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Abstract

We search for an axion-like particle (ALP) a through the process ψ(3686) → π+π−J/ψ, J/ψ → γa, a → γγ in a
data sample of (2.71 ± 0.01) × 109 ψ(3686) events collected by the BESIII detector. No significant ALP signal is
observed over the expected background, and the upper limits on the branching fraction of the decay J/ψ → γa and the
ALP-photon coupling constant gaγγ are set at 95% confidence level in the mass range of 0.165 ≤ ma ≤ 2.84 GeV/c2.
The limits on B(J/ψ → γa) range from 8.3× 10−8 to 1.8× 10−6 over the search region, and the constraints on the
ALP-photon coupling are the most stringent to date for 0.165 ≤ ma ≤ 1.468 GeV/c2.

Keywords: BESIII, Axion-like particle, Pseudo-Goldstone boson

1. Introduction

Axion-like particles (ALPs) are pseudo-Goldstone
bosons arising from some spontaneously broken global
symmetry, addressing the strong CP [1–4] or hierarchy
problems [5]. ALPs could appear in theories beyond the
Standard Model (SM), such as string theory [6] and ex-
tended Higgs models [7]. ALPs could also provide a
portal connecting SM particles to the dark sectors [8],
and in certain situations, they are proposed as cold dark
matter candidates [9–11]. In the most common scenar-
ios, the ALP a predominantly couples to photons with
a photon coupling constant gaγγ . As a generalization of
QCD axions, ALPs have arbitrary masses and couplings
which are bounded by experiments. In the sub-MeV/c2

mass range, the bounds on gaγγ are provided by laser
experiments, solar photon instruments, as well as cos-
mological and astrophysical observations [12, 13]. In
the MeV/c2 to GeV/c2 mass region, constraints on
the photon coupling constant mainly come from beam-
dump experiments [14–16] and high-energy collider ex-
periments. Long-lived ALPs have been searched for
in J/ψ and Υ radiative decays [17, 18] and through
e+e− → γ + invisible processes [19]. The limits for
short-lived ALPs decaying to two photons are obtained
from e+e− → γγ [20], e+e− → γγγ [21, 22] via
ALP-strahlung production, and the light-by-light scat-
tering process γγ → γγ [23, 24], as well as pp col-
lisions [25–27]. There is a striking gap in the limits
on the ALP-photon coupling in the ALP mass range
from 100 MeV/c2 to roughly 10 GeV/c2, leaving the
large area 10−3 . gaγγ . 10−5 GeV−1 still uncov-

ered. Electron-positron colliders can play a unique role
in further exploring this region [28].

We search for ALPs decaying into two photons at
BESIII in J/ψ radiative decays via J/ψ → γa, a→ γγ
in the mass range of 0.165 ≤ ma ≤ 2.84 GeV/c2. In
this Letter we ignore the ALP coupling to c-quarks [29]
and assume the branching fraction of a decaying to pho-
tons is 100%, with a decay width Γa = g2aγγm

3
a/64π.

The experimental signature of the ALP decaying into
two photons depends on the correlation between its
mass and coupling. Except for the mass region below
0.1 GeV/c2, the ALP has a negligible lifetime and de-
cay width, and the opening angle between the decay
photons is large enough to be resolved in the detector.
The mass intervals of 0.10 < ma < 0.165 GeV/c2,
0.46 < ma < 0.60 GeV/c2 and 0.90 < ma <
1.01 GeV/c2 are excluded from the search due to the
peaking backgrounds from the decays of π0, η and
η′ mesons, respectively. In order to avoid pollution
from non-resonant ALP production e+e− → γa and
to probe resonant ALP production J/ψ → γa in a
model-independent way [29], the decay ψ(3686) →
π+π−J/ψ is exploited to isolate the J/ψ sample.

2. Detector, data sets and Monte Carlo simulation

The BESIII detector [30] records symmetric e+e−

collisions provided by the BEPCII storage ring [31],
which operates in the center-of-mass energy range from
2.00 to 4.95 GeV, with a peak luminosity of 1 ×
1033 cm−2s−1 achieved at

√
s = 3.77 GeV. BESIII has

collected large data samples in this energy region [32].
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The cylindrical core of the BESIII detector covers 93%
of the full solid angle and consists of a helium-based
multilayer drift chamber (MDC), a plastic scintillator
time-of-flight system (TOF), and a CsI(Tl) electromag-
netic calorimeter (EMC), which are all enclosed in a
superconducting solenoidal magnet providing a 1.0 T
magnetic field. The solenoid is supported by an oc-
tagonal flux-return yoke with resistive plate counter
muon identification modules interleaved with steel. The
charged-particle momentum resolution at 1 GeV/c is
0.5%, and the dE/dx resolution is 6% for electrons
from Bhabha scattering. The EMC measures photon en-
ergies with a resolution of 2.5% (5%) at 1 GeV in the
barrel (end-cap) region. The time resolution in the TOF
barrel region is 68 ps, while that in the end-cap region is
110 ps. The end-cap TOF system was upgraded in 2015
using multigap resistive plate chamber technology, pro-
viding a time resolution of 60 ps [33].

We perform the search using the ψ(3686) data sam-
ples collected by the BESIII detector during three data-
taking periods: 2009, 2012, and 2021. The numbers
of ψ(3686) events are determined by counting inclu-
sive hadronic events whose branching fraction is known
rather precisely [34, 35]. There are (107.0± 0.8)× 106

ψ(3686) events collected in 2009, (341.1± 2.9)× 106

events collected in 2012 and (2.26± 0.01)× 109 events
collected in 2021, for a total of (2.71 ± 0.01) × 109

ψ(3686) events. In this analysis, the J/ψ sample origi-
nates from the decay ψ(3686)→ π+π−J/ψ. The anal-
ysis strategy is to first tag J/ψ events by selecting two
oppositely charged pions, and then to search for the sig-
nal candidate events with three additional photons orig-
inating from the tagged J/ψ sample. A semi-blind pro-
cedure is performed to avoid possible bias, where ap-
proximately 10% of the full data set is used to optimize
the event selection and validate the fit approach. The
final result is then obtained with the full data set only
after the analysis strategy is fixed.

Simulated data samples produced with a GEANT4-
based [36] Monte Carlo (MC) package, which includes
the geometric description of the BESIII detector and
the detector response, are used to determine detec-
tion efficiencies and to estimate backgrounds. The
simulation models the beam-energy spread and initial-
state radiation in e+e− annihilations with the gener-
ator KKMC [37]. An inclusive MC sample with ap-
proximately the same number of ψ(3686) decays as in
data is used to check for potential backgrounds. The
inclusive MC sample includes the production of the
ψ(3686) resonance, the initial-state radiation produc-
tion of the J/ψ, and the continuum processes incor-
porated in KKMC [37]. All particle decays are mod-

eled with EVTGEN [38] using branching fractions ei-
ther taken from the Particle Data Group (PDG) [39],
when available, or otherwise estimated with LUND-
CHARM [40]. Final-state radiation from charged final-
state particles is incorporated using the PHOTOS pack-
age [41]. To simulate the signal, the decay ψ(3686) →
π+π−J/ψ is modeled according to the partial wave
analysis results of ψ(3686) → π+π−J/ψ [42]; a
P -wave model [38] is used for the subsequent decay
J/ψ → γa and a phase-space model is used for the
a→ γγ decay. The signal events are simulated individ-
ually for different mass hypotheses of ALP ma in the
range of 0.165 ≤ ma ≤ 2.84 GeV/c2 with a step size of
5 MeV/c2, which is smaller than the signal resolution.
Study of the inclusive MC sample with a generic event
type analysis tool, TopoAna [43], indicates that the
dominant backgrounds are from ψ(3686)→ π+π−J/ψ
with subsequent decays of J/ψ → γπ0, γη and γη′.
These backgrounds are each generated exclusively with
the angular distribution of 1 + cos2 θγ [38], where θγ is
the angle of the radiative photon relative to the positron
beam direction in the J/ψ rest frame. Some poten-
tial backgrounds of the form ψ(3686) → π+π−J/ψ
with J/ψ decaying into purely neutral particles in the
final states are generated exclusively with different gen-
erators: J/ψ → γηc with the angular distribution of
1+cos2 θγ [38], J/ψ → γπ0π0 according to the partial
wave analysis results of J/ψ → γπ0π0 [44], as well
as J/ψ → γγγ with a phase-space distribution. Each
background MC sample is weighted to match the inte-
grated luminosity of the data set.

3. Event selection

Signal candidates are required to have two oppo-
sitely charged tracks and at least three photon candi-
dates. Charged tracks detected in the MDC are required
to be within a polar angle (θ) range of |cosθ| < 0.93,
where θ is defined with respect to the z-axis, which is
the symmetry axis of the MDC. For each charged track,
the momentum must be less than 0.45 GeV/c and the
distance of closest approach to the interaction point (IP)
along the z-axis |Vz| must be less than 10 cm, and in
the transverse plane |Vxy| less than 1 cm. Both charged
tracks are assumed to be pion candidates, and the recoil
mass in the center-of-mass systemM(π+π−)recoil must
be in the range of [3.080, 3.114] GeV/c2.

Photon candidates are identified using showers in
the EMC. The deposited energy of each shower must be
more than 25 MeV in the barrel region (|cos θ| < 0.80)
and more than 50 MeV in the end-cap region (0.86 <
|cos θ| < 0.92). To exclude showers that originate from
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charged tracks, the angle subtended by the EMC shower
and the position of the closest charged track at the EMC
must be greater than 10 degrees as measured from the
IP. To suppress electronic noise and showers unrelated
to the event, the difference between the EMC time and
the event start time is required to be within [0, 700] ns.
Events satisfying the above requirements are retained
for further analysis.

The π+ and π− tracks are constrained to a com-
mon vertex to determine the event interaction point,
and a four-constraint (4C) kinematic fit to the initial
four-momentum of the ψ(3686) is applied for all pos-
sible π+π−γγγ combinations. The combination with
the smallest fit χ2

4C is retained, with the requirement
of χ2

4C < 40. The distribution of χ2
4C is shown in

Fig. 1. To further reject background from J/ψ →
γπ0π0 decays, we form all π+π−5γ combinations if
5 or more photons are present, and we require the min-
imum χ2

4C(5γ) of the corresponding kinematic fits to
satisfy χ2

4C < χ2
4C(5γ). For the remaining photons, the

sum of their energy deposition in the EMC Eother is re-
quired to be less than 0.1 GeV. The requirements of χ2

4C

and Eother are optimized according to the Punzi signifi-
cance [45] defined as ε/(1.5+

√
B), where ε denotes the

signal efficiency obtained from signal MC samples and
B is the number of background events obtained from
background MC samples.

0 10 20 30 40 50 60 70 80 90 100
2
4C

χ

310

410

510

E
ve

nt
s 

/ (
5.

0)

Data
Signal

0π0πγ→ψJ/
Other backgrounds

')η/η/0πγ→ψ(mainly from J/

FIG. 1: The distribution of χ2
4C for data, signal and MC-simulated

backgrounds. The requirement of χ2
4C < 40 is applied to suppress

the background from J/ψ → γπ0π0 decays.

4. ALP signal search

The two-photon invariant mass Mγγ distribution of
the events selected by the above criteria is shown in
Fig. 2. The MC simulation shows a rather good agree-
ment with the data, corroborating the analysis proce-
dure. There are three entries per event from all pos-
sible combinations of the three selected photons. The

background is dominated by contributions from J/ψ →
γπ0, γη and γη′ decays. There is a small contribution
from residual J/ψ → γπ0π0 background with two soft
photons peaking around the π0 mass region, and a con-
tamination from J/ψ → γf2(1270) decays, followed
by f2(1270) → π0π0. However, since the f2(1270)
state has a large width and the contribution is relatively
small, this contribution can be treated as non-peaking
background and is well described by a polynomial func-
tion when extracting the signal yields.

A series of one-dimensional unbinned extended
maximum-likelihood fits are performed to the Mγγ dis-
tribution to determine the signal yields with different
ALP mass hypotheses in the mass range of 0.165 ≤
ma ≤ 2.84 GeV/c2. The search step is 3 MeV/c2

for 0.165 ≤ ma < 1.20 GeV/c2 and 4 MeV/c2 for
other mass regions. A total of 674 mass hypotheses
are probed. The likelihood function is a combination
of signal, non-peaking background, and peaking com-
ponents of the π0, η and η′ mesons. Different Mγγ fit
intervals are used for various ma hypotheses in order to
handle the non-peaking and peaking backgrounds prop-
erly, which are listed in Table 1.
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FIG. 2: The diphoton invariant-mass distributions for data and the
MC-simulated backgrounds, which are normalized to the integrated
luminosity of the data.

TABLE 1: The Mγγ fit intervals for various ma points.

ma points (GeV/c2) Mγγ fit intervals (GeV/c2)
0.165 - 0.35 0.06 - 0.45
0.35 - 0.75 0.25 - 0.85
0.75 - 1.20 0.65 - 1.30
1.20 - 2.84 (ma − 0.2) - (ma + 0.2)

The signal probability density function (PDF) is
constructed from a peaking component from the ALP
decay, and a combinatorial contribution from the other
two combinations of photons. The peaking compo-
nent is parameterized by the sum of two Crystal Ball
(CB) [46] functions with opposite-side tails with the
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same mean, resolution, and relative weight. These val-
ues and the detection efficiency are determined by fit-
ting the signal MC samples. The resolution ranges from
6 MeV/c2 near ma = 0.165 GeV/c2 to 11 MeV/c2

near ma = 2.2 GeV/c2, and it decreases back to
7 MeV/c2 near ma = 2.84 GeV/c2. The detection ef-
ficiency ranges from 30% to 35%. The combinatorial
component of the signal is described by a smoothed
kernel density estimation PDF [47] obtained from the
signal MC sample with the mass hypothesis ma closest
to the fitted assumption. The ratio between the com-
binatorial part and the peaking component of the sig-
nal is determined for each fit interval. For any search
point, the parameters of the CB functions, the ratio of
the combinatorial part and the efficiency are interpo-
lated between the mass points by a fit with a polynomial
function. The peaking background components at the
π0, η and η′ masses are described by the sum of two
CB functions using parameters determined from data.
A fifth-order Chebyshev polynomial function is used to
describe the non-peaking background for 0.75 ≤ ma <
1.20 GeV/c2 and a third-order Chebyshev polynomial
function is used for the remaining mass regions. The
choice of the order of polynomial function is optimized
through a spurious signal test by performing a signal-
plus-background fit to the background-only Mγγ distri-
bution [48]. The obtained signal yield (spurious signal)
is required to be less than 30% of its expected statisti-
cal uncertainty. When performing the fit, the shapes of
the signal and the peaking background PDFs are fixed,
while the non-peaking background PDF shape and the
yields of signal, peaking and non-peaking background
events are free parameters. The Mγγ distributions for
selectedma points and the fit results are shown in Fig. 3.

The branching fractions of J/ψ → γ(π0, η, η′) →
γγγ are measured to validate the signal extraction pro-
cedure. The peaks are treated as signals, and the fit-
ting procedure described above is applied to extract the
number of peak events. After accounting for the con-
tribution of peaking backgrounds, the results are found
to be compatible with the published BESIII measure-
ment [49] within uncertainties.

5. Systematic uncertainties

The systematic uncertainties are divided into two
parts, which are additive and multiplicative in nature.
The additive systematic uncertainty arises from the
uncertainties in the signal parameterization and back-
ground modeling. The multiplicative systematic uncer-
tainty includes contributions coming from MDC track-
ing, photon reconstruction, and selection criteria, which

are related to the signal efficiency.
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FIG. 3: The Mγγ distribution for (a) ma = 0.327GeV/c2 and (b)
ma = 2.208GeV/c2 with the fit results overlaid. The black dots
with error bars are data, and the contribution of the non-peaking back-
ground is represented by a blue dashed curve. The green shaded re-
gion and the red solid curve represent the signal PDF and the total
PDF, respectively. The inset of the figure (a) displays an enlargement
of the Mγγ region between 0.25 and 0.4GeV/c2. The largest local
significance is 2.6σ at the ma = 2.208GeV/c2 hypothesis.

The uncertainty due to signal and peaking back-
ground shapes is considered by performing the same
fitting procedure with alternative signal and peaking
background shapes. For the alternative signal shape,
the parameters of the CB functions (except the mean
value) and the ratio of the combinatorial part are ob-
tained from the signal MC sample with the mass hy-
pothesis ma closest to the search point. The alterna-
tive peaking background shape is modeled with the sum
of a CB function and a Gaussian function. For each
mass value ma, the fit is performed three times in to-
tal with different methods, and the minimum signifi-
cance value and the maximum upper limit are recorded.
The non-peaking background is described by polyno-
mials. By performing the spurious signal test, the
maximum of the absolute values of the spurious signal
over the search ranges constitutes the related system-
atic uncertainty, which is the dominant source of sys-
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tematic uncertainty in the analysis and is incorporated
in the overall likelihood assuming a Gaussian distribu-
tion: 8.09 events for 0.165 ≤ ma < 0.35 GeV/c2, 1.41
events for 0.35 ≤ ma < 0.75 GeV/c2, 17.95 events
for 0.75 ≤ ma < 1.20 GeV/c2 and 39.93 events for
1.20 ≤ ma ≤ 2.84 GeV/c2.

The multiplicative systematic uncertainties are
listed in Table 2. The tracking efficiency of charged
pions is investigated using control samples of J/ψ →
pp̄π+π− decays [50]. The difference in tracking effi-
ciencies between data and MC simulation is found to
be 1.0% per track, which is taken as the uncertainty
for the tracking efficiency. The photon detection effi-
ciency is studied with a clean sample of J/ψ → ρ0π0

decays [51]. The difference in detection efficiencies
between data and the MC simulation is 1.0% per pho-
ton. The systematic uncertainty due to the requirement
on M(π+π−)recoil is determined to be 0.3% accord-
ing to the study of ψ(3686) → π+π−J/ψ, J/ψ →
e+e−µ+µ− decays. The systematic uncertainties as-
sociated with the 4C kinematic fit, Eother and Ntrk

(number of charged tracks) requirements are studied
with the control sample of ψ(3686) → π+π−J/ψ,
J/ψ → γη decays and are determined to be 1.8%,
1.4% and 0.1%, respectively. The uncertainty on the
ψ(3686)→ π+π−J/ψ branching fraction is taken from
the PDG [39], and the systematic uncertainty due to the
number of ψ(3686) events is determined to be 0.6% by
studying inclusive hadronic decays [34, 35]. The multi-
plicative systematic uncertainty is included in the over-
all likelihood as a Gaussian nuisance parameter with a
width equal to the uncertainty.

TABLE 2: The multiplicative systematic uncertainties. The total sys-
tematic uncertainty is obtained by adding all individual uncertainties
in quadrature, assuming all sources to be independent.

Source Uncertainty (%)
MDC tracking 2.0

Photon reconstruction 3.0
M(π+π−)recoil requirement 0.3

4C kinematic fit 1.8
Eother requirement 1.4
Ntrk requirement 0.1

B(ψ(3686)→ π+π−J/ψ) 0.9
Number of ψ(3686) 0.6

Total 4.4

6. Result

For eachma hypothesis, the local significance is de-
termined by S = sign(Nsig) ·

√
2 ln(Lmax/L0), where

Lmax and L0 are the likelihood values with and without
the signal hypothesis included in the fit, respectively.
The fitted signal yields Nsig and the corresponding sig-
nificances are shown in Fig. 4. The largest local signif-
icance of 2.6σ is observed near ma = 2.208 GeV/c2,
consistent with the null hypothesis. The fit results for
ma = 2.208 GeV/c2 are shown in Fig. 3(b).

Since no significant ALP signal is observed, we
compute 95% confidence level (CL) upper limits on
B(J/ψ → γa) as a function of ma using a one-sided
frequentist profile-likelihood method [52]. Then the
branching fraction limit is converted to the ALP-photon
coupling limit using [29]

gaγγ =

√
B(J/ψ → γa)

B(J/ψ → e+e−)
(1− m2

a

m2
J/ψ

)−3
32παem

m2
J/ψ

,

(1)
where B(J/ψ → e+e−) = (5.971 ± 0.032)% is the
world average value from the PDG [39] and αem is the
electromagnetic coupling. An additional 0.5% uncer-
tainty arising from the knowledge of B(J/ψ → e+e−)
is included when converting B(J/ψ → γa) to gaγγ .
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FIG. 4: The distribution of the signal yields Nsig (upper plot) and
the local significance S (lower plot) obtained from the maximum-
likelihood fits as a function of ma. The vertical gray bands indicate
the excluded regions close to the π0, η, and η′ masses.

The expected and observed upper limits at 95% CL
on B(J/ψ → γa) are shown in Fig. 5. The observed
limits range from 8.3× 10−8 to 1.8× 10−6 in the ALP
mass region of 0.165 ≤ ma ≤ 2.84 GeV/c2. The
exclusion limits in the ALP-photon coupling gaγγ ver-
sus ALP mass ma plane obtained from this analysis
are shown in Fig. 6, together with the constraints of
other experiments. Our limits exclude the region in the
ALP-photon coupling range gaγγ > 3 × 10−4 GeV−1

for an ALP mass ma around 0.25 GeV/c2, with an im-
provement by a factor of 2-3 over the previous Belle II
measurement [22]. In addition, the constraints on the
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ALP-photon coupling are the most stringent to date for
0.165 ≤ ma ≤ 1.468 GeV/c2.
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FIG. 5: Expected and observed upper limits at 95% CL on B(J/ψ →
γa). The black curve is for the data, the black dashed curve represents
the expected values and the green (yellow) band represents the ±1σ
(±2σ) region.
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7. Summary

Based on a data sample of (2.71 ± 0.01) × 109

ψ(3686) events collected by the BESIII detector, we
search for ALPs decaying into two photons produced in
J/ψ radiative decays using the ψ(3686) → π+π−J/ψ
process. No significant ALP signal is observed and we
set 95% CL upper limits on the branching fraction of
the decay J/ψ → γa and the ALP-photon coupling
gaγγ . The observed limits on B(J/ψ → γa) range from
8.3 × 10−8 to 1.8 × 10−6 in the ALP mass region of
0.165 ≤ ma ≤ 2.84 GeV/c2, and the exclusion limits

on the ALP-photon coupling are the most stringent to
date for 0.165 ≤ ma ≤ 1.468 GeV/c2.
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