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Abstract 

Background 

Alternative splicing is a key mechanism in eukaryotic cells to increase the effective number of 

functionally distinct gene products. Using bulk RNA sequencing, splicing variation has been 

studied both across human tissues and in genetically diverse individuals. This has identified 

disease-relevant splicing events, as well as associations between splicing and genomic 

variations, including sequence composition and conservation. However, variability in splicing 

between single cells from the same tissue and its determinants remain poorly understood. 

 

Results 

We applied parallel DNA methylation and transcriptome sequencing to differentiating human 

induced pluripotent stem cells to characterize splicing variation (exon skipping) and its 

determinants. Our results shows that splicing rates in single cells can be accurately predicted 

based on sequence composition and other genomic features. We also identified a moderate 

but significant contribution from DNA methylation to splicing variation across cells. By 

combining sequence information and DNA methylation, we derived an accurate model 

(AUC=0.85) for predicting different splicing modes of individual cassette exons. These explain 

conventional inclusion and exclusion patterns, but also more subtle modes of cell-to-cell 

variation in splicing. Finally, we identified and characterized associations between DNA 

methylation and splicing changes during cell differentiation.  

Conclusions 

Our study yields new insights into alternative splicing at the single-cell level and reveals a 

previously underappreciated link between DNA methylation variation and splicing. 

Keywords 

Single-cell analysis, Alternative splicing, DNA methylation, Splicing prediction, Cell 

differentiation, Multi-omics  
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Background 

RNA splicing enables efficient gene encoding and contributes to gene expression variation by 

alternative exon usage [1]. Alternative splicing is pervasive and affects more than 95% of 

human genes [2]. Splicing is known to be regulated in a tissue-specific manner [3, 4] and 

individual splicing events have been implicated in human diseases [5]. Bulk RNA-sequencing 

of cell populations has been used to identify and quantify different splicing events [6], where 

in particular exon skipping at cassette exons, the most frequent alternative splicing event [1], 

has received considerable attention.  

 

Different factors have been linked to splicing of cassette exons, including sequence 

conservation [7] and genomic features such as the local sequence composition and the length 

of the exon and flanking introns [8, 9]. Although there is some evidence for an epigenetic 

component of splicing regulation, this relationship is not fully understood and alternative 

models for the role of DNA methylation in splicing have been proposed [10–12]. The 

transcriptional repressor CTCF has been shown to slow down RNA polymerase II (Pol II), 

resulting in increased exon inclusion rates. By inhibiting CTCF binding, DNA methylation can 

cause reduced exon inclusion rate [10]. Alternatively, increased DNA methylation of the 

MeCP2 pathway has been associated to increased exon inclusion rates. MeCP2 recruits 

histone deacetylases in methylated contexts that wrap the DNA more tightly around the 

histones. This interplay between MeCP2 and DNA methylation slows down Pol II and  lead to 

an increased exon inclusion rate [11]. Finally, HP1, which serves as an adapter between DNA 

methylation and transcription factors, increases the exon inclusion rate if it is bound upstream 

of the alternative exon. Binding of HP1 to the alternative exon leads to increased exon skipping 

[12]. These alternative mechanisms point to a complex regulation of splicing via an interplay 

between DNA sequence and DNA methylation, both in proximal as well as distal contexts of 

the alternative exon. 

 

Technological advances to perform RNA-seq in single cells have most recently enabled 

studies that have started to investigate splicing variation at single-cell resolution [9, 13, 14]. 

Leveraging recent protocols for parallel sequencing of RNA and bisulfite treated DNA from the 

same cell (single-cell methylation and transcription sequencing; scM&T-seq [15]), we here 

extend such analysis by accounting the DNA methylome into account.  For the first time, we 

study associations between single-cell splicing variation and DNA methylation at two stages 

of human iPS differentiation.  
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Results 

Single-cell splicing variation during endoderm differentiation 

We applied parallel single-cell methylation and transcriptome sequencing (scM&T-seq) to 

differentiating induced pluripotent stem (iPS) cells from a single donor ("joxm_1") of the 

Human Induced Pluripotent Stem Cell Initiative (HipSci) [16, 17]. We profiled 93 cells in the 

iPS state, as well as following three days of differentiation towards definitive endoderm 

(endoderm). After quality control this resulted in 86 and 59 cells, respectively (Methods), which 

were used for analysis. In each cell we quantified cassette exon inclusion rates (methods, Fig. 

1a). We detected and quantified splicing for between 1,386 and 14,434 exons per cell 

(minimum coverage five reads), where splicing rates (PSI) were estimated as the fraction of 

reads that include the alternative exon versus the total number of reads at the cassette exon 

(Methods). Sequencing depth and differentiation stage were the most important determinants 

of differences between cells (Figure S1). We considered 6,282 (iPS) and 4,096 (endoderm) 

cassette exons that were detected in at least ten cells for further analysis. 

 

Initially, we explored whether individual cells express only a single splice isoform ("cell 

model"), or whether multiple isoforms are present in a given cell ("gene model"; Fig. 1b), a 

question that has previously been investigated in bulk data [18, 19]. Globally, our data (Fig. 

1c) rule out the cell model, however we also observed deviations from the gene model, in 

particular for exons with intermediate levels of splicing (Fig. 1c). We assessed relationships 

between cellular properties and the consistency with the two splicing models, focusing on the 

intermediate splicing ranges (0.2 < PSI < 0.8, Fig. 1c). This identified differences between 

cells with high and low splicing activity (defined as the abundance of splice factors; Methods, 

P=5x10-5 and P=0.001 for iPS and endoderm, respectively, Figures S2a-b). Additionally, we 

observed that  iPS cells have splicing patterns that are more consistent with the gene model 

as compared to differentiated cells (P=8.x10-12, Figure S2c). Finally, we observed an 

enrichment for cells in G2/M cell cycle stage for splicing according to the gene model in iPS 

cells, and G1 cells in endoderm (Figures S2d-e). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2018. ; https://doi.org/10.1101/328138doi: bioRxiv preprint 

https://doi.org/10.1101/328138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

 
 
 
Figure 1 | Single-cell splicing and considered features for modeling splicing rates. a. Illustration 

of the considered sequence contexts (top) and the total number of extracted features (bottom). 

Sequence contexts that were considered to extract genomic and epigenetic splicing features. “A” 

denotes the alternative exon, “I1” and “I2” correspond to the upstream and downstream flanking introns 

and “C1” and “C2” to the upstream and downstream flanking exons, respectively. The 5’ and 3’ ends 

(300bp) of flanking introns are considered separately. b. Illustration of two canonical splicing models. 

The "cell model" assumes that splicing variation is due to differential splicing between cells, where each 

cell expresses one of two splice isoforms. The "gene model" corresponds to the assumption that both 

splice isoforms can be expressed in the same cells. c. Cell-to-cell variation in splicing rate across cells 

(standard deviation of PSI) as a function of the average inclusion rate of cassette exons, considering 

86 iPS cells. Solid lines correspond to the expected trends either assuming a "cell model" (black line) 

or the "gene model" (red line). Grey vertical dashed lines mark intermediate ranges of splicing (0.2 < 

PSI < 0.8). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2018. ; https://doi.org/10.1101/328138doi: bioRxiv preprint 

https://doi.org/10.1101/328138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Methylation heterogeneity across cells is associated with splicing 

variability 

Next to try and identify the locus specific link between DNA methylation heterogeneity and 

splicing, we tested for associations between differences in DNA methylation levels across cells 

and splicing rates (Spearman correlation; Methods). For each cassette exon, we tested for 

associations between variation in DNA methylation and splicing in each of seven sequence 

contexts: the three exons, and the 5’ and 3’ parts of the two introns (methods, Fig. 1a). 

Genome-wide, this analysis identified 424 cassette exons with a methylation-splicing 

associations in iPS cells (out of 5,280 tested cassette exons, Q < 0.05, Figure S3a, Table S1) 

and 253 associations in endoderm cells (out of 2,622 tested, Q < 0.05, Figure S3a, Table S1). 

DNA methylation variation in the upstream alternative exon was most frequently associated 

with splicing variation (~60%), with approximately equal numbers of negative and positive 

effects (55% negative in iPS, 57% negative in endoderm). Most associations could be 

detected in more than one context for a given exon with consistent effect directions (Figures 

S3b, S3c). Similarly, we observed largely concordant effects across differentiation stages, 

with 87% of the associations detected in endoderm cells also being significant in iPS cells. 

Our associations point to selected set of genes with a relationship between DNA methylation 

and splicing of specific genes. Genes with negative associations between DNA methylation 

and splicing were enriched for HOXA2 transcription factor binding sites (adjusted P=2.3x10-2 

and adjusted P=1.2x10-3 in iPS and endoderm cells; using G:Profiler). Genes with a positive 

methylation-splicing associations were enriched for LHX3 transcription factor binding at the 

iPS state (adjusted P=3.3e-2), while no enrichments were observed in endoderm cells.   
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Prediction of splicing at single-cell level 

To gain insights into the global determinants of splicing, we trained regression models that 

related genomics and epigenetic features (see Fig. 1a) to splicing rates in single cells. Briefly, 

we pooled splicing information from cassette exons across cells and trained separate 

regression models for iPS and endoderm cells. Initially, we considered 607 features that 

explain sequence composition (based on k-mers) and sequence conservation ("genomic" 

features, Methods). We considered an additional set of up to 826 features derived from DNA 

methylation, including an extended k-mer alphabet that takes the methylation status into 

account, as well as DNA methylation average and variance (across CpG sites) in each of the 

seven sequence contexts of the exon per cell or across cells for mean methylation models 

(Methods). Methylation features were either incorporated on bulk average ("genomic & mean 

methylation" features) or individual cell level ("genomic & cell methylation" features). 

 

Notably, the model to predict single-cell splicing based on genomic features yielded 

comparable performance to previous attempts to predict splicing using bulk [8] and single-cell 

[9] RNA-seq (R2=0.706, R2=0.670; assessed using 10-fold cross validation; Fig. 2a, Figures 

S4, S5). To facilitate the comparison with previous results using bulk RNA-seq, we also 

considered predicting aggregate methylation rates across cells (“pseudo bulk PSI” (bPSI)), 

which resulted in similar prediction accuracies (R2=0.747 and R2=0.732 for iPS and endoderm 

cells, Figure S6). The inclusion of DNA methylation features increased the prediction 

accuracy, where larger gains were observed when including cell-matched DNA methylation 

information ("genomic & cell methylation" versus "genomic & mean methylation”). This in 

combination with our previous results suggests that DNA methylation is most predictive of cell-

to-cell variation in splicing at the same locus, whereas genomic features capture variation 

across different loci.  

 

Next, to assess the relevance of individual features, we built equivalent single-feature models 

for individual cells. Consistent with previous bulk studies [7, 8], this identified features derived 

from the alternative exon and its neighboring contexts, i.e. the 3’ end of the upstream intron 

and the 5’ end of the downstream intron, as most informative (Table S2). Within these 

contexts, sequence conservation of the alternative exon was found to be most relevant 

individually. Other high-ranking features included the k-mers CT, CTC and CCT of the 

alternative exon (Fig. 2b), sequence patterns that show close resemblance to CTCF binding 

motifs, which has previously been linked to alternative splicing. However, unlike the previously 

described CTCF motifs that are found upstream of the alternative exon, these k-mers are 

located in the alternative exon and have an opposite effect direction [10, 20]. 
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Although the most important features were consistent between iPS and endoderm cells 

(R2=0.79, average correlation between weights across all cells), principal component analysis 

(PCA) applied to the feature relevance information from all cells identified more subtle 

coordinated changes of the feature relevance (Fig. 2c). The first two principal components 

(PC) clearly separate iPS from endoderm cells, differences that were mainly driven by k-mers 

of the downstream intron (I2) that contain methylated and unmethylated cytosine bases (Fig. 

2d). This points towards a combination of differences in sequence composition, potentially 

transcription factor activity, and DNA methylation as the main determinants of cell-type specific 

splicing regulation (Table S3). 

 

Finally, we considered more complex regression models based on convolutional neural 

networks to predict single-cell splicing based on DNA sequence and an extended genomics 

alphabet including base-level DNA methylation information (deposited at kipoi.org; methods). 

We observed only a limited increase in performance when including DNA methylation 

information (Supplementary Results, Figure S7). These results line up with our locus 

specific DNA methylation results and the linear regression results. Strengthening our idea that 

global splicing information is mainly encoded by DNA sequence and conservation, and DNA 

methylation is linked to splicing a locus specific manner.   
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Figure 2. Regression-based prediction of single-cell splicing variation. a. Prediction accuracy 

(Pearson R2 based on 10-fold cross validation) of alternative regression models for single-cell splicing 

rates in iPS cells (day-0) and endoderm cells (day-3). The genomic model is based on sequence k-

mers, conservation scores and lengths of contexts (size of the cassette exon, length of flanking introns) 

as features (genomic features, dark blue). Other models account for average methylation rates across 

cells (genomic & mean methylation, blue), or cell-specific methylation rates (genomic & cell methylation, 

light blue). Error bars denote plus or minus one standard deviation across four repeat experiments. b. 

Features ranked by relevance for predicting splicing in iPS cells as determined by single-feature 

regression models trained on single cells. The most important features are features of the alternative 

exon, and include a methylated k-mer. Error bars denote plus or minus one standard deviation of the 

feature relevance across cells. Methylation features are indicated in grey. c. Principal component 

analysis on all cell-specific feature weights as shown in b. The first principal component (PC) primarily 

captures differences between differentiation states. d. The ten features with the largest contribution to 

the first PC (five positive and five negative features), which include k-mers with methylation information 

of the downstream intron I2. Methylation features are shown in grey.  
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Prediction of splicing modes of individual exons 

Next, we set out to study differences between different exons and their splicing patterns. We 

classified cassette exons into five distinct categories, using scheme that is similar to Song et 

al. [13]: 1) excluded, 2) included, and three intermediate splicing categories: 3) overdispersed, 

4) underdispersed and 5) multimodal (Fig. 3a, 3b, Table S4, Methods). We trained multinomial 

regression models (Methods) to classify individual exons using analogous features sets as 

considered for the regression models on single-cell splicing. A model based on genomic 

features yielded a macro-average AUC of 0.85 (Fig. 3c), where again sequence conservation 

in different contexts was the most informative feature (Table S5). Interestingly, we observed 

differences in the feature relevance across splicing categories: i) included and excluded 

exons, where the most relevant features were located in the alternative exon, and ii) the 

intermediate splicing categories, where features of the flanking exons were most informative. 

In general, predictions of included and excluded exons were most accurate (AUC=0.96 for 

both in iPS, AUC=0.94 for included in endoderm, AUC=0.96 for excluded in endoderm cells, 

Fig. 3d). These prediction accuracies exceed previously reported results in bulk data [8]. Even 

higher accuracies were achieved when training a model to differentiate between included and 

excluded exons only (AUC=0.99), whereas lower prediction accuracies were achieved for 

differentiating just the intermediate splicing categories (AUC=0.7 to 0.9, Table S5). The 

inclusion of methylation features did not improve the prediction performance (Fig. 3d, Figure 

S8a). Consistent with this, we also found that a model based on DNA methylation alone did 

not yield accurate predictions, although methylation contained some information for identifying 

underdispersed cassette exons (Fig. 3d, Figure S8b). Given this, we investigated the 

distribution of DNA methylation patterns across splicing categories, observing distinct 

distributions of DNA methylation in the upstream exon of underdispersed cassette exons (Fig. 

3e). This effect was consistent, although less pronounced, in other sequence contexts 

(decreasing from the upstream to the downstream exon, Figure S9).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2018. ; https://doi.org/10.1101/328138doi: bioRxiv preprint 

https://doi.org/10.1101/328138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

 

 
Figure 3. Classification of cassette exons based on their single-cell splicing patterns. a. Splicing 

rate (PSI) distributions for five splicing categories, inspired by Song et al. [13]. The intermediate splicing 

categories can only be defined based on single cell information are framed using a grey box. b. Variation 

of PSI (standard deviation) across cells as a function of the average inclusion rate of cassette exons 

across 86 iPS cells, colored according to their respective splicing category as defined in a. The solid 

black line denotes the LOESS fit across all cassette exons. c. Prediction performance of logistic 

regression for predicting splicing categories based on genomic features. Shown is the receiver 

operating characteristics for each splicing category and the macro average (area under the curve, 

AUC). d. Prediction performance of alternative regression models for each splicing category, either 

considering a model trained using genomic features ('genomic', left), genomic and all DNA methylation 

features ('genomic & methylation', center) as well as only DNA methylation features ('methylation', 

right). The genomic model includes k-mers, conservation scores and region lengths (see Fig 1a). The 

genomic and methylation model additionally includes DNA methylation features. The methylation model 

includes average DNA methylation features per sequence context. Splicing categories are coded in 

color as in a. Error bars denote plus or minus one standard deviation across four repeat experiments. 

e. Distribution of DNA methylation levels in the upstream exon (C1) per splicing category. Methylation 

is decreased in underdispersed exons. 
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Splicing category switches across cell differentiation 

Finally, we assessed changes in the splicing category switched between differentiation stages. 

Similar to previous observations in the context of neuronal iPS differentiation [13], we 

observed that a majority (88%) of the cassette exons retained their category during 

differentiation (Fig. 4a). We also observed no cassette exon that switched from included to 

excluded or vice versa. Instead, most (55%) of the switching events were observed within the 

three intermediate splicing categories. The most prevalent switch events were changes to the 

multimodal category; 51% of the underdispersed and nearly 45% of the overdispersed 

cassette exons in iPS cells switched to multimodal at the endoderm state.  

 

Observing the category switches between the differentiation stages we set out to build a final 

set of logistic ridge regression models based on genomic and methylation features to predict 

category switching ability of cassette exons during differentiation (Fig. 4b for prediction 

performance, Table S5). This model had limited power to predict category switches, and DNA 

methylation did not significantly improve the prediction of any class although moderately 

higher predictions can be seen for the switching behavior of over- and underdispersed 

cassette exons. 

 

Lastly we assessed if DNA methylation changed within the cassette exons switching between 

the differentiation time points. The DNA methylation levels of cassette exons that switched 

category only changed minimally between the differentiation time points (Figure S10). 

However, we observed that DNA methylation of the alternative exon of switching cassette 

exons differed from non-switching cassette exons at the iPS stage (Fig. 4c). DNA methylation 

of both, switching included and switching excluded cassette exons, was increased around C1 

in comparison to their relevant non-switching counterparts. In the case of switching 

overdispersed cassette exons, we observed higher DNA methylation levels within and in the 

vicinity of the alternative exon. 
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Figure 4. Comparison of splicing category distributions between iPS and endoderm cells. a. Pie chart 

showing the number of category switches between iPS and endoderm cells (left panel). The zoom-in 

(right panel) shows details of different category switches. The outer pie chart shows the splicing 

category of each cassette exon at the iPS state and the internal pie chart shows the respective category 

at endoderm state. Non-annotated slices in the pie chart reflect ~1% of the data. b. Performance of 

logistic ridge regression models that predict absence/presence of switching splicing categories between 

iPS and endoderm states. DNA methylation information improves prediction of the under- and 

overdispersed cassette exons. The categories are colored according to a. Error bars denote plus or 

minus one standard deviation across four repeat experiments. For comparison dashed lines are added 

to show the differences in prediction accuracies using the two feature sets. c. DNA methylation changes 

associated with the observed category switches. The top panel shows the iPS and endoderm splicing 

categories colored according to a. The bottom panel shows DNA methylation levels within the seven 

sequence contexts of a cassette exon as compared to the DNA methylation levels of the cassette exons 

that do not switch in their splicing category. Significant changes (Q < 0.05) are marked with a star. DNA 

methylation of the alternative exon and its vicinity is increased in cassette exons that switch from the 

underdispersed category. Cassette exons that switch from either included or excluded to any other 

splicing category show increased DNA methylation of the upstream exon (C1). 
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Discussion 

Here, we present the first analysis of alternative splicing in single cells that considers both 

genomic and epigenetic alterations factors. Our study is focused on variation of splicing in 

cassette exons at two different stages of iPS differentiation. We show that splicing events do 

not strictly follow the previously described cell or gene model of splicing patterns, but instead 

we find a substantial proportion of exons that are better described by an intermediate model 

(Fig. 1c). 

 

We show that single-cell splicing of cassette exons is influenced by genomic features 

previously assessed in bulk data, but also by cellular features and by DNA methylation 

differences. We observe that DNA methylation is related to the assessed splicing phenotypes, 

with the strongest link being observed in single-cell splicing ratios. When assessing splicing 

variation in bulk populations (“pseudo bulk”) most of the information encoded in DNA 

methylation was lost (Fig. 2a). One reason for this might be the strong correlation between 

our genomic and methylation features, in particular between DNA methylation and cytosine-

related features. Additionally, our results suggest that the relationship between splicing and 

DNA methylation is locus specific as observed when linking DNA methylation in a loci specific 

manner (Figure S3). This might also explain why we don’t see an increase in prediction 

accuracy when we move the across cell features.  

 

Next to sequence conservation, a feature that has previously been described in bulk studies 

[7], the most relevant features to predict splicing were the k-mers CTC, CT and CCT within 

the alternative exon (Fig. 2b). These k-mers point towards involvement of CTCF. Previous 

work has shown that CTCF motifs within introns are linked to splicing by slowing down RNA 

Polymerase II, thereby leading to a higher chance of exon inclusion. Interestingly, there is a 

known link between DNA methylation and CTCF motifs [21]. Methylation of CTCF binding sites 

can block CTCF and thereby result in decreased inclusion rates of an exon. As the methylated 

k-mer equivalents were in general less predictive of splicing, we suggest a more complex 

involvement of DNA methylation in alternative splicing, potentially a locus specific effect, which 

our current features and models are not able to capture. 

 

In addition to modelling splicing ratios, we also modelled splicing categories to gain insights 

into variability of splicing across single cells (Fig. 3). The categories considered in our model 

reflect both the overall splicing rate and characteristics of splicing variability across cells. 

Exons with included versus excluded splice states, which is similar to splicing states previously 
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considered in bulk studies, could be accurately predicted. In contrast, the intermediate splicing 

categories, which are reflective of single-cell variability, were less accurate. This could be due 

to the lower number of cassette exons assigned to these categories (multimodal n=507, 

overdispersed n=427, underdispersed n=112, versus included n=3,290 and excluded n=1,946 

in iPS cells), or reflect increased vulnerability top assay noise or more complex regulatory 

dependencies. As in the linear regression models, we observed that DNA sequence 

conservation scores were the most informative features for predicting splicing categories 

(Table S3). Interestingly, for intermediate classes the genomic information in the vicinity of the 

alternative exon rather than of the exon itself seemed to be predictive of splicing variability. 

Whereas DNA methylation did not contribute to improving the splicing prediction, we observe 

that DNA methylation levels of underdispersed cassette exons were significantly reduced in 

all genomic contexts, and most significantly in the upstream exon. 

 

By leveraging data from two differentiation time points, we were able to show the stability of 

splicing prediction and of the relevant genomic and methylation features, and could 

simultaneously assess splicing category maintenance during cell differentiation (Fig. 2c). The 

differences between features being predictive of splicing at the two time points were mainly 

observed within the (methylated) k-mers, which is consistent with the known alteration of 

transcription factor activity and DNA methylation differences between two differentiation 

states. Next, we were able to confirm the findings from Song et al. [13] within a different 

differentiation set-up that only a limited number of cassette exons switch splicing categories 

between differentiation states (Fig. 4a). Additionally, also as described in context of a neural 

differentiation before, switches between included and excluded category were not observed. 

Most of the category switches were observed within the three intermediate splicing categories. 

Furthermore, DNA methylation differences seemed to predate the switching ability. Using 

ridge regression, we were able to predict if a cassette exon would switch its splicing category 

between the differentiation time points. Again, DNA methylation seemed to be particularly 

informative of intermediate splicing. It improved the predictability of switching in over- and 

underdispersed categories. 

 

The novelties of our analyses also represent their main limitations. Single-cell sequencing 

intrinsically delivers fewer reads to assess gene expression and DNA methylation levels. 

Especially the genome coverage of the bisulfite-treated DNA sequencing remains low due to 

the low quantities of starting material. Using computational imputation, we were able to 

mitigate this effect to some extent, however imputation strategies have limitations and in 

particular loci that completely lack methylation information cannot not be recovered. 
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The intrinsic properties of single-cell data similarly affect the accuracy of estimated splicing 

ratios per cassette exon. We opted for a lenient threshold on read depth to determine the 

splicing ratio, which delivered more cassette exons to train our models, but also rendered 

splicing ratios less accurate in comparison to deep-sequenced bulk data. The low read depth 

increases the chance of missing an isoform or a complete cassette exon, what is known as a 

dropout. Dropouts in single-cell RNA-seq data can have a strong impact on the fit of the cell- 

or gene-model. If one of the isoforms was completely unobserved, this would decrease the fit 

of the gene model. Opposed to that, sequencing multiple cells at once would decrease the fit 

of the cell model. Given that our results seem stable across cassette exons and differentiation 

time points, the overall trends we report are not likely to be affected. Together with the constant 

improvement of single-cell techniques, these results make us hopeful that we can give a more 

definitive answer on the fit of the cell- or gene-model of splicing variability in the future. 

Conclusions 

In summary, we showed for the first time that alternative splicing and splicing variability across 

cells can be predicted with genomic and DNA methylation information within single cells. We 

assessed the impact of DNA methylation and cellular features on cassette exon splicing, and 

we were able to replicate our findings using two differentiation time points. We investigated 

stability and variance of splicing between the two differentiation time points and, importantly, 

we showed that DNA methylation primes splicing switches during the differentiation process. 
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Methods 

Data generation 

Single cell transcription and methylation data was generated from a single donor from the 

Human Induced Pluripotent Stem Cells Initiative (HipSci) [16, 17], using the previously 

described protocol for single-cell methylation and transcriptome sequencing in the same cells 

(scM&T-seq) [15]. Line joxm_1, an induced pluripotent stem cell (iPSC) line derived from 

fibroblasts cells from HipSci project, was cultured and triggered into differentiation towards 

endoderm. scM&T-seq data was generated for 93 cells (together with one empty well as 

negative control and two 15-cell and 50-cell positive controls) at the undifferentiated time point 

(iPS) and the definitive endoderm time point (endoderm), yielding 186 cells for analysis. 

Cell handling and differentiation 

The joxm_1 IPSC line was cultured in Essential 8 (E8) media (LifeTech) according to the 

manufacturer's instructions. For dissociation and plating, cells were washed 1x with DPBS and 

dissociated using StemPro Accutase (Life Technologies, A1110501) at 37°C for 3 - 5 min. 

Colonies were fully dissociated through gentle pipetting. Cells were washed 1x with MEF 

medium [22] and pelleted gently by centrifuging at 285xg for 5 min. Cells were re-suspended 

in E8 media, passed through a 40 µm cell strainer, and plated at a density of 60,000 cells per 

well of a gelatin/MEF coated 12 well plate in the presence of 10 µM Rock inhibitor – Y27632 

[10 mM] (Sigma, Cat # Y0503 - 5 mg). Media was replaced with fresh E8 free of Rock inhibitor 

every 24 hours post plating. Differentiation into definitive endoderm commenced 72 hours post 

plating as previously described [22]. 

FACS preparation and analysis of cells 

During all staining steps, cells were protected from light. Cells were dissociated into single-

cells using accutase and washed 1x with MEF medium as described above. Approximately 1 

x 106 cells were re-suspended in 0.5 mL of differentiation stage specific medium containing 5 

µL of 1 mg/mL Hoechst 33342 (Thermo Scientific). Staining with Hoechst was carried out at 

37°C for 30 min. Unbound Hoechst dye was removed by washing cells with 5 mL PBS + 2% 

BSA + 2 mM EDTA (FACS buffer); BSA and PBS were nuclease-free. For staining of cell 

surface markers Tra-1-60 (BD560380) and CXCR4 (eBioscience 12-9999-42), cells were re-

suspended in 100 µL of FACS buffer with enough antibodies to stain 1 x 106 cells according 
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to the manufacturer's instructions, and were placed on ice for 30 min. Cells were washed with 

5 mL of FACS buffer, passed through a 35 µM filter to remove clumps, and re-suspended in 

250 µL of FACS buffer for live cell sorting on the BD Influx Cell Sorter (BD Biosciences). 

Live/dead marker 7AAD (eBioscience 00-6993) was added just prior to analysis according to 

the manufacturer's instructions and only living cells were considered when determining 

differentiation capacities. Living cells stained with Hoechst but not Tra-1-60 or CXCR4 were 

used as gating controls. 

scM&T-seq 

As previously described in Angermeuller et al. [15], scM&T-seq library preparation was 

performed following the published protocols for G&T-seq [23] and scBS-seq [24], with minor 

modifications as follows. G&T-seq washes were performed with 20 µl volumes, reverse 

transcription and cDNA amplification were performed using the original Smart-seq2 volumes 

[25] and Nextera XT libraries were generated from 100-400 pg of cDNA, using 1/5 of the 

published volumes. RNA-seq libraries were sequenced as 96-plexes on a HiSeq 2000 using 

v4 chemistry and 125 bp paired end reads. BS-seq libraries were sequenced as 24-plexes 

using the same machine and settings, which yielded a mean of 7.4M raw reads after trimming. 

DNA methylation pre-processing and quantification 

For DNA methylation data, single-cell bisulfite sequencing (scBS-seq) data were processed 

as previously described [24]. Briefly, reads were trimmed with Trim Galore! [26–28], using 

default settings for DNA methylation data and additionally removing the first 6 bp. 

Subsequently, Bismark [29] (v0.16.3) was used to map the bisulfite data to the human 

reference genome (build 38), in single-end, non-directional mode, which was followed by de-

duplication and DNA methylation calling using default settings. All but two single-cell libraries 

(alignment rate <15%) yielded good alignment rates (mean = 43%), with negative control wells 

having very low mappability (mean = 2%). Additionally, we removed seven samples with a 

library size of less than 1M reads. 

 

To mitigate typically low coverage of scBS-seq profiles (20-40%; [30]), we applied DeepCpG 

[30] to impute unobserved methylation states of individual CpG sites. DNA methylation profiles 

in iPS and endoderm cells were imputed separately, using the default settings of the method. 

Predicted methylation states were binarized according the DeepCpG probabilities as follows: 

sites with a probability of equal or lower than 0.3 were set to 0 (un-methylated base), all 

methylation sites with a probability of great than 0.7 were set to 1 (methylated base). 
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Intermediate methylation levels were handled as missing. After imputation the methylation 

data was lifted back to human genome version 37 to match the expression data, using the 

UCSC lift-over tool [31]. 

 

We integrated the imputed methylation information into the DNA sequence by distinguishing 

methylated (‘M’) and un-methylated (‘U’) cytosines. Cytosines without methylation information 

after imputation were assigned the value of the closest cytosine with methylation information. 

If there was no methylation information within 900 bp around the cytosine, its state was set to 

un-methylated. 

Gene expression quantification 

For single-cell RNA-seq data, adapters were trimmed from reads using Trim Galore! [26–28], 

using default settings. Trimmed reads were mapped to the human reference genome build 37 

using STAR [32] (version: 020201) in two-pass alignment mode, using the defaults proposed 

by the ENCODE consortium (STAR manual). Expression quantification was performed 

separately using Salmon [33] (version: 0.8.2), using the “--seqBias”, “--gcBias” and “VBOpt” 

options on transcripts derived from ENSEMBL 75 [23]. Transcript-level expression values 

were summarized at gene level (estimated counts) and quality control of scRNA-seq data was 

performed using scater [34]. Cells with at least 50,000 counts from endogenous genes, at 

least 5,000 genes with non-zero expression, less than 90% of counts came from the 100 most-

expressed genes in the cell, less than 20% of counts from ERCC spike-in sequences and a 

Salmon mapping rate of at least 40% were retained for analysis. 

Splicing quantification 

Of the 192 cells, 86 (iPS) and 59 (endoderm) cells passed QC on both DNA methylation and 

gene expression data as described above. Exon splicing rates in individual cells were 

quantified using the data-dependent module of BRIE [9]. BRIE calls splicing at predefined 

cassette exons and quantifies splicing using exon reads in single-cell data. By default BRIE 

combines informative prior learned from sequence features and a likelihood calculated from 

RNA-seq reads by a mixture modelling framework that is similar to MISO [35]. As our aim is 

to model the local and global determinants of splicing, we used splicing rate estimates based 

on the observed data at individual exons only. We detected and quantified splicing for between 

1,386 and 14,434 exons per cell (minimum coverage five reads, in total considered 6,282 (iPS) 

and 4,096 (endoderm) cassette exons that were detected in at least ten cells for further 

analysis.  
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We used three different measurements to quantify splicing ratios (PSI), namely single-cell 

splicing ratios (sPSI), pseudo bulk splicing ratios (bPSI) and variance of splicing ratios (vPSI). 

To calculate sPSI values per cassette exon per cell, we only considered splicing events that 

were supported by at least five reads and limited the analysis to cassette exons which were 

observed in at least ten cells. To derive bPSI values per cassette exon, we aggregated the 

sPSI values per cassette exon. The vPSI per cassette exon were defined as the standard 

deviation of the sPSI across cells.  

Sequence features 

The genomic features used to predict the splicing ratios and its variance were based on the 

features described by BRIE and Xiong et al. [8, 9]. As these features were specifically 

designed to study exon skipping events at cassette exons, they are designed to capture 

sequence variation in the following five genomic contexts: the alternative exon itself, the two 

neighboring exons and the introns between the exons. The following features were calculated 

per genomic context: the (log) length, the relative length and the strength of the splice site 

motifs at the exon-intron boundaries. The strength of the splice site was defined as the 

similarity between this splice site and known splice motives. Additional features were 

calculated on seven genomic contexts, namely the alternative exon itself, the two neighboring 

exons and the 5’ and 3’ boundaries of the introns. Only the two boundary contexts of the 

introns (300 bp length) were used since intron length is highly variable and the boundaries are 

the most relevant contexts for splicing. The following features were calculated for these 

genomic contexts: PhastCons scores [36] which reflect sequence conservation and k-mer 

frequencies (with k ≤ 3). The k-mers reflect the percentage of nucleotides in the context that 

match the respective specific motif. 

 

In addition to the genomic features, we defined DNA methylation features for each of the seven 

genomic contexts. For the sPSI model, we considered cell-specific methylation levels per 

context (methylation rate within the context) and extended the k-mer features by including un-

methylated (‘U’) and methylated (‘M’) cytosine into the alphabet. Cytosines without methylation 

information after imputation were assigned the value of the closest cytosine with methylation 

information. If there was no methylation information within 900 bp around the cytosine, its state 

was set to un-methylated. For the bPSI model, we included the mean frequencies of the k-

mers that contained ‘M’ or ‘U’ across cells and the mean and standard deviation of the seven 

contexts across cells per time point. 
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Splicing categories 

In bulk RNA-seq data, splicing events can be broadly categorized into two major categories: 

included and excluded. Leveraging the single-cell information, we defined more fine-grained 

splicing categories that reflect both, splicing rates (sPSI) and splicing variability (vPSI) across 

cells (inspired by Song et al., 2017 [13]): 1) excluded (mean PSI < 0.2), 2) included (mean PSI 

> 0.8), 3) overdispersed, 4) underdispersed and 5) multimodal (Fig. 3). The later three 

categories categorize the extent of splicing variation across cells, since cassette exons with 

intermediate average splicing rates (here 0.2≤ mean PSI ≤0.8) exhibit substantial differences 

in splicing variance (Fig. 1). To characterize cells into these three categories, we calculated 

the distribution of the distance between the observed and the expected variation per day. The 

expected variation was calculated by a scaled binomial standard deviation, using: where is 

the scaling factor and the mean splice rate of the alternative exon [18], fit to all data points. 

We then defined the overdispersed cassette exons as those for which the deviation from the 

expected PSI was higher than the 3rd quartile plus 1.5x interquartile range (IQR, 

corresponding to > 0.016 in iPS and > 0.022 in endoderm). Likewise, for definition of the 

underdispersed cassette exons, we used the 1st quartile minus 1.5x IQR as threshold 

(corresponding to < -0.032 in iPS and < -0.039 in endoderm cells). The remaining cassette 

exons were assigned to the multimodal category. 

Relating intermediate splicing levels and cell features 

We investigated cell features in cassette exons with intermediate splicing levels (0.2 < PSI < 

0.8). This was done by relating 1) cell-cycle state measured by FACS to these values, 2) 

Differentiation state by comparing the two tissue types and 3) cell-level splicing activity. To do 

so we used a Wilcoxon test to compare categorical values to the PSI values, the splicing 

activity was split based on mean splicing activity.  
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Prediction of PSI and categories 

We applied linear ridge regression to model sPSI and bPSI and (multi-class) logistic ridge 

regression to model the PSI categories. The models are based on only the genomic features 

or on both genomic and DNA methylation features. The performance of linear models was 

evaluated using Pearson R2 between predicted and observed splicing rates. For the multi-

class prediction models, we applied a one-vs-rest scheme and report the per-category and 

the macro-average area under the receiver operating curves (AUC). To determine the most 

relevant individual features, we additionally trained regression models with a single feature at 

a time. Per feature we report, in the case of the linear models, using Pearson correlation (R, 

R2) and, in the case of the logistic models, the absolute weight multiplied by the standard 

deviation of the feature, and the AUC. We assessed performance and parameters of models 

by using a 10-fold cross validation (CV) with fixed training-validation splits. To assess 

variability of prediction performances, we repeated the CV procedure four times with different 

cross validation splits. Error bars indicate plus or minus one standard deviation of the statistics 

in question (AUC, R2).  

Relating DNA methylation heterogeneity and splicing 

Next to linear models across cells and sites we applied spearman correlation to link splicing 

at a single locus to variation in DNA methylation observed between cells, by spearman 

correlation. The test was performed and corrected per context within the cassette-exon (seven 

context considered, Fig. 1a). We only considered cassette exons where variation in splicing 

and variation of DNA methylation of the relevant context was observed. In total 5,280 cassette-

exons are tested cassette exons for iPS and 2,622 for endoderm. The P-values obtained from 

the test are adjusted for multiple testing using the Q-value [37, 38] package in R. The gene 

enrichment across the cassette exons which are significantly related to DNA-methylation was 

performed using G:Profiler [39] using all observed cassette exons per tissue as a background. 

Multiple testing correction for the enrichments was performed within G:Profiler.  
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Cell features based on expression 

We defined a splicing score for each of the cells to reflect the activity of the splicing machinery 

in each of the individual cells. This was done by taking the first PC of a PCA on the splicing 

ratios of genes that are known to be associated with alternative splicing according to Gene 

Ontology (GO, GO:0008380, [34]). The sign of the score was determined based on the genes 

in extremes of the rotation information as returned by the PCA.  

List of abbreviations 

splicing ratio       PSI 

single-cell splicing ratio     sPSI 

pseudo bulk splicing ratio      bPSI 

variance of splicing ratio     vPSI 

induced pluripotent stem cell      iPS cell 
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