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We use lattice QCD to investigate the existence of strong-interaction-stable antiheavy-antiheavy-light-light

tetraquarks. We study the bbus system with quantum numbers J* = 1+ as well as the bcud systems with
quantum numbers I(J”) =0(0") and I(J¥) = 0(1"). We carry out computations on five gauge-link
ensembles with 2 + 1 flavors of domain-wall fermions, including one at the physical pion mass. The bottom
quarks are implemented using lattice nonrelativistic QCD, and the charm quarks using an anisotropic clover
action. In addition to local diquark-antidiquark and local meson-meson interpolating operators, we include
nonlocal meson-meson operators at the sink, which facilitates the reliable determination of the low-lying

energy levels. We find clear evidence for the existence of a strong-interaction-stable bbus tetraquark with
binding energy (—86 + 22 4 10) MeV and mass (10609 & 22 + 10) MeV. For the h¢ud systems we do not
find any indication for the existence of bound states, but cannot rule out their existence either.

DOI: 10.1103/PhysRevD.106.034507

I. INTRODUCTION

Hadrons with integer spin, in particular those correspond-
ing to low-lying states in the respective spectra, are typically
ordinary mesons composed of a single valence quark and a
single valence antiquark. They might, however, also contain
two valence quarks and two valence antiquarks. Such so-
called tetraquarks1 were discovered only recently, primarily
in the heavy-quark sector [1-8]. Of particular importance is
the recent discovery of an anticharm-anticharm-light-light
tetraquark 7. by the LHCb Collaboration with isospin
I =0 and mass slightly below the lowest two-meson
threshold corresponding to DD* [9,10]. Such antiheavy-
antiheavy-light-light systems QQgqq are manifestly flavor
exotic and are simpler to investigate theoretically than their
0Qgq counterparts, because the lowest relevant decay
threshold consists of a pair of heavy-light mesons, typically
with similar mass, and not the significantly lighter scattering

'In the literature, the term “tetraquark” is somewhat ambigu-
ous. In certain papers it exclusively refers to a diquark-
antidiquark structure, while in other papers it is used more
generally for arbitrary bound states and resonances with a strong
four-quark component, including e.g., mesonic molecules.
Throughout this paper we follow the latter convention.
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states containing a light meson and ordinary quarkonium
(or even the annihilation products of the quarkonium).
Moreover, strong-interaction-stable QQqq tetraquarks are
expected to exist for sufficiently large heavy quark masses
mg [11-13]. In this limit, the two heavy antiquarks form a
color triplet with size of order (a;m,)~" and binding energy
of order a?mQ due to the attractive Coulomb part of the
QCD interquark potential at small QQ separations. QQqq
tetraquarks are then quite similar to heavy-light-light bary-
ons Qqq, just like heavy-heavy-light baryons QQg are
related to heavy-light mesons Qg [14-17]. Thus, the
question is whether the physical heavy quark mass m, or
m,, is sufficiently large for QQqq bound states to exist below
the corresponding lowest Qg-Qg two-meson thresholds.
Following initial studies using potential models, effec-
tive field theories, and QCD sum rules [11-13,18-32], as
well as analyses based on static meson-meson potentials
from lattice QCD [33-38], direct lattice-QCD calculations
with finite-mass b quarks implemented using lattice non-
relativistic QCD (NRQCD) have now firmly established
the existence of a stable bbud tetraquark with quantum
numbers 1(JP) =0(1") [39-42]. 0Qqq systems with
different flavor combinations have also been explored.
Lattice calculations by two independent groups [39,40]
yield agreement that there is a strong-interaction-stable
bbus tetraquark with J¥ = 17 and binding energy around
—80 MeV... — 100 MeV. There is more variation among
nonlattice approaches, with Refs. [13,18,26,28,30,43-45]
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predicting a stable bbus tetraquark while Refs. [24,46,47]
concluded the opposite, in contradiction with the afore-
mentioned lattice-QCD results. Another interesting four-
quark system is the bcud system with I(JF) = 0(17),
which was also investigated using lattice QCD. In this more
challenging case, independent groups have so far arrived at
different conclusions. In Ref. [48] the existence of a strong-
interaction-stable tetraquark was reported, but later revoked
[49], while other authors found indications for its existence
[50]. Also other approaches do not exhibit a consistent
picture. References [26,27,43,51-56] predicted the exist-
ence of such a tetraquark, while Refs. [13,24,30,44,46]
claimed the opposite. Clearly, further precision lattice-QCD
studies of this system are highly desirable.

Note that QQqq tetraquarks with heavy b quarks have
not yet been observed experimentally. However, possible
search strategies were discussed in Refs. [57-59]. As
mentioned above, the closely related T tetraquark with
quark content c¢cud was recently discovered by the LHCb
Collaboration [9,10]. A first lattice-QCD study of this
system at a heavier-than-physical pion mass can be found
in Ref. [60].

In this work we focus on the bbus system with quantum
numbers J” = 17 and the bcud systems with quantum
numbers 1(J”) = 0(0") and I(J¥) = 0(1"). We employ
the same lattice-QCD setup as in our previous study of the
bbud tetraquark with quantum numbers I(J”) = 0(1F)
[41], i.e., we use NRQCD to discretize b quarks and
domain-wall light quarks. The charm quarks, which were
not part of our previous study, are implemented using an
anisotropic clover action with three parameters tuned
nonperturbatively to eliminate heavy-quark discretization
errors. In the construction of the two-point correlation
functions, we consider not only local interpolating oper-
ators (in which the four quarks are jointly projected to zero
momentum, i.e., where each quark is centered around the
same point in space), but also nonlocal interpolating
operators (in which each of the two quark-antiquark pairs
forming a color singlet is projected to zero momentum
individually). It has been shown in previous studies of
other four-quark systems that including both types of

TABLE L
(sea)

temporal directions; a: lattice spacing; an,

: sea-quark mass of flavor g; am,

interpolating operators is required to reliably determine
ground state energies in exotic channels [41,61,62]. In this
way we expand on the works of Refs. [39,40,48-50], where
nonlocal interpolating operators were not considered.

This article is organized in the following way. In Sec. II
we briefly summarize our lattice setup. In Sec. III we
discuss the interpolating operators for the three systems we
investigate and the corresponding correlation functions. In
Sec. IV we give the lattice results for the single heavy-light
meson energies. Section V is the main section, where we
present our numerical results for the antiheavy-antiheavy-
light-light four-quark systems. We explore the importance
of each of our interpolating operators, extract finite-volume
energy levels for all ensembles, and formulate conclusions
concerning the existence of antiheavy-antiheavy-light-light
tetraquarks at the physical # and d quark mass and in
infinite spatial volume. We summarize the main points of
our work in Sec. VI and give a brief outlook. Note that
results obtained at an early stage of this project were
presented at recent conferences [63,64].

II. LATTICE SETUP

A. Gauge link configurations, light quark
and bottom quark propagators

The computations presented in this work were carried
out on five ensembles of gauge-link configurations gen-
erated by the RBC and UKQCD collaborations [65,60]
using the Iwasaki gauge action [67] and Ny = 2 + 1 flavors
of domain-wall fermions [68—71]. The ensembles differ in
the lattice spacing, the lattice size and the pion mass and are
summarized in Table I. Further details can be found in our
previous lattice-QCD study of a bbud tetraquark [41],
where we used exactly the same ensembles.

We use point-to-all propagators with Gaussian-smeared
sources (cf. Sec. IIT A 4). We employ the all-mode averag-
ing technique [72,73] with 32 or 64 sloppy (sl) and 1 or 2
exact (ex) samples per configuration, where the sloppy
correlation-function samples differ from the exact samples
in that they use light and strange propagators computed
with a reduced solver iteration count. The light-quark

Gauge-link ensembles [65,66] and light-quark propagators used in this work. N, N,: number of lattice sites in spatial and

val .
), valence-quark mass of flavor g; m: pion mass. We

use all-mode averaging [72,73] with 32 or 64 sloppy (sl) and 1 or 2 exact (ex) samples per configuration, leading to the total numbers of

samples given in the last column of the table.

(sea;val)

(sea) (val)

Ensemble N3 x N, a [fm] am, amsg amg m, [MeV] N amples
C00078 483 x 96 0.1141(3) 0.00078 0.0362 0.0362 139(1) 2560 sl, 80 ex
C005 243 x 64 0.1106(3) 0.005 0.04 0.0323 340(1) 9952 sl, 311 ex
Co1 243 x 64 0.1106(3) 0.01 0.04 0.0323 431(1) 9056 sl, 283 ex
FO04 323 x 64 0.0828(3) 0.004 0.03 0.0248 303(1) 8032 sl, 251 ex
F006 323 x 64 0.0828(3) 0.006 0.03 0.0248 360(1) 14144 sl, 442 ex
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TABLE II. Parameters used in the anisotropic clover action for
the charm quarks. The form of the heavy-quark action was given
in Ref. [82], where m, was denoted by my,.

Ensemble am, ¢ cp

C00078 0.2751 1.1883 2.0712
C00s5, CO01 0.1541 1.2004 1.8407
F004, F006 —0.0517 1.1021 1.4483

propagators are identical to those used in Ref. [41]. The
valence strange-quark masses are close to the physical
value [66]. For the bottom quarks we use lattice NRQCD
[74,75]; also here the setup is the same as in Ref. [41].

B. Charm-quark propagators

For the charm quarks we use an anisotropic clover
action, following the approach developed in Refs. [76-82],
which allows the removal of discretization errors of order
, (am)", and |ap|(am)" for all non-negative integers n.
Specifically, our action is of the same form as in Ref. [82],
and we tune the mass am, (denoted as am in Ref. [82]),
anisotropy parameter {, and clover coefficient ¢p non-
perturbatively such that the D; meson rest mass, kinetic
mass, and hyperfine splitting extracted from two-point
functions on each ensemble match the experimental values
[83]. These observables calculated on each ensemble are
found to agree with experiment within 0.4%, 1.0%, and
1.4% (or better) precision, respectively. The values of the
action parameters are given in Table II.

III. INTERPOLATING OPERATORS AND
CORRELATION FUNCTIONS

A. Four-quark systems

The main goal of this work is to compute low-lying
energy levels of antiheavy-antiheavy-light-light four-quark
systems with quark content bbus and béud and to explore
whether the ground-state energies are below the lowest
corresponding meson-meson thresholds. A ground-state
energy sufficiently far below threshold (compared to the
expected size of finite-volume effects) would indicate a
four-quark bound state, i.e., the existence of a strong-
interaction-stable tetraquark. In the bbus case we consider
exclusively the J¥ = 17 channel, which is the only channel
where one can expect sufficiently strong attractive forces to
generate a bound state (see the symmetry arguments given
in Sec. III B of Ref. [37]). In the beud case we focus on
I = 0, again because of the related stronger attraction of
the four quarks [13,35]. There are two promising / =0
channels, because the heavy antiquark pair ¢ can be either
flavor symmetric or flavor antisymmetric. The symmetric
I1(JP) =0(1%) channel is conceptually similar to the
JP = 17 channel for bbus (and also for bbud, as inves-
tigated in detail within the same setup in our previous

work [41]), while the antisymmetric I(J7) = 0(0") chan-
nel is different.

To be able to resolve possibly existing four-quark bound
states as well as meson-meson scattering states, we employ
both local interpolating operators and nonlocal (“scatter-
ing”) interpolating operators. Local operators are con-
structed from products of four-quark fields at the same
point in space, followed by projection of the product to zero
total momentum. Scattering operators, on the other hand,
resemble two heavy-light mesons with independent spatial
locations and individual projection of each meson to zero
momentum. Local interpolating operators can be catego-
rized further into meson-meson and diquark-antidiquark
operators. The local meson-meson operators (as well as the
scattering operators) resemble pairs of mesons with overall
quantum numbers identical to those of the four-quark
system of interest. For each local meson-meson operator
we also consider a corresponding scattering operator,
which differs only in the momentum projection. The
importance of diquark-antidiquark pairs was pointed out
in Refs. [84—86]. Following Jaffe’s notation of “good” and
“bad” diquarks [84], our diquark-antidiquark operators are
designed in such a way that the light diquark (us or ud) is a
“good” diquark. If possible, we choose for the heavy
diquark also a “good” configuration [in the case of béud
with 7(J”) = 0(0")]; otherwise we use a “bad” heavy
diquark [for bbus and for beud with I(J7) = 0(17)].

As we demonstrated in our previous work [41], scatter-
ing operators play an important role in extracting
low-lying energy levels, because they generate sizable
overlaps with energy eigenstates close to two-meson
thresholds. In particular, if a four-quark bound state exists,
scattering operators can eliminate contamination in the fit
result for the corresponding energy level caused by nearby
scattering states.

1. Interpolating operators for bbus with J* =1+

In contrast to the bbud system discussed in Ref. [41],
which has an SU(2) isospin symmetry, there is no such
symmetry for the light us quarks for the bbus system. The
consequence is that there are not only two, but three
relevant meson-meson thresholds, which are rather close,
within around 50 MeV. They correspond to BB}, B*B,
(which is around 5 MeV above BB?) and B*B; (which is
around 50 MeV above BB}). The corresponding four local
interpolating operators (three meson-meson operators and
one diquark-antidiquark operator) are

O, = Zlﬂ’s” X)bVJ s(x), (1)
0, = an
= jklzb},ku )by;s(x), (3)

b?’ss X), (2)

O3 = Opg)(0)
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Zbay Cbb T(x

and the three scattering operators are

0= (Zbysu ) @an(y)), (5)

) ©

0, = OB*(O)B;(O) =€kl <§X:Byku(x)> (%:BVZS(Y)) (7)

Above, a, b are color indices, j, k, [ are spatial indices, and
C = ygy, is the charge-conjugation matrix.

We note that the operators O3, O, and O; are antisym-
metric in the light-quark flavors. The operators O; and O,
as well as the operators Os and O can be linearly
combined in such a way that there is one symmetric and
one antisymmetric light flavor combination.

O4 = Oppao0 JutTCrss®(x), (4)

Os = Op(0)8

0) = (Z: b 7ju(X)> (Zy: byss(y)

2. Interpolating operators for bcud with I(J*)=0(0")

The lowest meson-meson thresholds in this channel are
BD and B*D*. Their energy difference is, however, sizable,
approximately 190 MeV. Thus, we expect that resolving
energy levels close to the B*D* threshold is not of central
importance when studying this channel and exploring the
possible existence of a four-quark bound state below the
BD threshold. Consequently, we only consider a single
meson-meson structure of BD type. The corresponding two
local operators are

O1 = Opjo Zb}’su )ersd(x) = (d < u), (8)
02 = Opaoy = Y _bsCe"T (x)uTCysd”(x) — (d <> u).
)

and the only scattering operator is

O3 = Op0)p(0)

_<25y5u(x><20y5d) (d < u). (10)

The quantum number / = 0 implies the antisymmetric light
flavor combination ud — du (as in our previous study [41]
of the bbud system). The heavy-quark flavors b are also in
an antisymmetric combination, allowing J = 0, which is
not possible for heavy-quark flavors bb.

3. Interpolating operators for beud with I(J*)=0(1%)

For total angular momentum J = 1 the lowest meson-
meson thresholds are B*D, BD* and B*D*. We follow a
similar strategy as in the previous subsection and do not
consider a B*D* meson-meson structure. The other two
thresholds are separated by approximately 100 MeV. Thus,
we use the three local operators

O, = Zby, X)eysd(x) = (d < u),  (11)
0, = BD* Zby5u C?’j ) (d < ”) (12)
0= _by;CetT (X)usTCysd®(x) — (d <> u),
(13)
and the two scattering operators
O4 = Op(0)p(0)
= <Zl§y]~u ) (ZE ) (d<u), (14)
x y
Os = Op0)p*(0)
= (Zi);gu ) (Z > (d < u). (15)
X y

4. Quark propagators and correlation functions

As in our previous work [41] we apply standard
smearing techniques to improve the overlap generated
by the interpolating operators to the low-lying energy

eigenstates. All quark fields in Egs. (1)—(15) are
Gaussian smeared,
O' NGauss
qsmeared — (1 Ebrem— —Gauss A) q. (16)
4N Gauss

where A is the nearest-neighbor gauge-covariant spatial
Laplacian. For the Gaussian smearing of the up, down,
and strange quarks we use APE-smeared spatial gauge
links [87],2 while for the charm quarks we use stout-
smeared spatial gauge links [89]. The reason for using
different types of smearing is that we reuse quark propa-
gators computed previously for other projects. No link
smearing is used in the bottom quarks. All smearing
parameters are listed in Table III.

A single sweep of APE smearing with parameter aspg is
defined as in Eq. (8) of Ref. [88], and we apply Npg such
sweeps.
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TABLE III.  Parameters for the smearing of quark fields.

Up and down quarks Strange quarks Charm quarks Bottom quarks
Ensemble N Gauss OGauss N APE  (APE N Gauss OGauss N APE  (APE N Gauss OGauss N stout P N Gauss OGauss
C00078 100 7.171 25 2.5 30 4.350 25 2.5 10 2.00 10 0.08 10 2.0
C00s5, CO1 30 4.350 25 25 30 4.350 25 25 10 2.00 10 0.08 10 2.0
F004, F006 60  5.728 25 2.5 60 5.728 25 2.5 16 2.66 10 0.08 10 2.0

For each of the three systems discussed in Secs. III A 1—-
III A 3 we compute temporal correlation matrices

Ciu(1) = (O;(1)0(0))

({...) denotes the expectation value of the lattice-QCD path
integral, and j, k now label different operator structures),
from which we determine the low-lying energy eigenvalues
and obtain information about the quark composition of the
corresponding eigenstates, as discussed in detail in Sec. V.

All computations are based on point-to-all propagators
with sources smeared as discussed above. For the light
quarks we use the same propagators as in our previous
work [41], where further technical details are discussed. As
a consequence, we are restricted to correlation functions
with a local interpolating operator at the source, for which
one can use translational invariance to replace the spatial
sum by a simple multiplication with the spatial volume. At
the sink, however, both local and nonlocal interpolating
operators are used. Thus, our correlation matrices are
nonsquare matrices of sizes 7x4, 3 x 2 and 5 x 3, respec-
tively, for the systems discussed in Secs. III A 1-IIT A 3.
It is straightforward to show that all three correlation
matrices are real valued and that the square submatrices
are symmetric. We verified that our numerical results are
consistent with these properties and exploit them to
increase statistical precision. Similarly, we use the time-
reversal symmetry to relate Cj(f) and Cj(—t), which
reduces statistical uncertainties even further.

(17)

B. B, B; and D mesons

In Sec. V we will compare the resulting ground-state
energies of the bbus and bcud four-quark systems
discussed above to the respective lowest meson-meson
thresholds. To this end, we also compute the energies of
the pseudoscalar and vector B, By, and D mesons using

exactly the same setup. The corresponding interpolating
operators are

Op(0) = Z b(x)7su(x), (18)
Op-0) = Z b(x)7u(x), (19)
Op,0) = Z b(x)7ss(x), (20)
Opi0) = Z b(x)7;s(x). (1)
Opo) = ZX: ¢(x)ysu(x), (22)
Opro) = > e(X)rju(x). (23)

X

IV. ENERGIES OF PSEUDOSCALAR AND
VECTOR B, B AND D MESONS

We determine the ground-state energies of pseudoscalar
and vector B, B, and D mesons via uncorrelated
y*-minimizing fits of constants to the corresponding
effective-energy functions at sufficiently large temporal
separations combined with a jackknife analysis. As usual,
these effective energies are defined as

aE.(t) =1In (%) ,

where C(¢) is a temporal correlation function of one of the
interpolating operators (18)—(23). The results for all six
mesons for each of the five ensembles are listed in Table I'V.

(24)

TABLE IV. Energies of pseudoscalar and vector B, B; and D mesons.

Ensemble aEp aEp- akg akEp: aEp aEp-
C00078 0.4564(46) 0.4814(49) 0.5052(12) 0.5349(15) 1.0823(14) 1.1638(21)
C005 0.4639(12) 0.4936(14) 0.4998(8) 0.5294(9) 1.0616(4) 1.1462(8)
Co1 0.4737(11) 0.5052(13) 0.5025(8) 0.5338(10) 1.0714(4) 1.1586(7)
F004 0.3757(10) 0.3976(11) 0.4031(6) 0.4256(7) 0.7944(4) 0.8566(6)
F006 0.3786(6) 0.4007(7) 0.4033(4) 0.4258(5) 0.7981(2) 0.8609(4)
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FIG. 1.
corresponding plateau fits in the range t/a = 7...20.

As a cross-check we also determine these meson energies
by correlated exponential fitting as in our previous work
[41] and find consistent results. To exemplify the quality
of our numerical data, we show in Fig. 1 effective-energy
plots for ensemble C005 together with the corresponding
plateau fits.

Note that the energies of the B, B*, B, and B; mesons
listed in Table IV do not correspond to the full meson
masses, as e.g., measured in experiment. The reason is the
use of NRQCD, resulting in negative energy shifts propor-
tional to n,, the number of b quarks present in the
corresponding states. At tree level, this shift amounts to
—n,my, where my, is the b-quark mass. Since we exclu-
sively consider energy differences between four-quark
states and meson-meson thresholds with the same r,, these
energy shifts cancel and there is no need to determine them.

V. RESULTS ON ANTIHEAVY-ANTIHEAVY-
LIGHT-LIGHT FOUR-QUARK SYSTEMS

The correlation matrix (17) with interpolating operators
from Sec. IIT A 1, Sec. I A 2 or Sec. III A 3 can be written
as a sum over the energy eigenstates |n) of the respective
flavor and J* sector,

Cult) =Y z1Zpe75n, (25)
n=0

Effective energies for pseudoscalar and vector B, B; and D mesons for ensemble C005. The horizontal lines represent the

with real-valued

Zj = (Q|Ojln) (26)
and |Q) denoting the vacuum. To extract the energy levels
E, and overlap factors Z7 from the numerical lattice-QCD

results for C; (), we carry out correlated y*-minimizing

multiexponential fits of a truncated version of the right-
hand side of Eq. (295),

N-1
Clit(r) =Y z1zpe7bn, (27)
n=0

in a suitably chosen range f,;, <t < f.. For further
technical details concerning this multiexponential fitting
we refer to Sec. VA of our previous work [41]. To check
for and to exclude systematic errors as well as to minimize
statistical errors, we also consider submatrices of the
correlation matrices defined in Sec. Il and vary the
temporal fit range.

A. bbus with JP =1+

1. Reduction of the size of the correlation matrix
Jrom Tx4t0 6x3

In a preparatory step we replace the local interpolating
operators (1)—(4) by linear combinations of these operators,
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4
O, =50 j=1...4 (28)
k=1

The coefficients v} are determined by solving generalized
eigenvalue problems (GEVPs)

ZC (t)v}(t)

j=1,...4,

4
Z Cir(ty = a)vi(1),
k=1
n=0,...3, (29)
where Cj(t) is the lattice-QCD result for the 4 x4
correlation matrix containing the local operators O;, O,,
05 and O,. We normalize the eigenvector components such
that 3 [0/(1)]* = 1 and show them for ensemble CO1 in
Fig. 2, where one can see that the eigenvector components
v;-’(t) are fairly independent of ¢, in particular for larger

values of ¢. Thus we define the coefficients in Eq. (28) as
v} = v}(t/a = 8), where t/a = 8 was selected because the
v (t/a = 8) have rather small statistical uncertainties and
are already consistent with the plateaus formed at larger
values of ¢ (for ensemble COl the coefficients 17;’ are
collected in Table V; for the other four ensembles they are
quite similar). With this definition, operator (0., when
applied to the vacuum, should create a trial state with a
large overlap with energy eigenstate |j — 1). Thus, this new
set of operators offers the possibility to discard some of
them (e.g., O} or even O} and %) to keep the correspond-
ing correlation matrix small, while retaining at the same
time the overlap with the low-lying energy eigenstates of
interest. This is beneficial for the precision of the numerical
analyses discussed below.

Since we are mainly interested in the energy level of the
ground state, O} is of particular importance. In practice,
it turns out that also using @), and O} is favorable with
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FIG. 2. Squared normalized eigenvector components |v;’ |? as functions of ¢ for ensemble CO1, obtained by solving GEVPs as defined
in Eq. (29). The corresponding 4 x 4 correlation matrix contains the four local interpolating operators (1)—(4). The dashed horizontal

lines represent the squares of the coefficients 7,

where ¥} = vj(t/a = 8).
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TABLE V. Coefficients 7 defining the interpolating operators
(9; for ensemble CO1 [see Eq. (28)].

" j=1 j=2 j=3 j=4
n= +0.493 ~0.501 ~0.588 ~0.399
n=1 ~0.708 ~0.706 +0.002 +0.002
n=2 ~0.448 +0.446 ~0.773 ~0.056
n=>3 ~0.351 +0.351 +0.529 ~0.689

respect to a precise determination of energy levels. O,

however, does not seem to be advantageous in our context
and is therefore discarded. Altogether our analysis is based

on the three local interpolating operators O}, 05, O} and
the three nonlocal interpolating operators
0, = 0s, 05 = Os. O = O, (30)

defined in Egs. (5)—(7). Thus, in the following we will
study a 6 x 3 correlation matrix and its submatrices.

2. Energy levels

To reliably determine the lowest energy levels, in
particular that of the ground state, we carry out multi-
exponential fits as discussed at the beginning of this

section. We consider various

submatrices, numbers of
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exponentials N, and fit ranges t,;, <t < f,.«<- Lhe corre-
sponding results with correlated y?/d.o.f. < 2 are summa-
rized for ensemble CO1 in Fig. 3, while those for the other
ensembles are collected in Appendix A. The boxes at the
bottom of Fig. 3 indicate, for each fit, which interpolating
operators are included. A filled/empty box represents an
operator that is included/excluded. From bottom to top, the
boxes represent O}, 05, ..., Og. Local operators are colored
in black, while scattering operators are colored in red. The
fit results for £, and E; are shown as blue and green points
with error bars, where the energy of the lowest threshold,
Ep + Ep:, is subtracted (this threshold is represented by the
horizontal dashed line). Above the plot, further details are
provided for each fit: the number of exponentials, the
temporal fit range, and the resulting correlated y?/d.o.f.
The first seven columns from the left represent fits in
which only local interpolating operators are considered.
Each of the three local operators seems to be associated
with a specific energy, O] with =0 MeV, O, with
~130 MeV and O} with ~200 MeV. This is not surprising,
given that these operators are constructed in such a way that
the corresponding 3 x 3 correlation matrix is approxi-
mately diagonal in the region of ¢ separations that enter
the multiexponential fits. Clearly, O] is of particular
importance for a precise determination of the energy of
the ground state. Thus, O] is included in all further fits,
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Fit results for E, (blue) and E, (green) for the bbus system relative to the BB* threshold for ensemble COI.
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where in addition to local operators scattering operators
are also used.

It is crucial to note that for all fits that include at least O}
and one of the scattering operators O, to O, the fit result
for E is around 100 MeV below the BBj threshold. This is
a first clear indication that the ground state in the bbus and
JP =17 sector is a strong-interaction-stable tetraquark.
One can also see that the fit result for £ is in many cases
close to 0 MeV, which is consistent with the expectation
that the first excitation is a meson-meson scattering state
close to the BB} threshold. We note that the results for the
other four ensembles are comparable, i.e., E, is around
100 MeV below the BB; threshold, and E; is around
0 MeV for several fits (see Appendix A).

As one can see from Fig. 3, the results for E, from fits
including at least O] and one of the scattering operators O}
to Oy (represented by the filled blue data points) agree
within the statistical uncertainties. Thus, these fit results
seem to be suited to estimate the ground-state energy and its
uncertainty. We compute such an estimate by a weighted
average of these fit results, assuming 100% correlation,
using a standard method also employed by the FLAG
Collaboration [90] (see Appendix B for a brief summary).
The estimated ground-state energies are also plotted in the
corresponding figures, e.g., for ensemble CO1 in Fig. 3 (the
blue horizontal line and the light blue error band).

Concerning the energy of the first excitation, Fig. 3
suggests that it is somewhere around the BB;} threshold. We
refrain from estimating this energy in a quantitative way by
computing a weighted average of selected fit results for E;.
The reason is that it is hard to decide whether E| obtained
by a particular fit indeed corresponds to the energy of the
first excitation. There are several states that could be close
to the BB} threshold, e.g., a BB} or a B* B, scattering state.
Additionally, there might also be a B*B} scattering state in
that energy region because of the finite spatial volume and
the attractive interaction of the two mesons [37]. The low-
lying excitations could correspond to superpositions of

operator O] operator O)

operator Of

these structures and are expected to have similar energies.
Thus, a fit result for E; close to the BB; threshold could,
for example, reflect the energy of the first or the second
excitation or a mix of both. In principle, one could try to
disentangle these excitations by studying the resulting
overlap factors Z’ for each fit in detail. Since we only
need the ground-state energy for our final analysis in
Sec. V D, we discuss the overlap factors just for a single
fit with N = 3 exponentials to the full 6 x 3 correlation
matrix (see the following subsection).

3. Overlap factors
A trial state O7|Q) can be expanded according to

0110 =S o) =3z, (1)
n=0 n=0

which shows that the overlap factors Z7 contain informa-
tion about the composition and quark arrangement of the
energy eigenstates |n). For example, an overlap factor |Z7|
that is significantly larger than all other overlap factors |Z7|
with m # n indicates that the trial state O}7|Q) is quite
similar to the eigenstate |n). Vice versa, if the overlap factor
|Z1| is significantly smaller than at least one of the other
overlap factors |Z7'[ with m # n, one can conclude that the
trial state O7|Q) is almost orthogonal to the eigenstate |n).
In Fig. 4 we show normalized overlap factors

n
7n Z/

= 32
= max, (2] >
obtained via a multiexponential fit with N = 3 in the range
16 <t/a <24 to the full 6 x3 correlation matrix of
ensemble FOO4. Corresponding results for the other ensem-
bles are qualitatively identical. We start with an extensive
discussion of the overlap factors Z? associated with the

operator O operator Of operator Oj

1.00 = -

0.75 - -

0.50 - r o

0.25 - - -

Z7 for 3 exponentials

[0y [ 2

FIG. 4. Normalized overlap factors Z;‘ for the bbus system obtained via a multiexponential fit with N = 3 in the range 16 < t/a < 24
to the full 6 x 3 correlation matrix of ensemble FOO4. The index of the operator above each plot is identical to the index j, while the
labels of the energy eigenstates below each plot correspond to the index n.
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ground state |0) and then briefly comment on the overlap
factors Z' with n > 0 related to the excitations.

The result |Z9] > |Z1|, |Z3| suggests that the trial state
O)7Q) has a large ground-state overlap, i.e., it is rather
similar to the ground state. Recall that O] is a weighted sum
of four local operators O; to O, [Eq. (28) with coefficients
79 as listed in Table V for ensemble CO1]. Since 7 ~ —79,
there is a local BB and B* B, component (operators O; and
0,) that is antisymmetric in the light flavors us. There is
also a local antisymmetric B*Bj; component (operator O5)
of the same order of magnitude. Such a meson-meson
composition is expected from existing static-light lattice-
QCD results [37] on the strong-interaction-stable bbud
tetraquark with 7(J¥) = 0(17), a closely related four-quark
system (same quantum numbers J©, and because of isospin
I = 0 antisymmetric in the light flavors), where it was
found that it is a roughly even mixture of BB* and B*B*.
The bbus system also has a sizable diquark-antidiquark
component (operator O,), albeit somewhat smaller than the
aforementioned meson-meson components. This, too, is
expected and is consistent with recent static-light lattice-
QCD results on the bbud tetraquark, where the meson-
meson to diquark-antidiquark ratio was estimated to be
around 60%/40% [86].

The overlap factors Z7 and Z% clearly show that the trial
states O, |Q) and O}7|Q) are essentially orthogonal to the
ground state |0). According to Table V, the operator () is a
local combination of BB} and B*B, (operators O; and O,)
that is symmetric in the light flavors us, i.e., the analog of
an [ = 1 operator for light flavors ud. This confirms that
the bbus ground state is antisymmetric in the light flavors
and indicates that it is the counterpart of the bbud
tetraquark with 7(J”) = 0(17). While the operator O} is
flavor antisymmetric, it was constructed via the GEVP in a
way to generate almost no overlap with the ground state and
with the lowest flavor-symmetric excitation |2). Thus it is
not surprising that Z§ ~ Z% ~ 0.

The scattering trial states 0, 7|Q) and O57|Q) both have
overlaps with the ground state |0), but also sizable overlaps
with the first and second excitations. Thus, one should not
infer that the ground state is quite similar to a scattering
state. Since the scattering operators (7, and Of contain
all terms present in the local operators O; and O,, the
nonvanishing overlaps Zg and Z(S) rather support our
conclusions above, namely that the bbus ground state is
a four-quark bound state with a large local flavor-anti-
symmetric BB; and B*B; component.

As already discussed above in the context of energy levels
and the fit parameter E;, one should be cautious in
formulating conclusions concerning the excitations based
on our multiexponential fit results. Still, it seems noteworthy
to mention that the trial states 0} |Q) and O "|Q2) have large
overlap with the first excitation |1) and only little overlap
with |0) and |2). Since O is a B* B§ scattering operator and

the dominant component of (0} is a local B*B; structure (see
Table V), this might be a hint that the first excitation is of
B*B; type or at least contains a significant B* B; component.
Even though the B* B} threshold is around 50 MeV above the
BB} threshold, the expected attraction of a B* meson and a
B meson (see Ref. [37]) and the finite spatial volume could
lead to an energy level of the first excitation close to the BB
threshold, as indicated by Fig. 3.

Finally, the overlap factors Z? represent almost exclu-
sively symmetric light flavor combinations. This indicates
that also for the scattering states in our finite spatial lattice
volume, SU(3) flavor symmetry is approximately pre-
served. Thus, the second excitation seems to be the analog
of the ground state in the bbud four-quark sector with
I = 1, where no strong-interaction-stable four-quark state
was found in a static-light lattice-QCD study [35,37].

B. bcud with I(J¥)=0(0%)

As discussed in Sec. IIT A 2, we consider three inter-
polating operators for this system: two local operators and
one scattering operator. Thus, the corresponding correlation
matrix has size 3 x 2. Since this is a rather small matrix,
there is no need to further reduce the number of operators in
a preparatory step, as done for the bbus system.

To determine the energy of the ground state we proceed
as in Sec. III A 2 and carry out multiexponential fits. Again
we consider various submatrices, numbers of exponentials
N, and fit ranges f,,;, <t < tnax- The corresponding results
with correlated y?/d.o.f. < 2 are summarized for ensemble

9—-17: 0.88

12-22:0.99
10—16 :1.06

2, t/a=11-20:0.91
1, t/a=12-18:0.98
2, t/a=11-19:1.01
3, t/a=11-18:1.15
2, t/a =10-19:0.98
4, t/a=T-12: 1.06

1, t/a

/=2, t/a=12-21:1.01
3, t/a
3, t/a

N
N
N
N
N
N
N
N
N
N

3004

t]

1004

E - E[; - ED [I\ICV]

—
——

(=]
i
1
1
1
1
1
1
1
1
1
1

R m—
1
1
1
1
1
1
1
1
1
1

—1001

[ N ————l BN B W
o oo e o —o— o ) — —
—_—e——— O ) aa s s e . ———

FIG. 5. Fit results for E, for the bcud system with I(J¥) =
0(07") relative to the BD threshold for ensemble CO1.
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FIG. 6. Normalized overlap factors Z;‘ for the beud system with
I1(J?) = 0(0*") obtained via a multiexponential fit with N = 3 in
the range 6 < t/a < 10 to the full 3 x 2 correlation matrix of
ensemble FOO4. The index of the operator above each plot is
identical to the index j, while the labels of the energy eigenstates
below each plot correspond to the index n.

CO1 in Fig. 5, while those for the other ensembles are
collected in Appendix A.

Like for the bbus system, we again find significantly lower
values for E, once the scattering operator Os [see Eq. (10)] is
included, compared to fits in which only local interpolating
operators are used. Averaging over the fits that include the
scattering operator leads to an estimate for the ground-state
energy, which is slightly above, but within its uncertainty
compatible with, the BD threshold. We find similar results

for the other four ensembles (see Appendix A). This suggests
that there is no strong-interaction-stable four-quark state in
this channel. The lowest-energy eigenstate rather seems to be
a BD scattering state.

In Fig. 6 we show the normalized overlap factors 27
obtained via a multiexponential fit with N = 3 in the range
6<t/a<10 to the full 3 x2 correlation matrix of
ensemble FOO4. Corresponding results for the other ensem-
bles are qualitatively identical. It is obvious that the BD
scattering trial state O;'|Q) has a large overlap with the
ground state and almost negligible overlap with the first and
second excitations. This supports our above conclusion that
the ground state is a meson-meson scattering state.

C. béud with I1(J?)=0(1")

According to Sec. III A 3 we consider five interpolating
operators here: three local operators and two scattering
operators. Thus, the corresponding correlation matrix has
size 5 x 3. We do not reduce the number of operators in a
preparatory step as done for the bbus system.

To determine the energies of the ground state and of the
first excitation, we again carry out multiexponential fits and
consider various submatrices, numbers of exponentials N,
and fit ranges f#;, <t < .. The corresponding results
with correlated y?/d.o.f. < 2 are summarized for ensemble
C01 in Fig. 3, while those for the other ensembles are
collected in Appendix A.
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J

range 14 < t/a < 20 to the full 5 x 3 correlation matrix of ensemble FO04. The index of the operator above each plot is identical to the
index j, while the labels of the energy eigenstates below each plot correspond to the index n.

As for the previously investigated four-quark systems,
we find significantly lower values for £ and E; as soon as
the scattering operators O, and Os [see Egs. (14) and (15)]
are included. In particular, operator O, which has a B*D-
like meson-meson structure, favors small values for E|
close to the B*D threshold. Since the local operator O; is
also of B*D type, we estimate the ground-state energy by
averaging over the fits that include both O and O,. The
result is slightly above, but within its uncertainty compat-
ible with, the B* D threshold. As before, we do not estimate
the energy of the first excitation quantitatively by comput-
ing a weighted average of selected fit results for E,. We
note, however, that this energy level seems to be close to the
BD* threshold, which is around 100 MeV above the B*D
threshold. We found similar results for the other four
ensembles (see Appendix A). In summary, this suggests
that there is no strong-interaction-stable four-quark state in
this channel. The lowest-energy eigenstate rather seems to
be a B*D scattering state.

In Fig. 8 we show the normalized overlap factors 27
obtained via a multiexponential fit with N = 3 in the range
14 <t/a <20 to the full 5x3 correlation matrix of
ensemble FOO4. Corresponding results for the other ensem-
bles are qualitatively identical. One can see that the B*D
scattering trial state O,7|Q) almost exclusively overlaps
with the ground state, i.e., Z9> Z! 73 Similarly,
Zl> 72,72, ie., the BD* scattering trial state Os'|Q)
almost exclusively overlaps with the first excitation. This
supports our interpretation of the ground state and the first
excitation as B*D and BD* scattering states.

D. Final results for the bbus
and bcud ground-state energies

We list the final results for the ground-state energies
relative to the lowest meson-meson thresholds for the

three investigated four-quark systems and for all five
ensembles in Table VI. These energies correspond to
the horizontal blue lines and light blue error bands in
Figs. 3,5, 7, and 11-22. In Fig. 9, we plot these results as a
function of m2.

1. bbus with JP =1+

For the bbus system we find ground-state energies
around 70-100 MeV below the BB threshold. These
are the energies in a finite periodic spatial volume of linear
extent N a ~ 2.7 fm for ensembles C005, CO1, FO04 and
F006 and N a =~ 5.3 fm for ensemble C0O0078. To extrapo-
late to infinite volume, we could, in principle, proceed as
in our previous work [41] on the bbud tetraquark with
I1(JP) =0(1") and use Liischer’s finite-volume method
[91,92]. For the bbus system this is, however, technically
more complicated, because one has to take into account at
least two scattering channels, BB; and B*B,, which have
almost the same threshold energy. Moreover, the energy
levels of the corresponding excitations are difficult to

TABLE VI. Ground-state energies relative to the lowest meson-
meson thresholds for the three investigated four-quark systems
and for all five ensembles, i.c., AEy = Ey — E — Ep. for bbus,
AE, = E,— Ep — Ej, for béud with J =0, and AE, = E, —
Eg. — Ep, for beud with J = 1.

bbus beud, J =0 beud, J =1
Ensemble AE, [MeV] AE, [MeV] AE, [MeV]
C00078 =77(30) —39(43) —30(47)
C005 -76(22) 104(47) 79(35)
CO01 —83(24) 43(29) 40(31)
FO04 -92(15) 9(24) 21(40)
F006 —-67(12) 101(29) 113(24)
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determine, as discussed in Sec. VA 2. However, since the
finite-volume ground-state energies are significantly below
these thresholds, we expect only mild finite-volume cor-
rections, much smaller than our current statistical errors.
This expectation is supported by our infinite-volume
extrapolations of bbud results in Ref. [41], where the
finite-volume ground-state energies turned out to be essen-
tially identical to their infinite-volume counterparts. Thus,
we do not carry out an infinite-volume extrapolation in this
work, but postpone such an analysis until improved lattice
data is available, in particular correlation functions with
scattering operators at both the source and the sink.

Our five ensembles differ in the light-quark mass,
corresponding to pion masses in the range 139 MeV <
m, <431 MeV, which allows us to perform an extrapo-
lation of AE, = E, — Eg — Ej: to the physical point (note
that one of our ensembles, C00078, has a light-quark mass
that is almost physical). Since the observed dependence on
the light-quark mass is mild (in fact, consistent with no

100

dependence), a fit that is linear in m,,., and hence quadratic
in m2 is sufficient. We perform a y%-minimizing fit using

the ansatz

AEO(mﬂ) = AE()(’/nzr,phys) + C(m72t - m?‘:,phys)’

(33)
where AEj(mynys) and ¢ are fit parameters and
My phys = 135 MeV. The resulting values for these param-
eters are

AEg(mMy pnys) = (—86 £22) MeV,

c=(0.84£2.1)x 1074/MeV2  (34)

with ¥?/d.o.f. = 0.81, indicating consistency of the lattice
data with our linear ansatz. The data points and the fit are
shown in the upper plot of Fig. 9.
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FIG. 9. Ground-state energy as a function of the squared pion mass for the bbus system (top), the beud system with I1(J*) = 0(0")
(bottom left) and the bcud system with 1(J?) = 0(17) (bottom right). For bbus we also show the fit and linear extrapolation to the
physical point at m, ynys = 135 MeV [see Egs. (33) and (34)]. Horizontal dashed lines indicate the lowest corresponding thresholds: the
BB threshold for bbus, the BD threshold for beud with 1(J*) = 0(0%), and the B*D threshold for heud with I1(J¥) = 0(17).
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previous works using lattice QCD [39,40]; green: other approaches (quark models, phenomenological considerations, sum rules)

[13,18,24,26,28,30,43—47] ].

There are also systematic errors due to the finite
lattice spacing and the NRQCD action. We expect these
errors to be of the same order as for the related bbud
system with 7(J?) = 0(1"). We have discussed these
errors in detail in Sec. VII of our previous work [41] and
estimated them to be not larger than 10 MeV. Thus, our
final results for the bbus tetraquark binding energy and
mass are

AEO(mﬂ.phys) = (—86 +22 + 10) MeV,
Mppus tetraquark(mn.phys) = (10609 +22+ 10) MeV, (35)

where mpp,q eiraquark 18 Obtained by adding the experi-
mental results of the B and B} masses [83] to AE,,.

2. beud with 1(J?)=0(0*) and I(J¥)=0(1")

For both hzud systems, the finite-volume ground-state
energies are compatible with the corresponding lowest
meson-meson thresholds. Thus, there is no indication that
strong-interaction-stable tetraquarks exist in these chan-
nels. However, because of the statistical uncertainties
of order 20 MeV...50 MeV (see Table VI), we cannot
exclude the existence of a shallow bound state with a
binding energy of only a few MeV below the respective
threshold.

Since we are not in a position to quantify finite-volume
corrections, which might be sizable in particular for states

close to the threshold, we also refrain from extrapolating
our lattice results to the physical pion mass. To summarize
our finite-volume results in a graphical way, we never-
theless plot them in Fig. 9 in the same style as their bbus
counterparts together with the relevant meson-meson
thresholds.

VI. CONCLUSIONS AND OUTLOOK

We investigated a bbus and two bcud four-quark
systems using lattice QCD with dynamical domain-wall
u, d, and s quarks. The charm quarks were implemented
using an anisotropic clover action with parameters tuned to
remove heavy-quark discretization errors, while the b
quarks were discretized within the framework of
NRQCD. Our work improves upon existing similar studies
[39,40,48-50] by also including nonlocal (scattering)
interpolating operators.

In the bbus sector with quantum numbers J* = 17,
we found clear evidence for a strong-interaction-stable
tetraquark. The binding energy with respect to the BB;
threshold is (—86 £ 22 4+ 10) MeV, which is consistent
with previous lattice-QCD results from Refs. [39,40]. In
Fig. 10 we summarize and compare these lattice-QCD
results with results obtained using different approaches,
e.g., quark models, phenomenological considerations, or
sum rules [13,18,24,26,28,30,43-47]. As discussed in
the Introduction, there are strong discrepancies, even on
a qualitative level, between these nonlattice results. Thus, it
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is important to have multiple independent first-principles
lattice-QCD computations, and the agreement of the lattice
results from different groups, as shown with the blue and
black data points in Fig. 10, increases the confidence in
these results.

For the béud systems with quantum numbers I(J) =
0(0") and I(JP)=0(1") the situation is less clear.
We found finite-volume ground-state energies that are
compatible with the lowest thresholds corresponding to
BD and B*D, respectively. To decide whether there is a
shallow bound state, more precise data and infinite-volume
extrapolations will be needed. Results from previous
lattice-QCD studies [48-50] are mostly consistent with
our results, but are also inconclusive. It is interesting to note
that Ref. [50] reported a ground-state energy for I(J¥) =
0(17) below the B*D threshold for a fine lattice spacing
a~0.06 fm, but not for the coarse lattice spacing
a~0.12 fm. The authors of Ref. [50] concluded that
taking the continuum limit might be essential for the
bcud system. We did not observe such a trend (see
Fig. 9), but it should be kept in mind that the types of
lattice actions used here differ from Ref. [50], except for the
bottom quarks. As discussed in the Introduction, nonlattice
studies also have not clarified the possible existence
of a strong-interaction-stable béud tetraquark, since they
exhibit strong discrepancies. (References [26,27,43,51-56]
predicted the existence of a stable tetraquark, while
Refs. [13,24,30,44,46] claimed the opposite.)

Our main goal for the future is to include scattering
interpolating operators at both the sources and the sinks of
our correlation matrices (rather than just the sinks
as done here). We expect that this will allow us to determine
the low-lying energy levels, in particular those associated
with scattering states, more reliably and more precisely.
We could then carry out infinite-volume extrapolations
for the béud systems using Liischer’s method [91] and
possibly clarify the existence or nonexistence of a strong-
interaction-stable bZud tetraquark. Another interesting
direction could be to explore heavy-heavy-light-light
four-quark systems with other quantum numbers for which
stable tetraquarks are not expected, but for which reso-
nances could exist. A clear candidate is the bbud system
with I(JP) =0(17), where such a resonance around
15 MeV above the BB threshold was predicted using

static-static-light-light potentials computed with lattice
QCD and the Born-Oppenheimer approximation [38].
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APPENDIX A: SUMMARY PLOTS OF
MULTIEXPONENTIAL FITS TO DETERMINE
ENERGY LEVELS FOR ENSEMBLES C00078,

C005, F004 AND F006

In this appendix we show the results of multiexponential
fits to determine E, and E; for the ensembles C00078,
C005, FO04, and F006:

(1) bbus with J* = 1*: Figs. 11-14.

(2) bcud with I(J¥) = 0(0*): Figs. 15-18.

(3) bcud with I(J¥) = 0(1%): Figs. 19-22.

The styles of these figures are identical to Figs. 3, 5 and 7,
respectively, where the same quantities are shown for
ensemble CO1, and which are discussed in detail in Sec. V.
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FIG. 12. Fit results for E, (blue) and E, (green) for the bbus system relative to the BB threshold for ensemble C005.
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Fit results for E, (blue) and E, (green) for the bbus system relative to the BB threshold for ensemble FO06.
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APPENDIX B: METHOD TO ESTIMATE THE
GROUND-STATE ENERGY FROM SEVERAL
MULTIEXPONENTIAL FITS

To obtain a final estimate of the ground-state energy and
its uncertainty from several different selected multiexponen-
tial fits, we follow the approach of the FLAG Collaboration,
discussed e.g., in Sec. IL. 3. 1 of their 2019 review [90]. The
starting point is the result of each fit given as

EY + AEY. (B1)

where j is the index of the fit, E(()j ) is the mean value and

AE(()j ) is the statistical error.
We estimate the ground-state energy by a weighted
average,

Ey=> oVEy. (B2)
J
The weights are given by
) 1 AE(J) 2
o) /(AEy) (B3)

S/ (SVAES)?

whereo-<j>:S(f)AE(()’> with SU) =max (1, (y%/d.o.f.)))1/2).
Thus, the estimate of E, is equivalent to the result
of a weighted, uncorrelated, y*-minimizing fit of a
constant to the results (B1), where fits of bad quality,
ie., with (y?/d.o.f.)U) > 1, are additionally suppressed
by SU).

The selected multiexponential fits are based on the
same gauge-link configurations and the same two-point
functions and are, thus, correlated. The multiexponential
matrix fits are computationally demanding and a resam-
pling procedure needed to quantify the correlations was not
feasible. We therefore conservatively assume the correla-
tions to be maximal. The uncertainty of the ground-state
energy is then

The results E, = AE, are shown as blue horizontal lines
and light blue bands in Figs. 3, 5, 7, and 11-22.
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