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A B S T R A C T   

Chemical pollution is one of the most important threats to freshwater ecosystems. The plethora of potentially 
occurring chemicals and their effects in complex mixtures challenge standard monitoring methods. Effect-based 
methods (EBMs) are proposed as complementary tools for the assessment of chemical pollution and toxic effects. 
To investigate the effects of chemical pollution, the ecological relevance of EBMs and the potential of macro
invertebrates as toxicity-specific bioindicators, ecological and ecotoxicological data were linked. Baseline 
toxicity, mutagenicity, dioxin-like and estrogenic activity of water and sediment samples from 30 river sites in 
central Germany were quantified with four in vitro bioassays. The responses of macroinvertebrate communities at 
these sites were assessed by calculating 16 taxonomic and functional metrics and by investigating changes in the 
taxonomic and trait composition. Principal component analysis revealed an increase in toxicity along a joint 
gradient of chemicals with different modes of action. This toxicity gradient was associated with a decrease in 
biodiversity and ecological quality, as well as significant changes in taxonomic and functional composition. The 
strength of the effects suggested a strong impact of chemical pollution and underlined the suitability of EBMs in 
detecting ecological relevant effects. However, the metrics, taxa, and traits associated with vulnerability or 
tolerance to toxicity were found to also respond to other stressors in previous studies and thus may have only a 
low potential as toxicity-specific bioindicators. Because macroinvertebrates respond integratively to all present 
stressors, linking both ecological and environmental monitoring is necessary to investigate the overall effects but 
also isolate individual stressors. EBMs have a high potential to separate the toxicity of chemical mixtures from 
other stressors in a multiple stressor scenario, as well as identifying the presence of chemical groups with specific 
modes of action.   

1. Introduction 

Europe’s freshwater biodiversity recovered slightly by the late 
2000s, but persistent and new pressures such as climate change, invasive 
species and chemical pollution seem to prevent further improvement 
(Haase et al., 2023). Micropollutants and other emerging contaminants 
occurring at very low concentrations, such as pesticides, pharmaceuti
cals, industrial chemicals, personal care and household products, may 
pose an underestimated risk to freshwater ecosystems (Malaj et al., 
2014; Schwarzenbach et al., 2006). Because of the large number of 
chemicals on the market and their potential transformation products, 

surface waters are typically exposed to complex mixtures of different 
substances (Peng et al., 2018; Schwarzenbach et al., 2006). These 
complex chemicals mixtures and their effects challenge the current 
chemical monitoring practices and risk assessment (Dévier et al., 2011). 
In the European Water Framework Directive (WFD), a selection of 
chemicals, such as the priority substances listed in WFD, is quantified by 
target analysis and the environmental risk is estimated based on the 
exceedance of environmental quality standards (EQS; European Com
mission, 2013; 2000). However, the overall ecological effects may be 
underestimated by using a limited selection of chemicals and neglecting 
mixture effects (Altenburger et al., 2018; Moschet et al., 2014; Schäfer 
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et al., 2011). 
Effect-based methods (EBMs), such as biomarkers, in vivo and in vitro 

bioassays, have been proposed as complementary monitoring tools to 
assess the presence and ecological effects of chemical pollution (Alten
burger et al., 2019; Wernersson et al., 2015). In particular, in vitro bio
assays that address specific modes of action (MoAs) can indicate the 
presence of certain groups of chemicals such as endocrine disruptors 
(Neale et al., 2017). EBMs have the potential to detect and quantify 
toxicity in water and sediment samples (Brettschneider et al., 2019; de 
Baat et al., 2019; De Castro-Català et al., 2016; König et al., 2017). 
However, EBMs have rarely been linked to ecological assessment 
(Moran et al., 2017; Novais et al., 2023; Palma et al., 2016). Therefore, 
the ecological effects and the ecological relevance of toxicities identified 
by EBMs are largely unknown. 

For the ecological assessment of freshwater systems, benthic mac
roinvertebrates are one of the most frequently monitored organism 
groups (Birk et al., 2012). As a result, several metrics have been devel
oped to indicate ecological quality and effects of specific stressors, 
mostly based on taxonomic composition (Birk et al., 2012). Addition
ally, approaches using traits, i.e. measurable characteristics of organ
isms describing morphology, life history, behavior and environmental 
adaptations (McGill et al., 2006), have the potential to be spatially less 
influenced and allow a better mechanistic understanding of stress re
sponses (Culp et al., 2011). Since indicators specific to chemical pollu
tion in general or specific pollutants are largely underrepresented (Birk 
et al., 2012), there is an increasing attention to develop such bio
indicators using taxonomic and functional approaches (Beketov and 
Liess, 2008; Berger et al., 2018; Collins and Fahrig, 2020). The devel
opment of toxicity-specific bioindicators could benefit from the indica
tive potential of EBMs. 

In this study, we therefore linked ecological data with toxicities 
derived from EBMs to investigate changes in macroinvertebrate com
munities with increasing chemical pollution. Four different in vitro 
bioassays were used to quantify baseline toxicity, mutagenicity, dioxin- 
like and estrogenic activity of water and sediment samples from 30 river 
sites in central Germany. The response of the macroinvertebrate com
munity was assessed using taxonomic and functional approaches. By 
combining these data, we aimed to investigate the macroinvertebrate 
community response to increasing toxicity, and to identify taxonomic 
groups, individual taxa and traits that are directly and indirectly affected 
by toxicity. By addressing these questions, we also provide insights in 
the potential of macroinvertebrate communities as toxicity-specific 
bioindicators and the ecological relevance of EBMs. 

2. Material and methods 

2.1. Study area 

We investigated 30 river sites in the Rhine-Main-Metropolitan Re
gion, Germany (Fig. 1). This region has a population of approximately 
5.8 million and is characterized by a landscape that is typical of Central 
Europe. The lowlands are covered by dense urbanization, industry, and 
intensive agriculture, while the anthropogenic influence decreases to
wards the mountains and hills, where pastures and forests predominate. 
The sites were selected across this gradient to cover different types and 
intensities of anthropogenic influences, including specific sources of 
pollution such as wastewater treatment plant (WWTP) effluents and 
runoff from agriculture and streets. The sites (83.4–387 m above sea 
level) were located in rivers and streams belonging to four different river 
types (type 5 – small coarse substrate dominated siliceous highland 
rivers, type 6 – small fine substrate dominated calcareous highland 
rivers, type 9 – mid-sized fine to coarse substrate dominated siliceous 
highland rivers, type 19 – small streams in riverine floodplains; Pott
giesser and Sommerhäuser, 2004). The 15 sites in the Gersprenz 
catchment (513 km2) were sampled in spring 2021. The remaining sites 
in the Taunus mountain range and the catchments of the Modau (205 

km2) and Schwarzbach (514 km2) were sampled in spring 2022. Sam
pling included water and sediment samples, basic physicochemical pa
rameters, and benthic macroinvertebrates. 

2.2. Ecotoxicological assessment 

At each site, 2 l of water and approximately 5 kg of the top 5 cm of 
sediment were sampled once. Water samples were filtered with glass 
microfiber filters (VWR International GmbH, No. 696, European Cat. No. 
516–0879, 125 mm, particle retention: 1.5 μm, Darmstadt, Germany). 
The filtered water samples were extracted with solid-phase extraction 
(SPE) using Oasis HLB cartridges (6 cc, 200 mg, Waters, Milford, USA) 
according to Giebner et al. (2018). The resulting extracts were 5000-fold 
enriched and stored in dimethyl sulfoxide (DMSO) at − 25 ◦C. Sediment 
samples were freeze-dried (Martin Christ Gefriertrocknungsanlagen 
GmbH, Alpha 1–4 LSC plus, Osterode, Germany). Sediment extracts 
were prepared by shaking 10 g freeze-dried sediment of the smallest 
fraction (<2 mm) in 50 ml methanol followed by 10 min in an ultrasonic 
bath. The resulting extracts were stored in 500 μl DMSO. 

Ecotoxicity of the water and sediment extracts was evaluated using 
four different in vitro bioassays that address non-specific toxicity 
(baseline toxicity) and specific MoAs indicating certain chemical groups 
and important sources of micropollutants such as WWTPs (dioxin-like 
activity, estrogenic activity, mutagenicity; Table 1). The selection of 
tests was based on data availability and informative value from an initial 
wider palette of different in vitro and in vivo tests. Baseline toxicity was 

Fig. 1. Location of the 30 sampling sites in the Taunus and the catchments of 
Gersprenz, Schwarzbach and Modau (Germany). 
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measured using the microtox assay with Aliivibrio fischeri in water and 
sediment extracts following a modified version of the ISO guideline 
11348-3:2007 for 96-well plates (ISO, 2007). Baseline toxicity was 
quantified as inhibition of bioluminescence and expressed as a 50 % 
effect concentration (EC50). Non-toxic samples, i.e. < 20 % inhibition, 
were manually assigned to an EC50 of 200 mg sediment equivalents 
(SEQ) or a relative enrichment factor (REF) of 300 for water samples. To 
increase interpretability for later analyses, the resulting EC50 were 
subtracted from the non-toxic limits. Dioxin-like and estrogenic activ
ities in the water samples were quantified using the Yeast Dioxin Screen 
(YDS; Stalter et al., 2011) and Yeast Estrogen Screen (YES; Giebner et al., 
2018). Dioxin-like and estrogenic activities were expressed as equiva
lent concentrations of β-naphthoflavone and 17β-estradiol, respectively. 
Measurements below the detection limit were set to 0. Mutagenicity of 
sediment and water extracts was determined using the Ames fluctuation 
test with two strains of Salmonella typhimurium (YG1041 and 1042, both 
with and without S9-mixture) according to the modified ISO guideline 
11350:2012 (Hagiwara et al., 1993; ISO, 2012; Shao et al., 2020). A 
mutation rate of >20 % was used as threshold for mutagenicity and 
results were dummy coded as 0 (not mutagenic) and 1 (mutagenic). If 
either one or both of the two strains were mutagenic, the site was 
considered as mutagenic. All tests were repeated three times with the 
same extracts and the mean across all replicates was calculated. 

2.3. Additional environmental stressors 

To account for confounding stressors, basic physicochemical water 
parameters were assessed in parallel to the water and sediment sam
pling. For four weeks, pH, electric conductivity (EC) and dissolved ox
ygen (DO) were measured weekly with a portable multimeter (HQ40d, 
Hach, Düsseldorf, Germany). Concentrations of ammonium (NH4–N), 
nitrite (NO2

− ), orthophosphate (PO4–P) were determined twice and total 
organic carbon (TOC) were measured once during this period with 
Spectroquant test kits (Merck, Darmstadt, Germany). Concentrations of 
NO2–N were calculated based on NO2

− concentrations. Measurements 
below the limit of quantification were adjusted to half the limit of 
quantification. The 10th percentile for DO and the mean for the 
remaining parameters were calculated across all measurements per site 
(see Table S1 for results). 

In addition, morphological degradation was assessed once according 
to the standard protocol of North Rhine-Westphalia, Germany (Gellert 
et al., 2014). The degree of degradation of a 100 m segment was eval
uated on a scale from unchanged (1) to completely changed (7), 
compared to reference conditions specific to the morphological river 
type. The assessment included several characteristics addressing chan
nel development, longitudinal profile, bed structure, cross profile, bank 

structure, and adjacent land zone. 

2.4. Ecological assessment 

Benthic macroinvertebrates were sampled once between March and 
April according to the German standard protocol following the WFD 
(Haase et al., 2004). The sampling method consisted of multi-habitat 
sampling of 20 subsamples representing the substrate coverage at the 
stream section (AQEM/STAR). The samples were preserved in 96 % 
ethanol on site. In the laboratory, samples were subsampled and frac
tionated. Macroinvertebrates of the largest fraction (>2 mm) were 
identified to the taxonomic levels of the ‘Operational Taxalist for 
Running Waters in Germany’ (Haase et al., 2006). 

To investigate the response of the benthic macroinvertebrate com
munity, we used taxonomic and functional approaches. The taxa 
abundances at the original identification level and grouped to higher 
taxonomic levels were used to study changes in taxonomic composition 
(see Tables S2–3 for taxa lists). In addition, the ecological status class 
and several commonly used macroinvertebrate metrics were calculated 
using Perlodes Online (v5.0.9, https://www.gewaesser-bewer 
tung-berechnung.de/). The number of individuals per m2 (Abun
dance), taxonomic richness as number of taxa (#Taxa), Shannon-Wiener 
diversity index (Shannon), and evenness (Evenness) were calculated as 
typical descriptors of taxonomic biodiversity. General degradation of 
ecological quality was assessed with the German Multimetric Index 
(MMI; Böhmer et al., 2004), the percentage of Ephemeroptera, Ple
coptera and Trichoptera in the total abundance (%EPT) and the number 
of Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, Bivalvia and 
Odonata taxa (#EPTCBO). In addition, metrics developed to indicate 
specific stressors were used. The German Fauna Index (GFI) was 
developed as an indicator for morphological degradation (Lorenz et al., 
2004). The German Saprobic Index (GSI; Friedrich and Herbst, 2004; 
Rolauffs et al., 2004) was calculated as indicator of easily degradable 
organic matter that leads to increased oxygen depletion. The Average 
Score Per Taxon (ASPT) and the Biological Monitoring Working Party 
score (BMWP; Armitage et al., 1983) were calculated using ASTERICS (v 
4.01, https://www.gewaesser-bewertung.de/) as international de
scriptors of degradable organic matter. Finally, we calculated the SPE
cies At Risk index for pesticides as potential indicator of pesticide driven 
toxicity (SPEARpest.; Liess and von der Ohe, 2005) using Indicate (v2.3.1, 
https://www.systemecology.de/indicate/). 

Functional responses of the benthic invertebrate community were 
investigated using ten biological traits with in total 51 modalities from 
the European database “freshwaterecology.info” including Tachet traits 
(Schmidt-Kloiber and Hering, 2015; Tachet et al., 2010) (Table 2). This 
selection covers a wide range of frequently used traits addressing life 
history, morphology and behavior which could be affected by toxicity 
(Rubach et al., 2011). Trait information was available for 50.0 % of the 
taxa at the original identification level. Remaining gaps were filled using 
a stepwise procedure as described in Nguyen et al. (2023) resulting in a 
total coverage of 97.1 % (coverages of intermediate steps are listed in 
Table S5). All trait modalities were fuzzy-coded and converted to pro
portions of the overall affinity of a trait. We calculated four 
distance-based metrics to describe functional diversity: functional 
richness (FRic), functional evenness (FEve), functional dispersion 
(FDis), and functional redundancy (FRed). FRic, FEve, and FDis were 
calculated based on a weighted Gower dissimilarity matrix of the traits 
with a Cailliez correction and untransformed community abundances 
using the ‘dbFD’ function (‘FD’-package, V 1.0–12.1, Laliberté et al., 
2014; Laliberté and Legendre, 2010). FRed was calculated using the 
same input data and the ‘uniqueness’ function (‘adiv’-package, V 2.2, 
Pavoine, 2020, 2022). 

2.5. Data analysis 

Principal Component Analysis (PCA) was used to investigate the 

Table 1 
Toxicity endpoints of effect-based methods used with mean, minimum (Min) and 
maximum (Max) values across 30 sampling sites.  

Endpoint Test Matrix Mean 
(Min–Max) 

Unit 

Baseline 
toxicity 

Microtox assay Water 220 
(40.7–300) 

EC50 REF 

Sediment 41.4 
(0.97–200) 

EC50 mg SEQ 

Dioxin-like 
activity 

Yeast dioxin 
screen (YDS) 

Water 0.071 
(0–0.17) 

μg 
β-Naphthoflavone- 
EQ/l 

Estrogenic 
activity 

Yeast estrogen 
screen (YES) 

Water 0.46 
(0–1.69) 

ng 17β-estradiol- 
EQ/l 

Mutagenicity Ames 
fluctuation 
test (YG1041 
± S9, YG1042 
± S9) 

Water 0.47 (0–1) – 
Sediment 0.23 (0–1) – 

REF: Relative enrichment factor, SEQ: sediment equivalents, EQ: equivalents. 
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relationship between the different bioassays and to derive major toxicity 
gradients. Prior to PCA, the bioassay results were standardized to zero 
mean and unit variance (z-scores) to account for differences in units and 
scales. The first two principal components (PCs) explained most of the 
variance (>75 %). Therefore, the site scores on PC1 and PC2 were used 
as descriptors of toxicity for further analyses. We used Spearman rank 
correlation to test for co-occurrence of additional stressors along the 
toxicity gradients derived by the PCA. 

To investigate the response of benthic invertebrate communities to 
the toxicity gradients, we used constrained ordination with four 
different response matrices: (I) taxonomic and functional metrics, (II) 
taxonomic composition (grouped), (III) taxonomic composition (orig
inal identification level), and (IV) trait composition. For the metrics, 
Abundance, #Taxa, and FRic were log10-, #EPTCBO log10(x+1)-, and % 
EPT logit-transformed to downweight extremes and improve normality. 
Afterwards, all taxonomic and functional metrics were standardized to 
z-scores to account for the differences in units and dimensions. For the 
taxonomic composition, original and grouped abundances were 
hellinger-transformed. Trait affinities were transformed into 
community-weighted means based on taxa abundances. Afterwards, 
community weighted means were weighted by weights derived with the 
‘gawdis’ function (‘gawdis’ package, V0.1.5, De Bello et al., 2021) to 
account for the hierarchical structure of fuzzy-coded traits. All response 
matrices were tested for spatial autocorrelation using the Mantel test 
(‘mantel.correlog’ function with 999 runs, ‘vegan’ package, v2.6-4, 
Oksanen et al., 2022) and for linear response using Detrended Corre
spondence Analysis (DCA). Because DCA indicated a linear response of 
all response matrices, i.e. first DCA axis ≤3.12, we used partial Redun
dancy Analysis (RDA) as constrained ordination method. The site scores 
on the first and second PCs of the PCA were used as explanatory vari
ables. Because the Mantel test indicated a slight positive spatial auto
correlation within the first 15 km (Pearson’s r = 0.1; Table S7) and to 
account for temporal and natural longitudinal patterns, region (Fig. 1: 
Gersprenz, Modau, Schwarzbach, Taunus) and the distance to the source 
were added as conditions to the models. Variance partitioning indicated 
only a low joint explained variance (≤3.4 %) by toxicity and the natural 

factors (Fig. S1). Variance inflation factors (VIF) of the explanatory 
variables and conditions indicated no strong collinearity (all VIF <2). 
However, forward selection and permutation tests (999 runs) suggested 
the removal of PC2. The significances of the models were tested with 
global permutation tests using 999 runs. To identify the direction and 
strength of individual response variables, we used the species scores 
obtained from the RDA (i.e., the coordinate of the tips of the vectors 
(response variables) on the first RDA axis representing the toxicity 
gradient). 

All statistical analyses were performed in R (v4.2.3; R Core Team, 
2023). All multivariate analyses were performed using the ‘vegan’ 
package (v2.6-4, Oksanen et al., 2022). 

3. Results 

3.1. Deriving a toxicity gradient from the effect-based methods 

PCA with bioassays revealed a strong joint toxicity gradient 
explaining 59.3 % of the variability along the first axis (Fig. 2A). 
Mutagenicity, dioxin-like activity, estrogenic activity, and baseline 
toxicity of water samples and sediment baseline toxicity increased along 
PC1. The second axis (PC2) explained 16.3 % of the variability and was 
mostly associated with sediment mutagenicity. There was a significant 
correlation of PC1 with TOC (Spearman rho = 0.54, p = 0.002), EC 
(Spearman rho = 0.58, p = 0.001), DO (Spearman rho = − 0.57, p =
0.001), NH4–N (Spearman rho = 0.60, p = 0.001) and PO4–P (Spearman 
rho = 0.53, p = 0.003) (Fig. 2B; for correlations of individual bioassays 
see Table S6). PC2 was not significantly correlated with any additional 
environmental variable (p > 0.05). 

3.2. Benthic macroinvertebrate response to the toxicity gradient 

We identified a total of 230 macroinvertebrate taxa from 83 families 
and 127 genera across all 30 sites. Taxonomic richness per site varied 
between 13 and 72 taxa. The sites covered a large gradient in ecological 
quality with four sites classified as "good", five as "moderate", 12 as 
"poor" and nine as "bad" according to the WFD (Fig. 2A). 

Taxonomic and functional metrics covaried significantly with the 
toxicity gradient (PC1) explaining 25 % of the variation in the metrics (p 
= 0.001; Fig. 3A). Changes in metrics were mostly associated with a 
decrease in ASPT, #EPTCBO, #Taxa, BMWP, FRic, SPEARpest, MMI, and 
%EPT with increasing toxicity. Abundance and GSI were positively 
related to toxicity. 

Taxonomic composition also changed significantly along the toxicity 
gradient (grouped: Radj.

2 = 0.23, p = 0.001; original identification level: 
Radj.

2 = 0.10, p = 0.001; Fig. 3B and C). Amphipods, such as Gammarus 
spp., and ephemeropterans, such as Baetis rhodani and Rhithrogena 
semicolorata-Gr., decreased the most in their abundance with increasing 
toxicity. At the same time, Oligochaeta (e.g. Naididae/Tubificidae Gen. 
sp., Oligochaeta Gen. sp.), isopods (Asellus aquaticus, Proasellus coxalis) 
and Chironomini Gen. sp. became more abundant with increasing 
toxicity. 

Functional composition was significantly explained by the toxicity 
gradients (Radj.

2 = 0.18, p = 0.001; Fig. 4). Traits related to respiration, 
resistance forms, locomotion and feeding changed more strongly than 
traits such as dispersal, number of reproduction cycles per year (vol
tinism) and degree of aquatic lifecycle. At toxic sites, tegument respi
ration (teg), cocoons as resistance forms (coc), burrowing (bur) and 
sediment gathering (gat) were dominant traits. At low toxicity sites, gill 
respiration (gil), no resistance forms (non), and ovoviviparity (ovo) 
were more common. 

Table 2 
Biological traits used.  

Trait group Trait 

Feeding type grazers/scrapers (gra); miners (min); xylophagous taxa 
(xyl); shredders (shr); gatherers/collectors (gat); active 
filter feeders (aff); passive filter feeders (pff); predators 
(pre); parasites (par); other feeding types (oth) 

Locomotion swimming/skating (sws); swimming/diving (swd); 
burrowing/boring (bub); sprawling/walking (spw); (semi) 
sessil (ses), other locomotion types (oth) 

Aquatic lifecyclea full: all life stages are aquatic (full); partial: only some life 
stages are aquatic (part) 

Dispersal aquatic passive (aqupas); aquatic active (aquact); aerial 
passive (aerpas); aerial active (aeract) 

Life duration life duration up to one year (≤1 year); life duration longer 
than one year (>1 year) 

Voltinism semivoltinism: life cycle lasts at least two years (semi); 
monovoltinism: one generation per year (mono); 
polyvoltinism: at least two generations per year (poly) 

Oviposition ovoviviparity (ovo); free isolated eggs (fie); cemented, 
isolated eggs (cie); cemented or fixed clutches (fic); free 
clutches (frc); clutches in vegetation (vec); terrestrial 
clutches (tec); asexual reproduction (ase) 

Resistance forms eggs/gemmule/statoblasts (egg), cocoons (coc), housings 
against desiccation (hou), diapause or dormancy (did), 
none (non) 

Respiration tegument (teg); gill (gil); plastron (pls); spiracle (aerial) 
(spi) 

Maximal body size 
(Size (cm)) 

≤0.25 cm (<0.25); >0.25–0.5 cm (0.25–0.5); >0.5–1 cm 
(0.5–1); > 1–2 cm (1–2); > 2–4 cm (2–4); > 4–8 cm (4–8); 
>8 cm (>8)  

a Aquatic lifecycle was calculated based on ‘aquatic life stages’-trait (see 
Supplementary material). 
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4. Discussion 

4.1. Effect-based methods reveal a strong toxicity gradient associated with 
a decrease in macroinvertebrate biodiversity 

The EBMs indicated a strong toxicity gradient with multiple MoAs. 
The PCA showed that most of the effects assessed by the four in vitro 
bioassays conducted on water and sediment samples increased along a 
major toxicity gradient (Fig. 2A). This gradient in toxicity was associ
ated with an increase in baseline toxicity, mutagenicity, dioxin-like and 
estrogenic activity in water samples, as well as baseline toxicity in 
sediment samples. Polluted freshwater systems typically contain mix
tures of numerous chemicals (Busch et al., 2016; Peng et al., 2018; Rico 
et al., 2019) and cause effects in multiple EBMs with different MoAs 
simultaneously (Leusch et al., 2024). Thus, the parallel activity of 
different MoAs indicated the presence of a complex chemical mixture at 
our most toxic sites. 

The chemical pollution and observed toxicities in our study could be 
largely related to WWTPs effluents and diffuse pollution from anthro
pogenic activities. Most WWTPs are not able to completely remove 
chemicals from the wastewater (Margot et al., 2015; Ternes et al., 2017). 
Thus, WWTPs release a variety of chemicals, including pharmaceuticals, 
pesticides and other micropollutants (Beckers et al., 2018; Loos et al., 
2013; Münze et al., 2017). These chemical mixtures of WWTP effluents 
can have a strong negative impact on freshwater systems (Enns et al., 
2023; Finckh et al., 2022; Harth et al., 2018; Maltby et al., 2000). Es
trogens, such as 17α-ethinyl estradiol, 17β-estradiol, and estrone, are 
primarily introduced into rivers through wastewater and WWTP efflu
ents (Kase et al., 2018). We observed an increase in estrogenic activity 
along the toxicity gradient with the YES. This bioassay is able to detected 
estrogens with a high specificity (Di Paolo et al., 2016). Thus, the 
increasing estrogenic activity along the toxicity gradient indicate WWTP 
effluents as important source for chemical pollution and associated ef
fects in our study area. In addition, other sources such as runoff from 
streets, urban and agricultural areas might contribute to the overall 
toxicity. With an increase of estrogenic activity, we observed an 
increasing dioxin-like activity. Polycyclic aromatic hydrocarbons 
(PAHs) can cause dioxin-like activity, which is quantified by the acti
vation of the AhR receptor (Novák et al., 2018) and enter freshwater 
systems through aerial deposition or surface runoff from urban areas 
(Ravindra et al., 2008). However, other chemicals, such as pesticides, 
also bind to the AhR receptor (Neale et al., 2020). Pesticides can origi
nate from WWTP effluents as well as diffuse pollution from agriculture 

(Halbach et al., 2021; Le et al., 2017). Rain events in agricultural areas 
release high pesticide loads into streams, which can also increase 
baseline toxicity (Betz-Koch et al., 2023). As EBMs can only indicate the 
presence of certain chemical groups and thus sources of contamination, 
a subsequent chemical analysis is necessary to identify the individual 
pollutants causing the toxic effects. In our study, the EBMs indicated that 
the toxicity gradient may be related to a complex chemical mixture 
originating from WWTP effluents but also diffuse pollution from 
anthropogenic activity. 

In our study, the macroinvertebrate community significantly 
changed in taxonomic and functional composition, and decreased in 
diversity, ecological quality and functional richness with increasing 
toxicity (Figs. 3 and 4). For instance, MMI, an indicator for general 
degradation, and taxonomic richness in particular for EPTCBO-taxa also 
decreased with increasing toxicity. These negative effects of chemical 
pollution quantified with chemical analysis was observed numerously 
before (Alric et al., 2022; Heβ et al., 2023; Markert et al., 2024). 
Accordingly, sediment toxicity assessed by in vivo bioassays also resulted 
in a decrease in the US version of the MMI, EPT richness and %EPT 
(Moran et al., 2017). Furthermore, the ecological potential of reservoirs 
decreased with a declining ecotoxicological status derived with EBMs 
(Palma et al., 2016). 

The strength of the response emphasizes the role of chemicals as 
stressors and the ecological relevance of EBM derived toxicities. For 
example, all of the most toxic sites were classified as “bad” according to 
the WFD. Taxa such as Gammarus pulex and G. roeselii were among the 
most decreasing taxa, despite being previously identified as moderately 
sensitive or even tolerant to WWTP and micropollutants (Enns et al., 
2023; Meyer et al., 2022; Rico and van den Brink, 2015). The disap
pearance of these taxa illustrates the hostile conditions present at our 
most toxic sites. Additionally, we observed a decline in both taxonomic 
and functional diversity. Functional responses can be less responsive 
than taxonomical ones, as high functional redundancy can buffer effects 
of taxonomical changes (Alric et al., 2021; Baker et al., 2021; Charvet 
et al., 2000). Thus, a decrease in functional richness indicates that these 
buffer capacities were exceeded and that ecological functions may be 
impaired. For instance, the loss of shredders can lead to a decrease in 
leaf litter decomposition, which could disrupt the entire nutrient cycle 
(Feckler et al., 2023; Münze et al., 2017). 

The strength of the macroinvertebrate response along the toxicity 
gradient could emphasize the suitability of EBMs for the ecologically 
relevant detection of chemical pollution. However, the observed corre
lation between toxicity and ecological effects does not mean a causal 

Fig. 2. A - Principal Component Analysis (PCA) with results of six bioassays measuring water (blue) and sediment toxicity (brown). Sites (n = 30) are colored 
according to the ecological quality class (EQC). B – Spearman rank correlation of the first two principal components (PC1 and PC2) with additional environmental 
variables. Significant correlations (*: p < 0.05, **: p < 0.01, ***: p < 0.001) are colored according to the Spearman rho. Non-significant correlations (ns: p > 0.05) are 
colored white. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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relationship. For instance, estrogenic activity is quantified by the 
binding to the estrogen receptor (Di Paolo et al., 2016). Since most 
macroinvertebrates lack this type of receptor, estrogens may act through 
a different toxicity pathway or co-occurring chemicals caused the 
observed ecological effects. In addition, other environmental stressors, 
such as nutrients, oxygen depletion and salinity, were also moderately 
correlated with toxicity. Because these stressors are among the most 
important stressors to freshwater ecosystems (Berger et al., 2017; De 
Castro-Català et al., 2015; Heβ et al., 2023; Markert et al., 2024), they 
might contribute to the observed ecological decline. The physicochem
ical changes correlating with toxicity likely originated from similar 
sources, such as WWTPs and agricultural runoff (Berger et al., 2017; 
Burdon et al., 2019; Tlili et al., 2017). However, the isolation of effects 
of individual stressors in multiple stressor contexts is very difficult and 
we cannot exclude potential interacting or masking effects of phys
icochemistry and other environmental stressors along the toxicity 

gradient. To obtain further evidence for ecological relevance, more 
studies connecting EBMs and ecological data, including controlled en
vironments such as mesocosm studies, are necessary. Furthermore, since 
macroinvertebrates tend to respond integratively to all stressors present, 
it is necessary to find monitoring systems specific for individual 
stressors. In vitro bioassays, that address specific MoAs, can indicate the 
presence of certain chemical groups independently of other stressors, 
such as hydromorphological and physicochemical degradation. Thus, 
the current study highlights the usefulness of EBMs with specific MoAs 
for detecting the presence of individual chemical groups and identifying 
potential sources in multiple stressor systems. 

4.2. Multiple stressors and integrative bioindication by 
macroinvertebrates impede toxicity-specific responses 

Macroinvertebrate-based bioindicators specific to chemical pollution 

Fig. 3. Scores of taxonomic und functional metrics (A), abundances of taxonomic groups (B) and abundances of the most responding taxa at original identification 
level (C) on the first RDA axis representing the toxicity gradient. The scores of all taxa at original identification level can be found in the supplementary material. Blue 
bars indicate negative effect of toxicity, red bars indicate positive effect. N = 30. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

S. Heß et al.                                                                                                                                                                                                                                      



Environmental Pollution 356 (2024) 124330

7

or even chemical groups could be helpful tools to identify stressors in 
rivers with existing monitoring data. The identification of metrics, taxa 
and traits related to tolerance and vulnerability to toxicity is key to 
develop such bioindicators. For instance, SPEARpest. strongly decreased 
with increasing toxicity suggesting the presence and potential toxic ef
fects of pesticides (Liess et al., 2021). However, indicators of biodiver
sity (#EPTCBO, #Taxa, FRic) and degradable organic matter (ASPT, 
BMWP, GSI) also strongly responded (Fig. 3A). Many macroinvertebrate 
metrics have typically only low stressor specificity and often respond to 
general degradation (Lemm et al., 2019; Stubbington et al., 2022). 
Accordingly, severe toxic effects can cause the disappearance of many 
taxa, including those that are typically sensitive to other stressors, 
leading to a response of several metrics. In addition, the macro
invertebrate communities are also affected by the presence of other 
stressors, such as EC, oxygen depletion and nutrients that were moder
ately correlated with toxicity. An integrative response to these multiple 
stressors can mask toxicity-specific effects. Thus, the presence of mul
tiple stressors and the integrative response of macroinvertebrates 
impede the derivation of toxicity-specific bioindicators based on our 
data. 

The change of taxonomic composition revealed taxa that are typi
cally vulnerable and tolerant to anthropogenic stress. Along our toxicity 
gradient, common and abundant taxa such as gammarids (G. pulex, 
G. fossarum and G. roeselii) and ephemeropterans (Baetis rhodani, Rhi
throgena semicolorata-Gr.) were decreasing the most with increasing 
toxicity (Fig. 3B and C). However, less abundant taxa, belonging to 
Coleoptera, Trichoptera, Plecoptera and Bivalvia, also decreased and 
can be considered as vulnerable towards toxicity. Accordingly, several 
Ephemeroptera, Plecoptera, Trichoptera and Coleoptera taxa were 
determined as sensitive to micropollutants and WWTP effluents (Berger 
et al., 2016; Enns et al., 2023; Rico and van den Brink, 2015). However, 
EPT taxa were also demonstrated to be sensitive towards various 
stressors and are used as indicators for general degradation of water 
quality (Hering et al., 2004; Juvigny-Khenafou et al., 2021; Markert 
et al., 2024; Waite and Van Metre, 2017). Oligochaetes, hirudineans, 
asellids (Asellus aquaticus) and Chironomini Gen. sp. were identified as 
tolerant taxa that became more abundant with increasing toxicity. These 
taxa are typical of sites polluted by toxicants but also nutrients, salinity, 
temperature, metals and decreased oxygen levels (Enns et al., 2023; 
Pallottini et al., 2017). In general, only a few taxa were found to react 
stressor-specific (Berger et al., 2018). Similar to the response of metrics, 
the observed changes in taxonomic composition are not exclusive to 
toxicity, but are also common to other anthropogenic stressors. 

Compared to taxonomic composition, functional traits can provide a 
more mechanistic understanding of the stressor effects and adaptation 
strategies of the macroinvertebrate community (Culp et al., 2011). 
Tegument respiration, cocoons as resistance forms, burrowing, 

gathering, and longevity were identified as traits favored by toxic con
ditions. Traits such as gill respiration, lack of resistance forms, swim
ming locomotion, feeding as shredders, and reproduction with 
ovoviviparity were related to vulnerability. These traits can be largely 
related to the taxonomic changes, such as the decrease in gammarids 
and the increase in oligochaetes, and only partly follow typical adap
tation strategies. For instance, ovoviviparity is a reproduction strategy 
common to tolerant taxa such as Asellus aquaticus (Tachet et al., 2010) 
and is used as an indicator of poor water quality in the French multi
metric I2M2 index (Mondy et al., 2012). However, gammarids are also 
ovoviviparous (Tachet et al., 2010) and were one of the most abundant 
taxa groups at our low to medium toxic sites. Thus, their strong decrease 
at our most toxic sites resulted in an overall decrease of ovoviviparity. 
Overall, the trait response only partially resembles typical toxicity 
tolerance traits that affect an organism’s exposure to toxicants, the 
intrinsic sensitivity, and the population sustainability (Rubach et al., 
2011). Gill respiration was connected with vulnerability, while tegu
ment respiration was connected with tolerance. The differences in 
assimilation and metabolism rates between these respiration types affect 
the uptake of toxicants, and, therefore, potential toxic effects (Rubach 
et al., 2011). Furthermore, the resistance forms, such as cocoons, can 
facilitate the survival in case of pollution events and increase tolerance 
to toxicity (Rubach et al., 2011). However, other life history strategies 
that can increase tolerance, such as multiple short-lived generations per 
year and high dispersal capacities, responded only weakly to toxicity. 
Therefore, physiological adaptations affecting the individual tolerance 
to toxicity might be more important than morphology and life history 
strategies in our study. However, enzyme activities and other intrinsic 
physiological adaptations are more difficult to describe (Rubach et al., 
2011). Because of this lack of relevant traits and intercorrelations be
tween traits, it is difficult to relate traits specifically to individual 
stressors such as toxicity (Hamilton et al., 2020). Consequently, trait 
responses were similar to different stressors such as sediment contami
nation with metals, PAHs and polychlorinated biphenyls (PCBs) (Arch
aimbault et al., 2010), micropollutants in water (Meyer et al., 2022), but 
also nutrients and other stressors (Ieromina et al., 2016; Jiang et al., 
2021; Pallottini et al., 2017). Thus, there is a low potential for toxicity- 
or even chemical-specific macroinvertebrate indicators based on the 
existing trait information (Collins and Fahrig, 2020). The combinations 
of many individual trait responses but also taxonomic metrics could 
provide a potential approach to derive out of many weak responses a 
stressor-specific response pattern (Alric et al., 2021; Meyer et al., 2022). 

5. Conclusions 

The current study is part of a limited number of studies that link 
ecotoxicological and ecological data to investigate the potential of 
macroinvertebrates as toxicity-specific bioindicators and to evaluate the 
use and ecological relevance of EBMs. We observed significant changes 
in the biodiversity, ecological quality, taxonomic and functional 
composition of macroinvertebrates that suggest strong impacts by toxic 
pollution and an ecological relevance of the toxicities derived by in vitro 
bioassays. However, the observed changes were rather non-specific for 
toxicity. Multiple stressors may cover toxicity-specific responses and 
macroinvertebrates respond integratively to the effects of various 
stressors. Thus, there is only a low potential to derive toxicity-specific 
bioindicators in our study. Since biological responses can only provide 
limited information in this regard, it is even more important to monitor 
also potential stressors. In this context, using EBMs and linking them to 
ecological data can be useful for separating the effects of chemical 
pollution from the overall effects of multiple stressors, as well as iden
tifying the presence of chemical groups with specific MoAs. This infor
mation is helpful for the selection of monitoring and mitigation 
measures, such as more directed chemical analyses of water and sedi
ment samples. 

Fig. 4. Scores of trait modalities on the first RDA axis representing the toxicity 
gradient. Blue bars indicate negative effect of toxicity, red bars indicate positive 
effect. N = 30. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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Berger, E., Haase, P., Schäfer, R.B., Sundermann, A., 2018. Towards stressor-specific 
macroinvertebrate indices: which traits and taxonomic groups are associated with 
vulnerable and tolerant taxa? Sci. Total Environ. 619–620, 144–154. https://doi. 
org/10.1016/j.scitotenv.2017.11.022. 

Betz-Koch, S., Jacobs, B., Oehlmann, J., Ratz, D., Reutter, C., Wick, A., Oetken, M., 2023. 
Pesticide dynamics in three small agricultural creeks in Hesse, Germany. PeerJ 11, 
e15650. https://doi.org/10.7717/peerj.15650. 

Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., Van De 
Bund, W., Zampoukas, N., Hering, D., 2012. Three hundred ways to assess Europe’s 
surface waters: an almost complete overview of biological methods to implement the 
Water Framework Directive. Ecol. Indicat. 18, 31–41. https://doi.org/10.1016/j. 
ecolind.2011.10.009. 
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Dévier, M.-H., Mazellier, P., Aït-Aïssa, S., Budzinski, H., 2011. New challenges in 
environmental analytical chemistry: identification of toxic compounds in complex 
mixtures. C R Chim 14, 766–779. https://doi.org/10.1016/j.crci.2011.04.006. 

Di Paolo, C., Ottermanns, R., Keiter, S., Ait-Aissa, S., Bluhm, K., Brack, W., Breitholtz, M., 
Buchinger, S., Carere, M., Chalon, C., Cousin, X., Dulio, V., Escher, B.I., Hamers, T., 
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Altermatt, F., Álvarez-Cabria, M., Amatulli, G., Angeler, D.G., Archambaud- 
Suard, G., Jorrín, I.A., Aspin, T., Azpiroz, I., Bañares, I., Ortiz, J.B., Bodin, C.L., 
Bonacina, L., Bottarin, R., Cañedo-Argüelles, M., Csabai, Z., Datry, T., De Eyto, E., 
Dohet, A., Dörflinger, G., Drohan, E., Eikland, K.A., England, J., Eriksen, T.E., 
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Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional 
diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08- 
2244.1. 
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Tabares, D., Vighi, M., 2019. Identification of contaminants of concern in the upper 
Tagus river basin (central Spain). Part 1: screening, quantitative analysis and 
comparison of sampling methods. Sci. Total Environ. 666, 1058–1070. https://doi. 
org/10.1016/j.scitotenv.2019.02.250. 

Rico, A., Van Den Brink, P.J., 2015. Evaluating aquatic invertebrate vulnerability to 
insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. 
Environ. Toxicol. Chem. 34, 1907–1917. https://doi.org/10.1002/etc.3008. 
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