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Abstract
Dynamic imaging of landmark organelles, such as nuclei, cell membrane, nuclear 
envelope, and lipid droplets enables image-based phenotyping of functional states of 
cells. Multispectral fluorescent imaging of landmark organelles requires labor-intensive 
labeling, limits throughput, and compromises cell health. Virtual staining of label-free 
images with deep neural networks is an emerging solution for this problem. Multiplexed 
imaging of cellular landmarks from scattered light and subsequent demultiplexing with 
virtual staining saves the light spectrum for imaging additional molecular reporters, 
photomanipulation, or other tasks. Published approaches for virtual staining of landmark 
organelles are fragile in the presence of nuisance variations in imaging, culture 
conditions, and cell types. This paper reports model training protocols for virtual staining 
of nuclei and membranes robust to label-free imaging parameters, cell states, and cell 
types. We developed a flexible and scalable convolutional architecture, named UNeXt2, 
for supervised training and self-supervised pre-training. The strategies we report here 
enable robust virtual staining of nuclei and cell membranes in multiple cell types, 
including neuromasts of zebrafish, across a range of imaging conditions. We assess the 
models by comparing the intensity, segmentations, and application-specific 
measurements obtained from virtually stained and experimentally stained nuclei and 
membranes. The models rescue the missing label, non-uniform expression of labels, 
and photobleaching. We share three pre-trained models, named VSCyto3D, VSCyto2D, 
and VSNeuromast, as well as  VisCy, a PyTorch-based pipeline for training, inference, 
and deployment that leverages the modern OME-Zarr format. 
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Introduction
Building predictive models of complex biological systems requires technologies to 
visualize and model the interactions among cells and organelles. Multiplexed dynamic 
imaging of organelles and cells is limited by trade-offs between spatial resolution, 
temporal resolution, number of channels, and photodamage. These trade-offs are 
compounded in high-throughput experiments that incorporate diverse perturbations and 
cell types. We illustrate these trade-offs with two problem spaces: A) Image-based 
phenotyping of the cell dynamics at single-cell resolution (1–4) requires multiplexed 
imaging of organelles, nuclei, and cell membranes over time and across perturbations. 
In this case, the multispectral fluorescent imaging of organelles, nuclei, and cell 
membranes limits the throughput. B) Understanding the mechanisms of emergence and 
homeostasis of cell types during the development of an organ, such as the zebrafish 
neuromast (5, 6), requires tracking individual cell types and developmental signals. 
Multiplexing fluorescent reporters of developmental signals, cell type, nuclei, and 
membrane without perturbing the development is challenging and engineering embryos 
with multiple reporters is labor-intensive. In both cases, the phototoxicity and 
photobleaching induced by imaging multiple channels limits the duration of experiments.

Correlative label-free and fluorescence imaging, combined with demultiplexing of 
cellular components with deep learning are emerging as a promising and widely useful 
solution to the problem of multiplex dynamic imaging and analysis (7–11). 3D 
quantitative phase imaging methods (8, 9, 12–15) encode the dry mass of several 
“landmark organelles” such as nuclei, cell membrane, nucleoli, nuclear envelope, and 
lipid droplets in a single channel with high accuracy. Quantitative polarization imaging 
methods encode alignment and orientation of ordered organelles such as cytoskeleton 
and can be multiplexed with phase imaging (8, 12, 16). Virtual staining is an image 
translation task that transforms the measurements of these physical properties into 
molecular labels of organelles. Virtual staining of quantitative label-free images can 
enable sensitive analysis of the organelle interactions without the need for laborious and 
error-prone human annotations of voxels in movies. In addition to the image-based 
phenotyping of cell dynamics, image translation is used for cross-modal image 
registration (7, 9), separating organelles labeled with the same fluorophore (17), and 
rapid 3D histology (18, 19). 

Published work on virtual staining of label-free images and separating organelles 
imaged with the same fluorophore implies that virtual staining can indeed relax the 
longstanding multiplexing bottleneck in dynamic imaging. Then, why is this approach 
not used more widely? The key bottleneck(7, 8, 11) is that virtual staining models do not 
generalize to imaging parameters, cell states, and cell types beyond the ones included 
in training data. In this paper, we tackle this challenge by reporting strategies to train 
generalist virtual staining models of nuclei and membranes that make them insensitive 
to the changes in imaging parameters irrelevant for image-based screens and sensitive 
to relevant parameters. More precisely, we train the models whose outputs are invariant 
relative to the nuisance changes in label-free input (e.g., noise, numerical aperture, 
phase contrast modality) and equivariant to important changes in label-free input (e.g., 
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magnification). We also report training protocols for few-shot generalization of the 
models to unseen developmental stages and cell types. 

Segmentation of nuclei and cells is a common first step in image-based phenotyping, 
including in the questions we mentioned above. Several generalist nuclei and cell 
membrane segmentation models have been reported with diverse architectures (20–23) 
and are used for the segmentation of nuclei and cells from fluorescence images. The 
majority of these models were not trained with high-resolution quantitative label-free 
imaging methods and do not generalize to these datasets. Fine-tuning these models for 
label-free images requires expensive human annotation. We show that the combination 
of generalist virtual staining with published generalist fluorescence segmentation 
models enables reliable single-cell analysis.

As virtual staining or image translation models have been developed, a variety of 
convolution and attention-based architectures have been explored. There is an active 
debate whether transformer models that use attention operation (21–24) fundamentally 
outperform convolutional neural networks that rely on the inductive bias of shift 
equivariance. Systematic comparisons suggest that convolutional models perform as 
well as transformer models (24, 25) when large compute budget is spent, and 
outperform the transformer models when moderate compute budget is spent. In this 
study, we use a purely convolutional architecture that draws on the design principles of 
transformer models. Our choice of architecture is inspired by U-Net (26), ConvNeXt v2 
(27, 28) and SparK (29). 

This paper makes the following specific contributions: a) data augmentation strategies 
inspired by the physics of image formation, b) training protocols that improve the 
generalization of the virtual staining models, c)  UNeXt2, an efficient image translation 
architecture inspired by U-Net, ConvNeXt v2, and SparK, d) trained models for virtual 
staining of nuclei and membrane from widely deployable zernike phase contrast or 
quantitative phase contrast data, and e) a permissively licensed pythonic pipeline, 
named VisCy (30), for model training, inference, and evaluation that implements 
strategies reported here and uses a modern image format standard, OME-Zarr (31, 32), 
as input. We assess the gains in performance due to architectural refinement, 
augmentation strategies, and training protocols using a suite of metrics that include 
regression metrics, instance segmentation metrics, and application-specific metrics 
relevant to the two questions mentioned above. 

The results are organized as follows: We first summarize the model architecture and 
metrics for robust virtual staining. Second, we demonstrate the model's invariance to 
nuisance imaging parameters and equivariance to magnification in a specific cell type. 
We then show a fine-tuning strategy for long-term imaging experiments typical of 
developmental biology. Last, we demonstrate a pre-training/fine-tuning paradigm for 
generalizing virtual staining to new cell types.  

3



Results
Models and metrics for robust virtual staining
Virtual staining models are trained using paired label-free and fluorescence images 
(Figure 1A, orange and blue arrows). Once a model is trained, only the label-free input  
is needed for inference (Figure 1A, orange arrows). This paper presents models trained 
with an inexpensive quantitative phase imaging modality (phase from defocus) as their 
input, which can be implemented on any motorized widefield microscope. This 
straightforward computational imaging technique involves acquiring a z-stack in 
brightfield and reconstructing phase density using an image formation model that 
relates the 3D intensity distribution with the specimen's scattering potential (8, 33, 34). 

Design choices from UNet (26), convNeXt v2 (28), and SparK (29) architectures were 
integrated to develop an efficient and scalable architecture, named UNeXt2 (Figure 1A).  
UNeXt2 implements a projection module in the stem and head of the network that 
provides a flexible choice of the number of slices in the input stacks and output stacks, 
enabling 2D, 2.5D, and 3D image translation(8) with the same architecture. The body of 
the network is a UNet-like hierarchical encoder and decoder with skip connections that 
learns a high-resolution mapping between input and output. The UNeXt2 architecture 
provides 15x more learnable parameters for 3D image translation than our previously 
published 2.5D UNet at the same computational cost (Table 1). The efficiency gains are 
even more significant when compared to 3D UNet. This approach enables the allocation 
of the available computing budget to train moderate-sized models faster or to train more 
expressive models that generalize to new imaging conditions and cell types. The 
models trained for joint prediction of nuclei and membrane are slightly more accurate 
than models trained for prediction of nuclei alone (compare metrics shown in Table 1). 
The choice of layers, blocks, and the loss function are described in Methods and Table 
2.

This paper focuses on three models for joint virtual staining of nuclei and membrane 
(Figure 1B) that address distinct use cases: analyzing cell states in HEK293T cells from 
the OpenCell library (VSCyto3D), 3D virtual staining of neuromasts for analyzing cell 
growth and death during development (VSNeuromast), and 2D virtual staining for high 
throughput screens across multiple cell types, HEK293T, A549, BJ-5ta (VSCyto2D).  In 
all of these applications, virtual staining and generalist segmentation models are used in 
tandem to segment the nuclei and cells from label-free images. The phase 
measurements and complementary fluorescence sensors are then used for quantitative 
analysis of functional states of cells with single-cell resolution (Figure 1A, single-cell 
phenotyping).

The experimentally and virtually stained nuclei and cell membrane are segmented with 
Cellpose (see Methods, Figure S1). The Cellpose model requires significant fine-tuning 
with label-free images but works well with virtually stained images of nuclei and cell 
membrane, primarily because the training set of Cellpose included only classical 
Zernike phase contrast (35) and fluorescence data. As can be seen from images in 
Figure 1B, virtually stained images are intrinsically denoised because the models 
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cannot learn to predict random noise. This feature obviates the need to train models 
that are robust to noise, such as Cellpose3 (21). Joint virtual staining of nuclei and 
membranes enables more accurate cell segmentation (20).

The performance of the virtual staining models is assessed with the regression metrics 
(Pearson correlation coefficient, PCC) and instance segmentation metrics (average 
precision, AP) between experimentally stained images and virtually stained images.  
Due to the variations in experimental labeling and the need to fine-tune Cellpose 
models to new cell shapes, we cannot rely on experimental fluorescence images and 
their segmentations obtained with Cellpose as absolute ground truth. For example, it is 
challenging to segment boundaries of BJ-5ta cells at low magnifications (Figure 1B, 
Figure S1), because they have diverse shapes and grow on top of each other. 
Therefore, this paper takes the approach of first comparing the experimental and 
virtually stained images and their segmentations, and then, quantifying the observations 
with metrics. The model refinement and hyperparameter optimization are guided by 
application-driven metrics such as cell size of cultured cells and nuclei count in 
neuromasts (Figure 1C), in addition to regression and segmentation metrics.

VSCyto3D and VSNeuromast are trained in a supervised fashion using UNeXt2 
architecture and mixed loss. VSNeuromast is fine-tuned to new developmental stages 
using sparsely sampled time series of label-free and fluorescence volumes. VSCyto2D 
model is trained with a pre-training/fine-tuning paradigm common for language and 
vision transformers. Subsequent results describe each of these training protocols and 
our findings on the regime of generalization of the resulting models.

Virtual staining robust to imaging parameters
Nuisance variations in label-free images often degrade the performance of virtual 
staining models. In this section, we explore preprocessing, data augmentation, and 
sampling strategies to train virtual staining models robust to variations in the label-free 
contrast, resulting in the VSCyto3D model.

Deconvolution of raw intensities is an effective preprocessing step to remove some of 
the nuisance variations in the contrast, such as non-uniform illumination, and to improve 
contrast of biological structures in the image data. As shown in Figure 2A,  
deconvolution of phase density (Phase) from brightfield (BF) data (8, 33) and 
deconvolution of fluorescence density (FL density) from raw fluorescence (FL) improves 
the contrast for organelles, which are typically encoded in the middle spatial frequencies 
of the passband of the microscope. The restoration of phase density from raw 
intensities enable quantitative interpretation of the dry mass of the cells. In brightfield 
images, dense structures are transparent in focus, and brighter or darker relative to the 
background when out of focus. In the deconvolved phase density images, the contrast 
is more uniform (Figure 2A). Deconvolution also removes slowly varying intensity and 
phase variations that typically arise due to non-uniform illumination or meniscus of fluid 
that forms in imaging chambers. 

Four virtual staining models that translate to and from combinations of raw and 
deconvolved images were trained using UNeXt2 architecture (Figure S2)  as shown in 
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Figure 2A.  The model trained to predict fluorescence density from phase density leads 
to the sharpest predictions of nuclei and membrane. This is reflected in higher average 
precision (AP) and higher AP at the IoU of 0.5 (AP@0.5) between the instance 
segmentations of nuclei obtained from fluorescence density and predictions of virtual 
staining models (Figure S3). Interestingly, the deconvolution causes a drop in Pearson 
correlation coefficient (PCC) between virtually stained and fluorescence density images, 
because the virtually stained fluorescence is inherently smooth (Figure S3). The 
smoothing enables robust segmentation of landmark organelles in the presence of 
noise, but is detrimental for virtual staining of structures close to the resolution limit of 
the microscope. The improvement in segmentation metric, but worsening of regression 
metric due to deconvolution of data illustrates the need for nuanced interpretation of the 
metrics.

Data augmentations that account for the formation of natural and medical images have 
been important for robust representation learning (36) and segmentation (37). We 
reasoned that training data should be augmented with spatial and intensity filters 
inspired by the image formation of microscopes to make the predictions of our models 
invariant to nuisance variations in imaging conditions, e.g., exposure, noise, and the 
size of the illumination aperture. Figure 2B illustrates the images without and with such 
spatial and intensity augmentations (Methods). The predictions (Figure 2B, virtual 
staining with augmnetations) and segmentations (Figure S4) across the test dataset 
become invariant to variations in imaging parameters as we incorporate spatial and 
intensity augmentations inspired by image formation. As expected, the scaling 
augmentations make the model equivariant to magnification.

Fluorescent labeling is stochastic, especially when cells are engineered to express 
multiple fluorescent tags (38). Sampling the patches from the training data in proportion 
to the degree of labeling makes the models robust to partial and uneven labeling as 
shown in Figure 2B (white box). In fact, the VSCyto3D model rescued the nuclear stain 
in the fields of view from the test dataset (Figure S5) where many cells were missing the 
nuclear stain. Comparison of the 3D distribution of experimentally and virtually stained 
nuclei and membrane in a through focus movie (Video 1) shows that virtual staining 
improves the uniformity of labeling of cell membrane.

We also explore if the label-free input images can be simulated to mimic acquisition with 
a different light path, which transfer less information than the light path with which the 
training data was acquired.  Filters informed by image formation were included in the 
augmentation pipeline for input data to simulate the data acquisition with different light 
paths. This strategy enabled generalization of VSCyto3D model to Zernike phase 
contrast images (Figure 2C) not seen during the training. The raw fluorescence images 
of labeled nuclei and membranes were acquired with the Zernike phase contrast (PhC) 
objective were significantly blurrier and noisier (Figure 2C, raw fluorescence) than those 
acquired with the widefield objective, due to the phase ring specific to the PhC objective 
that absorbs and filters fluorescence emission. Interestingly, virtually stained nuclei and 
membranes are sharper (Figure 2C, virtual staining with augmentation), and therefore 
lead to sharper instance segmentations of nuclei and membranes (Figure S6). In other 
words, the augmentations we devised expanded the input image space to include 
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Zernike phase contrast-like images, while constraining the space of possible output 
images to sharp fluorescence density images. This strategy also enabled synthesis of 
training datasets at 20x magnification for training VSCyto2D model (Figure 1B, 
Methods). 

The degree of perturbation to which the model is robust was assessed by simulating the 
blur and contrast stretch in the input image. The VSCyto3D model performs well, even 
when the images show significant blur and contrast variation (Figure S7). This implies 
that the model is robust to variations in numerical aperture that modulate the resolution 
and contrast of a phase image. In order to spot-check that the VSCyto3D model learns 
a meaningful mapping between imaging modalities, we visualize the feature maps 
(Methods - Model visualization) at each level of encoder and decoder (Figure S8) for a 
randomly chosen test image. The boundaries of cells and nuclei can be identified at 
higher levels of abstraction in the encoder and the decoder.

These results demonstrate a training protocol for robust virtual staining that consists of 
acquiring training data at the highest possible resolution, deconvolving it with an image 
formation model, augmenting with filters to mimic the changes in contrast and 
resolution, and sampling it in proportion to the degree of labeling. 

Virtual staining in developing 3D organs
The shape space of developing or differentiating cells evolves significantly and is often 
related to cell state and identity. For example, the cells that form the neuromasts of the 
zebrafish lateral line exhibit complex three-dimensional shapes and textures that 
change throughout their development (5, 6). Using this organ as a model system, we 
explore an economical strategy to generalize 3D virtual staining models that can 
capture the complex architecture of the neuromast and the shape changes that arise 
during its development. Moreover, we show that this model can deal with the additional 
aberrations and imaging challenges characteristic of in-vivo time-lapse experiments.

VSNeuromast model is trained with UNeXt2 architecture with 21 z-slices as input and 
output (Figure 1, Figure S9) following the training protocol described for VSCyto3D 
model. The model is first trained with data acquired on the widefield fluorescence 
microscope at two developmental stages (3dpf and 6.5dpf, dpf = days post fertilization). 

When the model was used to predict nuclei and membrane at 4 dpf and compared with 
confocal images of nuclei and membrane, no hallucinations were noticed, but the 
predictions were blurry (Figure 3A, row: virtual staining without fine-tuning). Images at 
4dpf are slightly out of the distribution of the training data acquired at 3dpf and 6.5dpf. 

An economical strategy for generalization of virtual staining across developmental time 
without the risk of hallucinations is to fine-tune a pre-trained model with coarsely 
sampled pairs of label-free and fluorescence data. With this strategy, nuclei and cells 
can be tracked at high temporal resolution with phase imaging and the model’s 
accuracy can be continuously calibrated. This approach can reduce the photodamage, 
enabling faster and longer imaging of developmental dynamics. To assess the viability 
of this approach, the movie of neuromasts imaged at 4dpf is subsampled by the factor 
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of 1/12 to create a fine-tuning training set. The fine-tuning workflow is described in 
Methods and Figure S10.  Visualization of predictions on a neuromast from the 
validation set (Video 2) illustrates how blurry predictions of the pre-trained model are 
sharpened during fine-tuning.  

The fine-tuned model is more accurate (Figure 3A, row: fine-tuned virtual staining). As 
shown in Figure 3B, fine-tuning improves the PCC between the virtually stained nuclei 
and membrane and experimentally stained nuclei and membrane. The fine-tuned model 
enables robust virtual staining of nuclei and membrane in 3D and over time as seen 
from the comparison of experimental and virtually stained neuromast in Video 3. 

The virtually stained nuclei show a more uniform intensity distribution than the 
experimentally stained nuclei as seen from Figure 3A and Figure 3C.  The dimmer 
nuclei in the fluorescence density image are missed by the segmentation model but are 
rescued by virtual staining (Video 4). A comparison of the mean cell count over time 
obtained from fluorescently labeled and virtually stained nuclei of five lateral line 
neuromasts corroborates the rescue (Figure 3B, cell count, green curve vs blue curve) 
of dim nuclei seen in Video 4 and Figure 3C. A comparison of instance segmentation 
from experimentally and virtually stained membrane shows less pronounced, yet 
measurable, rescue of cells by virtual staining (Figure 3B, cell count, magenta curve vs 
orange curve). In both experimental and virtually stained neuromasts, we notice 
extraneous cell segmentations at the edge of neuromasts. We anticipate filtering these 
extraneous segmentations via tracking.  

The mean intensity of each segmented cell’s nuclei and membrane were compared 
(Figure 3D) to assess whether the model can rescue photobleaching. The experimental 
membrane channel shows clear photobleaching. On the other hand, the photobleaching 
is measurably corrected by the virtual staining model.  Thus, substituting an 
experimental stain with a virtual stain can reduce photobleaching/photodamage. 

When the VSNeuromast model was used for inference across zebrafish, it led to the 
hallucination of cells around the yolk, because the size and texture of these cells 
resemble cells of neuromast. However, these cells can be easily filtered in 
post-processing as shown in Figure S11.

The feature maps learned by the encoder and decoder of the VSNeuromast model were 
visualized to assess the transformation learned by the model (Methods). The model 
indeed represents shapes of nuclei, membrane, and neuromast as seen from the 
principal components of the feature maps shown in Figure S12 for an example input 
image of neuromast.

Self-supervised pre-training for few-shot generalization
The results above demonstrate training protocols for generalizing the virtual staining 
models for a given cell type to new imaging conditions and in a developing organ. Here, 
we discuss generalization of virtual staining models to diverse cell types of interest in 
image-based drug screens. 
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Virtual staining can accelerate single-cell phenotyping with diverse cell types, but the 
need to collect paired training data of sufficient diversity is often challenging. For 
example, consistent labeling of cell membrane is currently practical only with genetically 
expressed peptides (e.g., CAAX) that localize to cell membrane. Engineering the cells 
to label cell membranes and other landmark organelles is easy in transformed cell lines, 
but challenging in sensitive cell lines that more accurately represent human biology.  
Since the shapes of several landmark organelles are consistent across cell types, we 
reasoned that employing the pre-training/fine-tuning paradigm that is common in 
language and vision modeling can enable few-shot generalization to a new cell type. 

Figure 4A-C illustrates a self-supervised pre-training and supervised fine-tuning protocol 
with one cell type (HEK293T). The phase images are randomly masked, and the 
unmasked pixels are used to predict the masked pixels in each training patch (Methods, 
Figure 4A), following the fully convolutional masked autoencoder (FCMAE) protocol 
reported for image classification (28).   The computational graphs of the models used 
for pre-training and fine-tuning are shown in Figure S13.  The virtually stained images in 
Figure 4B show that the pre-training/fine-tuning protocol slightly improves the visual 
sharpness of predicted images. As shown earlier (Figure S5), some of the fields of view 
had missing nuclei labels. These fields of view were proofread and segmentation and 
regression metrics (Figure 4C) were computed from virtually stained and experimental 
fluorescence images. These metrics show that the models pre-trained on label-free 
images with masked autoencoder, and fine-tuned on paired data are as accurate as 
models trained from scratch. 

Figure 4D illustrates a pre-training/fine-tuning protocol for few-shot generalization to a 
new cell type. The model is pre-trained in two steps: 1) The encoder and decoder 
weights are optimized with just phase images of HEK293T and A549 cells using the 
masked autoencoding task shown in Figure 4A, 2)  The weights are transferred to a 
virtual staining model that is pre-trained to predict fluorescent nuclei and membrane 
using HEK293T and A549 cells. After the pre-training,  the  model is fine-tuned with 
data acquired with a new cell type (BJ-5ta, fibroblast) that has a distinct morphology. 

Video 5 shows that the model pre-trained with HEK293T and A549 datasets generalizes 
well to diverse cell shapes of A549 cells observed throughout the cell cycle. The images 
(Figure 4E) and segmentations (Figure S14) show that the pre-trained model after being 
fine-tuned with 6 FOVs performs as well as the model trained from scratch on with ~100 
FOVs. Visualization of the evolution of the predictions from the validation set (Video 6) 
for the models trained with different training protocols are illustrated in Figure 4D, 
showing that pre-trained models produce correct predictions from the first epoch. 
Comparing the segmentation metrics for nuclei and membrane as a function of the 
number of training FOVs (Figure 4F) confirms that pre-trained/fine-tuned models scale 
better, i.e., generate more accurate predictions, relative to the models trained from 
scratch.   

Finally, we visualize the feature maps of the models to assess the effect of different 
training protocols. We find that the model pre-trained on phase images (Figure S15 , 
column 3, rows: encoder stages) learns a more regular representation of cell 
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boundaries than the models trained on just the virtual staining task (Figure S15, 
columns 1 and 2, rows: encoder stages). 

Taken together, the above results establish a training protocol for generalizing virtual 
staining models to new cell types. 

Discussion and conclusion
The results of this study demonstrate new strategies for virtual staining of cellular 
landmarks. By integrating the design principles of UNet and ConvNeXt v2, the UNeXt2 
model achieves high accuracy while reducing the computational cost relative to the 
earlier models, such as the 2.5D UNet. The UNeXt2 architecture’s scalable and efficient 
design enables measurable improvement in virtually staining nuclei and membranes 
across diverse cell types and imaging conditions. 

We report physics-informed preprocessing and data augmentations to improve the 
model's robustness to variations in imaging conditions, including unseen label-free 
imaging modality. These augmentations make the model robust to nuisance factors 
such as non-uniform illumination and changes in numerical aperture, ensuring the 
invariance of virtual staining results to these parameters. This robustness is particularly 
critical for practical image-based screens that integrate data from diverse microscopes 
with varying imaging conditions and optical aberrations. 

The fine-tuning of models on subsampled time series, as illustrated with the 
VSNeuromast model, provides a compelling strategy for generalizing virtual staining 
across different developmental stages. This method reduces the risk of hallucinations 
and photodamage, enabling more accurate and extended imaging of dynamic cellular 
processes. 

Finally, the paper reports a pre-training/fine-tuning protocol for few-shot generalization 
to new cell types. This method leverages the consistency of organelle shapes across 
different cell types, significantly reducing the data requirements for training robust virtual 
staining models. The performance improvement achieved by pre-training with a masked 
autoencoding task followed by fine-tuning suggests a viable method for scaling virtual 
staining models to a broader range of biological samples.

We provide a diverse set of evaluation metrics, including regression metrics, instance 
segmentation metrics, and application-specific measurements to comprehensively 
evaluate the models’ performance. These metrics validate the accuracy and reliability of 
the virtual staining models, ensuring their applicability in real-world biological research.

Inspection of learned features confirms that the data augmentation strategies and 
training protocols described guide the model in learning a semantic mapping of cell 
structures between input and target imaging modalities. This capability is fundamental 
for the accurate virtual staining of cellular structures. We further illustrate failure modes 
and regime of validity of each of the three models reported here.
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Future work will focus on several key areas. First, simulations with image formation 
models may further generalize the models to other phase imaging modalities without the 
need to acquire new data. Second, the pre-training/fine-tuning strategy can be extended 
to train decoders for other landmark organelles, such as nucleoli and lipid droplets. 
Third, the pre-training strategy can be extended across developmental stages, enabling 
the generalization of the models to evolving biological systems. Fourth, extending the 
feature analysis to statistical methods that rely on the whole test dataset can enable 
interpretation and guide the development of new training protocols, architectural 
refinements, and hyperparameter optimization. Finally, the training protocols developed 
for virtual staining can be adapted for segmentation models, potentially leading to joint 
virtual staining and segmentation models that offer even greater generalizability and 
accuracy.

In conclusion, this study presents a robust and scalable approach to virtual staining of 
nuclei and cell membranes, significantly improving their generalizability. The UNeXt2 
architecture, combined with innovative data augmentation and pre-training strategies, 
enables accurate virtual staining across various cell types and imaging conditions. We 
hope that the release of these virtual staining models and the VisCy pipeline will 
facilitate the adoption and application of virtual staining techniques by the broader 
research community, thereby accelerating the mapping and understanding of dynamic 
cell systems.

Methods
Image acquisition and dataset curation
Human cell lines (HEK293T, A549, BJ-5ta)
HEK293T cells were labeled with H2B-mIFP and CAAX-mScarlet following the 
OpenCell protocol (39). Brightfield and fluorescence volumes of live HEK293T cells 
cultured in a 24-well plate. Training data were acquired on a wide-field fluorescence 
microscope (Leica Dmi8) with a 63x magnification, 1.3 NA glycerol-immersion objective. 
For testing robustness to different imaging conditions shown in Figure 2, additional 
volumes were imaged with a 40x magnification, 1.1 NA water-immersion objective, and 
a 100x magnification, 1.47 NA oil-immersion objective, at 0.25 µm Z-steps, for 96 
Z-slices. For testing generalization to the Zernike phase contrast modality, image 
volumes were acquired with a 40x magnification, 0.6 NA Ph2 air objective, at 0.4 µm 
Z-steps, for 58 Z-slices. The images were sampled on a camera with 6.5 µm pixel size 
and 2048x2048 sensor For training, the Z-slice corresponding to the coverslip was 
determined by maximizing the transverse mid-band power of the mScarlet fluorescence 
density channel, and the Z-slices ranging from -2 µm to +12.5 µm relative to the 
coverslip were kept. Volumes that did not contain this range were excluded from the 
training dataset. The training dataset contains 291 volumes. For testing robustness to 
imaging conditions, images were acquired on a different day with new cell cultures, and 
12 volumes were acquired for each condition.
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A549 and BJ-5ta cells were stained with Hoechst for nuclei and CellMask for plasma 
membrane. Brightfield and fluorescence volumes of live cells cultured in 12-well plates 
were acquired on a wide-field fluorescence microscope (Leica Dmi8) with a 20x 
magnification, 0.55 NA objective. The images were sampled on a camera with 6.5 µm 
pixel size and 2048 by 2048 pixel sensor size, at 1 µm Z-steps. The A549 dataset was 
split into 24 volumes for training and validation, and 7 volumes for testing. The BJ-5ta 
dataset was split into 138 volumes for training and validation, and 12 volumes for 
testing.

Zebrafish neuromasts
Following the approved IACUC protocols, this study utilizes transgenic zebrafish lines 
expressing she:H2B-EGFP and cldnb:lyn-mScarlet (40) to label the nucleus and cell 
membrane, respectively, of the neuromasts. The VSNeuromast model utilizes 
neuromasts collected from three developmental stages: 3, 6 and 6.5 dpf (days 
post-fertilization: dpf). The datasets are composed primarily of lateral line neuromasts 
resulting in a dataset with 273 total volumes (160 volumes from 3dpf, 57 from 6dpf and 
56 from 6.5dpf) with ZYX shape (107, 2048, 2048) or (35.3µm, 237.6µm, 237.6µm). The 
dataset was split 80/20 for training and validation respectively. Additionally, 6 
neuromasts from an acquisition from a different fish and day are used as test dataset. 
For each neuromast, a brightfield and two fluorescence channel stacks were acquired at 
Nikon PlanApo VC x63 1.2NA objective on an ASI RAMM through the same optical path 
using a Andor ZYLA-4.2P-USB3-W-2V4. Channels were well registered because they 
shared the same imaging path. The fluorescence stacks of labeled nuclei and cell 
membrane were used as target channels. 

The VSNeuromast model is fine-tuned for Figure 3 using the same transgenic line. Five 
lateral line neuromasts are imaged with an Olympus IX83 dual turret microscope using 
a 63x objective for fluorescence and label-free imaging every 5 minutes over a total of 
12hrs. The VT-iSIM system with a Hamamatsu Quest v1 C15550-20UP with 4.6 µm 
pixel size is used for the fluorescence imaging. The label-free imaging uses a custom 
imaging path built on the first level of the microscope body using a 200mm tube lens 
(Thorlabs TTL-200A MP) resulting in 66x effective magnification using a machine vision 
camera (BFS-U3-51S5M-C). The test dataset was acquired with temporal interval of 5 
minutes and the fine-tuning dataset is created by subsampling the timelapse by using 
the volumes acquired every hour. The fine-tuning datasets are split 80/20 into training 
and validation datasets.

Data conversion
All internal datasets are acquired in uncompressed lossless formats (i,e OME-TIFF and 
ND-TIFF) and converted to OME-Zarr using iohub (41), a unified python library to 
convert from most common bio-formats (i.e OME-TIFF, ND-TIFF, Micro-Manager TIFF 
sequences) and custom data formats to OME-Zarr.
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Deconvolution of phase density and fluorescence density
The reconstruction from brightfield and fluorescence stacks to phase density and 
fluorescence density are reconstructed with the recOrder library (42) using the 
respective imaging parameters. 

Registration
The label-free and fluorescence channels are registered with shrimPy (43). The 
resulting volumes are cropped to ZYX shape of (50, 2044, 2005) for the HEK293T 
Zernike phase contrast test dataset, (9, 2048, 2048) for A549, and (12, 2048, 2009) for 
BJ-5ta. The neuromast datasets acquired with the wide-field fluorescence microscope 
are registered to the phase density channel and cropped to (107, 1024, 1024). The 
datasets acquired in the iSIM setup are cropped to (81, 1024, 1024).

Model architecture
We use an asymmetric U-Net model with ConvNext v2 (28) blocks for both virtual 
staining and FCMAE pre-training. The original ConvNext v2 explored an asymmetric 
U-Net configuration for FCMAE pre-training and showed that it has identical fine-tuning 
performance on an image classification task. In the meantime, SparK (29) used 
ConvNext v1 blocks in the encoder and plain U-Net blocks in the decoder for its masked 
image modeling pre-training task. We use the ‘Tiny’ ConvNext v2 backbone in the 
encoder. For FCMAE pre-training, 1 ConvNext v2 block is employed per decoder stage. 
For virtual staining models, each decoder stage consists of 2 ConvNext v2 blocks.

Model training
Intensity statistics, including the mean, standard deviation, and median were calculated 
at the resolution of FOVs and at the resolution of whole dataset by subsampling each 
FOV using grid spacings of 32x32. These pre-computed metrics are then used to apply 
normalization transforms by subtracting the choice of median or mean and dividing by 
the interquartile range or standard deviation respectively. This enables z-scoring of the 
training data at the level of whole dataset, at the level of each FOV, and at the level of 
each patch (8), depending on the use case.

Training objectives
The mixed image reconstruction loss (44) is adapted as the training objective of virtual 
staining models: .  is the multi-scale 
structural similarity index (45) measured without downsampling along the depth 
dimension, and  is the L1 distance (mean absolute error). The virtual staining 
performance of different loss functions is compared in Table 2.

The mean square error (MSE) loss is used to pre-train the FCMAE models on label-free 
images.

Data Augmentations
The data augmentations are performed with transformations from MONAI (37).
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Spatial augmentation

MONAI transformation Parameters

Random scaling ±0.3 or ±0.5 in XY, and ±0.2 in Z.

Random rotation  ±π around the Z axis.

Random shearing ±0.05 in XY

Random XY flip only used for VSCyto2D

Intensity augmentations

MONAI transformation Parameters

Random contrast adjustment gamma range (0.8, 1.2)

Random intensity scaling ±0.5

Random Gaussian blur: sigma range (0.25, 0.75) in XY

Random Gaussian additive noise strength determined per dataset (sigma 0.3-5).

VSCyto3D
Normalization
For each channel in the HEK293T dataset, the image volume is subtracted by its 
dataset level median and divided by the dataset level interquartile range.

Training
Models are trained with a warmup-cosine-annealing schedule on 4 GPUs with the 
distributed data parallel (DDP) strategy. A mini-batch size of 32 and learning rate of 
0.0002 is used. Training and validation patch ZYX size is (5, 384, 384). For testing the 
effect of deconvolution (Figure 2B), models are trained for 100 epochs. For testing 
robustness to imaging conditions (Figure 2D), models are trained for 50 epochs.

VSCyto2D
Data pooling
Image volumes of HEK293T cells are downsampled from the 63x dataset with ZYX 
average pooling ratios of (9, 3, 3). For the VSCyto2D model reported in Figure 1, 
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training data are sampled from the downsampled HEK293T dataset, the A549 dataset, 
and the BJ-5ta dataset with equal weights.

Normalization
Each image volume is independently normalized before being used for model input. The 
phase channel is normalized to zero mean and unit standard deviation, and the 
fluorescence channels are normalized to zero median and unit interquartile range.

Pre-training
FCMAE pre-training with phase images is performed with a warmup-cosine-annealing 
schedule for 800 epochs on 4 GPUs with the DDP strategy and automatic mixed 
precision (AMP). A mini-batch size of 32 and learning rate of 0.0002 was used. Mask 
patch size is 32, and masking ratio is 0.5. Training and validation patch ZYX size is (5, 
256, 256).

Fine-tuning
For fine-tuning, the encoder weights are loaded from FCMAE pre-trained models when 
applicable. The models are then trained for the virtual staining task with the encoder 
weights frozen or trainable. Models are trained on 4 GPUs with the DDP strategy and 
AMP. Training and validation patch ZYX size is (5, 256, 256). For testing data scaling 
with BJ-5ta, models are trained with a constant learning rate of 0.0002. 6-FOV models 
are trained for 6400 epochs, 27-FOV models are trained for 1600 epochs, and 117-FOV 
models are trained for 400 epochs.

VSNeuromast
Data pooling
The data used in our methods is pooled from four OME-Zarr stores, which contain 
neuromasts from 3dpf, 6dpf, and 6.5dpf stages. These stores include both the whole 
field of view (FOV) and a center-cropped version focused on the neuromast. For the 
cropped FOVs, a weighted cropping technique is applied to ensure the inclusion of 
training patches containing the neuromast. Conversely, the uncropped dataset employs 
an unweighted cropping method to incorporate additional contextual information. A high 
content screening (HCS) dataloader was developed to sample equally from the multiple 
datasets with variable length.

In the fine-tuning step, the experimental fluorescence channels were registered to the 
phase density channel and required downsampling of the data by the factor of 2.1 to 
match the pixel size between the datasets used for pre-training and fine-tuning.

Normalization
This model normalizes the label-free channel per FOV by subtracting the median and 
interquartile range. 

Training
The models are trained with a warmup-cosine-annealing schedule on 4 GPUs with the 
distributed data-parallel (DDP) strategy. This model uses datasets from 3dpf and 
6-6.5dpf using mini-batch size of 6 from each dataset and learning rate of 0.002. 
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The VSNeuromast model is initially trained using ZYX patch size of (15,384,384) for 150 
epoch. The weights from this model are loaded to train a model that takes ZYX patch 
size of (21,384,384) to improve the Z prediction accuracy. Training and validation patch 
ZYX size is (21, 384, 384). This model is trained for 30 epochs.

Fine-tuning
The expression of nuclei and cell membrane labels in neuromast was equalized using a 
contrast adaptive histogram equalization (CLAHE) with a kernel size of [5,32,32] (z,y,x). 
The model is fine-tuned using the model’s checkpoint 
(‘neuromast_3n6dpf_21plane_v1_mixedloss_weightedcrop_hotstart_v1’) using prior 
patch sizes (21,384,384), learning rate 2e-4 with a warmup-cosine-annealing schedule 
on 4 GPUs with DDP strategy. The model is trained with 45 epochs. 

The fine-tuned model is used in all the neuromast figures. The fine-tune model 
generalizes to datasets using the same imaging setup the VSNeuromast model is 
trained on (Figure 1) and datasets acquired on iSIM setup described in Methods (Figure 
3).

Inference using trained models
For the 2D virtual staining model VSCyto2D, each slice is predicted separately in a 
sliding window fashion.

For the 3D virtual staining models (ie. VSCyto3D and VSNeuromast), a z-sliding window 
is used. The predictions from the overlapping windows are then average-blended.

Model evaluation
The correspondence between fluorescence and virtually stained nuclei and plasma 
membrane channels are measured with regression and segmentation metrics. We 
describe the segmentation models for each use case below. All segmentation models 
are also shared with the release of our pipeline, VisCy (Code and Model Availability).

VSCyto2D
Segmentation of fluorescence density images as well as virtual staining prediction is 
performed with the ‘nuclei’ (nuclei) and ‘cyto3’ (cells) models in Cellpose. For BJ-5ta, a 
fine-tuned ‘cyto3’ model (‘CP_20240530_060854‘) was used for cell segmentation. The 
nuclei segmentation target is corrected by a human annotator.

Pearson correlation coefficient (PCC) is computed between the virtual staining 
prediction and fluorescence density images. Average precision at IoU threshold of 0.5 
(AP@0.5) is computed between segmentation masks generated from virtual staining 
images and segmentation masks generated from fluorescence density images.

VSCyto3D
Segmentation of H2B-mIFP fluorescence density and virtually stained nuclei is 
performed with a fine-tuned Cellpose ‘nuclei’ model (‘CP_20220902_NuclFL’). The 
nuclei segmentation masks are corrected by a human annotator. Segmentation of cells 
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from CAAX-mScarlet fluorescence density and virtually stained plasma membrane is 
performed with the Cellpose ‘cyto3’ model. Due to loss of CAAX-mScarlet expression in 
some cells, positive phase density was blended with the CAAX-mScarlet fluorescence 
density to generate test segmentation targets. For the Zernike phase contrast test 
dataset, nuclei and cells are also segmented from the phase image using the Cellpose 
‘nuclei’ and ‘cyto3’ models, in addition to segmentation from experimental fluorescence 
images.

PCC is computed between the virtual staining prediction and fluorescence density 
images. AP@0.5 and mean average precision of IoU thresholds from 0.5 to 0.95 at 0.05 
interval (AP) is computed between segmentation masks generated from virtual staining 
images and segmentation masks generated from fluorescence density images. 

VSNeuromast
The nuclei and cell segmentations of fluorescence images are generated with fine-tuned 
3D Cellpose ‘nuclei’ model and from scratch using 19 manually corrected 
segmentations. The segmentations are human-corrected by using the napari-annotator 
plugin (https://github.com/bauerdavid/napari-nD-annotator) and morphological operators 
such as opening, closing, and dilation to remove artifacts. The nuclei segmentation 
model 'cellpose_Slices_decon_nuclei_nuclei_v7_2023_06_28_16_54' and the cell 
membrane segmentation model  
‘'cellpose_2Chan_scratch_membrane_2024_04_01_17_12_00’ are used for neuromast 
segmentation across all figures. 

The virtual staining models are evaluated by comparing the segmentations for 
fluorescence density and virtual staining predictions using Jaccard, Dice, and mean 
average precision (mAP) metrics at IoU thresholds of 0.5, 0.75, and 0.95. Additionally, 
PCC was computed between the prediction and the fluorescence density datasets. 

Cellpose Segmentation Parameters
The following parameters are used for segmenting the experimental fluorescence and 
virtual staining to evaluate the respective models.

VSCyto2D

Parameters/Cellpose 
pre-trained model

Nuclei Segmentation: 
‘nuclei’

Cell body segmentation:  
‘cyto3’ (HEK293T and 
A549) / 
‘CP_20240530_060854’ 
(BJ-5ta)

Diameter 0.0 0.0 / 150.0

Flow Threshold 0.4 0.4

Cell probability threshold 0.0 0.0

min_size 15 15
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VSCyto3D

Parameters/Cellpose 
pre-trained model

Nuclei Segmentation: 
‘CP_20220902_NuclFL’

Cell body segmentation: 
‘cyto3’

Diameter 0.0 200.0

Flow Threshold 0.4 0.4

Cell probability threshold 0.0 0.4

min_size 15 15

VSNeuromast

Parameters/Cellpose 
segmentation model

Nuclei Segmentation:
‘cellpose_Slices_decon_nucl
ei_nuclei_v7_2023_06_28_1
6_54`

Cell body segmentation: 
‘cellpose_2Chan_scratch_
2024_04_30_11_12_00’

Diameter 60.0 65.0

Flow Threshold 0.0 0.4

Cell probability threshold 0.0 0.0

min_size 8000 8000

Model visualization
Principal component analysis of learned features
Each XY pixel in the output of a convolutional stage is treated as a sample with channel 
dimensions and decomposed into 8 principal components. The top-3 principal 
components are normalized individually and rendered as RGB values for visualization.

Code and Model Availability
The virtual staining pipeline is implemented as part of an open-source Python package 
for single-cell phenotyping, named VisCy (a contraction of words ‘vision’ and ‘cell’). We 
use PyTorch (46) and PyTorch Lightning (47) as the training framework, MONAI (37) for 
data augmentation, and timm (48) for building blocks. Additionally, we implement 
custom I/O modules for reading and writing OME-Zarr stores during training and 
inference. The models referenced in the methods above are shared with releases of 
VisCy via GitHub (30).
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Data Availability
Illustrative test datasets are accessible from scripts in released versions of VisCy. We 
will share the training datasets via public archive (such as Bioimage Archive) as the 
review of this work progresses.
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Robust virtual staining:

(A) Schematic illustrating the training (blue arrows) and inference (orange arrows) 
processes of robust virtual staining models using UNeXt2 with physically informed data 
augmentations to enhance performance and generalizability. The models virtually stain 
nuclei and membranes, allowing for single-cell phenotyping without experimental 
staining. We utilize generalist segmentation models to segment virtually stained nuclei 
and membranes.

(B) Input phase images (top row), experimental fluorescence images of nuclei and 
membrane (middle row), and virtually stained nuclei and membrane (bottom row) using 
VSCyto3D (HEK293T cells), fine-tuned VSNeuromast (zebrafish neuromasts), and 
VSCyto2D (A549 and BJ-5ta cells). Virtually and experimentally stained nuclei and 
membranes are segmented using the same Cellpose model. The instance 
segmentations are compared using the average precision at IoU of 0.5 (AP@0.5). Scale 
bars: 25 µm.

(C) We rank and refine models based on application-specific metrics, in addition to 
instance segmentation metrics. (1) Morphological Measurements: We compare cell area 
in HEK293T cells measured with segmentation of experimentally and virtually stained 
membranes. (2) Nuclei Count: We compare the number of nuclei in neuromasts 
identified from experimentally and virtually stained nuclei over short and long 
developmental time windows. The plot shows the number of nuclei over one hour, 
measured every 5 minutes on 3 dpf fish.
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Figure 2

Deconvolution and data augmentation strategies make the VSCyto3D model 
robust to label-free imaging parameters: 

(A) Physics-based reconstructions enhance contrast for virtual staining. Top to bottom: 
label free input, fluorescence target, and virtual staining prediction. Models are trained 
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on pairs of raw or reconstructed label free and fluorescence contrast modes. Scale 
bars: 50 µm.

(B) Predictions of nuclei and membrane from phase image (1st row) using models 
trained without augmentations (3rd row) are inconsistent with experimental ground truth 
(2nd row), especially in the presence of noise (center column) or at a different 
magnification (right column). The predictions using the models trained using spatial and 
intensity augmentations (see text for details) are invariant to noise and equivariant with 
magnification. The white box in the in-distribution column highlights the rescue of the 
lost fluorescence label. The white box in the higher magnification column shows that the 
model with augmentations correctly predicts one large nucleus whereas the model 
trained without augmentation predicts two smaller nuclei. Scale bars: 50 µm.

(C) Data augmentation improves generalization to unseen modality. Virtual staining 
models were trained to predict fluorescence density from phase density and then used 
to predict nuclei and plasma membrane from Zernike phase contrast image (top left). 
The correlative raw fluorescence image (top right) shows low signal-to-noise ratio due to 
light loss in the phase contrast objective. Scale bars: 50 µm.
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Figure 3

Generalizing the VSNeuromast model across zebrafish development:

(A) Phase (1st row), experimentally stained nuclei and membrane (2nd row), and 
virtually stained nuclei and membrane using a model that was not fine-tuned (3rd row) 
and using a model that was fine-tuned on the subsampled movie (4th row) are shown. 
We show 3 samples from a 12-hour movie starting at 4 days post-fertilization (4 dpf) and 
microscope. The VSNeuromast model was fine-tuned with subsampled 4dpf movie 
(1/12 timepoints). Virtual staining rescues missing nuclei and provides a more accurate 
read-out of the cell count and their locations than experimental staining.  (Scale bar 
25um)

(B) Comparison of nuclear and membrane 3D segmentations predicted using the 
fine-tuned VSNeuromast Cellpose model. The same segmentation model was applied 
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consistently to fluorescence density and virtual staining volumes. The VSNeuromast 
and Cellpose segmentation combination predicts the cell counts with high accuracy. The 
model's performance was quantitatively assessed using Pearson correlation plots 
across five neuromasts from the lateral line, comparing both fluorescence density and 
virtual staining results for nuclei and membranes to highlight the precision of the 
fine-tuned model.

(C) Segmentation of nuclei and membranes using fine-tuned Cellpose model on 
experimental fluorescence and virtual staining. Virtual staining reduces over- and 
under-segmentations, enhancing accuracy compared to experimental fluorescence.

(D) Mean photobleaching curves across five neuromasts showing experimental 
fluorescence (left) and virtual staining (right) nuclei and membrane pairs. The shaded 
region indicates the variation in the mean intensity of nuclei in a given frame.
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Figure 4
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Few-shot generalization of the VSCyto2D model to new cell types:

(A) The encoder of UNeXt2 is pre-trained with a fully convolutional masked autoencoder 
(FCMAE) recipe to enable generalized feature encoding without paired data. The model 
can then be fine-tuned for virtual staining on a specific cell type.

(B) Virtual staining of nuclei and membrane in HEK293T using models trained from 
scratch or pre-trained (FCMAE) and then fine-tuned on HEK293T data. pre-training 
improves the high-frequency features in predictions. Scale bar: 50 µm. PCC: Pearson 
correlation coefficient. AP@0.5: average precision at IoU =0.5.

(C) The pre-training protocol has similar segmentation and regression performance for a 
single cell type.

(D) Flow chart of 3 training strategies to generalize the virtual staining model pre-trained 
with A549 and HEK293T cells to the BJ-5ta cell type with limited training samples. The 
bounding boxes indicate strategies: (blue) virtual staining pre-training from scratch with 
paired images of BJ-5ta; (orange) pre-training with paired images of HEK293T and 
A549, and fine-tuning with paired images of BJ-5ta; and (green) FCMAE pre-training 
with only the phase images of HEK293T and A549, virtual staining pre-training with 
images of HEK293T and A549, and fine-tuning with paired images of BJ-5ta. The 
pre-training steps initialize model weights in the encoder (FCMAE) and decoder (virtual 
staining) of UNeXt2.

(E)  Virtual staining images of nuclei and membrane in BJ-5ta using 3 models described 
in D. Performance scales with the increasing number of BJ-5ta FOVs used for 
fine-tuning. Scale bar: 50 µm.

(F) AP@0.5 of segmented nuclei and membrane as a function of the number of fields of 
view used for the test dataset used for training strategies shown in D. The pre-trained 
models show superior performance scaling relative to the number of  BJ-5ta FOVs used 
for fine-tuning. Pre-trained models fine-tuned with less data can match or outperform 
models trained with more data from scratch.
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Tables
Table 1

Model-
Z(in, out)

Prediction 
target

Training 
XY 

patch 
size 

(pixel)

Training 
epochs

Multiply
-Adds 

(G)

Params 
(M)

PCC 
(nuclei)

AP@0.5 
(nuclei)

2.5D 
UNet-
Z(5, 1)

Nuclei 512 100 1005.51 2.01 0.721 0.804

2.5D 
UNet-
Z(5, 1)

Nuclei and 
plasma 

membrane

512 100 1006.12 2.01 0.720 0.829

2.5D 
UNet-
Z(5, 1)

Nuclei and 
plasma 

membrane

384 50 1006.12 2.01 0.720 0.733

UNeXt2-
Z(5, 5)

Nuclei and 
plasma 

membrane

384 50 723.62 32.04 0.714 0.854

Comparison of the computational complexity, capacity, and performance of 
UNeXt2 models with previously published 2.5D UNet model:  We compare metrics 
of accuracy of regression (Pearson correlation coefficient, PCC) and instance 
segmentation (average precision at IoU threshold of 0.5, AP@0.5) of nuclei on the 
central slice of HEK293T images. The computational complexity is measured with the 
number of multiply-add operations during inference on ZYX input size (5, 2048, 2048) 
with batch size 1.  The model capacity is measured with the number of learnable 
parameters. Predicting both nuclei and membrane targets improves nuclei prediction 
with 2.5D UNet. UNeXt2 architecture provides higher learning capacity than 2.5D UNet 
architecture at similar computational complexity. Predictions with UNeXt2-Z(5,5) are 
shown in Figure 1.
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Table 2

Model-Z(in, out) Loss MSE 2D-SSIM mIOU AP AR

2.5D UNet-Z(5, 1) MSE 4.16 0.373 0.752 0.441 0.629

2.5D UNet-Z(5, 1) Mixed 3.86 0.513 0.794 0.533 0.655

UNeXt2-Z(5, 5) MSE 4.00 0.432 0.775 0.494 0.613

UNeXt2-Z(5, 5) Mixed 3.77 0.620 0.799 0.537 0.645

Comparison of the performance of models trained with 2 loss functions on the center 
slice of the HEK293T test dataset. The models trained with the mixed loss also have 
lower test MSE than models trained with the MSE loss.
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Supplementary Materials
Figure S1 

Examples of nuclei and cell segmentation from virtual stained images overlaid on 
the corresponding phase images.
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Figure S2

 The model architecture used to train VSCyto3D
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Figure S3

Deconvolution improves contrast of fine features for virtual staining:

(A) Comparison of contrast in brightfield (BF) and fluorescence (FL) images with the 
corresponding deconvolution of the phase density and fluorescence density. We trained 
four virtual staining models that translate between raw and deconvolved versions of 
label-free and fluorescence contrasts (indicated by arrows). ​​Scale bars: 10 µm.

(B) The average precision (AP) and average precision at IoU =0.5 (AP@0.5) for nuclei 
segmented from experimentally and virtual stained images are shown. Virtually stained 
images were predicted with four models indicated on the y-axis. Instance segmentations 
of experimentally stained nuclei were proofread manually. Deconvolution of BF and FL 
volumes leads to more accurate segmentation of nuclei. We also assess how the phase 
and fluorescence density, deconvolved from brightfield (BF) and fluorescence (FL) 
volumes, respectively, affect the Pearson cross-correlation (PCC).
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Figure S4 

Augmentation-induced robustness in virtual staining improves segmentation of 
nuclei and cells: 

(A) Segmentations from virtual staining predictions of VSCyto3D models trained without 
augmentation are inaccurate when noise is added to the phase image or when phase 
image at a different magnification is used for inference. The segmentations are more 
reliable when using augmentations as described in Methods. Scale bars: 50 µm.

(B) Test FOVs were acquired with diverse imaging parameters (see the legend).  Virtual 
staining models trained without augmentation (group: none), with spatial augmentation 
(group: spatial), and with spatial and intensity augmentations (group: all) were used to 
virtually stain nuclei and membranes in test FOVs. We compare the AP@0.5 between 
instance segmentations from virtually stained nuclei and proofread instance 
segmentations from experimentally acquired nuclei images. The solid lines in the box 
plot indicate the median and interquartile ranges of AP@0.5 across all FOVs in the test 
set.  The predictions of models become invariant to changes in the imaging parameters 
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as more data augmentations are used during training.  AP@0.5 for membrane 
segmentation also indicates that the augmentations make the membrane predictions 
invariant to imaging parameters.

(C) AP@0.5 for test FOVs acquired at the same (63x), higher (100x), and lower (40x) 
magnifications relative to the training dataset, when no scaling augmentation (group: 
none), and increasing scaling augmentation (groups: ±30%, ±50%) is used when 
training models for joint virtual staining of nuclei and membrane. The metrics for both 
nuclei and membranes indicate that the scaling augmentations make the predictions 
equivariant to magnification.
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Figure S5 

Virtual staining from phase rescues missing fluorescence labels: Experimentally 
and virtually stained in HEK293T cells nuclei and membrane for 75% aperture and 
corresponding segmentations. Scale bars: 50 µm.
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Figure S6 

Cell and nuclei segmentation from Zernike phase contrast, raw fluorescence, and virtual 
staining images. Augmentation improves the virtual staining prediction for segmentation.
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Figure S7

VSCyto3D model’s robustness to perturbations in input: Simulated image 
perturbations are applied to the input phase image. The virtual staining prediction is 
robust to a certain range of input perturbation and fails when the deviation is too large 
(σ=10 pixels). For example, when a very strong Gaussian blur is applied to the input, 
the model cannot differentiate the in-focus slice from a defocus slice of the imaging 
volume, and predicts a blurry image. Scale bars: 50 µm. 
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Figure S8

Visualization of features learned by VSCyto3D: Input, prediction, and intermediate 
feature maps of the 3DVSCyto (Figure 2B ‘deconvolved -> deconvolved’) model trained 
on HEK293T cells. The first 3 principal components of the feature map from each 
ConvNext stage are rendered as RGB values for an illustrative input image patch. Scale 
bar: 10 µm.
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Figure S9

 The model architecture used to train VSNeuromast 
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Figure S10 

Illustration of the workflow for fine-tuning the VSNeuromast model: The model is 
fine-tuned to generate accurate predictions and segmentations by subsampling the 
timelapse and using these time points as training data. Images of neuromasts during 
preprocessing (denoising, deconvolution, registration) and postprocessing 
(segmentation) steps are also shown.
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Figure S11 

Post-processing is needed to distinguish virtually stained neuromast cells from 
non-neuromast cells:  

A. Phase, fluorescence and virtual staining pairs of the central and ventral slices 
depicting how the model generalizes to other cell types with similar morphology.

B. Processing pipeline to isolate the neuromasts from the whole FOV. The pipeline 
is used for generating the instance segmentations and performance metrics.
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Figure S12

Visualization of features learned by VSNeuromast: Input, prediction, and 
intermediate feature maps of the 3DVSNeuromast model trained on zebrafish 
neuromasts. The first 3 principal components of the feature map from each ConvNext 
stage are rendered as RGB values for an illustrative input image patch. Scale bar: 10 
µm.
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Figure S13

Model architectures used for training VSCyto2D
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Figure S14 

Nuclei and cell segmentation from different virtual staining models. The 
segmentations are shown for 6 FOVs and 110 FOVs models per training strategy in 
Figure 4E.
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Figure S15

Visualization of features learned by VSCyto2D: Input, prediction, and intermediate 
feature maps of the 2DVSCyto and FCMAE models. The first 3 principal components of 
the feature map from each ConvNext stage are rendered as RGB values for an 
illustrative input image patch. (1) model trained from scratch on BJ-5ta; (2) model 
pre-trained on virtual staining of HEK-293T and A549, and then fine-tuned on BJ-5ta; 
(3) model pre-trained with FCMAE and virtual staining of HEK-293T and A549, and then 
fine-tuned on BJ-5ta; (4) FCMAE model of HEK-293T and A549, not trained for virtual 
staining. Scale bar: 50 µm.
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Video 1

Through-focus movie of HEK293T cells: phase, experimentally stained nuclei (green) 
and membrane (magenta), virtually stained nuclei and membrane with VSCyto3D. 
(scale bar 25µm)
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Video 2

Evolution of neuromast predictions during fine-tuning. The first three columns 
depict the 2D source (phase) and target (nuclei and membrane) pairs of three different 
fields of view (FOVs)  from the validation dataset. The last two columns feature the 
virtual staining predictions of nuclei and membrane respectively.
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Video 3

Axial and temporal fly-through of fluorescence and virtually stained landmarks. 
Displayed are the phase image in gray, fluorescence nuclei in green, and membrane in 
magenta, along with virtually stained nuclei in blue and membrane in orange, predicted 
using the fine-tuned VSNeuromast. (Scale bar: 25µm)
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Video 4

Comparison of neuromast nuclei and membrane fluorescence density and virtual 
staining 3D segmentations over time. The video shows the 3D instance 
segmentations at t=0 using the fine-tuned Cellpose model for nuclei and membrane 
respectively applied to both the fluorescence density and virtual stained and plays over 
time at the middle z-plane of the neuromast. Virtual staining rescues the uneven 
expression of nuclei and segments allowing for better segmentation (Scale bar= 25µm)

52



Video 5

Phase time-lapse images virtually stained with VSCyto2D. Blue: nuclei; Orange: 
membrane. Every 30 minutes for 24 hours. Scale bar: 100 µm.
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Video 6 

Validation VSCyto2D predictions during fine-tuning on BJ-5ta cells. Each step is 4 
training epochs. Left to right: Phase input patch, nuclei fluorescence (Hoechst), 
membrane fluorescence (CellMask), nuclei prediction, membrane prediction. 
Pre-trained models start to produce correct predictions faster. Each image patch is 83.2 
µm by 83.2 µm (256 pixels by 256 pixels).
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