Nfold), number of boudins (Nboudin), width of boudins 
(WBoudin), width of boudin necks (WNeck), and degree of layer rotation (θZ 

(RL)). More details about the conditions for CT analysis are described by 
Zulauf et al. (2021, 2023). Based on the CT data, the geometry of folds 
and boudins was obtained using the following software: ImageJ/FiJi 

(http://imagej.net/Fiji/Publications), Meshlab (Visual Computing Lab – 
ISTI – CNR, http://meshlab.sourceforge.net), and Smoooth (rt-mp Soft
ware Development, info@rt-mp.com). 

In addition, we analyzed two samples with non-cylindrical folds as 
digital 3D models using the software MeshLab and Smoooth-Classi
fyCurvature to quantify the geometrical parameters of folds. The surface 
curvature as well as normal and tangent vectors were mathematically 
calculated using differential geometry (Mynatt et al., 2007). The fold 
classification is furthermore obtained based on the mean curvature and 
the Gaussian curvature. Different types of folded surfaces including 
domes, basins, antiformal saddles and synformal saddles can be identi
fied using this software. The related methodology and workflow are 
delineated in detail by Zulauf et al. (2017). For the dome-and-basin 
structural sample of the present study, we gathered data sets from six 
different measuring profiles of each surface layer according to the 
following conditions: strongly kinked (strK) and slightly kinked (sltK) 
profiles, strongly curved (strC) and slightly curved (sltC) folds, distinct 
and relatively large domes and basins (lrgDB) and considering almost all 
possible profiles (allP). For the other sample, without a dome-and-basin 
structure, we obtained the data from several profiles of each surface 
layer which are approximately parallel to each other. Subsequently, the 
fold parameters, arc-length (L), wavelength (λ), orthogonal amplitude 
(A), and oblique amplitude (A’) are quantified using the software. 

3. Results 

3.1. Geometry of folds and boudins 

The geometrical parameters measured from the deformed single 
layers are listed in Table S1 (Supplement). The deformed layers are 
shown by CT models in Fig. 3. Column 3a displays the pre-deformational 
attitude of the competent layer. The views of column 3b are directed 
along the X-axis. The views in column 3c are directed perpendicular to 
the layer, with the exception of sample θZ(i) = 0◦. Extension-parallel 
folds (FEPR folds), with their axis subparallel to the X-axis, and 
extension-perpendicular folds (FEPP folds), with their axis perpendicular 
to the X-axis, are particularly well presented in oblique views of the 

Fig. 2. Schematic drawing (top view) of the deformation apparatus used for the 
experiments (after Zulauf et al., 2003). 
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layer depicted in column 3d. 
In the case that the original obliquity angle, θZ(i) = 0.00◦, the layer 

was oriented perpendicular to the X-axis (parallel to the YZ-plane, 
Fig. 1a and 3a). Radial shortening perpendicular to the X-axis produced 
dome-and-basin structures (Fig. 4), which were expected. Due to the fact 
that the layer in this particular instance was not oblique, it did not show 
significant rotation during deformation (ca. 5◦, Fig. 5a). Nevertheless, 
significant layer thickening (ca. 77%) can be observed (Fig. 5b–Table S1, 
Supplement). 

In consideration of the thickness factor of the deformed layer, we 
separated the upper and lower surface of the layer via Meshlab and 
analyzed them respectively to make a cross-check. The domes, basins, 
antifomal and synformal saddles of the selected areas have been 

distinguished with different colors (Fig. 4b–e). Subsequently, the sepa
rated main domes and basins of the model accompanied by their ex
tremities and the extremity lines are produced using the software 
Smoooth-AnalyzeModel described above (Fig. 4c–f). As mentioned above, 
the geometrical data from six measuring profiles based on different 
criteria for each surface layer were obtained from this sample (Fig. 6, 
Table S2, Supplement). 

There is no significant difference in the arc-length and wavelength 
between the different measuring profiles and between the upper and 
lower surface (Table S2, Supplement, Fig. 6a–c). The strongly curved 
profile shows the largest arc-length and the largest discrepancy between 
the arc-length and wavelength, which is reasonable. Overall, the mean 
values of arc-length and wavelength range from 24 to 28 mm and 19–21 

Fig. 3. 3D computer-tomographic images of the deformed competent layer of individual models. The incompetent matrix is neglected. (a) The cubes show the initial 
orientation of the layer θZ(i) with respect to the principal strain axes. (b) Views parallel to the X-axis. (c) Views perpendicular to the XY-plane and subperpendicular to 
the layer. Red lines indicate boudins affected by folding with the fold axes subperpendicular to the layer (FBEPP). (d) Views oblique to the principal strain axes and to 
the deformed layer emphasizing the distinct geometry of folds and boudins. Note that Y = Z. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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mm for the upper surface, and from 25 to 27 mm and 20–24 mm for the 
lower surface, respectively (Table S2, Supplement, Fig. 6a–c). The arc- 
length and wavelength from both surfaces yield mean values of 27 ±
10 mm and 21 ± 7 mm (Table S2, Supplement, Fig. 5c). The amplitudes 
are also similar on both surfaces. The mean values of the ortho ampli
tude range from 1.7 ± 1.1 mm to 3.6 ± 1.7 mm on the upper surface and 
from 2.1 ± 1.1 mm to 3.1 ± 1.7 mm on the lower surface (Table S2, 
Supplement, Fig. 6b–d), respectively. All these values from both surfaces 
yield a mean value of 2.8 ± 1.4 mm (Table S2, Supplement, Fig. 5e). The 
amplitudes obtained from the strongly curved profiles display higher 
values, while those obtained from the slightly curved profiles are much 
lower (Table S2, Supplement, Fig. 6b–d). The non-cylindrical folds 
developed an interlimb angle of ca. 70◦ with a large standard deviation 
(Table S1, Supplement, Fig. 5f). 

In terms of the experiment with θZ(i) = 11.25◦, constriction along the 
YZ-plane led to the layer rotating towards the elongation direction 
(Fig. 1d and 3d). The layer was significantly rotated towards the X-axis 
during deformation (eZ = − 50%) with a final orientation of ca. 49◦ with 
respect to the Z-axis (Fig. 5a). The angle of the rotated passive layer is 
slightly higher (ca. 58◦, Fig. 5a). The magnitude of layer thickening is ca. 

45% and thus much lower than in the previous run (Fig. 5b). Apart from 
the difference of layer thickening, the fold geometry is considerably 
different from the dome-and-basin structures described above. There are 
only a few slightly non-cylindrical tight to isoclinal FEPR folds with axes 
oriented with small angle to the X-axis and open FEPP folds with axes 
perpendicular to the X-axis (Fig. 3). The amplitude, arc- and wavelength 
of the FEPR folds are similar to those of the dome-and-basin structures 
described above (Fig. 5c–e). Those of the FEPP folds, however, are larger. 
The mean value of the amplitude of FEPP folds is 4.5 mm (Fig. 5e), and 
the arc- and wavelength are ca. 44 and 34 mm, respectively. The 
interlimb angle (ca. 103◦) of the FEPP folds is also much higher than that 
of the FEPR folds (Fig. 5f). Some of the hinges of the FEPR folds are broken 
(Fig. 3). The tight to isoclinal FEPR folds with large arc-length and 
amplitude as well as the open FEPP folds with low amplitude develop 
with axes, which are perpendicular to each other (Fig. 3d). 

When the value of θZ(i) was set to at 22.50◦, the layer rotation to
wards the X-axis was slightly higher than in the previous run (ca. 55◦

respect to Z-axis, Fig. 5a). The thickening of the layer decreased to 34% 
(Fig. 5b). There are tight FEPR folds, which show a tendency to periclines 
because of additional open FEPP folds (Figs. 3 and 7a,e). The antiforms of 

Fig. 4. 3D model of deformed competent layer affected by dome-and-basin structures when θZ(i) = 0◦. The model is based on a computer-tomographic analysis (for 
details of the experiments and measuring procedures, see Zulauf et al., 2016, 2017). The model is separated into the upper surface (a–c) and the lower surface (d–f) 
for a contrastive analysis. (a, d) Upper and lower surface of the model, which is constituted by numerous small polygons (triangles). Different grey levels result from 
different degrees of shading (inclination of the surface with respect to the light source). The dark blue dashed frame indicates the extent of detail for further 3D 
analyses. (b, e) Different fold types of the model depicting domes, basins, antiformal, and synformal saddles with different colors. (c, f) Separated domes (in blue) and 
basins (in pink) of the model. The extremities of domes and basins are shown by blue and red dots, respectively. The extremity lines of domes and basins are shown by 
blue and red lines, respectively. The yellow curved lines indicate selected measuring profiles. Inflection points are shown by green dots. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Plots showing the relation between the initial orientation of layer (θZ(i)) and the geometrical parameters of deformation structures: (a) finite angle between 
the competent/passive layer and the Z-axis; dark blue dots along the straight diagonal line indicate the initial attitude of the layer; (b) degree of layer thickening; (c) 
arc-length and wavelength of FEPR folds; (d) arc-length and wavelength of the FEPP folds; (e) amplitude of the folds; (f) interlimb angle of folds; (g) width of boudins 
and necks; (h) number of folds and boudins. The error bars indicate one standard deviation (1σ). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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Fig. 6. Geometric data of non-cylindrical folds obtained from the upper surface (a–b) and the lower surface (c–d) shown in Fig. 4. Number of measurements, N, used 
to calculate mean values and standard deviation of the geometric data are indicated at the top of the plots. (a, c) Arc-length and wavelength; (b, d) Orthogonal and 
oblique amplitude. The different data shown in each diagram result from: preferred selection of strongly kinked (strK) and slightly kinked (sltK) measuring profiles; 
preferred selection of strongly curved (strC) and slightly curved (sltC) domes and basins; preferred profiles defined by distinct and relatively large domes and basins 
(lrgDB) and considered almost all possible profiles (allP). The error bars indicate one standard deviation (1σ). 

Fig. 7. 3D model of the deformed competent layer developing with typical folds without destruction by the boudins when θZ(i) = 22.50◦. The model is separated into 
the upper surface (a–d) and the lower surface (e–h) for a contrastive analysis. (a, e) The surface of the model which is constituted by numerous small polygons 
(triangles). Different grey levels result from different degrees of shading (inclination of the surface with respect to the light source). The dark blue dashed frame 
indicates the extent of detail for further 3D analyses. (b, f) Different fold types of the model depicting domes, basins, antiformal, and synformal saddles with different 
colors. (c, g) Gaussian curvature of the model exported from the software Smoooth-AnalyzeModel showing peaks of domes (blue) and basins (red). Peaks of domes, 
basins, and inflection points defining the lines with various colors indicate the different measuring profiles. (d, h) Separated domes (in blue) and basins (in pink) of 
the model. The extremities of domes and basins are shown by blue and red dots, respectively. The extremity lines of domes and basins are shown by blue and red 
lines, respectively. The yellow curved lines indicate selected measuring profiles. Inflection points are shown by green dots. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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the FEPR folds are affected by small-scale basins and synformal saddles 
depicted in red and yellow, respectively, in Fig. 7b–f. The synforms, on 
the other hand, show small-scale domes and antiformal saddles depicted 
in blue and green, respectively, in Fig. 7b–f. 

Because of the insufficient number of FEPP folds and in consideration 
of their statistically non-representative data, we primarily pay attention 
to the FEPR folds when quantifying geometrical parameters of folds in the 
3D model. Six profiles from the upper surface and eight profiles from the 
lower surface were selected according to the criterion that the profiles 
are perpendicular to the axes of the FEPR folds (Fig. 7c,d,g,h). For the 
upper surface, the arc-length and wavelength values range from 21 to 
33 mm and 17–29 mm, respectively, while the ortho and oblique 
amplitude values range between 1.8 and 2.2 mm and between 2.0 and 
2.6 mm, respectively (Table S2, Supplement, Fig. 8a and b). The data 
obtained from the lower surface show similar values (Table S2, Sup
plement, Fig. 8c and d). In summary, the arc-length and wavelength 
from both surfaces yield mean values of 26 ± 9 mm and 22 ± 9 mm 
(Table S2, Supplement, Fig. 5c) and the ortho amplitude yields a mean 
value of 2.1 ± 1.2 mm (Fig. 5e). 

By contrast, the FEPP folds in this case formed as large open asym
metric folds and show differences with slightly longer arc-length and 
wavelength (ca. 56 mm and 54 mm, respectively; Table S1, Supplement, 
Fig. 5d), slightly lower amplitude (ca. 2.6 mm, Table S1, Supplement, 
Fig. 5e), and a considerably large interlimb angle of ca. 138◦ (Fig. 5f). 

A further increase of θZ(i) to 33.75◦ is related to an increase in ductile 
and brittle elongation of the layer, which rotated towards the X-axis with 
a final angle of ca. 67◦. This value is less than the value of a rotated 
passive plane (ca. 79◦, Fig. 3c,d, 5a, Fig. S1, Supplement). Layer thick
ening was moderate at ca. 28% (Fig. 5b). The structures produced 
consist of tight, FEPR folds and boudins separated by necks, which are 
aligned perpendicular to the X-axis. Most of the FEPR folds are nearly 
cylindrical with an average arc- and wavelength of 19 ± 4 and 13 ± 6 
mm, respectively (Fig. 5c–Fig. S1b,c). In comparison with the previous 
run (θZ(i) = 22.50◦), the amplitude of the FEPR folds is slightly decreased 

to 2.6 ± 1.2 mm (Fig. 5e). The FEPP folds are gentle to open folds (δ = ca. 
151◦) characterized by increasing arc- and wavelength of ca. 91 mm and 
89 mm, respectively, and a moderate amplitude of ca. 3.4 mm (Table S1, 
Supplement, Fig. 3d, 5d–f, S1d). Boudinage was in its initial stage. Most 
of the necks are not pervasive (Fig. 3c,d, Fig. S1) and the necks develop 
sporadically associated with a small number of boudins (Fig. 3c and 5h). 
As a consequence of the heterogeneous distribution of boudins and 
necks in this sample, as well as considerable boundary effects and large 
data uncertainties, no statistical analysis of boudins and necks was 
conducted in this run. 

When θZ(i) was set to at 45.00◦, the final state of layer thickening 
exhibited a decrease in comparison to the preceding runs and reached a 
value of ca. 18% (Fig. 5b). Rotation of the layer towards the X-axis was 
even larger than before with a final angle of ca. 77◦, approaching 
gradually the attitude of the rotated passive layer (83◦, Fig. 5a). The 
deformation structures consist of FEPR folds, boudins and FEPP folds. 
Most of the FEPR folds are largely tight and are cut by the necks aligned 
almost perpendicular to the fold axes (Fig. 9a). The FEPR folds are 
particularly frequent and well developed in the middle section of the 
layer with axes subparallel to the X-axis (Fig. 9a–c). Compared to the 
structures of the previous runs, the FEPR folds in the present case are 
smaller with a shorter arc- and wavelength (16 ± 4 and 12 ± 4 mm, 
respectively; Fig. 5c). The amplitude is 2.1 ± 1.1 mm (Fig. 5e) and the 
interlimb angle increased to ca. 76◦ (Fig. 5f). The FEPP folds are more 
open with longer arc- and wavelengths (118 ± 46 and 116 ± 44 mm, 
respectively; Fig. 9d,e, 5d). The amplitude (3.6 ± 1.2 mm, Table S1, 
Supplement, Fig. 5e) is similar to the amplitude of the FEPP folds of the 
previous run but significantly higher than the amplitude of the FEPR 
folds. The interlimb angle is much higher than that of the FEPR folds 
(Fig. 5f), which explains its low numbers (Fig. 5h). 

The elongation of the layer in the X-direction increased significantly 
compared with the previous run (θZ(i) = 33.75◦) and is accommodated 
by both viscous and brittle deformation (Fig. 3c,d, 9a). Boudinage is 
restricted to the central part of the layer. The number of boudins and 

Fig. 8. Geometric data of non-cylindrical folds obtained from the upper surface (a–b) and the lower surface (c–d) shown in Fig. 7. Number of measurements, N, used 
to calculate mean values and standard deviation of the geometric data are indicated at the top or bottom of the plots. (a, c) Arc-length and wavelength; (b, d) 
Orthogonal and oblique amplitude. The different data shown in each diagram result from six profiles on the upper surface and eight profiles on the lower surface. The 
profiles parallel roughly to each other and all of them are orthogonal with the fold axes as far as possible. The error bars indicate one standard deviation (1σ). 
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necks significantly increased compared with the previous runs (Fig. 5h). 
The boudins and necks exhibit a markedly different width with rela
tively larger standard deviations (9 ± 8 mm and 3 ± 2 mm, respectively; 
Table S1, Supplement, Fig. 5g). Most boudins are barrel shaped and the 
necks are not always perpendicular to the X-axis but are more or less 
oblique. Some of the necks are not pervasive and die out within the layer 
(Fig. 9a). 

When the layer was initially inclined at θZ(i) = 56.25◦, the degree of 
layer rotation was very close to that of a rotated passive layer (ca. 84◦ vs. 
85◦ with respect to the Z-axis, Fig. 5a). The degree of layer thickening is 
ca. 24% (Fig. 5b). Deformation of the layer is still accommodated by 
buckling and boudinage (Fig. 3, Fig. S2, Supplement). The FEPR folds are 
present as homoaxial F1EPR and F2EPR folds. The number of the short- 
wavelength F1EPR folds as well as their amplitudes do not display an 
obvious difference with the previous run, but they are more frequent and 
much smaller compared to the large-wavelength F2EPR folds (Figs. S2d 
and e). F1EPR folds are characterized by short arc- and wavelength (10 ±
3 and 8 ± 3 mm, respectively; Fig. 5c), and a low amplitude (1.2 ± 0.6 
mm, Fig. 5e). The interlimb angle is ca. 92◦ (Fig. 5f). The F2EPR folds are 

present as large and open to gentle folds consistent with much longer 
arc- and wavelengths (49 ± 6 and 46 ± 7 mm, respectively; Fig. 5c), 
higher amplitude (3.0 ± 1.4 mm, Fig. 5e), and a larger interlimb angle 
(ca. 144◦, Fig. 5f). 

FEPP folds are also present (Figs. S2b and c, Supplement). In com
parison, the interlimb angle of the FEPP folds is gradually increased over 
all previous runs (168 ± 4◦, Fig. 5f) resulting in longer arc- and wave
lengths (141 ± 39 and 140 ± 39 mm, respectively; Table S1, Supple
ment, Fig. 5c). Apart from the open FEPP folds, described above, there is a 
2nd type of FEPP folds, referred to as FBEPP folds, which affect the bou
dins (see red lines in Fig. 3c). The number of boudins increased 
compared to the previous runs (ca. 28, Table S1, Supplement, Fig. 5h). 
The boudins (ca. 8 mm) are still much wider than the necks (ca. 3 mm, 
Fig. 5g). Also in this case, there is a large number of necks, cracking from 
the edge of the layer, winding and dying out in the central part of the 
layer (Fig. 3c, Fig. S2a, Supplement). Consequently, most of the boudins 
are curved, forming a series of folds whose axes are subperpendicular to 
both the layer and the X-axis, respectively (Fig. S2a, Supplement). 

When θZ(i) was set at 67.50◦, rotation of the competent layer towards 

Fig. 9. Details of coeval folds and boudins of deformed competent layer when θZ(i) = 45.00◦. (a) CT image with the view subperpendicular to the layer showing 
extenison-parallel folds and boudins. Red dashed lines mark the position of the transections subperpendicular to the X-axis shown in (b). Dark blue dashed lines mark 
the position of the transections parallel to the X-axis and subparallel to the layer shown in (d) and (e). (b) CT images and schematic portray of the layer showing 
typical extension-prallel folds in sections subperpendicular to the X-axis. The positions of S1–S3 are marked as red solid lines in the leftmost column of (b). (c) 
Scanning photographs of sections showing details of extension-parallel folds of the competent layer. (d and e) Sections parallel to the X-axis and subparallel to the 
layer showing large-wavelength folds and boudins, both with axis subperpendicular to X. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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the X-axis was almost identical to that of a passive plane (Fig. 5a), and 
the degree of thickening was the same as before (Fig. 5b). Bulk ductile 
shortening perpendicular to the X-axis and boudinage-related semi
brittle elongation along the X-axis are compatible with slight layer 
thickening. Small-wavelength F1EPR and large-wavelength F2EPR folds 
still coexist in this case (Fig. 3c and d). Although the interlimb angle of 
these folds increased (Fig. 5f), their number, arc-length, wavelength and 
their amplitude are similar to those described from the previous run 
(Fig. 5c–e,h). The same holds for the FEPP folds (Table S1, Supplement, 
Fig. 5d–f). 

The geometry of the boudins is also similar to that of the previous run 
with θZ(i) = 56.25◦ (Fig. 3c and d). However, the number of boudins and 
necks still increased (37 ± 3, Fig. 5h). The boudins yield a mean width of 
ca. 6 mm, while the necks average ca. 3 mm in width (Table S1, Sup
plement, Fig. 5g). Most of the boudins show well-rounded edges. Bou
dins in this case are also irregularly folded by the FBEPP folds (see red 
lines in Fig. 3c). 

Increasing θZ(i) sequentially to 78.75◦ still led to layer thickening (ca. 
27%, Fig. 5b), but the layer barely rotated (Fig. 5a) and was elongated 
along the X-direction (Fig. 3). The geometrical parameters of F1EPR folds 
are similar to those of the previous run (Fig. 6c–e,f). The interlimb angle 
of the F2EPR folds increased (159 ± 8◦, Fig. 5f) resulting in longer arc- 
and wavelengths (62 ± 8 and 60 ± 8 mm, respectively; Fig. 5c). 

The arc- and wavelength (210 ± 91 and 209 ± 89 mm, respectively; 
Fig. 5d), amplitude (4.4 ± 1.9 mm, Fig. 5e), and interlimb angle (170 ±
3◦, Table S1, Fig. 5f) of the large FEPP folds show maximum values with a 
large standard deviation due to the heterogeneous occurrence and small 
number of folds. Because of the small amplitude and large arc- and 
wavelength, the average arc-length is almost equal to the average 
wavelength, and the interlimb angle is close to 180◦. 

As the layer was initially already subparallel to the X-axis and thus 
almost perpendicular to the shortening plane (θZ(i) = 78.75◦), boudinage 
was intensely developed (Fig. 3c and d). Consequently, the boudins and 
necks exhibit a similar width with the value of ca. 5.2 and 4.7 mm, 
respectively (Table S1, Supplement, Fig. 5g). The large standard devi
ation of the neck width, results from the inhomogeneous distribution of 
the boudins and the influence of the superimposed FBEPP folds (Fig. 3c). 
As the boudins seem to have developed simultaneously with the FEPR 
folds and are additionally affected by younger FBEPP folds, with axes 
subperpendicular to the layer, necks appear also in the folded layer 
(Fig. 3c). 

In the case that the layer was initially aligned parallel to the X-axis 
(θZ(i) = 90.0◦), there was no rotation during the deformation (Fig. 5a), 
but slight thickening occurred (ca. 8%, Fig. 5b). The number and ge
ometry of the F1EPR and F2EPR folds are almost similar to those of the 
previous run. The amplitude of F1EPR folds decreased to a minimum 
value with the smallest standard deviation (2.7 ± 0.7 mm, Fig. 5e), 
leading to a smaller difference between arc- and wavelength (ca. 12.2 ±
2.6 and 11.9 ± 2.7 mm, respectively; Fig. 5c) and a larger interlimb 
angle (145 ± 12◦, Fig. 5f). The latter is close to the interlimb angle of the 
F2EPR folds (ca. 157 ± 5◦, Table S1, Supplement, Fig. 5f). As the layer is 
consistently aligned perpendicular to the plane of shortening (YZ- 
plane), FEPP folds are lacking. However, the FBEPP folds, which affect the 
boudins, are well developed with their axes perpendicular to the layer 
and to the X-axis (Fig. 3c). 

The number of boudins reaches a maximum in this run (ca. 62, 
Table S1, Supplement, Fig. 5h). The boudins are shaped with tenuous 
and curved fragments, which are overprinted by FBEPP folding as well 
(Fig. 3c and d). The boudins and necks exhibit almost the same width 
(4.3 and 3.7 mm, respectively), which is consistent with the previous 
experimental run (Fig. 5g). 

3.2. Dimensionless and normalized geometrical parameters 

The geometry of folds can be described by the dimensionless 
amplitude (Ạ) (Schmalholz, 2006b), which is calculated by dividing the 

amplitude by the wavelength of the folds. The Ạ value of F1EPR folds 
increases slightly with θZ(i) until θZ(i) = 11.25◦ and then strongly de
creases at θZ(i) = 22.50◦. After a strong increase at θZ(i) = 33.75◦, the Ạ 
values decrease consistently with increasing θZ(i) until the latter is 
90.00◦ (Fig. 10a). The Ạ value of F2EPR folds, on the other hand, display 
lower values and do hardly change with increasing θZ(i). The FEPP folds 
show high Ạ values if the layer is close to θZ(i) = 0◦. Increasing θZ(i) 
further to 22.50◦, results in a significant drop in Ạ, which remains 
similar low at higher θZ(i) (Fig. 10a). 

The dominant wavelength of folds, corresponding to the maximal 
growth rate of folds, and the width of boudins can be related to the layer 
thickness and to the rheological parameters of the layer and matrix 
(Biot, 1961). The dominant wavelength is equivalent to the arc-length, 
which remains nearly constant during the kinematic growth of the 
fold, while the amplitude increases due to fold amplification 

Fig. 10. (a) Normalized amplitude (Ạ = A/λ) vs. initial orientation of layer (θZ 

(i)) for the FEPR and FEPP folds. The shape of the depicted folds varies depending 
on Ạ (after Schmalholz, 2006b). (b) Relation between the initial orientation of 
layer (θZ(i)) and normalized arc-length of the folds. The theoretical normalized 
arc-length (Ld) calculated using Eq. (1) is shown by the dashed blue line. (c) 
Relation between the initial orientation of layer (θZ(i)) and normalized 
arc-length (= aspect ratio) of boudins. The theoretical normalized arc-length 
(Ld) calculated using Eq. (1) is shown by the dashed blue line. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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(Schmalholz, 2006b). The dominant wavelength of both folds and 
boudins in non-linear materials is the same and can be calculated by the 
following equation (Smith, 1977): 

Ld ≈ 3.46
(

n1/6
M

/
n1/3

L

)
(ηL/ηM)

1/3 (1)  

where Ld is the theoretical dimensionless wave length/finite thickness 
ratio, and nL, ηL, and nM, ηM are the stress exponents and the apparent 
viscosities in the flow laws for layer and matrix, respectively. According 
to the rheological parameters of the plasticine used in this study 
(Table S1, Supplement), Ld is calculated at 6.6. 

To compare the geometrical parameters of folds and boudins 
developed in layers with different thickness, we use dimensionless 
values, the arc-length of folds and the width of boudins are divided by 
the finite layer thickness (Hf). The normalized arc-length (Wd) of F1EPR 
folds (LF1EPR/Hf), F2EPR folds (LF2EPR/Hf), FEPP folds (LFEPP/Hf), and the 
aspect ratio (Wd) of boudins (WBoudin/Hf) are listed in Table S1 (Sup
plement) and are depicted in Fig. 10b and c. 

The Wd values of F1EPR folds are similar or slightly higher than the Ld 
value (Fig. 10b). With increasing initial orientation of the layer (θZ(i) =

56.25◦, 67.50◦, and 78.75◦) the Wd value of the F1EPR folds display lower 
values and the discrepancy between Ld and Wd is lower (Fig. 10b). In 
cases where θZ(i) was >45.00◦, the Wd values match or are close to the Ld 
value (Fig. 10b–Table S1, Supplement). The Wd values of F2EPR folds are 
considerably higher with a large discrepancy between Ld and Wd. They 
show increasing values along with increasing initial obliquity of the 
layer (Fig. 10b). When the layer is initially parallel to the X-axis (θZ(i) =

90◦), the Wd value reaches a maximum and presents the largest 
discrepancy between Wd and Ld (Fig. 10b). The Wd values of the FEPP 
folds display an increasing tendency along with increasing obliquity of 
the layer, and the Wd values are significantly higher than the Ld value for 
all runs (Fig. 10b). The minimum Wd value (ca. 20) occurs if θZ(i) was set 
at 11.25◦ and the maximum with ca. 110 is attained if θZ(i) is 78.75◦

(Table S1, Supplement, Fig. 10b). The aspect ratios of boudins show 
decreasing values with increasing initial layer obliquity (Fig. 10c). All of 
the Wd values range between 2 and 6 and thus are generally below the Ld 
value (Table S1, Supplement, Fig. 10c). 

4. Discussion 

4.1. Syn-deformational layer thickening 

In all experiments of the present study, the initial thickness of the 
competent layer increased during the deformation. The highest degree 
of layer thickening (ca. 76%) occurred when θZ(i) = 0◦, whereas the 
lowest degree of thickening (ca. 8%) occurred at θZ(i) = 90.00◦ (Fig. 5b). 
Moreover, the new results suggest that only a slight initial inclination of 
the layer with respect to principal strain axes (θZ(i) = 11.25◦ or 78.75◦) 
results in a significant change in layer thickness (Fig. 5b). In the first case 
(θZ(i) = 11.25◦), there is a reduction in thickening by about 50% 
compared to the non-oblique layer (θZ(i) = 0◦). At higher values of θZ(i), 
the degree of layer thickening gradually decreased until θZ(i) approaches 
45◦ (Fig. 5b). Subsequently, the degree of layer thickening slightly 
increased and sustained with almost similar values until θZ(i) was 78.75◦

(Fig. 5b). The second case of significant reduction in layer thickening by 
about 20% occurs when θZ(i) = 90◦ (Fig. 5b; Table S1, Supplement). 

There are several parameters, including viscosity ratio, layer-parallel 
shortening along the Y=Z-axis without buckling, and layer-parallel 
elongation along the X-axis without boudinage, that control the 
changes in layer thickness during progressive deformation (Zulauf et al., 
2021). As the apparent viscosity ratio is constant at 18 throughout the 
experiments, we will not consider its effect on layer thickening. Since 
the experiments are conducted under bulk coaxial constriction with 
finite strain eZ = eY = − 50%, the amount of shortening along the 
Y=Z-axis is the same in each run (Fig. 1a). Thus, it is essential to take 
into account the amount of ductile layer-parallel elongation along the 

X-axis. The layer-parallel elongation changed from run to run due to the 
gradual change in initial layer inclination and related variation in layer 
rotation towards the X-axis. 

In cases of θZ(i) ≤ 45.00◦, thickening of the competent layer should 
have occurred before the onset of the F1EPR folding (e.g. Ramsay, 1974; 
Hudleston, 1986; Ramsay and Huber, 1987; Schmalholz, 2006a). 
Because of significant layer rotation, the geometry of the F1EPR folds 
changed during progressive constriction. The degree of layer thickening 
shows a declining trend with increasing values of θZ(i) (Fig. 3c,d, 5b). If 
45.00◦ < θZ(i) < 90.00◦, the F2EPR folds overprint the preexisting F1EPR 
folds including the thickened layer. In these cases, both the FEPR and FEPP 
folds exhibit gentle to open geometry with a large interlimb angle 
(Fig. 5f), reflecting the thickening of the layer. On the other hand, when 
the θZ(i) > 33.75◦, the layer-parallel elongation is distinctly evident and 
triggers the onset of boudinage (Fig. 3c and d). In the case of θZ(i) =

90.00◦, the layer-parallel shortening along the Y=Z-axis attains the 
minimum value, whereas the layer undergoes maximum elongation 
along the X-axis. As the layer-parallel elongation along the X-axis is not 
only accommodated by ductile stretch but also by boudinage, 
layer-parallel shortening along the Y=Z-axis results in both layer 
thickening and FEPR folds (Fig. 5b). 

4.2. Coeval growth of folds and boudins in bulk constriction 

Two different types of folds were produced if the layer is inclined in a 
constrictional strain field. The first type of folds with axes subparallel to 
the X-axis (FEPR folds) are present as short-wavelength F1EPR folds, 
which are overprinted by the larger homoaxial F2EPR folds when the θZ 

(i) > 45◦ (Fig. S2e). The parasitic F1EPR and refolding F2EPR folds are 
related to Type 0 fold interference patterns (Thiessen and Means, 1980), 
which are common in naturally deformed rocks (e.g. Schmalholz and 
Mancktelow, 2016). The second type of folds has axes subperpendicular 
to the X-axis (FEPP folds), which developed when θZ(i) < 90◦. Apart from 
the open FEPP folds, there is a 2nd type of FEPP folds developed when the 
θZ(i) > 45◦, which are affecting the boudins (FBEPP folds, Fig. 3c). 

Taking into account the boundary effects during deformation, we 
selected the middle portion of the layer in all samples for statistical 
analysis of boudins and folds (e.g. Fig. 9a–Fig. S1a, S2a, Supplement). 
The interlimb angles of all types of folds increase with increasing initial 
obliquity of the layer. In cases where the inclination of the layer θZ(i) is 
> 22.50◦, FEPR folds and boudins grow simultaneously. The boudin axes 
are aligned perpendicular to the X-axis within the YZ-plane and the 
boudins are larger with increasing initial layer obliquity (Fig. 5g). 
Several boudins with barrel-shaped geometry possess straight faces and 
rounded edges, suggesting that the thinned neck domain has been 
brittlely fractured by a tensile fracture following viscous necking 
(Ramberg, 1955; Rast, 1956; Paterson and Weiss, 1968; Strömgård, 
1973; Burg and Harris, 1982; Dieter, 1986; Zulauf et al., 2011, 2014). 
Boudinage accommodated by pure tensile fracture, on the other hand, 
should result in boudins with extremely small aspect ratios close to 1 
(Bai et al., 2000). 

Depending on its initial orientation, the competent layer rotates 
similar fast or slower than a corresponding passive plane during bulk 
constriction (Fig. 5a). A similar behavior has been documented by pre
vious modelling and experimental investigations under bulk plane strain 
in which the layer rotates around the Y-axis (e.g. Cobbold et al., 1971; 
Watkinson, 1975, 1976; Frehner and Schmalhoz, 2006; Mandal et al., 
2007; Zulauf et al., 2020a). On the other hand, if during progressive 
plane strain, the layer rotates around the Z- or X-axis, its rate of rotation 
is similar to that of a passive plane (Zulauf et al., 2020b, 2021). In this 
study, the geometry of folds and boudins is significantly controlled by 
the degree of layer rotation during progressive constriction, which de
pends on the magnitude of finite strain and the initial inclination of the 
layer. Under bulk constriction, simultaneous growth of folds and bou
dins is reasonable if the competent layer is aligned parallel to the X-axis 
(Fig. 1a and 3; Fletcher, 1995; Kobberger and Zulauf, 1995; Zulauf and 
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Zulauf, 2005). If, on the other hand, the competent layer is oriented 
perpendicular to the X-axis, pure constriction results in dome-and-basin 
structures (Fig. 1a and 3; Ghosh et al., 1995; Schmalholz, 2008; Schmid 
et al., 2008; Zulauf et al., 2016). 

Folds and boudins of the present study were formed under bulk 
constriction and thus exhibit 3D structures. Folding and boudinage in 3D 
strain fields have been investigated theoretically by Flinn (1962). A 
further theoretical study, restricted to folding, was carried out by 
Treagus and Treagus (1981), who regarded the fold axis as active lines. 
When the lines of no finite deformation and the lines of no infinitesimal 
deformation for a bulk constrictional deformation ellipsoid are plotted on 
an equal-area net, they divide the net into three different areas referred 
to as the area of elongation, the area of reduced shortening, and the area of 
shortening (Flinn, 1962). These domains are shown in orange red, violet, 
and light blue in Fig. 11. 

During progressive bulk constriction, the axes of single boudins are 
distributed along the circumference of the net, while single fold axes are 
restricted to the elongation area, and double fold axes are plotting in the 
shortening and reduced shortening areas (Fig. 11). The layers with their 
initial orientation as used in the present study are shown with different 
colors in Fig. 11a. The orientation of these layers after deformation is 
shown in Fig. 11b (passive plane) and in Fig. 11c (non-passive plane). 

To delineate the progressive rotation and deformation state of a 
passive plane, a schematic diagram has been drawn, in which an ellip
soid (ellipse) and passive planes (lines) with different initial obliquity 
were incrementally deformed by multiples of eY = Z = − 10% until the 
final constrictional strain (eY = Z = − 50%) was attained (Fig. 12). The 
angles between the rotated passive planes and the Y=Z-axis (θZ(RPL)) are 
measured from the final deformed state of the passive layer and listed in 
Table S1 (Supplement) and are added to the diagram shown in Fig. 5a. 

In addition, the longitudinal strain (eL) and rotation of the passive 
layer (θZ(RPL)) are plotted vs. the bulk constrictional strain (eY = Z) in 
Fig. 13a and b, respectively. The diagram in Fig. 13a shows that, apart 
from the non-oblique plane (θZ(i) = 0◦), which was shortened, and the 

slightly oblique plane (θZ(i) = 11.25◦), which was involved in reduced 
shortening, all other passive planes sustained elongation until the final 
strain of eY = Z = − 50% was attained. Except for the case when θZ(i) = 0◦, 
the rate of layer rotation significantly increases with finite strain when 
the initial obliquity θZ(i) is less than 45◦ (Fig. 13b). If 45◦ < θZ(i) < 90◦, 
the rotation rate of the layer is restricted (Fig. 13b). 

In the case of θZ(i) = 0.00◦, the layer did not rotate and remained 
completely in the area of shortening, which is projected as a large 
concentric circle (Fig. 11b). The layer that was initially oriented at θZ(i) 
= 11.25◦, remained in the fields of shortening and reduced shortening 
(Fig. 11b). In other words, parts of this layer are shortened throughout, 
and other parts are first shortened and then elongated, but elongation is 
insufficient to attain the original length (Zulauf et al., 2020b). All other 
layers, however, are affected by various kinematics and cross all the 
three strain fields during rotation and thus prominently indicate the 
deformation is inhomogeneous and complex (Fig. 11b). Lines with 
different orientations within the layer show different kinematics. Layers 
which are oriented close to X-axis are affected by shortening, reduced 
shortening and elongation. This is the reason, why folds and boudins 
grow simultaneously. Folds consist of F1EPR and F2EPR folds with axes 
subparallel to the X-axis, and boudins display axes subperpendicular to 
the X-axis. As soon as boudins have been developed, the shortening 
strain along the boudin axes results in buckling of the boudins with fold 
axes pependiuclar to the X-axis and to the layer (FBEPP folds). Thus FBEPP 
folds are late structures of the constrictional deformation. These results 
are consistent with those obtained from previous constrictional experi
ments (Kobberger and Zulauf, 1995; Zulauf and Zulauf, 2005). 

The large-wavelength FEPP folds, which are characteristic for oblique 
layers, result from shortening in a direction oblique to the layer rather 
than layer-parallel shortening. This type of folding is particularly strong 
during the initial phase of deformation when the layer has not rotate 
much. As the layer is oblique to the shortening direction, most of the 
folds are asymmetric. With increasing θZ(i), the layer is oriented more 
and more parallel to the X-axis and the component of oblique shortening 

Fig. 11. Folds and boudins in bulk constrictional strain field. The distribution of possible fold and boudinage axes is shown in relation to the lines of no finite and no 
infinitesimal deformation in equal-area net (after Flinn, 1962). X > Y = Z are the axes of principal strain; the X-axis is vertical in the equal-area net. Light blue color 
indicates lines in the field of shortening. Dark purple color indicates lines in the field of reduced shortening. Orange color indicates lines in the field of elongation. (a) 
Undeformed state showing the initial orientation of competent layers used for the different experimental runs. Great circles of competent layers are shown in different 
colors. Numbers in black boxes indicate the initial angle between the layer and the Y = Z-plane (θZ(i)). (b) Deformed state showing the position of passive planes that 
were initially oriented like the competent layers used in the present study. The color of the great circles corresponds to that used for the great circles shown in (a). 
Numbers in black boxes indicate the angle between the passive plane and the Y = Z-plane. (c) Deformed state showing the position of the competent layers. The color 
of the great circles corresponds to that used for the great circles shown in (a). Numbers in black boxes indicate the finite angle between the layer and the Z-axis. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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decreases. The FEPP folds are open and gentle gradually with larger 
wavelength, arc-length and interlimb angle, but lower amplitude with 
increasing θZ(i) (Fig. 5d–f). It should be noted, however, that parts of 
these folds are probably not related to buckling, but result from the 
boundary effect along the face of the sample that is not confined by the 
walls of the machine. The elongation of the layer along the X-axis de
creases from the central part of the sample towards the margin (which is 
perpendicular to the X-axis) and ceases at the margin. This reduction in 
X-parallel elongation is well documented by decreasing amounts of 
boudins at both ends of the sample. Because of this reduction in elon
gation, the rotation of the layer should be also affected and could have 
contributed to its bending in sections cut parallel to the X-axis and 
perpendicular to the layer. 

4.3. Natural examples of coeval folding and boudinage of oblique single 
layers in bulk constrictional strain fields 

Rocks deformed under non-plane conditions are frequent in nature. 
Constricitional strain is common in subduction tectonites (Zulauf, 1997; 
Zulauf et al., 2002, and references therein), in foliation triple points of 
more than two interfering gneiss domes (Bouhallier et al., 1995), and in 
the internal parts of salt domes (Balk, 1949; Talbot and Jackson, 1987). 
In the case of salt domes, an oblique competent layer of 
halite-dominated rock salt could be folded and boudinaged in a matrix of 

sylvite and carnallite, or a competent layer of anhydrite could be folded 
and boudinaged as a ‘stringer’ in a matrix of rock salt (Fig. 14a). The 
competent felsic vein embedded in the gneiss and schist could be 
deformed into lens shaped boudins and pinch-and-swell structures, 
which are affected by open to gentle folding with the fold axes sub
parallel to the boudin axes (Fig. 14b). Moreover, non-cylindrical folds 
could be formed in quartz mica schist layers which display approximate 
oblique dome-and-basin structures (Fig. 14c). 

According to the outcome of the present study, the dome-and-basin 
structures can be formed if the competent layer is oriented parallel or 
nearly parallel to the YZ-plane in a bulk constrictional strain field. It 
should be noted, however, that apart from single-phase formation under 
bulk constriction, dome-and-basin structures may result from polyphase 
folding and related interference pattern (e.g. Lim and Cho, 2012; Bose 
et al., 2014; Shaanan et al., 2014). In contrast to constrictional 
dome-and-basin structures, constrictional coeval folds and boudins are 
more common in nature. Well documented samples include the ptyg
matic folds from the southern Prince Charles Mountains (Corvino et al., 
2016), the folded boudinage of migmatites in the high strain Taili 
deformation zone in Northern China (Li et al., 2023), and the folded 
boudin in siltstone/sandstone from the Neoproterozoic rocks of the 
Jabal Akhdar Dome, Oman Mountains (Scharf et al., 2021). 

5. Conclusions 

The results of the present study suggest that bulk constriction of a 
competent layer embedded in a weaker matrix results in complex non- 
cylindrical folds and boudins if the layer is oblique to the principal 
strain axes. The following conclusions can be drawn.  

● In bulk constrictional strain fields, the initial angle between a 
competent layer and the shortening axis (θZ(i)) is an important 
parameter for finite layer thickness and the type and geometry of 
folds and boudins.  

● Compared with a passive plane, the retarded rotation of the 
competent layer during progressive deformation has a significant 
impact on the deformation structures. The degree of layer rotation is 
controlled by the finite strain (eZ) and the initial orientation of the 
layer (θZ(i)).  

● The layer underwent thickening in all of the experimental runs. The 
highest and lowest degree of thickening occurred when the θZ(i) =

0◦ and 90◦, respectively. Only small inclinations either away from 
the X-axis or away from the YZ-plane result in a strong change in the 
degree of layer thickening.  

● There are generally two different types of folds if the layer is inclined 
in a constrictional strain field. Folds with axes parallel to the X-axis 
are present as low-wavelength F1EPR folds, which are overprinted by 
the larger homoaxial F2EPR folds when the θZ(i) > 45◦. The second 
type of folds (FEPP folds) display axes perpendicular to the X-axis and 
occur if θZ(i) < 90◦. The interlimb angles of all types of folds increase 
with increasing initial obliquity of the layer.  

● If θZ(i) is > 22.50◦, FEPR folds and boudins grow simultaneously. The 
boudin axes are aligned perpendicular to the X-axis within the YZ- 
plane. 

● Boudinage results from initial viscous necking succeeded by frac
turing. The width of the boudins decreases with increasing initial 
layer obliquity. Most of the boudins are affected by FBEPP folds, with 
axes perpendicular to the layer.  

● The data and results of the present study can be used to identify the 
setting and development of folds and boudins found in nature. As 
quantitative geometrical data obtained from 3D models of natural 
examples can be compared with those of the present study, the latter 
help to improve our understanding of boudinage and non-cylindrical 
folding in three-dimensional strain fields. 

Fig. 12. Incremental deformation of a passive plane (or line) under bulk con
strictional strain at increments of eZ = − 10% shown in sections parallel to the 
X-axis. The latter is vertical in each figure. The initial angle between the planes 
(lines) and the Z-axis (θZ(i)) is indicated. Note that the amount of shortening 
along the Y-axis is the same like the amount of shortening along the Z-axis, 
which is oriented perpendicular to the plane of projection. 
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