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By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity
of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we
measure the branching fraction of the D0 → ρ−µ+νµ decay for the first time. We obtain
BD0

→ρ−µ+νµ
= (1.35±0.09stat±0.09syst)×10−3. Combining with theoretical predictions, we extract

the CKM matrix element |Vcd| = 0.204± 0.007stat ± 0.007syst ± 0.014theory . Using the world average
of BD0

→ρ−e+νe
, we find a branching fraction ratio of BD0

→ρ−µ+νµ
/BD0

→ρ−e+νe
= 0.90 ± 0.11,

which agrees with the theoretical expectation of lepton flavor universality within the uncertainty.
Combining the world average of BD+

→ρ0µ+νµ
and the lifetimes of D0(+), we obtain a partial decay

width ratio of ΓD0
→ρ−µ+νµ

/(2ΓD+
→ρ0µ+νµ

) = 0.71 ± 0.14, which is consistent with the isospin

symmetry expectation of one within 2.1σ. For the reported values of BD0
→ρ−µ+νµ

/BD0
→ρ−e+νe

and

ΓD0
→ρ−µ+νµ

/2ΓD+
→ρ0µ+νµ

, the uncertainty is the quadratic sum of the statistical and systematic
uncertainties.

PACS numbers: 13.20.Fc, 12.15.Hh

Lepton flavor universality (LFU) is usually thought of
as a basic property of the Standard Model (SM) [1–4]. It
postulates that the couplings between the three families
of leptons and gauge bosons do not depend on the lepton
flavor. Experimental studies of semileptonic decays of
pseudoscalar mesons are important to test LFU and
explore possible new physics. Since 2012, tests of LFU
have been carried out in several semileptonic B decays
at BaBar, Belle, and LHCb. The measured branching

fraction ratios RD̄(∗)

τ/ℓ = BB→D̄(∗)τ+ντ /BB→D̄(∗)ℓ+νℓ (ℓ =

µ, e) [5–11] indicate a 3.1σ deviation from the value
predicted in the SM [12]. This tension stimulated
development of various theoretical models [2, 13–17].
In this context, investigations of exclusive semileptonic
D decays give important complementary tests of LFU.
In recent years, BESIII reported tests of µ-e LFU
with the semileptonic decays D → Xℓ+νℓ (X =
K̄, π, ω, and η) [18–22]. For each decay, the
difference between the measured branching fraction ratio
(RX

µ/e = BD→Xµ+νµ/BD→Xe+νe) and the corresponding

SM prediction is less than 1.7σ. The decay D0 →
ρ−µ+νµ, calculated using the quark potential model in
1989 [23], has not yet been measured. Observation of

this decay and verification of the SM prediction for Rρ−

µ/e

offer a crucial LFU test.

In addition to the quark potential model work [23],
the branching fraction of D0 → ρ−µ+νµ has been
calculated using QCD light-cone sum rules (LCSR) [24,

25], the light-front quark model (LFQM) [26], the
covariant confined quark model (CCQM) [27, 28], the
chiral unitarity approach (χUA) [29], and the relativistic
quark model (RQM) [30]. The predicted branching
fractions range from (1.55 − 2.01) × 10−3. This decay
also provides an opportunity to determine the c →
d Cabibbo-Kobayashi-Maskawa (CKM) matrix element
|Vcd|. Furthermore, the measured branching fraction
helps constrain lattice QCD calculations on the hadronic
form factors of semileptonic D and B decays. More
precise calculations of branching fractions and hadronic
form factors are key inputs in the determination of CKM
parameters [31–34] which allow important tests of CKM
matrix unitarity.

Under the assumption of isospin symmetry, the
partial width ratio Rρ,ℓ

IS = ΓD0→ρ−ℓ+νµ/2ΓD+→ρ0ℓ+νµ =
(BD0→ρ−ℓ+νµ · τD+)/(2BD+→ρ0ℓ+νµ · τD0) is expected to

be unity. Here, τD0(+) is the lifetime of the D0(+)

meson. Using the world average values [35], one obtains
Rρ,e

IS = 0.87 ± 0.13, which agrees with unity within the
uncertainty. A measurement of the branching fraction
of the decay D0 → ρ−µ+νµ allows a determination of
Rρ,µ

IS which tests isospin symmetry in D0(+) → ρ−(0)ℓ+νℓ
decays.

Using a data sample corresponding to an integrated
luminosity of 2.93 fb−1 [36] taken at a center-of-mass
energy of 3.773 GeV with the BESIII detector, we
report the first observation and a branching fraction
measurement of D0 → ρ−µ+νµ, a determination of
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|Vcd| and tests of both LFU with D0 → ρ−ℓ+νℓ decays
and isospin symmetry in D0(+) → ρ−(0)µ+νµ decays.
Throughout this Letter, charge conjugate channels are
always implied and ρ denotes the ρ(770).

Details about the design and performance of the
BESIII detector are given in Ref. [37]. Monte
Carlo (MC) simulated data samples, produced with
a geant4-based [38] software package including the
geometric description of the BESIII detector and the
detector response, are used to determine the detection
efficiency and to estimate the backgrounds. The
simulation includes the beam-energy spread and initial-
state radiation in the e+e− annihilations modeled with
the generator kkmc [39]. The inclusive MC sample
consists of the production ofDD̄ pairs with consideration
of quantum coherence for all neutral D modes, the non-
DD̄ decays of the ψ(3770), the initial-state radiation
production of the J/ψ and ψ(3686) states, and the
continuum processes. The known decay modes are
modeled with evtgen [40] using the branching fractions
taken from the Particle Data Group [35], and the
remaining unknown decays from the charmonium states
are modeled with lundcharm [41]. Final state radiation
from charged final state particles is incorporated with the
photos package [42]. The vector hadronic form factors
of the semileptonic decay D0 → ρ−µ+νµ are simulated
with those of the D0 → ρ−e+νe decay [43].

At the center-of-mass energy of 3.773 GeV, D0 and
D̄0 mesons are produced in pairs without additional
hadrons. This feature results in an ideal environment to
study D0 decays with the double-tag (DT) method. At
first, the single-tag (ST) D̄0 meson is reconstructed
using the hadronic decays D̄0 → K+π−, K+π−π0,
and K+π−π−π+. Then, the DT candidate events, in
which a D0 → ρ−µ+νµ decay candidate is found in the
system recoiling against an ST D̄0 meson, are selected.
The branching fraction of the D0 → ρ−µ+νµ decay is
determined by

BD0→ρ−µ+νµ = NDT/(N
tot
ST · εD0→ρ−µ+νµ), (1)

where N tot
ST and NDT are the yields of the ST and DT

candidates in data, respectively. Here, εD0→ρ−µ+νµ =

Σi[(ε
i
DT·N

i
ST)/(ε

i
ST·N

tot
ST )] is the effective signal efficiency

of finding D0 → ρ−µ+νµ in the presence of the ST D̄0

meson, where εST and εDT are the detection efficiencies
of the ST and DT candidates, respectively, and i labels
the ST modes.

In this analysis, the selection criteria for K±, π±, γ,
and π0 candidates follow those employed in Refs. [19–22,
44, 46–51]. All charged tracks are required to be within
the polar angle range | cos θ| < 0.93, and their distance of
closest approach to the interaction point perpendicular
to and along the MDC axis are required to be smaller
than 1 cm and 10 cm, respectively. Charged kaons and
pions are identified using the combined information from

the specific energy loss (dE/dx) in the drift chamber
and information from the time-of-flight system (TOF),
via combined confidence levels for the pion and kaon
hypotheses. Those charged tracks with larger confidence
level for the kaon (pion) hypothesis are identified as kaon
(pion) candidates.

Candidates for neutral pions are reconstructed from
pairs of photons that satisfy the following selection
criteria. Photon candidates are chosen from isolated
clusters in the electromagnetic calorimeter (EMC) whose
energies are larger than 25 (50)MeV if the crystal
with the maximum deposited energy in that cluster
is in the barrel (endcap) region [37]. To reject
photons from bremsstrahlung and from interactions with
material, showers within a cone angle of 10◦ around the
extrapolated position on the EMC of any charged track
are rejected. The energy deposited in the TOF counters
is taken into account to improve the reconstruction
efficiency and energy resolution. Reconstructed showers
due to electronic noise or beam backgrounds are
suppressed by limiting the cluster time to be within (0,
700) ns after the event start time. Photon pairs with
invariant mass in the range (0.115, 0.150)GeV/c2 are
retained as π0 candidates. To improve the momentum
resolution, a one-constraint kinematic fit to the nominal
π0 mass [35] is imposed on these photon pairs.

For the D̄0 → K+π− tag mode, backgrounds
related to cosmic rays and Bhabha scattering events are
vetoed by using the requirements described in Ref. [52].
To distinguish the ST D̄0 mesons from combinatorial
backgrounds, we define the energy difference ∆E ≡
ED̄0 − Ebeam and the beam-constrained mass MBC ≡
√

E2
beam/c

4 − |~pD̄0 |2/c2, where Ebeam is the beam
energy, and ED̄0 and ~pD̄0 are the total energy and
momentum of the ST D̄0 candidate in the e+e− center-
of-mass frame, respectively. When multiple combinations
for an ST mode are present in an event, the combination
with the smallest |∆E| per tag mode per charge is
retained for further analysis. The ST candidates are
required to be within ∆E ∈ (−0.055,+0.040) GeV for
D̄0 → K+π−π0 and ∆E ∈ (−0.025,+0.025) GeV for
D̄0 → K+π− and D̄0 → K+π−π−π+.

Figure 1 shows the MBC distributions of the accepted
ST D̄0 candidates. For each tag mode, the yield of
ST D̄0 mesons is obtained from a maximum likelihood
fit to the MBC distribution of the accepted candidates.
In the fit, the signal and background are described by
the signal shape from MC simulation and an ARGUS
function [53], respectively. To compensate for offsets
in calibration and resolution differences between data
and MC simulation, the signal shape is convolved with
a double-Gaussian function. The means, widths and
relative fractions of the Gaussian components are free
parameters in the fit. The resulting fits to the MBC

distributions are also shown in Fig. 1. Candidates in
the MBC mass window (1.859, 1.873) GeV/c2 are kept
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for further analysis. For each tag mode, the yield of the
ST D̄0 mesons is obtained by integrating the fitted signal
shape over the MBC mass window. The total yield of ST
D̄0 mesons is N tot

ST = (232.1± 0.2stat)× 104.

In the presence of the ST D̄0 mesons, candidates for
D0 → ρ−µ+νµ are selected from the tracks and showers
which have not been used in the tag reconstruction. The
ρ− candidates are reconstructed via the ρ− → π−π0

decay. The selection criteria of π− and π0 candidates are
the same as those used in the ST selection. The invariant
mass of the π−π0 candidate is required to be within
(0.625, 0.925)GeV/c2. To suppress the background from
hadronic D0(+) decays, it is required that there is no
additional charged track or π0 except for those used to
form the signal and ST candidates.

The combined dE/dx, TOF, and EMC information is
used to identify the muon candidates. The combined
confidence levels for various particle hypotheses are
calculated. Charged tracks are identified as muons if
the confidence level for the muon hypothesis is larger
than 0.001 and also larger than those of the electron
and kaon hypotheses. To reduce misidentification of
hadrons as muons, the deposited energy in the EMC of
the muon candidate (Eµ,EMC) is required to be in the
range (0.125, 0.275)GeV.

The signal yield of the D0 → ρ−µ+νµ decay is
determined by a kinematic quantity defined as M2

miss ≡
E2

miss/c
4 − |~pmiss|

2/c2, which is expected to peak around
zero for correctly reconstructed signal events. Here,
Emiss ≡ Ebeam−Eρ− −Eµ+ and ~pmiss ≡ ~pD0 − ~pρ− − ~pµ+

are the missing energy and momentum of the DT event
in the e+e− center-of-mass frame, in which Eρ− (µ+) and
~pρ− (µ+) are the energy and momentum of the ρ− (µ+)
candidates. The M2

miss resolution is improved using

~pD0 ≡ −~̂pD̄0 ·
√

E2
beam/c

2 −m2
D0c2, where ~̂pD̄0 is the unit

vector in the momentum direction of the ST D̄0 and mD0

is the D0 nominal mass [35].

The selected sample is contaminated by background
events with correctly reconstructed ST mesons but
mis-reconstructed signal decays which can peak in
the M2

miss distribution. In order to reject such
peaking background from the hadronic decays D0 →
K0

S(→ π0π0)π+π− and D0 → K0
S(→ π+π−)π0(π0),

the mass recoiling against the D̄0π+
µ→ππ

− system
and the invariant mass of the π+

µ→ππ
− combination

are required to be outside (0.458, 0.538)GeV/c2 and
(0.468, 0.528)GeV/c2, respectively, where π+

µ→π denotes
a track identified as a muon candidate whose mass has
been replaced by the π+ mass. To reduce the peaking
background from D0 → π+π−π0, the invariant mass of
the ρ−µ+ combination (Mρ−µ+) is required to be less
than 1.5 GeV/c2. To suppress the peaking background
from D0 → π+π−π0π0, the maximum energy of any
photon that is not used in the DT selection (Emax

extra γ)
is required to be less than 0.25 GeV. The remaining

peaking background events are mainly from D0 decays
into π+π−π0π0 final states, including D0 → K0

S(→
π0π0)π+π−, D0 → K0

S(→ π+π−)π0π0, D0 → K−(→
π−π0)π+π0, and D0 → π+π−π0π0|non-K . Since there
is little difference in their M2

miss shape, these four
components are combined together, and will be called
D0 → π+π−π0π0. The remaining background events
from D0 → K0

S(→ π+π−)π0, and D0 → π+π−π0 are
negligible and have been combined into the combinatorial
background in further analysis.

To suppress the background from D0 → K̄∗(892)−(→
K−π0)µ+νµ, the candidate events are further re-
quired not to be within the range |M2

missπ−→K−
| <

0.05 GeV2/c4, where M2
missπ−→K−

is the M2
miss value

calculated by replacing the mass of the charged pion
candidate with the kaon mass in the calculation ofM2

miss.

Figure 2 shows the M2
miss distribution of the accepted

DT events in data. The semileptonic decay yield is
obtained from an unbinned maximum likelihood fit to
the M2

miss distribution. In the fit, the semileptonic signal
is modeled by the MC-simulated shape convolved with
a Gaussian function describing differences in resolution
and calibration between data and MC simulation. The
parameters of this Gaussian function are fixed to the
values obtained from a similar fit to D0 → ρ−e+νe
candidate events. The peaking background of D0 →
π+π−π0π0 is modeled by the M2

miss shape derived from
the D0 → π+π−π0π0 control sample in data, in which
one π0 is removed and the π+ mass is replaced by the
µ+ mass. The non-peaking backgrounds, including the
contribution from wrongly reconstructed ST candidates,
are described by the MC-simulated shape obtained from
the inclusive MC sample. The yields of the signal,
peaking background, and non-peaking backgrounds are
free parameters in the fit. The fit result is also shown
in Fig. 2. From the fit, we obtain the signal yield of
D0 → ρ−µ+νµ to be NDT = 570 ± 40stat and the
yield of the peaking background of D0 → π+π−π0π0

to be 373 ± 36. The statistical significance, calculated
by

√

−2ln(L0/Lmax), is greater than 10σ. Here, Lmax

and L0 are the maximum likelihoods of the fits with
and without the signal component, respectively, and the
difference in the number of fit parameters is one.

The tag-related values N i
ST, ǫiST, and ǫiDT are

summarized in Table 1. The average efficiency of
detecting D0 → ρ−µ+νµ decays is εD0→ρ−µ+νµ =
(18.22±0.13stat)% which includes the branching fraction
of π0 → γγ. The kinematic distributions of the D0 →
ρ−µ+νµ candidate events agree well between data and
MC simulation.

Inserting NDT, εD0→ρ−µ+νµ , and N
tot
ST into Eq. (1), we

obtain

BD0→ρ−µ+νµ = (1.35± 0.09± 0.09)× 10−4,

where the first uncertainty is statistical and the second
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Table 1. The ST D̄0 yields in data (N i
ST), the ST efficiencies

(ǫiST) and the DT efficiencies (ǫiDT). The uncertainties are
statistical only.

D̄0 mode i N i
ST ǫiST (%) ǫiDT (%)

K+π− 516 971± 746 64.28± 0.09 12.87± 0.11
K+π−π0 1 099 361± 1327 36.35± 0.04 6.95± 0.08

K+π−π−π+ 704 677± 1094 40.26± 0.07 6.25± 0.08

is systematic as discussed below.

In the branching fraction measurement with the DT
method, most uncertainties related to the ST selection
cancel. Systematic uncertainties arise from the following

sources. The uncertainty in the total yield of ST D̄0

mesons has been studied in Refs. [19, 20, 44] and is
0.5%. The systematic uncertainties originating from
the tracking and PID efficiencies of π± are 0.3% and
0.2% per pion, respectively, based on an analysis of DT
DD̄ hadronic events [45]. The muon tracking and PID
efficiencies are studied by analyzing e+e− → γµ+µ−

events. Here, the muon identification efficiencies include
the Eµ,EMC requirement. Using this control sample,
data-MC differences are studied in the two-dimensional
momentum versus cos θ plane. We re-weight using
these data-MC differences, accounting for the different
distribution of events in these two variables for the
D0 → ρ−µ+νµ signal decays. Systematic uncertainties
are obtained as the integral over the re-weighted two-
dimensional distribution, giving 0.2% and 0.2% per muon
for the muon tracking and PID efficiencies, respectively.
The uncertainty of the π0 reconstruction is studied with
DT DD̄ hadronic decays of D0 → K−π+, K−π+π+π−

versus D̄0 → K+π−π0, K0
Sπ

0 [19, 44] and is found
to be 0.6%. The uncertainty of the combined Emax

extra γ

and Nextra π0 requirements is estimated to be 1.3% by
analyzing the DT candidate events of D0 → π−π0e+νe.
The uncertainty of the M2

miss fit is found to be 6.6%
by examining the branching fraction changes with an
alternative signal shape without Gaussian smearing
of the MC-simulated signal shape (0.9%), an MC-
simulated shape of the peaking background of D0 →
π+π−π0π0 (5.3%), and combinatorial background shapes
after varying the quoted branching fractions by ±1σ
for the two main combinatorial components of D0 →
K0

Sπ
+π−π0 and D0 → K∗(892)−µ+νµ (3.8%). The

uncertainty arising from the finite MC statistics used
to determine the efficiencies is 0.7%. The uncertainty
due to the signal MC model is 0.3%, determined by the
difference between our nominal DT efficiency and that
determined by varying the input form factors by ±1σ.
Systematic uncertainties from other selection criteria are
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found to be negligible. Adding these uncertainties in
quadrature yields a total systematic uncertainty of 6.8%.
The systematic uncertainties are summarized in Table 2.

Table 2. Relative systematic uncertainties in the branching
fraction measurement.

Source Uncertainty (%)
N tot

ST 0.5
π− tracking 0.3
π− PID 0.2
µ+ tracking 0.2
µ+ PID 0.2
π0 reconstruction 0.6
Emax

extra γ and Nextraπ0 requirements 1.3
M2

miss fit 6.6
MC statistics 0.7
MC model 0.3
Total 6.8

In summary, the semileptonic decay D0 → ρ−µ+νµ
has been observed for the first time. The absolute
branching fraction of this decay is determined to be
BD0→ρ−µ+νµ = (1.35± 0.09stat ± 0.09syst)× 10−3. Table
3 shows comparisons of the measured and predicted
branching fractions for D0 → ρ−µ+νµ. Using the
world average value of BD0→ρ−e+νe = (1.50 ± 0.12) ×
10−3 [35], we obtain the branching fraction ratio Rµ/e =
BD0→ρ−µ+νe/BD0→ρ−e+νe = 0.90 ± 0.11. This result
agrees with the SM predictions 0.93-0.96 [24, 26–30].
Our result is consistent with LFU in D0 → ρ−ℓ+νℓ
decays. Using the branching fraction predicted in
Ref. [25], which is closest to the measured value, we
obtain |Vcd| = 0.204± 0.007stat ± 0.007syst ± 0.014theory.
The obtained value of |Vcd| is consistent with the results
measured with other processes [22, 54–57] and is a
valuable complementary input to test the unitarity of
the CKM matrix. Combining the world averages of
BD+→ρ0µ+νµ , τD0 , and τD+ [35], we determine Rρ,µ

IS =
0.71 ± 0.14. This ratio deviates from unity based
on isospin symmetry at the level of 2.1σ. Improved
measurements of D0 → ρ−µ+νµ and D+ → ρ0µ+νµ with
larger data samples [58, 59] in the near future will be
crucial to clarify this tension.
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