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We study tetraquark resonances using lattice QCD potentials for a pair of static antiquarks b̄b̄ in
the presence of two light quarks ud. The system is treated in the Born-Oppenheimer approxima-
tion and we use the emergent wave method. We focus on the isospin I = 0 channel, but consider
different orbital angular momenta l of the heavy antiquarks b̄b̄. We extract the phase shifts and
search for S and T matrix poles on the second Riemann sheet. For orbital angular momentum
l = 1 we find a tetraquark resonance with quantum numbers I(JP) = 0(1−), resonance mass
m = 10576+4

−4 MeV and decay width Γ = 112+90
−103MeV, which can decay into two B mesons.
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1. Introduction

A challenging and modern problem in particle physics and QCD is to improve our understand-
ing of exotic hadrons. A possible approach to study heavy-heavy-light-light four-quark systems and
the existence of tetraquarks is to compute potentials of two static antiquarks Q̄Q̄ in the presence
of two light quarks qq and to use these potentials in the Schrödinger equation to search for bound
states (cf. e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9]). In this way a stable b̄b̄ud tetraquark with quantum numbers
I(JP) = 0(1+) has been predicted [5, 6]. Recently it has been confirmed by lattice computations us-
ing b̄ quarks of finite mass treated with Non Relativistic QCD [10, 11]. In this work, we extend our
investigation of the b̄b̄ud four-quark system by exploring the existence of tetraquark resonances.
To this end we use the emergent wave method from scattering theory [12].

For a more detailed discussion of this work cf. [13].

2. Lattice QCD potentials of two static antiquarks Q̄Q̄ in the presence of two light
quarks qq

In previous studies we have computed potentials V (r) of two static antiquarks Q̄Q̄ in the pres-
ence of two light quarks qq with lattice QCD. Computations have been performed for different
light quark flavor combinations qq with q∈ {u,d,s,c}. Moreover, different parity and total angular
momentum sectors have been studied (cf. e.g. [7, 8]). There are both attractive as well as repul-
sive potentials. Of particular interest with respect to the existence of tetraquarks are two of the
attractive potentials with q ∈ {u,d}. The corresponding quantum numbers are (I = 0, j = 0) and
(I = 1, j = 1), where I denotes isospin and j the total angular momentum of the light quarks and
gluons around the b̄b̄ separation axis. The two potentials are shown in Figure 1 for lattice spacing
a≈ 0.079fm and u and d quark masses corresponding to a pion mass mπ ≈ 340MeV.
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Figure 1: (left) (I = 0, j = 0) potential. (right) (I = 1, j = 1) potential.

The existence or non-existence of a stable tetraquark and its binding energy depends on the
light quark mass q [7]. Thus, we have performed computations of Q̄Q̄ potentials for three different
light u and d quark masses corresponding to mπ ∈ {340MeV,480MeV,650MeV}. The results,
which can be parameterized by a screened Coulomb potential

V (r) =−α

r
e−r2/d2

, (2.1)

have been extrapolated to mπ = 140MeV [8]. The parameterization (2.1) is motivated by one-gluon
exchange for small Q̄Q̄ separations r and the formation of two B mesons at larger r as a consequence
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of color screening as sketched in Figure 2. Even though this approach is phenomenologically
motivated, it is fully consistent with our lattice QCD results, i.e. the corresponding fits yield small
χ2/dof. The numerical values of the parameters α and d are collected for both potentials in Table
1. Clearly, the (I = 0, j = 0) potential is more attractive than the (I = 1, j = 1) potential.
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Figure 2: (a) At small separations the static antiquarks Q̄Q̄ interact by perturbative one-gluon
exchange. (b) At large separations the light quarks qq screen the interaction and the four quarks
form two rather weakly interacting B mesons.

I j α d in fm

0 0 0.34+0.03
−0.03 0.45+0.12

−0.10

1 1 0.29+0.05
−0.06 0.16+0.05

−0.02

Table 1: Parameters α and d of the parameterization (2.1) of the two attactive Q̄Q̄ potentials with
(I = 0, j = 0) and (I = 1, j = 1).

The potential parameterization (2.1) with α and d from Table 1 can be inserted into the Schrö-
dinger equation, i.e. they can be used to explore the existence of stable tetraquarks or tetraquark
resonances in the Born-Oppenheimer approximation. A stable b̄b̄ud tetraquark with quantum num-
bers I(JP) = 0(1+) around 60MeV below the BB∗ threshold has been predicted in [5, 7, 8, 9]. The
search for b̄b̄ud tetraquark resonances is discussed in [13] and the following sections.

3. The emergent wave method

In this section we discuss the emergent wave method, which allows to extract phase shifts and
resonance parameters. More details can be found e.g. in [12].

We start by considering the Schrödinger equation(
H0 +V (r)

)
Ψ = EΨ (3.1)

and by splitting the wave function into two parts,

Ψ = Ψ0 +X . (3.2)

Ψ0 is the incident wave, which is a solution of the free Schrödinger equation, i.e. H0Ψ0 = EΨ0,
and X denotes the emergent wave. Inserting eq. (3.2) into eq. (3.1) and using the free Schrödinger
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equation we obtain (
H0 +V (r)−E

)
X =−V (r)Ψ0. (3.3)

Solving this equation for given energy E provides the emergent wave X . The asymptotic behavior
of X determines the phase shifts. We find the poles of the S matrix and the T matrix in the complex
energy plane and identify them with resonances, when located in the second Riemann sheet at
E − iΓ/2, where E is the energy and Γ is the decay width of the resonance.

3.1 Partial wave decomposition

The Hamiltonian describing the two heavy antiquarks b̄b̄ is

H = H0 +V (r) =− h̄2

2µ
4+V (r), (3.4)

where µ = M/2 is the reduced mass and M = 5280MeV is the mass of the B meson from the PDG
[14]. One can express the incident plane wave Ψ0 = eik·r as a sum over spherical waves,

Ψ0 = eik·r = ∑
l
(2l +1)il jl(kr)Pl(k̂ · r̂), (3.5)

where jl are spherical Bessel functions, Pl are Legendre polynomials and the relation between
energy and momentum is h̄k =

√
2µE. Since the potential V (r) is spherically symmetric, we can

also expand the emergent wave X in terms of Legendre polynomials Pl ,

X = ∑
l
(2l +1)il

χl(r)
kr

Pl(k̂ · r̂). (3.6)

Inserting eq. (3.5) and eq. (3.6) into eq. (3.3) leads to a set of ordinary differential equations for χl ,(
− h̄2

2µ

d2

dr2 +
l(l +1)
2µr2 +V (r)−E

)
χl(r) =−V (r)kr jl(kr). (3.7)

3.2 Solving the differential equations for the emergent wave

V (r), eq. (2.1), is exponentially screened, i.e. V (r)≈ 0 for r≥ R, where R� d. Consequently,
the emergent wave is a superposition of outgoing spherical waves for large separations r ≥ R and
can be expressed by spherical Hankel functions of the first kind h(1)l ,

χl(r)
kr

= itlh
(1)
l (kr). (3.8)

To compute the complex prefactors tl , which will lead to the phase shifts, we solve the ordinary
differential equation (3.7) using the following boundary conditions:

• At r = 0: χl(r) ∝ rl+1.

• For r ≥ R: eq. (3.8).

We emphasize that the boundary condition for r≥R depends on tl . Solving the differential equation
for a given value of the energy E, this boundary condition is only fulfilled for a specific value of tl .
In other words the boundary condition for r ≥ R fixes tl as a function of E.

To solve eq. (3.7) numerically, we have implemented two different approaches:
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(1) A fine uniform discretization of the interval [0,R] reducing the differential equation to a large
set of linear equations, which can be solved rather efficiently, since the corresponding matrix
is tridiagonal.

(2) A standard 4-th order Runge-Kutta shooting method.

3.3 Phase shifts, S and T matrix poles

tl is an eigenvalue of the T matrix (see standard textbooks on quantum mechanics and scatter-
ing, e.g. [15]). From tl we can determine the phase shift δl and also the corresponding S matrix
eigenvalue

sl ≡ 1+2itl = e2iδl (3.9)

(at large distances r ≥ R the radial wave function is kr( jl(kr)+ itlh
(1)
l (kr)) = (kr/2)(h(2)l (kr)+

e2iδl h(1)l (kr))). Note that both the S matrix and the T matrix are analytical in the complex plane and
are also defined for complex energies E. Thus, we solve the differential equation (3.7) for complex
E and find the S and T matrix poles by scanning the complex energy plane (Re(E), Im(E)) and
by applying Newton’s method to find the roots of 1/tl(E). These poles correspond to complex
resonance energies E = E − iΓ/2 and must be located in the second Riemann sheet with a negative
imaginary part of E.

4. Results for phase shifts, S and T matrix poles and prediction of resonances

4.1 Phase shifts δl

We consider the more attractive b̄b̄ potential with (I = 0, j = 0) (cf. section 2), compute tl
for real energies E and apply eq. (3.9) to determine phase shifts δl for orbital angular momenta
l = 0,1,2,3,4. A clear indication for a resonance would be a strongly increasing δl from 0 to
almost π . Such a behavior is, however, not observed (cf. Figure 3 (left)). Thus, we have to check
more thoroughly, whether there are resonances or not.
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Figure 3: (left) Phase shift δl as a function of the energy E for orbital angular momenta l =
0,1,2,3,4 for the (I = 0, j = 0) potential (α = 0.34, d = 0.45fm). (right) Phase shift δ1 as a
function of the energy E for different α and fixed d = 0.45fm.
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It is also interesting to consider the l = 1 channel for even more attractive potentials by increas-
ing the parameter α , while d is fixed. We show the resulting phase shifts δ1 in Figure 3 (right). For
α & 0.65 resonances are clearly indicated. For α & 0.72 there are even bounds states, i.e. the phase
shifts start at π and decrease monotonically. However, this observation does not allow to make a
clear statement, whether there is a resonance for α = 0.34.

4.2 Resonances as poles of the S and T matrices for complex energies E

Now we search for poles of the T matrix eigenvalue tl in the complex energy plane, which
indicate resonances. For orbital angular momentum l = 1 and the (I = 0, j = 0) potential we find a
pole, which is shown in Figure 4 (left), where t1 is plotted as a function of the complex energy E.
For a better understanding of the resonance and its dependence on the potential we determine the
pole of t1 for various parameters α . In Figure 4 (right) we show the location of the pole for several
values of α in the (Re(E), Im(E)) plane. Indeed, starting at α = 0.21 we find poles. Consequently,
we can predict a resonance at α = 0.34. For orbital angular momenta l > 1 as well as for the less
attractive potential (I = 1, j = 1) no poles have been found.
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Figure 4: (left): T matrix eigenvalue t1 as a function of the complex energy E for the (I = 0, j = 0)
potential (α = 0.34, d = 0.45fm). Along the vertical axis we show the norm |t1|, while the phase
arg(t1) is visualized by different colors. (right) Trajectory of the pole of the T matrix eigenvalue t1
in the complex energy plane (Re(E), Im(E)) corresponding to a variation of the parameter α . The
cloud of blue points represents the systematic error of our prediction.

4.3 Analysis of statistical and systematic errors

We perform a detailed statistical and systematic error analysis for the pole of t1 in the complex
energy plane (Re(E), Im(E)) using the same method as for our study of bound states [7]. We
parametrize the lattice QCD data for the potential V lat(r) with an uncorrelated χ2 minimizing fit
using the ansatz (2.1), i.e. we minimize the expression

χ
2 = ∑

rmin≤r≤rmax

(
V (r)−V lat(r)

∆V lat(r)

)2

(4.1)

with respect to α and d, where ∆V lat(r) denotes the corresponding statistical errors. To estimate the
systematic error, we perform fits for various fit ranges rmin ≤ r ≤ rmax. Additionally, we vary the
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range of the temporal separation tmin ≤ t ≤ tmax, where V lat(r) is read off. For each fit we determine
the pole of t1, i.e. the resonance energy E and the decay width Γ. As systematic error we take the
spread of these results, while the statistical error is determined via the jackknife method. Applying
this combined systematic and statistical error analysis, we find a resonance energy E = Re(E) =
17+4
−4 MeV above the BB threshold and a decay width Γ = −2Im(E) = 112+90

−103 MeV. Studying
the symmetries of the quarks with respect to color, flavor, spin and their spatial wave function and
considering the Pauli principle we determine the quantum numbers as I(JP) = 0(1−). The mass of
this b̄b̄ud tetraquark resonance is given by m = 2M+Re(E) = 10576+4

−4 MeV.

5. Conclusion

We have explored the existence of b̄b̄ud tetraquark resonances applying lattice QCD potentials
for two static antiquarks in the presence of two light quarks, the Born-Oppenheimer approximation
and the emergent wave method. We predict a new resonance with quantum numbers I(JP) = 0(1−),
a resonance mass Re(E) = 17+4

−4 MeV and a decay width Γ = 112+90
−103 MeV.
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