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Abstract

This thesis is concerned with the investigation of static and dynamic properties of quan-
tum Heisenberg paramagnets in the absence of a magnetic field and therefore for vanishing
magnetization. For this purpose a new formulation of the spin functional renormalization
group (SFRG) is employed. The first manifestations of the SFRG were developed by Krieg
and Kopietz [1, 2], motivated by the FRG approach to ordinary field theories [3, 4] and the
older works of Vaks, Larkin and Pikin on diagrammatic methods for spin operators [5, 6].
The main idea is to study quantum spin systems by considering the evolution of correlation
functions under a continuous deformation of the interaction between magnetic moments,
starting from a solvable limit. This leads to nonperturbative results for quantities like the
spin-spin correlation function. After a basic introduction to the phenomena and concomi-
tant problems discussed in this thesis, a detailed description of the SFRG method in its
initial formulation is given in the second chapter. We start with the generating functional of
connected imaginary-time spin-correlation functions GΛ[h], for which an exact flow equation
is derived. A particular issue, already pointed out by Krieg and Kopietz, arises here, namely
the singular non-interacting limit of its subtracted Legendre transform ΓΛ[m]. As a conse-
quence the initial condition of that functional does not have a proper series expansion in
powers of m. This prevents us from working directly within a pure one-particle irreducible
(1-PI) parametrization of the correlation functions, as is often done in the context of field
theories [3, 4]. Thus motivated, we develop a workaround explicitly tailored to paramag-
nets, which provides us with a functional that has a well-behaved Legendre transform. The
new approach is based on a different treatment of fluctuations at zero and finite frequencies,
analogous to a previous hybrid formulation for the symmetry-broken phase [7, 8, 9]. Certain
properties, considered to be highly relevant for isotropic paramagnets, as well as previous
observations, already made in the study of simpler spin systems like the Ising model [1, 2],
serve as additional justifications for choosing this construction [10].

In the third chapter our new method is assessed by calculating the dynamic susceptibility
G(k, iω) and thus the dynamic structure factor S(k, ω) in the symmetric phase. For this
purpose an approximate integral equation for the dynamic polarization function Π̃(k, iω)
was derived [10]. This equation results from a truncation of the hierarchy of flow equations
and contains static quantities, that are assumed to be known from another source. Our first
application is the high-temperature limit T → ∞ in d ≤ 3 dimensions. Salient features,
believed to be part of the spin dynamics in isotropic Heisenberg magnets are also exhibited
by our solution, like (anomalous) diffusion in a suitable hydrodynamic limit. Moreover we
obtain the same order of magnitude for the diffusion coefficient D as in experiments and
other theoretical calculations. Other aspects do not entirely agree with previous approaches.
Afterwards we continue by investigating systems close to the critical point Tc [11]. Dynamic
scaling forms for Π̃(k, iω) and S(k, ω), which, like spin diffusion, are postulated on the
basis of quite general physical arguments, are reproduced. Agreement of the line-shapes
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with neutron scattering experiments at T = Tc is found to be satisfying, with deviations
for ω → 0, that may be attributed to the simplicity of the approximation, like at infinite
temperature.

Finally, we focus our attention on the thermodynamic properties of isotropic Heisenberg
paramagnets by calculating the static susceptibility G(k). For this purpose we employ
simple truncation schemes of the flow equations for the static self-energy ΣΛ(k) and four-spin

vertex Γ
(4)
Λ , together with a basic ansatz for the dynamic polarization Π̃(k, iω) in quantum

systems [12]. As a result we obtain transition temperatures Tc of three-dimensional non-
frustrated magnets within an accuracy of 5 percent compared to established benchmark
values from Quantum Monte Carlo and high temperature expansion series. We conclude
this chapter by giving an outlook on the application of our method to frustrated systems,
which may require a combined non-trivial calculation of static and dynamic properties.
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Chapter 1

Introduction

1.1 The Heisenberg model

In the following section a short introduction to the isotropic quantum Heisenberg model
is given, which is the central topic of this thesis. This model is known to explain the
magnetic properties for a plethora of materials. In particular this is the case for insulators,
where the interacting magnetic constituents can be assumed as localized. It is a quantum-
mechanical model, as it can be only motivated by invoking concepts, that are inherent
to a non-classical description, like the Pauli exclusion principle [13, 14]. This should be
contrasted with classically motivated dipole-dipole interactions. The typical energies of
dipolar contributions are found to be way too small, to account for the observed magnetic
energy scales, e.g transition temperatures in ferromagnets [14].

The origin of the Heisenberg or exchange interaction can be, for instance, found in the
Coulomb interaction between electrons, which are indistinguishable fermions and carry a
spin S = 1/2, combined with the aforementioned Pauli principle [13, 14], that prohibits two
fermions from assuming a state with the same quantum numbers. Consider the stationary
Schrödinger equation for the wavefunction of two interacting electrons bound to two different
nuclei I and II with spin projections σ1 and σ2 [14, 15, 16]

− ∆1 +∆2

2m
+ U(r1, r2) +

X
i=1,2

VI(ri) + VII(ri) Ψ(r1, r2, σ1, σ2) = EΨ(r1, r2, σ1, σ2).

(1.1)

Here U(r1, r2) = e2

|r1−r2| is the Coulomb interaction between the electrons and VI(r1) =

− e2

|r1−rI | is a single-electron potential, e.g. the binding energy between the nucleus I and
the first electron. The solution is then given by the product of an orbital and spin part
[14, 16]

Ψ(r1, r2, σ1, σ2) = ΨE(r1, r2)χ(σ1, σ2). (1.2)

The spin does not appear explicitly in the Hamilton operator H(r1, r2). Therefore one can
chose χ(σ1, σ2) as eigenfunctions of the square of the total spin operator S2 = (S1 + S2)

2

and its projections along the z-axis Sz = Sz
1 + Sz

2 , which possess the eigenvalues S(S + 1)
and Sz. The rules for the addition of angular momenta imply in total four states. They
are divided among a S = 0 and S = 1-subspace for the total spin, where the latter contains
three states. The eigenstate with vanishing spin is the antisymmetric singlet

χS=0(σ1, σ2) =
1√
2
δσ1,↑δσ2,↓ − δσ1,↓δσ2,↑ , (1.3)
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CHAPTER 1. INTRODUCTION

with χS=0(σ1, σ2) = −χS=0(σ2, σ1). States with S = 1 form a triplet and are symmetric
under permutations σ1 ↔ σ2

χS=1,m=0(σ1, σ2) =
1√
2
δσ1,↑δσ2,↓ + δσ1,↓δσ2,↑ , (1.4)

χS=1,m=±1(σ1, σ2) = δσ1,↑/↓δσ2,↑/↓. (1.5)

The Pauli principle dictates now, that the total wavefunction has to be antisymmetric under
a permutation of the electrons 1 ↔ 2. The orbital part of the wavefunction with a singlet
is therefore symmetric ΨE = ΨE,±, while a triplet configuration implies an antisymmetric
wavefunction. To account for this property in a simple manner the orbital parts with a
distinct symmetry ± are written as a non-interacting two-body wavefunction [14]

ΨE,±(r1, r2) =
1√
2
ψA(r1)ψB(r2)± ψB(r1)ψA(r2) , (1.6)

where A,B are single-particle states. One can evaluate then the expectation values of the
energy in these states ⟨H⟩± = ⟨Ψ±|H|Ψ±⟩ × ⟨Ψ±|Ψ±⟩−1, and finds that they are approxi-
mately separated by a difference [14, 17]

⟨H⟩− − ⟨H⟩+ ≈
Z
d3r1

Z
d3r2[U(r1, r2) + VII(r1) + VI(r2)]ψ

∗
A(r1)ψA(r2)ψB(r1)ψ

∗
B(r2).

(1.7)
This expression is known as the exchange integral or Fock-term, abbreviated as J and a
consequence of the required antisymmetrization of Ψ [14]. Note that for the above expression
we have assumed the overlap between states in ⟨Ψ±|Ψ±⟩−1 to be ≪ 1. This also allowed us
to drop the contribution from the direct Coloumb integral, known as the Hartree term [14],
which is just the expectation value of H in the simple product states, i.e. with the densities
of the single-particle states |ψi(x)|2. Otherwise one should retain the overlap and Hartree
term, which leads to a modified expression for the energy difference. Depending on the sign
of J either the singlet with vanishing total spin or the triplet states are energetically favored
[16, 17]. Note that this allows for a description by means of an effective model solely for
the spin degrees of freedom, namely the Heisenberg Model for two S = 1/2-moments

Heff = JS1 · S2. (1.8)

The vector operators S = (Sx, Sy, Sz) satisfy the angular momentum algebra, given by the
commutator relations

[Sα, Sγ ] = iϵαγσS
σ. (1.9)

Here ϵαγσ is the totally antisymmetric ϵ-tensor, with the properties ϵxyz = 1, ϵασγ = −ϵαγσ.
Using the identity 2S1 ·S2 = (S1+S2)

2−S2
1−S2

2 , we see that Heff has the same eigenstates
as the operators Sz

1 + Sz
2 and (S1 + S2)

2, namely the triplet and singlet. For a positive
exchange interaction J > 0 the singlet |S = 0,m = 0⟩ is the ground state, with the excitation
energy exactly given by J . The singlet implies an antiparallel alignment of both spins, and
thus the model for positive J is called antiferromagnetic. Conversely, for J < 0, we have
a threefold degenerate ground state, formed by the triplet |S = 1,m = ±1, 0⟩. As these
configurations include states with parallel alignment, one also calls this type of coupling
ferromagnetic [17].
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Besides referring to the atomistic considerations made above, one can also derive an
effective spin model by considering a specific limit in the electronic Hubbard model [15, 16,
18], namely

HHubbard = −t
X
σ

X
⟨i,j⟩

c†iσcjσ + c†jσciσ + U
X
j

c†j↑cj↑c
†
j↓cj↓. (1.10)

c†iσ and ciσ are fermionic annihilation/creation operators, that represent electrons with
two spin projections ↑, ↓ on the N sites, labeled i, of a Bravais lattice. They fulfill the
anticommutation relations {c†α, cγ} = δαγ , {cα, cγ} = 0. The energy t in Eq. (1.10) is a
nearest neighbor-hopping energy, that describes the free motion, i.e. delocalization, of the
electrons, due to a hybridization of the ion’s orbitals. Furthermore the energy U > 0 in
(1.10) represents the repulsive Coloumb interaction. It yields a contribution, if two electrons
occupy the same site. Assuming half-filling, where the number of sites N coincides with the
number of electrons, one can show, that in the limit t/U ≪ 1, the energetically low-lying
eigenstates do not include vacant or double-occupied sites, since these are punished by a
large contribution ∼ U . The energy of low-lying eigenstates is then entirely controlled by
the relative alignment of the electronic spin projections at single-occupied sites. Thus at
low energies one can map the Hamiltonian in (1.10) onto an isotropic S = 1/2-Heisenberg
model for the spin degrees of freedom,

HHeisenberg = J
X
⟨i,j⟩

Si · Sj , (1.11)

where [Sα
i , S

γ
j ] = δij [S

α
i , S

γ
i ] and the nearest neighbor exchange-interaction is J = 4t2/U >

0. The spin operators are expressed in terms of a bilinear form involving the Pauli matrices
σi, i.e. [15, 18]

Sα = (c†↑, c
†
↓) σα (c↑, c↓)

T . (1.12)

Note that the effective theory for the magnetic degrees of freedom derived from Eq. (1.10)
is always an antiferromagnet. This accounts partially for their more frequent occurence
compared to ferromagnets. However, the sketched mechanisms do not always suffice to
explain the magnetic properties of realistic materials. One can find examples in systems,
where the magnetic moments are separated from each other by non-magnetic ions. This
leads to the concept of superexchange mechanisms [19]. Here the magnetic interactions are
mediated via the non-magnetic ions, involving hopping between the orbitals of non-magnetic
and magnetic constituents. Different signs of the exchange interactions could be explained
and predicted based on symmetry properties and electronic configurations [20].

The spectrum of eigenstates for an arbitrary spin-S Heisenberg model

H =
1

2

X
i,j

JijSi · Sj , (1.13)

depends on the type of exchange coupling Jij . It is usually assumed to be a function of
the relative distance Jij = J0j , in compliance with homogeneity of the system. Focusing
on nearest-neighbor only interactions, we can, as already discussed for the two-site limit,
distinguish between the ferro- and antiferromagnet. For the ferromagnet, J < 0, the ground
state |0⟩ is (2NS+1)-fold degenerate, including all states that belong to the manifold with
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maximum spin 2NS + 1. A selection of any of these states, is then achieved by switching
on a external magnetic field. This amounts to adding the Zeeman term

HZeeman = −
X
i

HiS
z
i , (1.14)

to Eq. (1.13). Its eigenstates are product states |σ1, ..., σN ⟩ with eigenenergy
P

iHiσi.
Choosing a small uniform field H one therefore selects |S, ..., S⟩ as the ground state for the
Heisenberg ferromagnet. The energy of this state is then given by

E0 = N
cJS2

2
−HS ≈ NcJS2

2
, (1.15)

where c is the number of nearest neighbors. The first excited eigenstates are also exactly
known and can be interpreted in terms of a single spin wave or magnon, i.e. a spin flip that
propagates like a plane wave in the material [15, 16, 18],

|k⟩ =
X
j

eik·rj |j⟩. (1.16)

Here |j⟩ is a product state, with spin projections σj = S − 1, σi = S, i ̸= j, i.e. a total
spin that is reduced by one. Its momentum k assumes values in the first Brillouin Zone of
the Bravais lattice. The energy E(k) of a single magnon is then given by [15, 16, 18, 21]

E(k) = H + S J(k)− J(0) . (1.17)

For a nearest-neighbor ferromagnet on a d-dimensional hypercubic lattice with lattice spac-
ing a the Fourier-transformed exchange coupling is given by

J(k) =
X
j

J0je
ik·rj = 2J

dX
i=1

cos(kia). (1.18)

The dispersion E(k) vanishes as k2 for k → 0, if H = 0. This is readily explained by the
transverse magnon being a Goldstone mode, which is a gapless excitation that emerges, due
to a spontaneously broken continuous symmetry, in this case, the spin-rotational invariance
[14, 16, 22]. The antiferromagnet is more intricate, and its exact ground state is actually
unknown. Only in the classical limit S ≫ 1, JS2 = const., where the spin operators are
replaced by unit vectors ni with a continuous orientation along a spherical surface one
can determine the exact configuration. One finds then by minimization of the total energy
H[{n}] on a bipartite lattice, that spins on adjacent sites point in opposite directions, a
pattern known as Neel order [15, 16]. This is in complete analogy to the two-site model
(dimer) with a singlet ground state. The order parameter is then given by the staggered
magnetization, associated with the operator

S(Q) =
X
j

eiQ·rSj , e
iQ·r = (−1)P (j) (1.19)

where Q is the Neel ordering vector, i.e. QN = π
a (1, 1, 1) for the simple cubic lattice,

and P (j) yields either an even or odd number, depending on which sublattice the site j is
located. Unfortunately, a product state, constructed from the above prescription, is not an
exact eigenstate of the quantum model. The reason for this is the presence of

Sx
i S

x
j + Sy

i S
y
j = S+

i S
−
j + S−

i S
+
j , (1.20)
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in the Hamiltonian (1.13), where where we introduced the spherical ladder operators

S± =
Sx ± iSy

√
2

. (1.21)

The transverse terms in (1.20) then do not commute with S(Q). Nevertheless, many cal-
culations in d ≥ 2 dimensions still suggest that the expectation value of S(Q) is non-zero
in the corresponding true ground state, albeit smaller than the classical saturation value
[16, 23]. Magnon excitations to that vacuum also exist, although they do not belong to
exact excited eigenstates. Their dispersion E(k) differs from the ferromagnet, since it is
linear for small k [16, 23].

1.2 Thermodynamics

The thermal properties of the Heisenberg model in equilbrium are usually studied within the
canonical ensemble, where one keeps the temperature T and the external field H constant
as external parameters. The appropriate thermodynamic potential for this ensemble is the
free energy F (T,H). One starts with the partition function

Z(T,H) = Tr(e−βH), (1.22)

where β = 1/T (kB = 1) is the inverse temperature and Tr(...) denotes the trace over the
respective Hilbert space. Note that in the classical limit S → ∞, the trace has to be replaced
by continous integrals over the surfaces of unit spheres on each site, parametrized by angles
{θi, ϕi}. The thermal probability distribution for the system at a given temperature is then
determined by the normalized density operator

ρ =
e−βH

Z
, (1.23)

satisfying Tr(ρ) = 1. Using the eigenbasis {|n⟩} of H to evaluate traces, a thermal expec-
tation value of an operator A is therefore given by

⟨A⟩ = Tr(ρA) =
X
n

pn⟨n|A|n⟩, (1.24)

where

pn =
e−βEn

Z
=

e−βEnP
m e

−βEm
, (1.25)

yield the individual probabilities for finding the system in the eigenstate |n⟩ at given tem-
perature T . Note that pn = δ0,n for T = 0, provided that the ground state |0⟩ is non-
degenerate. For example the total energy U of the system is simply the expectation value
of the Hamiltonian

U(T,H) = ⟨H⟩ =
X
n

pnEn. (1.26)

The free energy can be obtained by taking the logarithm of Z, namely

F (T,H) = −T ln(Z). (1.27)

and is related to the internal energy U via the Legendre transform

F = U − TS, (1.28)

12



CHAPTER 1. INTRODUCTION

where S is the entropy and the former natural variable for U , which is initially a function
of S and H. In that context T = T (S,H) = ∂U

∂S , which by means of the Legendre transform
becomes the new independent variable in F . Note that the free energy depends entirely on
intensive variables, i.e. those that do not scale linearly with the system size N . The first
partial derivatives of F with respect to T and H are the entropy

S(T,H) = − ∂F

∂T H
, (1.29)

and the magnetization per site

M(T,H) = ⟨Sz
i ⟩ = − 1

N

∂F

∂H T
, (1.30)

where in the latter case, we already used the homogeneity of the system, meaning that
⟨Sz

i ⟩ = 1
N

P
j⟨Sz

j ⟩. The second order derivatives can be related to the heat capacity at
constant magnetic field cH and the isothermal magnetic susceptibility χ, i.e.

cH(T,H) = T
∂S

∂T H
= −T ∂2F

∂T 2 H
, (1.31)

χ(T,H) =
∂M

∂H T
= − 1

N

∂2F

∂H2 T
. (1.32)

One can write these quantities in terms of expectation values as mean quadratic deviations
from ⟨H⟩ and ⟨Sz

i ⟩
T 2cH = ⟨(H− ⟨H⟩)2⟩ = ⟨H2⟩ − ⟨H⟩2, (1.33)

Tχ =
1

N

X
i,j

⟨Sz
i S

z
j ⟩ − ⟨Sz

i ⟩2. (1.34)

The magnetization behaves for small magnetic fields as

M(T,H) =M(T, 0) + χ(T, 0)H +O(H2). (1.35)

For temperatures much larger than the magnitude of typical interaction energies, e.g. the
exchange coupling J , there is no spontaneous symmetry breaking, so that M(T, 0) = 0,
implying a direct proportionality between the external field and the magnetization, M =
χH. In this high temperature regime one can systematically evaluate the thermal traces, by
expanding e−βH in powers of J/T . During this procedure one has to relate the coefficients
at a given order to expectation values of non-interacting spin operators at the same site
in an external field. These quantities can be computed exactly by means of a generalized
Wick-Theorem [5, 7]. The free energy for an isolated magnetic moment with spin S, is given
by [1, 15, 16]

F (T,H) = −TB(y = βH) = −T ln
sinh[(S + 1/2)y]

sinh(y/2)
, (1.36)

which yields the Brillouin function as an expression for the magnetization

M(βH) = b(y) = B′(y) = S +
1

2
coth

h
S +

1

2
y
i
− 1

2
coth

y

2
, (1.37)

The zero-field susceptibility can then be determined by expanding the Brillouin function to
linear order in y. One obtains

χ(T, 0) =
S(S + 1)

3T
=
b′0
T
, (1.38)
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CHAPTER 1. INTRODUCTION

where b′0 is the first derivative of the Brillouin function at vanishing argument. This equation
is also known as the Curie-law for a paramagnet [16]. For sufficiently large T , the presence
of a finite J implies a first order correction. The susceptibility is then modified as [2, 5]

χ(T, 0) ≈ b′0
T

h
1− b′0J(0)

T

i
, (1.39)

where for a next-neighbor coupling J(0) = cJ , with c being the number of nearest neighbors.
A simple resummation for extrapolating it to lower temperatures is given by

χ(T, 0) =
b′0

T + b′0J(0)
, (1.40)

which is the Curie-Weiss law χ(T, 0) ∼ C
T−TCW

, with TCW = −b′0J(0) [15]. For a ferromag-
net, where J(0) < 0, this law implies a singularity of χ(T, 0) at T = TCW . This means that
an arbitrarily small magnetic field, will already induce a finite, spontaneous magnetization
M(T, 0). To give some more weight to these thoughts, we motivate an approximation, where
this is indeed the outcome for χ(T, 0). This approach is known as mean-field theory and is
the simplest way to obtain a non-perturbative description of the model, beyond the high
temperature range. Firstly one writes

Si = ⟨Si⟩+ δSi, δSi = Si − ⟨Si⟩. (1.41)

After insertion into the interacting term of H in Eq. (1.13), one discards contributions that
are quadratic in the fluctuation operators δSi. One obtains then a Zeeman Hamiltonian
with an effective, exchange field that is given by [3, 15]

H̃i = H −
X
j

Jij⟨Sz
j ⟩ = H − J(0)M(T,H) ≡ H̃. (1.42)

It contains the expectation value of the magnetization, which is calculated self-consistently
by considering its ’free’ expression with the renormalized magnetic field H̃ on the right-
hand-side

M(T,H) = b(βH̃). (1.43)

For T < b′0|J(0)| = TCW its solution in the limit H → 0+ allows for a finite spontaneous
magnetization M(T, 0) ̸= 0, which vanishes for T → T−

CW and is saturated, M(T, 0) ≈ S,
at low temperatures T ≪ |J |. Differentiating the self-consistency equation (1.43) with
respect to H and setting H = 0, T > Tc, we obtain the approximate formula (1.40) for
χ of a paramagnet. Thus TCW turns out to be the critical temperature Tc for a second
order phase transition. Such a transition is characterized by a continous order parameter,
here M , at the phase boundary T = Tc and jumps or divergencies in the corresponding
susceptibility χ. A second order transition in the thermodynamic limit N → ∞ is indeed
featured by the Heisenberg model in d = 3 dimensions [14, 15]. However, the mean-field
approximation underestimates thermal fluctuations, as could be inferred from the employed
arguments, so that Tc < TCW = TMF

c . Furthermore, the low-temperature asymptotics
of, e.g. the magnetization, that are predicted by mean-field theory are at odds with the
outcome of spin-wave theory. The reason is the presence of a gap, which actually should
vanish as implied by E(0) = 0 in (1.17), leading to an exponentially small correction for
T ≪ |J | instead of a power law [14, 16, 21]. In reduced dimensions d ≤ 2, one finds even
that thermal fluctuations lead for H → 0 to divergent corrections to mean-field theory at
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any finite temperature, so that Tc = 0. The latter statement is known as the Mermin-
Wagner theorem [15, 16, 24]. In general mean-field theory becomes more accurate with
larger interaction ranges or effective coordination numbers, e.g. in high dimensions d ≫ 1
[1]. Note that for the antiferromagnet J(0) > 0, the mean-field approach has to be adjusted
by introducing antiparallel magnetizations on two disjunct sublattices [15]. The magnitude
of these fields, the staggered magnetization, also satisfies Eq. (1.43). As a consequence one
obtains Tc = b′0|J(QN )| with the same temperature dependence of the order parameter and
the corresponding susceptibility.

1.2.1 Critical region

The critical region, which is roughly defined by the condition |T −Tc|/Tc ≪ 1, is dominated
by strongly growing correlations between all degrees of freedom in the system, e.g. the
magnetic moments sitting on lattice sites in a localized spin model. These correlations
extend to a range that is known as the correlation length ξ, which in this regime is much
larger than typical microscopic distances like the lattice spacing a. The growth of ξ for
T → Tc is intimately linked to increasingly singular fluctuations around the ordering vector
Q in momentum space, thus confining the regime of relevant fluctuations to small momenta
|k − Q| ≪ a−1. Magnetic moments separated by distances |r| much larger than ξ are
almost uncorrelated, i.e. |⟨SrS0⟩| ≪ b′0, like for temperatures far away from the phase
transition, where ξ ≲ O(a). On the other hand, inside regions of size ∼ ξd one can treat
the system as one entity, due to the strong correlations, i.e. overlap between different
constituents. Consequently at the critical temperature T = Tc, the system is scale invariant.
The leading singular behavior of thermodynamic quantities, like the free energy F (T,H) and
its derivatives, is then determined by symmetries that are inherent to a whole universality
class of models. Microsopic details, e.g properties of the interaction at short ranges, cease
to play any role in this context [3]. In particular, the large extent of correlations implies
that these thermodynamic quantities have to be homogeneous functions of |T − Tc|/Tc and
H [3]. This means that multiplication of |T − Tc| and H in the argument by powers of a
scaling factors u, should just produce an external factor, that is again a power of u. The
homogeneity relation for the singular part of the free energy f = F/N per site, that is
assumed by scaling theory, reads explicitly [3, 25]

f(unt(|T − Tc|/Tc), unhH) = udf(|T − Tc|/Tc, H). (1.44)

Such properties are only realized by power laws in the variables |T − Tc|/Tc and H, with
critical exponents, that are characteristic of the universality class, and are related to nt, nh in
the homogeneity relation [3, 25]. From the aforementioned behavior, one can also infer, that
ultimately, the t, h-dependence of f(T,H), can be combined into a single scaling variable
[3]

f(t,H) = (|T − Tc|/Tc)d/ntΦ±
H

(|T − Tc|/Tc)nh/nt
, (1.45)

where sgn(t) = ± denotes the side from which one approaches Tc. A similar hypothesis
was formulated for quantities, which involve a spatial dependence, i.e. correlations between
spin operators on different lattice sites, like the two-point function [3, 27]

Gzz(ri) = ⟨Sz
i S

z
0⟩ − ⟨Sz

0⟩2 ∼ (|T − Tc|/Tc)2(d−nh)/ntΨ±
|ri|

(|T − Tc|/Tc)−1/nt
. (1.46)
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From these postulates one can derive algebraic relations between critical exponents [3].
Assuming their validity, these relations allow one to obtain exponents without explicitly
calculating the whole set.

A first attempt to calculate critical exponents can be already made in the previously
introduced mean-field approximation. For the spontaneous magnetization one can define
the critical exponent β, associated with its vanishing close to Tc, via [3, 14]

M(T, 0) ∼ |T − Tc|β, T < Tc, (1.47)

In mean-field theory one obtains β = 1/2 by expanding the right-hand side of the self-
consistency equation (1.43) up to cubic order in M . Conversely, above Tc one can study
the divergence of the magnetic susceptibility for T → Tc with an exponent γ, e.g. [3, 14]

χ−1 ∼ |T − Tc|γ , T > Tc. (1.48)

Here one reads off from the Curie-Weiss law (1.40) that γ = 1. Right at T = Tc the
magnetization behaves for small fields as M(T,H) ∼ H1/δ, and one thus obtains δ = 3
in mean-field [3]. Finally, the exponent of the heat capacity at vanishing magnetic field
is introduced as cH ∼ |T − Tc|−α. Considering the second T -derivative of the free energy
in mean-field theory one obtains a finite jump, implying α = 0 [3]. From the conjectured
scaling form of the free energy, one can derive via differentiation, the following relations
between the critical exponents [3]

2− α = 2β + γ = β(δ + 1), (1.49)

which are both satisfied by the mean-field exponents. However, these exponents still deviate
significantly from the actual results for the Heisenberg universality class, with the most
accurate results available from Monte Carlo simulations [26].

For an analysis of space-resolved correlations the mean-field approximation alone is
insufficient, since the expressions for the spin correlation functions are still purely local. Near
the critical point one expects that long wavelength fluctuations, connected to singularities
in the susceptibility near the ordering vector Q, dominate, so that fluctuations with |k−Q|
larger than a cutoff k0 ≪ a−1 can be discarded. Furthermore, only static degrees of freedom
will be relevant for the universal properties in this regime, even if there are non-trivial
dynamics induced by a finite S. The reason for this lies in critical slowing down, which
is the effective freezing of any time dependence, i.e. decay, of fluctuations around the
ordering vector, allowing us to retain only the static components of the spin degrees of
freedom [3]. This already yields a classical theory of a long wavelength field ϕ, so that the
partition function Z can be written as a path integral

R
D[ϕ]e−Sk0

[{ϕ}] with an effective
action Sk0 [{ϕ}] [3]. However, Sk0 [{ϕ}] still features infinitely many powers of the field.
Close to Tc the field is expected to fluctuate around a small or vanishing thermal mean
⟨ϕ⟩. As a consequence one usually truncates the action Sk0 [{ϕ}] to the fourth order in
ϕ [3]. That yields the simplest possible interacting field theory, the ϕ4-theory of a three-
component field. It is expected to produce accurate results for the critical properties of the
O(3)-universality class, which includes the Heisenberg Model. The corresponding action is
referred to as the Ginzburg-Landau-Wilson functional and reads [3]

Sk0 [{ϕ}] =
Z
ddr
h
f0+

r0
2
ϕ(r) ·ϕ(r)+ w0

2

dX
i=1

∂iϕ(r) ·∂iϕ(r)+
u0
24

ϕ(r) ·ϕ(r) 2−h0 ·ϕ(r)
i
,

(1.50)
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where in real space all fluctuations on length scales smaller than k−1
0 are neglected, so

that the field ϕ(r) represents actually a magnetization averaged over a cell of size k−d
0 .

The parameters f0, r0, w0, u0 can be related to the small momentum-limit of the exchange
constant and the temperature, e.g. [3]

w0 ∼ 1/c ∼ 1/(2d), r0 ∼ T − Tc, u0 ∼ βJ(0), (1.51)

while h0 is proportional to the external magnetic field. The neglect of terms O(ϕ6) is typ-
ically justified by arguing that these contributions can be dropped in the relevant regions
of the path integral, i.e. that the decay, caused by e−S[{ϕ}] is sufficiently strong for large
amplitudes of the field. Here the renormalization group approach provides a better ex-
plaination in terms of the relevance of the interaction vertices in Sk0 [{ϕ}] [3]. The effect
of all irrelevant terms beyond a given order is then just a numeric renormalization of the
relevant couplings w0, r0, u0, ..., i.e. modified critical temperatures or stiffness constants.
Note that one recovers the free energy from the mean-field approximation by neglecting
the spatial variation of the order parameter field and assuming that the path integral is
dominated by spatially uniform configurations [3]. Going beyond plain mean-field theory
one can obtain analytic expressions for the partition function and arbitrary correlations by
means of a Gaussian approximation to the action Sk0 [ϕ], which requires that all terms of
O(δϕ3) in a fluctuation field δϕ = ϕ(r) −M0, where M0 is the uniform order parameter,
are dropped [3]. This is a consequence of the resulting integrand being ∼ exp(−1

2(ϕ,A,ϕ)).
Above Tc, where M0 = 0, the quartic term does not contribute at all to the new action.
The two-point function, which measures the correlation between the fields, for instance at
a given momentum k, can then be directly read off from the matrix in the approximate
non-interacting action, namely [3]

⟨Sz(k)Sz(−k)⟩ ≈ ⟨ϕ(k)ϕ(−k)⟩ = 1

r0 + w0|k−Q|2
=

1

w0(|k−Q|2 + ξ−2)
, (1.52)

which is also known as the Ornstein-Zernike form. It can be written in terms of the scaling
law

⟨Sz(k)Sz(−k)⟩ ∼ χg(|k−Q|ξ), (1.53)

where χ ∼ ξ2 is the magnetic susceptibility and g(x) = [1+x2]−1. For T = Tc, where r0 = 0
or ξ−1 = 0 one obtains

⟨Sz(k)Sz(−k)⟩ = 1

c0|k−Q|2
, (1.54)

which can be compared with the general assumption for the critical correlation function

⟨Sz(k)Sz(−k)⟩ ∼ |k−Q|η−2, (1.55)

thus yielding η = 0 for the anomalous dimension. A finite η > 0 indicates the breakdown of
an analytic k-dependence in the inverse correlation function, i.e the Ornstein-Zernike ansatz.
Note that for classical systems the two-point function is equivalent to TG(k), where G(k)
is the momentum-resolved static susceptibility, defined via

⟨Sz(k)⟩ = G(k)H(k) +O(H2) → G(k) = ∂H(k)⟨Sz(k)⟩|H(k)=0, (1.56)

where H(k) is a small, inhomogeneous magnetic field that couples linearly to Sz(k), i.e. viaP
kH(k)Sz(k). For quantum systems with an intrinsic time dependence, this holds only for
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vanishing momentum, ⟨Sz(0)Sz(0)⟩ = Tχ, or infinite temperatures. However, as expected
from critical slowing down, dynamic corrections that arise from this, do not qualitatively
alter the analytic structure, i.e. the leading singularity of G(k), and amount at most to
O(1) renormalizations of numeric constants. From Eq. (1.52) one reads off

ξ ∼
q
r−1
0 ∼ |T − Tc|−1/2, (1.57)

and the corresponding critical exponent, defined via ξ ∼ |T − Tc|−ν , is therefore ν = 1/2.
It also implies γ = 1 for the susceptibility, like in mean-field theory. That one can identify
ξ with the correlation length, i.e. the range which separates correlated from uncorrelated
regions, can be seen by calculating the correlation function in real space. For separations
much larger than ξ one arrives at an exponential decay [3]

⟨Sz(r)Sz(0)⟩ ∼ cos(Q · r)|r|−1 exp(−|r|/ξ) ≪ 1, (1.58)

indicating only a weak overlap between spins separated by this distance. In the opposite
limit |r| ≪ ξ it falls off as a much slower algebraic power-law [3]

⟨Sz(r)Sz(0)⟩ ∼ cos(Q · r)|r|−1, (1.59)

which for T = Tc is valid for arbitrary r, a consequence of the vanishing gap ∼ ξ−2 → 0 in
the two-point function. In general the scaling law satisfied by the correlation function is

⟨Sz
rS

z
0⟩ ∼ cos(Q · r)|r|−1g̃(|r|/ξ). (1.60)

Hence calling ξ a correlation range is justified with the observed properties. In d = 3 dimen-
sions it is consistent with hyperscaling relations, that result from combining both scaling
hypotheses, e.g. γ = (2− η)ν [3]. However, the values of ν, η are, like the thermodynamic
exponents, wrong in d = 3 [26], since it is smaller than the upper critical dimension dc = 4.
A simple explanation attributes this failure to the divergence of an effective dimensionless
four-point interaction ũ0 [3]. It is obtained after rescaling fields and momenta with properly
chosen of powers ξ, i.e. such that the new coefficient of the k2-term w̄0 and the momentum-
independent part r̄0 in the quadratic contribution to the action are both of the order unity.
Comparing ũ0 directly to the free, Gaussian, contribution, one sees that it diverges as ξ4−d.
This indicates its relevance in a renormalization group sense [3]. In fact the true critical
properties in d < 4 are determined by the eigenvalues of the linearized RG flow of relevant
couplings with respect to a non-Gaussian fixed point, the Wilson-Fisher fixed point [3].
Simple approximation schemes to the flow, i.e. truncations to finite loop order, suffice for
a controlled calculation of the critical properties for ϵ = 4− d≪ 1 [3].

1.3 Linear response and dynamic correlation functions

In our discussion of the thermodynamics and critical properties of the systems we have
already introduced the magnetic susceptibility χ and more general the momentum-resolved
static susceptibility G(k), see Eq. (1.56). Such quantities yield information about the
response of the system to first order in a static perturbation H, as embodied for instance
by the Zeeman-term (1.14). From their behavior one can draw conclusions regarding the
presence of phase transitions, but dynamic properties of the system remain inaccessible. As
a consequence an extension of the linear response framework to time-dependent phenomena
is required, which is described below. One can then link the introduced generalized dynamic
susceptibilities to experimentally measurable quantities like the scattering cross section of
magnetic samples, and therefore correlations between spin operators at different times.
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1.3.1 Linear response

Consider a Hamiltonian, which is now perturbed by a weak, time-dependent and spatially
inhomogeneous external field Hj(t), e.g. [16, 18, 28]

H(t) = H0 + V(t), (1.61)

where H0 is the initial, static Hamiltonian of the system and V(t) = −
P

j Sj · Hj(t) is
the perturbation. As already discussed, the expectation value of any operator is given by
calculating Tr(ρ(t)A), but now the density matrix ρ(t) is time-dependent due to the finite
perturbation. The time evolution of ρ(t) is governed by the von Neumann equation

i∂tρ(t) = [H(t), ρ(t)], (1.62)

with the boundary condition, that intially our ρ(t) is given by the thermal probability
operator in the canonical ensemble

ρ(t→ −∞) =
e−βH0

Z
= ρ0. (1.63)

Note that this is usually combined with an adiabatic, i.e. slow, increase of the magnetic
field, implying that H(t) is multiplied with eδt, δ = 0+, thus also ensuring H(t→ −∞) = 0.
Switching to the interaction picture, where the time-evolution of any operator is given by

AI(t) = eiH0tA(t)e−iH0t, (1.64)

the differential equation obeyed by the perturbed density matrix becomes

i∂tρ
I(t) = [VI(t′), ρI(t′)], (1.65)

which can be integrated to

ρI(t) = ρ0 − i

Z t

−∞
dt′[VI(t), ρI(t)]. (1.66)

Expanding ρ(t) in powers of H as

ρI(t) = ρ0 + ρI1(t) +O(H2), (1.67)

which amounts to iterating the right-hand side of Eq. (1.65) in powers of V, one obtains for
the first order correction

ρI1(t) = −i
Z t

−∞
dt′[VI(t), ρ0] = i

X
j

Z t

−∞
dt′
X
γ

[Sγ
j (t

′), ρ0]H
γ
j (t

′). (1.68)

The expectation value of Sα
i in the presence of the perturbation V reads then [28]

⟨Sα
i ⟩(t) ≈ Tr(ρ0S

α
i ) + Tr(ρI1(t)S

α,I
i (t)) = ⟨Sα

i ⟩0 +
X
j

Z ∞

−∞
dt′Gαγ

ret,ij(t− t′)Hγ
j (t

′). (1.69)

Here we introduced the retarded magnetic susceptibility

Gαγ
ret,ij(t) = iΘ(t)Tr(ρ0[S

α
i (t), S

γ
j (0)]) = iΘ(t)⟨[Sα

i (t), S
γ
j (0)]⟩0, (1.70)
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where the cyclic property of the trace was used, in order to transfer the density matrix ρ0
outside the commutator. Note that ⟨...⟩0 denotes the equilibrium expectation value and we
have dropped the superscript I for operators that have no explicit time-dependence, like Sα.
The tensor Gαγ

ret,ij(t), first appearing in Eq. (1.69), thus relates the induced change in their
expectation values to a small perturbing external field H(t), that couples linearly to the
spin operators. The relation (1.69) is also known as the Kubo formula [28]. More insights
can be extracted from the Fourier transform of the retarded susceptibility to frequency and
momentum space

Gαγ
ret(k, ω) =

X
j

eik·rj
Z ∞

−∞
dtei(ω+iδ)tGαγ

ret,0j(t), (1.71)

which couples then to the corresponding components of the external field Hγ(k, ω). Here
we have already set ℏ = 1, which will be maintained throughout this thesis. Moreover we
have transferred the infinitesimal δ from the adiabatic increase of H, which is necessary for
ensuring convergence of the integral in the time domain and the avoidance of singularities
directly on the real frequency axis. The susceptibility in Fourier space is of particular
interest, as it contains crucial information about the system described by H0. For instance,
poles in the transverse part defined by [G+−

ret (k, ω = E(k))]−1 = 0 may indicate the existence
of excitations given by propagating quasiparticles with dispersion E(k), e.g. magnons, with
small but finite deviations of the inverse from 0, i.e. shifts of the pole along the imaginary
axis, being related to their inverse lifetime [18, 29]. Conversely, large imaginary parts of
the roots imply a strong damping and therefore dissipative behavior, which is anticipated
deep in the disordered phase where longitudinal (∥ ez) and transverse fluctuations are
indistinguishable [31, 32].

1.3.2 Magnetic scattering and dynamic structure factor

The most common way of probing magnetic systems is inelastic neutron scattering, because
these particles, while having no electric charge, carry a magnetic moment, thus interacting
with the moments in the target, i.e. the localized spins. Employing the Born approximation
one can show that the differential cross section satisfies [31, 32, 33]

d2σ

dΩdω
∝ k1
k0

X
α,γ

δαγ −
kαkγ

k2
Sαγ(k, ω). (1.72)

Here k1, k0 are the initial/final momentum of the neutrons, k = k1 − k0 is the momen-

tum and ω =
k21−k20
2mn

the frequency (energy) transfer of the scattered neutrons. Note that
the neutrons couple only to fluctuations in the direction perpendicular to the momentum

transfer k, as implied by δαγ− kαkγ

k2
. Sαγ(k, ω) is known as the dynamic structure factor,

which is the Fourier transform of a time-dependent spin-spin correlation function

Sαγ(k, ω) =
1

2π

X
i

Z ∞

−∞
dteiωt+ik·ri⟨Sα

i (t)S
γ
0 (0)⟩. (1.73)

The dynamic structure factor is related to the retarded spin susceptibility by means of the
fluctuation-dissipation theorem [16, 34, 35]

Sαγ(k, ω) =
1

π

1

1− e−βω
ImGαγ

ret(k, ω). (1.74)
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The above equation establishes a connection between thermal fluctuations of the spins
in the unperturbed system in equilibrium, represented by the dynamic structure factor,
and dissipation, implied by the retarded suceptibility. The relation between S(k, ω) and
Gret(k, ω) can be derived from the spectral representation of these quantities, which is
obtained by inserting an identity 1 =

P
n |n⟩⟨n| between the operators in the expectation

values. In the time-domain they are given by

Gαγ
ret,ij(t) = iZ−1Θ(t)

X
n,m

(e−βEn − e−βEm)⟨n|Sα
i |m⟩⟨m|Sγ

j |n⟩e
i(En−Em)t, (1.75)

Sαγ
ret,ij(t) = (2πZ)−1

X
n,m

e−βEn⟨n|Sα
i |m⟩⟨m|Sγ

j |n⟩e
i(En−Em)t. (1.76)

Taking the Fourier transform to momenta and real frequencies, they read with 1
2π

R∞
−∞ eixydy =

δ(x)

Gαγ
ret(k, ω) =

X
i

Z ∞

0
dtGαγ

ret,ij(t)e
iωt+ik·(ri−rj)−δt

= − 1

Z

X
n,m

⟨n|Sα(k)|m⟩⟨m|Sγ(−k)|n⟩(e−βEn − e−βEm)

En − Em + ω + iδ
, (1.77)

Sαγ(k, ω) =
X
i

Z ∞

0
dtSαγ

ij (t)eiωt+ik·(ri−rj)

=
1

Z

X
n,m

⟨n|Sα(k)|m⟩⟨m|Sγ(−k)|n⟩e−βEnδ(En − Em + ω), (1.78)

where we introduced Sα(k) =
P

i e
ik·riSα

i . Inserting the Sokhotski-Plemelj formula [x +
iδ]−1 = P(1/x) − iπδ(x) [29], when taking the imaginary part of Gret, one sees that
with the constraint Em = En + ω from the δ-function one arrives at ImGret(k, ω) =
π(1 − e−βω)S(k, ω). In an isotropic paramagnet with vanishing external field, the two-
point functions are all proportional to unity with respect to the Cartesian components.
Hence for α = γ one can use that the spin operators satisfy S(k) = S†(−k), which implies
that S(k, ω) is real and ≥ 0. In this context one also often introduces the spectral density
[16, 29]

ρ(k, ω) = 2ImGret(k, ω) =
2π(1− e−βω)

Z

X
n,m

|⟨n|Sα(k)|m⟩|2e−βEnδ(En − Em + ω), (1.79)

which for ω > 0 yields the frequency dependence of the scattering intensity at T = 0.
Furthermore it provides information about excitations from the ground state, i.e. the
low-energy sector of the spectrum, as can be inferred from the transition matrix elements
⟨n|Sα(k)|m⟩ in front of the δ-distribution. Note that the spectral density is, at least for
non-conserved operators, an odd function of ω, i.e. ρ(k, ω) = −ρ(k,−ω), as can be seen by
using δ(x) = δ(−x) and |⟨n|Sα(k)|m⟩| = |⟨m|Sα(k)|n⟩|, with the latter requiring inversion
symmetry on the lattice [36]. Under the latter conditions one can also infer that ReGret is
an even function of ω. Moreover ρ(k, ω) is positive for ω > 0 and negative for ω < 0, as
can be read off from the factor 1 − exp(−βω). For constant operators like the total spin
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S(k = 0) = 1
N

P
i Si, which are diagonal in the eigenbasis {|n⟩}, it contains a Dirac-peak

at vanishing frequency [36].
Another type of correlation function, which was often studied in the literature, is the

so-called Kubo relaxation function [28, 33]

Rαγ
ij (t) =

Z β

0
ds⟨Sγ

j (0)e
−sHSα

i (t)e
sH⟩. (1.80)

A simple interpretation for this quantity can be given if one considers a constant external
perturbation H in t ∈ (−∞, 0) that is abruptly switched off at t = 0. The time-dependence
of Rαγ

ij (t) describes then the change of ⟨Sα
i (t)⟩ as it relaxes to the equilibrium state [28, 33],

which will be shown below. Consistent with that statement its value at t = 0 in k-space
is given by the zero-field static susceptibility Gαγ(k), defined in Eq. (1.56). Assuming for
simplicity no symmetry breaking, so that Rαγ(k, ω) = δαγR(k, ω), one can see this by using
the derivative rule [28, 37]

∂H(k)e
−β[H−H(k)Sz(k)] = e−β[H−H(k)Sz(k)]

Z β

0
dses[H−H(k)S(k)]Sz(k)e−s[H−H(k)St(k)],

(1.81)
whose non-trivial shape is a consequence of [Sz(k),H] ̸= 0. With the cyclic property of the
trace the expectation value reads

⟨Sz(k)⟩ = Z−1Tr e−βHSz(k) , (1.82)

whereas the following expression is obtained for its derivative [37]

∂H(−k)⟨Sz(k)⟩H=0 = Z−1

Z β

0
dsTr e−βHSz(−k)e−sHSz(k)esH , (1.83)

which is simply R(k, t = 0). Turning to the spectral representation of the relaxation
function one obtains

Rαγ
ij (t) =

1

Z

X
n,m

(e−βEn − e−βEm)⟨n|Sα
i |m⟩⟨m|Sγ

j |n⟩
ei(En−Em)t

Em − En
. (1.84)

from which one reads off for t > 0

d

dt
Rαγ

ij (t) = −Gαγ
ret,ij(t). (1.85)

Note that with Hj(t) = HjΘ(−t), the assumption Rαγ
ij (t→ ∞) = 0 and the linear-response

relation (1.69) it implies the aforementioned relaxation of ⟨Sα
i (t)⟩, i.e.

⟨Sα
i (t)⟩ − ⟨Sα

i ⟩0 =
X
j

Rαγ
ij (t)Hγ

j . (1.86)

Continuing with the Fourier-transform of the relaxation-function given by

Rαγ(k, ω) =
2π

Z

X
n,m

(e−βEn − e−βEm)⟨n|Sα(k)|m⟩⟨m|Sγ(−k)|n⟩δ(ω − En + Em)

Em − En
. (1.87)

one can relate it to the retarded spin susceptibility via

ωRαγ(k, ω) = 2ImGαγ
ret(k, ω), (1.88)
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so that we can write

Sαγ(k, ω) =
1

2π

ω

1− e−βω
Rαγ(k, ω). (1.89)

Note that for βω ≪ 1 the relaxation function yields directly the frequency dependence of
the scattering cross section and therefore for arbitrary ω at infinite temperature. In those
limit structure factor Sαγ and relaxation function Rαγ are the same up to a factor of T/2π.
Note also that in general

⟨Sα(k, t)Sγ(−k, 0)⟩ = 2πSαγ(k, t) =

Z ∞

−∞

dω

2π

ωe−iωt

1− e−βω
Rαγ(k, ω), (1.90)

confirming that only at T = ∞ the classical relation TR(k, t) = ⟨S(k, t)S(−k, 0)⟩, in
particular between equal-time correlation function and static susceptibility G(k), is valid.
In the opposite limit T = 0 one finds S(k, t) ∼

R∞
0 dωωR(k, ω)eiωt. In the symmetric phase

R(k, ω) = ρ(k, ω)/ω is a real-valued, positive definite, and even function of frequency, in
accordance with the properties of the spectral density. The Kubo relaxation function was
frequently employed in non-perturbative calculations of the spin dynamics in the symmetric
phase, especially at T = ∞, in the framework of the so-called memory function formalism
[38, 39]. One solves then an integro-differential equation of Langevin type for R(k, t), that
describes mainly dissipative processes. Such processes are believed to govern the long-time
(t ≫ O(|J |−1)) dynamics of isotropic paramagnets [33, 39], in contrast to the oscillatory
behavior in the ordered phase, implied by long-lived, propagating quasiparticles.

1.3.3 Matsubara (imaginary-time) formalism

In the context of fermionic or bosonic many-body systems it was found that diagrammatic
expansions of retarded susceptibilities around a free limit cannot be formulated for T ̸= 0 in
a straightforward way. This can be explained by the fact that exp(−βH) appears in a non-
trivial fashion, so that calculations of these quantities turn out to be rather cumbersome
[18, 29]. Note that this has also bearings on quantum spin systems like the Heisenberg
model, even though there are no kinetic, i.e. free, terms in H, meaning that there is no
small parameter at low temperatures to expand in. By invoking the spin wave picture, which
is believed to be correct for T ≪ |J |, one can introduce however an effective bosonic model
for magnon excitations from the ground state and expand in powers of 1/S [16, 30]. Hence
one faces similar technical problems at finite temperatures as for true fermions/bosons, if
one is interested in corrections to the non-interacting limit.

Fortunately, there exists a remedy, first developed by Matsubara [40]. It is based on
an analytic continuation of the time evolution operator U(t, 0) = eiHt, by substituting the
real-valued time variable via [18, 29, 40]

t→ −iτ, (1.91)

so that one is entirely located on the imaginary axis. The evolution in imaginary time is
therefore

A(t) → A(t = −iτ) = eτHAe−τH, (1.92)

meaning that the new time-evolution operator is non-unitary, i.e. U−1(τ, 0) = U(0, τ) ̸=
U†(τ, 0). Obviously, it has a functional form that is similar to the Boltzmann operator e−βH
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in the equilibrium density matrix ρ0, in contrast to the ’oscillatory’ real-time evolution op-
erator. In order to obtain proper correlation functions in imaginary time, we first introduce
time-ordering, via the action of an operator T , e.g. [1, 2]

T (Sα
i (τ)S

γ
j (0)) = Θ(τ)Sα

i (τ)S
γ
j (0) + Θ(−τ)Sγ

j (0)S
α
i (τ), (1.93)

which is easily generalized to an arbitrary number of operators, with arguments τ1, ..., τn
under the time-ordering symbol T . Note that equal-time expressions of non-commuting spin
operators, e.g. Sx

i , S
y
i , are obtained by setting their relative time difference to δ = 0+/−.

An imaginary-time two-spin correlation function is then defined as [2]

Gαγ
ij (τ) = ⟨T (Sα

i (τ)S
γ
j (0))⟩ = Tr(ρ0T (Sα

i (τ)S
γ
j (0))). (1.94)

From the cyclic property of the trace, one can show then that it satisfies Kubo-Martin-
Schwinger boundary conditions

Gαγ
ij (τ) = Gαγ

ij (τ + β), (1.95)

i.e. that is periodic, and therefore has to be only calculated explicitly in [0, β]. This period-
icity extends to each time argument of higher order-correlation functions. As a consequence
one can introduce a discrete Fourier transform

Gαγ
ij (iω) =

Z β

0
dτGαγ

ij (τ)eiωτ , (1.96)

where the discretized Matsubara frequencies are given by ω = 2πnT, n ∈ Z, like for
bosons. Only for T → 0 (β → ∞) the set of thermal frequencies becomes continuous again.
Conversely we have

Gαγ
ij (τ) = T

X
ω

Gαγ
ij (iω)e−iωτ . (1.97)

The spectral representation of the two-spin Matsubara function in an isotropic paramagnet,
where Gαγ(k, iω) = δαγG(k, iω), is given by

G(k, iω) = − 1

Z

X
n,m

|⟨n|Sα(k)|m⟩|2 (e
−βEn − e−βEm)

En − Em + iω
. (1.98)

From this expression one reads off that the retarded susceptibility is the analytical contin-
uation of the Matsubara function slightly above the real axis

Gret(k, ω) = G(k, iω → ω + i0+), (1.99)

and
G(k, iω = 0) = R(k, t = 0), (1.100)

which thus implies that the zero-frequency value of G(k, iω) is the static susceptibility from
Eq. (1.56)

G(k, iω = 0) = G(k). (1.101)

Hence one can extract the same physical information from the Matsubara correlation func-
tion. The analytic structure of the imaginary-time functions is, compared to Gret, relatively
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benign, as it does very seldom involve poles in the immediate vicinity of the real ω-axis.
Defining a so-called dynamic susceptibility in the complex frequency plane [18, 29]

G̃(k, s) =

Z ∞

−∞

dν

2π

ρ(k, ν)

ν − s
=

Z ∞

−∞

dν

π

1

ν − s
ImGret(k, ν), (1.102)

one sees by inserting the spectral representation of the spectral density, Eq. (1.79), that
the inverse relation between the Matsubara function and the retarded susceptibility is
given by setting s = iω. This expression features a branch cut for Im(s) = 0, mean-
ing that approaching the real axis from above and below s = ω ± i0+ produces a dis-
continuity, with the difference given by iρ(k, ω). Note that depending on the sign of
Im(s) the susceptibility G̃(k, s) can be expressed via a one-sided Fourier (or Laplace)
transform of the time-dependent spectral density ρ(k, t) for either t > 0 or < 0, e.g.
GL(k, s) = i

R∞
0 dteistρ(k, t) = iρL(k, s), Im(s) > 0 , and hence [35]

ρ(k, ω) = ρL(k, ω + i0+)− ρL(k, ω − i0+) = 2Re(ρL(k, ω + i0+)). (1.103)

In terms of the relaxation function the Matsubara function reads

G(k, iω) =

Z ∞

−∞

dν

2π

ν

ν − iω
R(k, ν). (1.104)

Note that from this relation and the properties ofR(k, ν) one can infer that in the disordered
phase ImG(k, iω) = 0 , ReG(k, iω) > 0 and G(k, iω) = G(k,−iω). Furthermore the above
relation implies that G(k, iω) is a monotonously decreasing function of frequency, since

ReG(k, iω) =

Z ∞

−∞

dν

2π

ν2

ν2 + ω2
R(k, ν). (1.105)

Note that it depends solely on ω2 which in turn leads to an explicit dependence on |ω| for
small frequencies. For large frequencies G(k, iω) falls off as 1/ω2. A perturbation theory
for the Matsubara function can be formally setup by switching to an interaction picture,
where the operators evolve with a non-interacting H0, and one expands a suitable time-
ordered exponential, which contains the separated, interacting part J [1, 2]. For fermions
and bosons this provides us with finite-temperature diagrammatic expansions, that are
similar to the ones at T = 0 [18, 29]. For the Heisenberg Model or other purely localized
spin models such an expansion can only be reasonably used for high temperatures, where
β|J | ≪ 1, since free terms are absent in H. Due to the already presented advantages in its
analytic structure compared to the real-time approach, the Matsubara framework facilitates
formulating and applying non-perturbative methods. Hence we will use it in our further
investigations.

1.4 Hydrodynamics and dynamic scaling

1.4.1 Hydrodynamics

The phenomenological concept of hydrodynamics in the context of correlation functions
of many-body systems was first introduced by Kadanoff and Martin [41] to describe the
properties of many-body systems in non-equilibrium. The main assumption is that the
variation of relevant quantities, i.e. those that are conserved in a suitable long wavelength-
limit, is very slow in time and space for inhomogeneous perturbations from equilibrium
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[35, 41]. As a consequence the system can be regarded as being everywhere in a local
quasiequilibrium. This description requires sufficiently large times t (↔ small frequencies
ω) and distances |r| (↔ large wavelengths λ ∼ k−1) in order to be valid, i.e. those that are
much bigger than all other relevant scales in the problem. The corresponding crossover scales
can be for instance purely microscopic and therefore can be read off from parameters in the
Hamiltonian, e.g. the typical magnitude of the interaction |U | and its effective range. For
T = ∞ a hydrodynamic description should therefore be applicable for macroscopically small
momenta and frequencies if the interaction is short-ranged. At lower temperatures additonal
scales emerge dynamically, like the aforementioned correlation length ξ and a corresponding
relaxation time for the decay of fluctuations τ(ξ). Both become macroscopially large in
the critical region, ξ ≫ a, τ(ξ) ≫ O(|U |−1), leading to a continuous shrinking of the
hydrodynamic regime for T → Tc. In the context of a fluid, the relevant crossover scales can
be understood as a mean free path, i.e. interatomic distance λf and flight time τf between
collisions of particles. The hydrodynamic regime is thus often referred to as collision-
dominated regime, since such events occur frequently on macroscopic space-time scales
≫ λf , τf and ensure the aforementioned local equilibrium. If these conditions are met,
one can reduce the problem in the hydrodynamic regime to the solution of a finite set of
partial differential equations. First we have conservation laws, that are written in terms of
a continuity equation [35]

∂tn(r, t) +∇ · j(r, t) = 0, (1.106)

where n(r, t) is a density and j(r, t) is the corresponding current. For a normal fluid
consisting of particles with mass m, we have densities of their number ρ(r, t), momentum
g(r, t) and energy ϵ(r, t) which lead to the following equations [41]

∂tn(r, t) +∇ · g(r, t)/m = 0, (1.107)

∂tgj(r, t) + ∂iTij(r, t) = 0, (1.108)

∂tϵ(r, t) +∇ · jϵ(r, t) = 0, (1.109)

where Tij(r, t) is the stress tensor and jϵ(r, t) the energy current. These equations are
supplemented by expressions for Tij and jϵ on top of additional conditions for the gradients
of the inhomogeneous temperature and pressure T (r, t), P (r, t) [41].

Spin Diffusion and other types of magnetic transport

In the context of the isotropic Heisenberg Model it suffices to restrict our discussion of
hydrodynamics to one particular equation, describing the dynamics of the magnetization
at elevated temperatures and asymptotically large space-time variables (r, t), i.e. |r| ≫
max{ξ, a}, t ≫ max{τ, const × |J |−1}. Note that spins separated by these distances are
therefore weakly correlated, |⟨Sr(t)S0⟩| ≪ b′0. The corresponding equation for the variation
of the inhomogeneous magnetization M(r, t) = ⟨Sz

r(t)⟩ in the symmetric phase reads then
[41]

∂tM(r, t) = −D(i∇)2M(r, t), (1.110)

which follows from the corresponding continuity equation, if one assumes jM = D∇M
[35, 41] for the magnetization current. Here D > 0 is the spin diffusion coefficient, since
one can readily discern that this partial differential equation has the same shape as the
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diffusion equation, known from the theory of Brownian motion [35]. Note that D has to be
calculated by some other means, with its explicit numeric value depending on microscopic
details [41]. For T → ∞ one expects D ∝ |J | [42]. Transforming to momentum space,
where (i∇)2 → k2 one obtains for its solution

M(k, t) =M(k, 0) exp(−Dk2t). (1.111)

Such an exponential decay is an irreversible and, for the assumed hydrodynamic times and
momenta, slow process, describing the dissipation of an inhomogeneous initial configura-
tion M(k, 0), caused by disturbing equilibrium. Note that transforming the expression for

M(k, t) to real space yields a normalized Gaussian ∝ exp(− r2

2(∆r)2
) with squared mean dis-

placement (∆r)2 = Dt, which describes the time-dependent spreading of a sharply localized
initial magnetization M(r, 0) ∝ δ(r) [35]. Taking a one-sided Fourier or Laplace-transform
of the above solution to the complex upper plane ML(k, s) =

R∞
0 dteistM(k, t) one finds

[35, 41]

ML(k, s) =
M(k, 0)

Dk2 − is
, (1.112)

implying an imaginary pole at s = −iDk2. One can also calculate the two-spin correla-
tion function and therefore scattering intensity S(k, ω), by essentially assuming that the
diffusion equation (1.110) holds on the level of operator or fields too, without taking the
non-equilibrium expectation value with respect to a perturbed density matrix ̸= ρ0 [35].
From that one immediately concludes, by taking the equilibrium average, that the two-spin
correlation function S(k, t) ∼ ⟨Sα(k, t)Sα(−k, 0)⟩ satisfies the diffusion equation

∂tS(k, t) = −Dk2S(k, t), (1.113)

which yields the previous exponential decay. Note that for k = 0 it does not decay, since
the total spin is conserved as implied by the continuity equation. One obtains a similar
expression for its Laplace-transform

SL(k, s) ∝ [Dk2 − is]−1, (1.114)

featuring again the imaginary diffusion pole. The dynamic structure factor S(k, ω) =
2Re(SL(k, s→ ω + i0+)) is then proportional to a Lorentzian, centered at ω = 0 [35, 41]

S(k, ω) ∝ Dk2

(Dk2)2 + ω2
, (1.115)

which also implies [35]

D ∼ lim
ω→0

lim
k→0

ω2

k2
S(k, ω). (1.116)

Furthermore we want to note that alternatively the diffusion coefficient D can be written in
terms of a static (ω = 0) and homogeneous (k → 0) limit for the current-current correlation
function, i.e. its spatial and temporal average [28, 35, 42, 43].

There are no rigorous proofs on the existence of spin diffusion in the isotropic Heisenberg
Model. Whether hydrodynamics in the laid out version is indeed a valid description of the
long-time and wavelength asymptotics, may depend also on additional properties of the
system, like its dimensionality [44, 45, 46] and further conservation laws, that arise for
instance from integrability in some particular one-dimensional systems [47, 48, 49, 50].

27



CHAPTER 1. INTRODUCTION

Furthermore the aforementioned asymptotic behavior may be restricted to specific scaling
limits, requiring as an example some fixed relation between t and k [44], with the asymptotic
long-time behavior being more intricate. Besides ordinary diffusion described above, one
also encounters anomalous diffusion, which amounts to a time-dependent diffusion coefficient
D(t), that does not converge to a finite long-time value D(t = ∞) = D ̸= 0. Depending
on whether it diverges for t → ∞ or approaches zero one can distinguish between super-
and subdiffusion [47, 48, 51]. Conversely, D(ω) approaches zero for ω → 0 in the case of
subdiffusion and diverges in the low-frequency limit for superdiffusion [44, 47, 51, 53], often
as a power-law. Note that the low-ω asymptotics of D(ω), implied by anomalous diffusion,
are covered by Eq. (1.116) as well, relating D to a specific zero-momentum/frequency limit of
the scattering intensity S(k, ω) [42]. In real space such a behavior of the diffusion coefficient
would manifest itself via a modified law for the time-dependent spread or variance

∆r2 ∼ t2m, (1.117)

of magnetization profiles, with m > 1/2 for super- and m < 1/2 for subdiffusion [48].
m is directly related to the divergence or vanishing of D(t), D(ω), whose asymptotics also
determine a dynamic index z = 1/m such that one obtains ω ∼ kz as a characteristic energy
at small k and ω [51]. For instance, the diffusion form (1.115) for S(k, ω) implies z = 2.
Note that m is bounded from above by 1, with that limit describing ballistic transport,
i.e.

√
∆r2 ∼ vt. Ballistic behavior in magnets at high temperatures is explicitly found in

the spin-1/2 XXZ-chain with weak or vanishing Ising-anisotropy [47, 48, 51, 52, 53], but
is also argued to occur frequently in classical integrable systems [47, 48]. Moreover one
can associate ballistic transport, as is the case for electrons, with a perfect conductor, i.e.
ideal transport unhampered by a finite scattering rate τ−1

s [42, 52, 53]. The form for the
corresponding dynamic conductivity

σ(ω) = DRδ(ω) + σreg(ω) (1.118)

is shown to host a Dirac-peak with a finite Drude weight DR > 0, that is given by the long-
time limit of the aforementioned current-current autocorrelation [42, 51], besides a regular,
dissipative contribution σreg(ω) that can be related to D(ω) [42, 43, 51]. Conversely ordinary
diffusion is characterized by a non-zero τ−1

s and the removal of the Drude peak, DR = 0
[42, 52], with σreg(0) ̸= 0, analogous to a realistic conductor [42]. A vanishing diffusion
coefficient or static conductivity, as is the case for subdiffusion, implies transport like in an
insulator, e.g. a disordered electronic system with a high concentration of impurities and
the fully localized limit given by ∆x2 ∼ t0 [42, 43, 51]. Finally, for superdiffusion the Drude
weight remains zero as for diffusion [53], thus still being dissipative, although with faster
growth of ∆x2 due to limω→0 σreg(ω) = ∞ [51].

1.4.2 Van Hove Theory of critical scattering and mode-coupling approach

The van Hove theory was a first attempt to give a phenomenological description of the
scattering at magnetic materials [32]. In particular it provided predictions for the critical
T -dependence of decay rates for quantities like the magnetization in a ferromagnet. Van
Hoves starting point concerning the magnetic scattering in the vicinity of the critical point,
is again a phenomenological equation for the variation of the magnetization M(r, t) of a
paramagnet at macroscopically large distances and times, which in momentum space reads

∂tM(k, t) = −G−1(k)L(k)M(k, t). (1.119)
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Here, the dimensionless quantity L(k) > 0 is a so-called Onsager-coefficient and G(k) the
momentum-resolved static susceptibility defined in Eq. (1.69). In the vicinity of k = 0, i.e.
long wavelengths, this coefficient satifies

L(k) = Lk2, (1.120)

so that this equation describes, as already discussed, spin diffusion, with a diffusion constant
given by

D = G−1(0)L. (1.121)

For a ferromagnet G−1(0) is the inverse of the order parameter susceptibility χ and goes to
zero as ξ−2 for T → Tc. van Hove argued now that L(k) remains finite for T = Tc [32, 54],
as it should be determined by fluctuations on all length scales, including microscopic ones,
regardless of the strong correlations, associated with a singular static susceptibility. He
explicitly related L to the change of entropy δS in the irreversible process of dissipating a
spatially inhomogenous magnetization, e.g. [32]

δS ∼ L

Tχ2

X
α,γ

∂Mα

∂xγ

2
. (1.122)

It was then imposed that after insertion ofMα = χHα, the change δS should not depend on
the susceptibility χ, meaning that δS is non-singular, if L is also taken as a finite constant.
The consequence of all this is that D vanishes as χ−1 [32], i.e. the decay rate of fluctuations
around the ordering vector goes to 0, which is a manifestation of the aforementioned critical
slowing down, see section 1.2.1, that allows us to ignore the effect of dynamics on universal
properties of static quantities near a critical point. In an antiferromagnet this also applies
to the decay rate of the staggered magnetization, which is non-conserved and at large
temperatures a fast mode due to L(Q) ̸= 0, but becomes as a consequence of G−1(Q) → 0
also slowly varying in the vicinity of Tc. Note also that fluctuations near the origin do
not exhibit critical slowing down in an antiferromagnet, since G−1(0) = O(J) ̸= 0 at Tc,
implying D ≠ 0.

Mode-coupling approach to critical dynamics

It turns out that, while critical slowing down is observed in experiments and also found in
other calculations [55, 56], a non-singular Onsager-coefficient L is not always guarenteed for
T → Tc. If one allows for a divergent L, the vanishing of D or other decay rates of interest,
occurs with a smaller exponent, and this was indeed measured in experiments [54, 55, 56].
The reason for this failure may be traced back to the neglect of certain terms in the dynam-
ics of the magnetization as described by Eq. (1.119), which will induce singular anomalies
in the T -dependence of L. These contributions correspond to reversible and nondissipative
processes, in contrast to the irreversible, dissipative diffusion term, as introduced in hy-
drodynamics. They are rooted in interactions between proper slow modes Mi, namely the
order parameter and other quantities, whose decay rates approach zero for k → 0 or k → Q
and T → Tc. Hence even without being conserved the order parameter is of relevance,
due to G−1(Q) → 0 for T → Tc, so that its relaxation rate vanishes eventually too. Note
that all other fast variables, which do not satisfy these conditions, are projected out via a
suitable procedure, as first introduced in the Mori-Zwanzig formalism [33, 38, 39, 55]. The
scalar product between modes (M∗

i ,Mj) is then defined in terms of a relaxation function
of these two quantities (operators) and the projection separates degrees of freedom which
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are orthogonal to the relevant modes in the sense of this scalar product [39, 55]. Note that
the aforementioned interactions between relevant modes are nonlinear and persist at macro-
scopic distances k−1 of the same order as the correlation length ξ ≫ a, with the reversible
terms known as mode-coupling contributions [54, 55, 56, 57]. The shape of these terms is
determined by generalized Poisson brackets {Mi,Mj} between slow variables. In the case
of magnetic moments, one can obtain those via the correspondence principle by using the
commutator relations (1.9) for spin operators [56]. The structure of the reversible coupled-
mode terms, is thus the same, as in the equation of motion for the quantum-mechanical
operators. For the Heisenberg Model this amounts to the Larmor precession of a single spin
in an effective exchange field, that is determined by all other spins, which couple to it via
the interaction Jij [56]. The dissipative term, which is also a consequence of interactions
between slow modes, acts then as a damping of this precession. It is proportional to the
variation of the free energy functional F [{M}] with respect to M . In the case of a Heisen-
berg magnet the functional is simply given by the one for a three-component M4-theory, a
static Ginzburg-Landau-Wilson functional (1.50). The extracted dynamic equation for the
slowly varying magnetization in an isotropic ferromagnet reads for instance [55, 56, 57]

∂

∂t
M(r, t) = CM × δF [{M}]

δM(r, t)
− L(i∇)2

δF [{M}]
δM(r, t)

+ ζ(r, t). (1.123)

The first two terms on the right-hand side were already identified as the spin precession
and its damping. The third one is a stochastic noise term [56], representing random forces,
which is a consequence of integrating out all fast modes, that are orthogonal to the slow
subspace. It is usually taken as White Noise, i.e. a Gaussian distribution for these random
forces with variance L [55, 57]. Eq. (1.123) can then be treated for instance by means of the
renormalization group to extract its scaling properties near the upper critical dimension,
which for a ferromagnet is dc = 6 [56, 57]. Usually one neglects, at least for the ferromagnet,
terms of the order (M2)2 in F [{M}], which are irrelevant above d = 4. The dissipative
term is then purely linear. Conversely the coupled-mode term is quadratic like in the
equations of motion for the spin operators. Moreover it is ∝ ∇2, due to M × M = 0,
which is consistent with spin conservation [57]. Note that Eq. (1.123) includes additional
approximations, like neglecting memory effects, via a retarded kernel in the dissipative part,
and a possible dependence of L on M [55, 56, 57].

1.4.3 Dynamic scaling

The dynamic scaling hypothesis (DSH), as formulated by Halperin and Hohenberg [54,
58], postulates that in the vicinity of a second order finite-temperature phase transition
dynamic correlation functions at macroscopically large length- and timescales, have to be,
analogous to static correlations, continuous along boundaries between asymptotic regions
in a (k, ξ−1)-parameter space. Such an assumption for the dynamics at long wavelengths
and low frequencies leads to results, which differ significantly from van Hoves predictions in
Sec. 1.4.2. Its tremendous effect may be readily explained by explicitly taking the singular
behavior of static order parameter correlations into account. In fact one of the central
outcomes of dynamic scaling is that below a critical dimension dc, which is inherent to a
dynamic universality class of models, the leading temperature dependence of relevant decay
rates, like the spin diffusion constant D in a magnet, is strongly modified due to singularities
in the corresponding Onsager coefficients [54, 58]. Such singularities were ruled out a priori
in van Hoves description [32]. As time eventually showed dynamic scaling proved to be a
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Figure 1.1: Upper plot: The three relevant asymptotics regions in the (k, ξ−1)-plane as
described in the main text. I and III are hydrodynamic regions above and below Tc whereas
II is the critical region. Below: Typical line-shapes Rξ(y = ω/ωξ(k), k) for the frequency
dependence of the dynamic structure factor S(k, ω) in the regions III (left) and I (right).

powerful concept in describing the properties of models near their critical point. Its validity
was repeatedly confirmed in other theoretical investigations, e.g. within the previously
described effective field dynamics [55, 56, 57, 60], and, more important, experimental studies
of magnetic systems [61, 62].

One starts by defining the regions of interests in a plane, spanned by a k and ξ−1-axis,
with the conditions that both ka ≪ 1 and ξ/a ≫ 1, i.e. the wavelengths of fluctuations
and correlation length are much larger than all microsopic scales. Note that ξ−1 measures
also the distance to the phase transition, since |T − Tc| ∼ ξ−1/ν . Coming from above Tc
and assuming kξ ≪ 1 one is located in the hydrodynamic regime of the symmetric phase,
region I, where on length scales λ ∼ k−1 ≫ ξ the system appears largely disordered, i.e.
fluctuations are mostly uncorrelated. It can then be still appropriately described by the
aforementioned phenomological picture, as is the case at elevated temperatures, where ξ
is small and the relevant constraint for hydrodynamics is relaxed to ka ≪ 1. Taking as
an example magnetic systems, spin dynamics in this region are, as previously discussed,
dominated by processes like diffusion of the magnetic moment, impying dissipative, non-
propagating, modes as purely imaginary poles in the dynamic two-spin correlation function
at low frequencies [33, 35, 41]. Increasing kξ to values exceeding unity, one arrives in the
so-called critical regime kξ ≫ 1, region II. Here the assumptions of a hydrodynamic theory
cease to be valid, as degrees of freedom on the sufficiently short length scale k−1 ≪ ξ are
now highly correlated. At the critical point where ξ−1 = 0 this is the sole available regime.
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The boundary between both the regions I and II is roughly given by the line k = ξ−1 and is
alleged to lie in a smooth crossover between them (see below). In contrast to region I not
even qualitative statements can be made on the dynamics exhibited in II, due to the lack
of a simple phenomenological picture [58]. Finally one can also move into the symmetry-
broken phase, below Tc. Leaving the critical region, by trespassing the left line kξ = 1 one
is again in a regime, that is suited for a hydrodynamic description, region III. However, in
contrast to I, it is dominated by well-defined, propagating modes, where the real part of
their dispersion E(k) is much larger than the imaginary part, i.e. the damping Γ(k) for
small momenta k ≪ ξ−1 [6, 58, 59]. In magnets these modes can then be identified with
spin waves. For a better overview we have sketched the different regions in the centre of
Fig. 1.1.

The aforementioned continuity relations, which are also known as the weak formulation
of this hypothesis, can be written as conditions enforced on correlations at the boundaries
between the critical and hydrodynamic regions. Before formulating them explicitly, let us
first write the dynamic structure factor as follows for small momentum and frequency [58]

Sξ(k, ω) = TGξ(k)[2πωξ(k)]
−1Rξ(ω/ωξ(k), k). (1.124)

Here the subscript ξ indicates again the correlation length and thus the temperature at which
one evaluates these quantities. Rξ(y, k) is a normalized shape-function of the frequency-
dependence, while ωξ(k) is a characteristic frequency, which can for instance be determined
via a half-area constraint Z 1

−1

dy

2π
Rξ(y, k) =

1

2
. (1.125)

In region I this frequency can be identified with the width Γ(k) of a broad Lorentzian for
the relaxation function R. On the other hand for region III it is, in the limit k → 0, where
the damping is negligible, given by a single-magnon energy, e.g. E(k) ∼ ρsk

2 for the fer-
romagnet. The corresponding line-shape R is dominated by the transverse part, which is
quite close to sharp δ-peaks at ω = ±E(k). The line-shapes in the hydrodynamic regions I
and III are shown on the left and right of Fig. 1.1. Assuming sufficiently small frequencies
in addition to the constraints already formulated for k, ξ−1, we introduce asymptotic ex-
pressions of the momentum-dependent functions ωξ(k), Rξ(y, k) and Gξ(k) in each of the
regions I (kξ → 0, T > Tc), II (kξ → ∞) and III (kξ → 0, T < Tc). We demand that they
coincide up to O(1)-factors W, W ′ at the lines given by |kξ| = 1, e.g. for the characteristic
frequency [54, 58]

ωII(k) =WωI
ξ=k−1(k), (1.126)

ωII(k) =W ′ωIII
ξ=k−1(k). (1.127)

Note that one can recover static scaling relations from section 1.2.1, if one considers the
respective conditions for the static susceptibility Gξ(k) [58]. While the weak formulation
is sufficient to derive well-known results, there exists a more famous version of the DSH,
which is fully compatible with the above continuity conditions. The strong formulation is
given by postulating that the characteristic frequency and shape function obey the scaling
laws [54, 58]

ωξ(k) = kzΩ(kξ), (1.128)

Rξ(y, k) = R(y, kξ), (1.129)
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where z > 0 is the dynamic exponent belonging to the respective dynamic universality class.
Note that the limit Ω(∞) is finite, thus implying that the line-shape at Tc can be written
solely as a function of ω/ω∞(k) ∼ ω/kz [58].

Taking a look at the correlations of an order parameter, whose decay rate in the hydro-
dynamic regime scales as τ−1(k) ∼ Γ(ξ)kn, one can read off from the matching condition
above Tc

Γ(ξ) ∼ ξn−z, Ω(kξ ≪ 1) ∼ (kξ)n−z. (1.130)

Normally z > n [56, 58], so that Γ(ξ) vanishes and is therefore compatible with the critical
slowing down of order parameter fluctuations, although z will be smaller than the van
Hove value, reflecting the aforementioned divergence of Onsager-coefficients for T → Tc
[58]. The dynamic index z can be explicitly extracted by considering the behavior in the
ordered phase, i.e. the hydrodynamic expressions for the spin wave dispersion [5, 6, 59] and
using the postulated continuity relations. One can therefore predict from the knowledge
of dynamic properties on one side of the phase transition some scaling properties for the
approach from the other side. Note that measuring ω in terms ωξ(k) is not a unique choice
to write down a scaling law. Other scaling variables for the frequency may be introduced
as well, which leads to different scaling functions R′ that can be related to each other by
means of simple rescalings of the argument and a possible prefactor. For instance one can
measure the frequency in units of the kξ ≪ 1 (region I/III) or kξ ≫ 1 (region II)-limits
of the characteristic frequency. This allows one to interpret plots of the scaling functions
R′ directly in terms of dependences on a variable at fixed momentum k, frequency ω or
temperature T .

We want to close on the note that one can distinguish between a restricted and extended
scaling hypothesis [58]. The former is exclusively concerned with fluctuations of the order
parameter, for instance the magnetization in a ferromagnet. In that case, the above con-
siderations appear to be most justified, given that its own static correlations are singular.
Extended scaling formulates similar statements for other operators of interest. Those are
also part of the aforementioned slow variables, i.e. constants of motion like the total energy.
A system where this is of relevance is the Heisenberg antiferromagnet, whose order parame-
ter is not the total spin but the non-conserved staggered magnetization with ordering vector
QN . In that case extended scaling makes statements about the dynamics of the uniform
magnetization. Independent calculations indeed predicted scaling forms for the dynamics
of fluctuations around 0 and QN that share a common characteristic frequency [56, 60], in
agreement with extended dynamic scaling.
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Spin functional renormalization
group

2.1 Motivation

The main goal of the spin functional renormalization group (SFRG) lies in establishing a
non-perturbative method to determine thermodynamic and dynamic properties of quan-
tum magnets, that works directly with the physical spin operators S and their correlation
functions. A major obstacle in transferring common methods for fermions or bosons to
spin operators are their commutator relations, i.e. the SU(2) algebra (1.9), since instead
of a complex number like for the (anti-)commutators of canonical annihilation and creation
operators, the commutator is again a spin operator. Thus the corresponding Wick theorem
has a more complicated form [5, 7]. For the same reason one also cannot write the partition
function Z like for fermions or bosons as a path integral over the spin degrees of freedom,
i.e. in terms of Grassmann-valued or complex fields. Nevertheless Vaks, Larkin and Pikin
(VLP) developed and used a diagrammatic expansion of spin correlation functions in terms
of loop integrations, which is controlled by an associated small parameter like the inverse
range of interactions [5, 6]. It went beyond high temperature expansion series, since it
amounts already at zeroth order to an infinite resummation in J . This method was success-
fully employed to confirm findings of other approaches. One example is the occurence of spin
waves at low temperatures and their persistence in a hydrodynamic regime of sufficiently
long wavelengths up to T = Tc [6, 59].

However, the technique of VLP did not find widespread use, probably due to its un-
usual and therefore unwieldy diagrammatics. Other approximate approaches involve the
solution of non-linear integro-differential equations for time-dependent correlations, which
are derived in a memory-function formalism by means of separating properly chosen slow
and fast degrees of freedom [38, 39, 60]. They are especially successful in describing relax-
ational dynamics in the disordered phase, but need an input for the thermodynamics and
are also somewhat restricted in the way of conducting analytic investigations. Conversely,
static properties are often approximately calculated by means of Green’s function methods.
These approaches use some simple decoupling scheme for the equations of motion, requiring
only the calculation of a handful parameters, i.e correlation functions up to a finite upper
limit for the spatial separation between spins in these correlations [63, 64, 65, 66]. However,
they give only a qualitative description of the critical behavior, i.e. wrong critical expo-
nents, and do not perform better than mean-field theory in this regard. Furthermore on
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their own, i.e. without the notion of memory effects, they are inconvenient for the descrip-
tion of dissipative phenomena in paramagnets like diffusion. A method which is capable of
treating both sectors, static and dynamic, is therefore highly desired.

A different direction of approximate methods, that achieved some success, is based
on expressing the spin operators via auxiliary degrees of freedom, i.e. canonical fermions
c†, c or bosons b†, b with additional constraints. The most famous example is spin-wave
theory for ordered magnets at low temperatures. In that case the magnon excitations
can be described in terms of bosonic operators [16, 18, 30], whose number is limited by
kinematic interactions at sufficiently large temperatures in order to account for the finite
spin length on the otherwise unrestrained bosonic Fock space. Other ways to represent
the spin operators, that are more tailored to the disordered phase, like Schwinger bosons
[67] or Abrikosov pseudofermions [68] suffer from the same artificial increase of the Hilbert
space, leading as an example to states with a vanishing S that are not part of the initial
model [69]. Furthermore, the calculation of correlations between spin operators requires in
general the knowledge of higher order correlation functions for these auxiliary operators,
which introduces an additional complication.

Working directly with physical spin operators in the correct Hilbert space remains there-
fore quite tempting. In fact, some common mathematical objects like a path integral are
not necessary for setting up a non-perturbative FRG. This was used by Krieg and Kopietz
to formulate first an approach using the spin operators in their correct Hilbert space. In
that context the whole non-trivial spin algebra (1.9) is then accounted for via the initial
condition of the FRG flow, with its diagrammatic structure dictated by the FRG for bosonic
systems [1, 2]. In the following we will start with the SFRG in its first formulation. Af-
terwards we construct, on that foundation, an approach which is especially suited for the
paramagnetic phase and was introduced in our first publication, Ref. [10].

2.2 Initial formulations

2.2.1 1-PI formalism

We start by introducing a deformation into the isotropic Heisenberg Hamiltonian H → HΛ

which is decomposed as
HΛ = H0 + JΛ, (2.1)

where the role of the non-interacting part is played by the Zeeman term coupling to a finite,
spatially homogeneous external field H in the z-direction

H0 = −H
X
i

Sz
i , (2.2)

and the contribution of the exchange interaction on a d-dimensional Bravais lattice with
N =

Qd
i=1Ni sites and basis {ai}

JΛ =
1

2

X
i,j

JΛ
ijSi · Sj , (2.3)

now depends on the flow parameter Λ by substituting Jij → JΛ
ij . The latter is accomplished

by introducing a regulator function RΛ, which is added to the bare coupling J , i.e.

JΛ
ij = Jij +RΛ

ij . (2.4)
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The coupling at the initial scale Λ = Λ0 should be chosen such that the model in the
corresponding limit is exactly solvable or can be treated in an approximate but controlled
way. The simplest example is the non-interacting limit of isolated spins, JΛ0

ij = 0, for which
one can calculate the eigenspectrum and thus thermodynamic observables and correlation
functions exactly. In the following we will assume that JΛ

ij = JΛ(ri−rj) depends only on the
relative separation of lattice sites, implying discrete translational invariance on the Bravais
Lattice. For convenience we impose periodic boundary conditions, e.g. f(r+Niai) = f(r),
which however play no role in the thermodynamic limit N → ∞. The Fourier transform of
the spin operators and the exchange coupling is given by

S(k) =
X
i

eik·riSi, (2.5)

JΛ(k) =
X
i

eik·riJΛ(ri), (2.6)

whereas the inverse Fourier transformation to a quantity fi on the Bravais lattice reads

fi =

Z
k
f(k)e−ik·ri . (2.7)

Here
R
k ≡ 1

N

P
k is a shorthand-notation and the momenta can be for instance discretized

as ki = πni
Ni
, i = 1... d, ni = −Ni/2 + 1 ... Ni/2, which in the limit Ni → ∞ implies

that 1
N

P
k are replaced by integral averages over the first Brilloun Zone, 1

VBZ

R
ddk. The

Hamiltonian can then be written as

JΛ =
1

2

X
k

JΛ(k)S(k) · S(−k). (2.8)

Note that orthogonality relations for the lattice transforms came in handy here, namelyP
k e

ik·(ri−rj) = Nδi,j and
P

i e
i(k+k′)·ri = Nδk+k′,0. In our further studies we will consider

solely the zero-field limit H = 0, so that H0 = 0, and assume that we are in the symmetric
phase, thus excluding a priori a finite vacuum expectation value, i.e. ⟨Sz

i ⟩ = 0.
The flowing generating functional of connected time-ordered spin correlation functions

is given by [1]

GΛ[h] = lnTr T e(h,S)−
R β
0 dτJΛ(τ) , (2.9)

where (h, S) is a short-hand notation for

(h, S) =

Z β

0
dτ
X
i

hi(τ) · Si(τ) =

Z β

0
dτ
X
i,α

hαi (τ)S
α
i (τ), (2.10)

with space-time dependent magnetic sources hi(τ) and the interaction part

JΛ(τ) =
1

2

X
i,j

JΛ
ij

X
α

Sα
i (τ)S

α
j (τ). (2.11)

The imaginary time-evolution of the spin operators is given by the interaction picture

Sα
i (τ) = eH0τSα

i e
−H0τ . (2.12)
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Note that for H0 = 0, as considered by us, the exponentials e±H0τ can be only set to zero,
after the time-ordering is explicitly evaluated, meaning that one has to retain them under
the T -symbol. The time-ordered exponential has to be understood as

T e
R β
0 dτA(τ) = 1 +

∞X
n=1

1

n!

Z β

0
dτ1...

Z β

0
dτnT A(τ1)...A(τn) . (2.13)

The physical limit of the model is recovered by setting h = 0, where

GΛ[0] = lnZΛ = −βFΛ. (2.14)

By repeated functional differentiation of GΛ[h] with respect to the magnetic sources and
setting afterwards h = 0, one can generate physical connected correlation functions to
arbitrary order, namely

Gα1,...,αn

Λ,X1,...,Xn
= ⟨T Sα1

X1
...Sαn

Xn
⟩Λ,conn =

δnGΛ

δhα1
X1
...δhαn

Xn
h=0

, (2.15)

where we introduced space-time labels Xi = (ri, τi). In accordance with the homogeneity
of the system for vanishing sources, one can reduce them to functions of n − 1 space-time
arguments, with the n-th argument set to a reference point X = 0

Gα1,...,αn

Λ,X1,...,Xn
= Gα1,...,αn

Λ,X1−Xn,...,0
. (2.16)

The Fourier transform to the K = (k, iω)-representation acquires therefore an energy-
momentum-conserving factor, e.g.

Gα1,...,αn

Λ,K1,...,Kn
= δP

i=1 Ki,0

Z
X1

(...)

Z
Xn−1

n−1Y
j=1

eikj ·rj+iωjτjGα1,...,αn

Λ,X1,...,0
. (2.17)

where the short-hand notation
R
X =

P
i

R β
0 dτ was introduced. In particular the two-point

function is diagonal ∼ δK,−K in K-space. Note that these quantities can then be also
written as functional derivatives with respect to properly defined sources hK in the Fourier
domain. The inverse relation is

Gα1,...,αn

Λ,X1,...,0
=

Z
K1

(...)

Z
Kn−1

n−1Y
j=1

e−ikj ·rj−iωjτjGα1,...,αn

Λ,K1,...,Kn−1,−
Pn−1

i=1 Ki
, (2.18)

where we introduced
R
K = 1

βN

P
k

P
ω. The connected expressions ⟨...⟩conn are cumulants

and therefore include products of lower order expectation values, which is a result of taking
the derivative of the logarithm and not ZΛ itself. For uncorrelated degrees of freedom the
multi-spin expectation values factorize, e.g. ⟨T (SαSβ)⟩ ≈ ⟨T (Sα)⟩⟨T (Sβ)⟩ such that the
corresponding connected correlations will be zero. In fact one can cast the latter in the
form ⟨T

Q
i(Si − ⟨T Si⟩)⟩, being therefore thermal averages of products of deviations from

the one-point expectation value. As an example the two-point function is given by the
following ’variance’

Gα1,α2

Λ,X1,X2
= ⟨T Sα1

r1 (τ1)S
α2
r2 (τ2) ⟩ − ⟨T Sα1

r1 (τ1)⟩⟨T S
α2
r2 (τ2)⟩

= ⟨T (Sα1
r1 (τ1)− ⟨T Sα1

r1 (τ1)⟩)(S
α2
r2 (τ2)− ⟨T Sα2

r2 (τ2)⟩)⟩, (2.19)
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where time-ordered expectation values in the interaction picture are calculated with the
help of

T (B1(τ
′
1)...Bm(τ ′m)e

R β
0 dτA(τ)) = T (B1(τ

′
1)...Bm(τ ′m))

+

∞X
n=1

1

n!

Z β

0
dτ1...

Z β

0
dτnT (B1(τ

′
1)...Bm(τ ′m)A(τ1)...A(τn)).

(2.20)

The notion of a functional derivative is thus also justified, because all operators commute
under the time-ordering symbol T . Note that above Tc the physical one-point functions are
zero, so that the two-point function is just the two-spin expectation value. This also means
that the two-point function is equivalent to the Matsubara function GΛ,ij(τ) introduced
in section 1.3.3. Assuming an analytic-in-h shape of GΛ[h], in particular around h = 0,
the physical connected correlation functions are also the Taylor coefficients in a functional
series expansion of GΛ[h] in powers of h, which up to quadratic order reads

GΛ[h] = −βFΛ +
1

2

Z
X

Z
X′
GΛ,X−X′,0hX · hX′ +O(h3). (2.21)

Here we used that Gα1,α2

Λ,X−X′,0 = δα1,α2GΛ,X−X′,0 for an intact symmetry with respect to
rotations around an arbitrarily chosen axis.

Differentiating eGΛ[h] with respect to Λ yields an exact flow equation for GΛ[h]

∂ΛGΛ[h] = −1

2

Z β

0
dτ
X
i,j

∂ΛR
Λ
ij

X
α

h δ2GΛ[h]

δhαi (τ)δh
α
j (τ)

+
δGΛ[h]

δhαi (τ)

δGΛ[h]

δhαj (τ)

i
. (2.22)

This equation can be cast into a more compact form, using a supermatrix notation. Defining

G
(2)
Λ [h] =

h δ
δh

⊗ δ

δh

i
GΛ[h], (2.23)

and
[RΛ]

α,α′

X,X′ = δα,α′δ(τ − τ ′)RΛ
ij , (2.24)

we can then write

∂ΛGΛ[h] = −1

2
Tr ∂ΛRΛG

(2)
Λ [h] − 1

2

δGΛ

δh
, ∂ΛRΛ

δGΛ

δh
, (2.25)

where now Tr(...) =
P

α

R
X(...) denotes the sum over all field indices and (A,B) is a scalar

product as in the magnetic source-term (2.10). Inserting for instance the functional Taylor
expression of GΛ[h] on both sides of (2.25) and comparing properly symmetrized coefficients
of monomials in h one arrives at an infinite hierarchy of coupled integro-differential equa-

tions for the connected spin correlation functions G
(n)
Λ . Choosing the K-representation for

the trace and scalar products the term ∼ G
(2)
Λ in Eq. (2.25) contains only one sum

R
K(...),

while the bilinear contribution is purely local in momenta and frequencies. Note that in a

field-theoretical language G
(2)
Λ is often known as the propagator [3].

A conceptually simple application of the flow hierarchy is to iterate it in power of βJΛ,
thus reproducing the exact high-temperature expansion of any imaginary-time correlation
function. In practice, the calculation of higher order terms becomes quite cumbersome,
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due to a strong growth of the number of contributing diagrams and, being an asymptotic
series in βJΛ, it is even then of little use beyond the limit |βJΛ| ≪ 1, without some prudent
extrapolation scheme. Hence we have to find a way of resumming infinite orders in J
in order to obtain nonperturbative results. While one can achieve this by truncating the
hierarchy of flow equations, it is not really recommended, especially due to the tree-level
contributions implied by the scalar product in (2.25). In fact the presence of the latter leads
us to consider the Legendre transform of GΛ[h], which is given by [2, 3]

LΛ[m] = (m,h)− GΛ[h], (2.26)

where we introduced the magnetization field, a one-point expectaion value in the presence
of magnetic sources

m =
δGΛ[h]

δh
= ⟨T S ⟩. (2.27)

Conversely, the magnetic sources are the first functional derivatives of the Legendre trans-
form

h =
δLΛ[m]

δm
. (2.28)

Furthermore one can infer from writing by means of the chain rule δh
δh = ( δhδm ,

δm
δh ) = 1 that

the second derivatives are related to each other via [3]

L
(2)
Λ [m] = [G

(2)
Λ [h]]−1, (2.29)

where

L
(2)
Λ [m] =

h δ

δm
⊗ δ

δm

i
LΛ[m]. (2.30)

Relation (2.29) already hints at a major issue, which will be later elucidated on. Note
that LΛ[m] corresponds to the Gibbs’ free energy G(T,M) in thermodynamics, where one
transforms from H to M [3]. Differentiating LΛ with respect to the flow parameter at
constant m we obtain

∂ΛLΛ[m] =
1

2
Tr ∂ΛRΛ[L

(2)
Λ [m]]−1 +

1

2
m, ∂ΛRΛm , (2.31)

where a chain rule ∂ΛGΛ[h] = ∂ΛGΛ[h]h=hΛ
+ (δhGΛ, ∂ΛhΛ) was used, since the source field

is now Λ-dependent, leading to the cancellation of terms ∼ (m, ∂Λh). Introducing the
subtracted Legendre transform

ΓΛ[m] = LΛ[m]− 1

2
m,JΛm , (2.32)

so that Γ
(2)
Λ [m] + RΛ = [G

(2)
Λ [h]]−1 we can also eliminate the, now admittedly trivial,

tree-contribution to the flow equation, leading to

∂ΛΓΛ[m] =
1

2
Tr ∂ΛRΛ[Γ

(2)
Λ [m] +RΛ]

−1 , (2.33)

which is the Wetterich equation for ΓΛ[m] [1, 2, 3, 4]. The functional, defined in Eq. (2.32), is
also known as the 1-particle irreducible (1-PI) effective average action, because its functional
derivatives at the physical configuration in a paramagnet, m = 0, are the 1-PI vertex

functions Γ
(n)
Λ . These are comprised of all diagrams which cannot be split into a product
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of lower order diagrams by cutting a single G
(2)
Λ -line [2, 3]. Hence the flow equation (2.33)

features only terms with at least one loop integration, as indicated by the trace, whereas

purely local tree contributions like in the flow of the correlation functions G
(n)
Λ are now

absent. nalogous to GΛ an infinite hierarchy of equations for the 1-PI vertices Γ
(n)
Λ can be

derived from the Wetterich equation by either comparing properly symmetrized coefficients
of monomials in m or successively differentiating the flow equation (2.33) with respect to

m and evaluating these derivatives at m = 0 [1, 3, 4]. The relation between Γ
(n)
Λ and G

(n)
Λ ,

also known as tree expansion, is obtained by differentiating Eq. (2.29), which also allows
one to determine the initial condition of the vertices. Note that we have chosen JΛ instead
of RΛ = JΛ−J in order to avoid a finite magnetization at the initial scale which is implied
by the minimization condition for the flowing effective average action [2]

δΓΛ

δm m=MΛ

= hΛ −RΛMΛ = 0, (2.34)

and is equivalent to demanding that the one-point vertex Γ
(1)
Λ is zero for arbitrary Λ. One

sees now that for RΛ0 = J, a finite source field h0 = −J(Q)MQ is generated, which corre-
sponds to the mean-field solution for the magnetization and therefore symmetry breaking
below TMF

c , thus serving as an additional complication. Choosing JΛ one avoids this issue,
and can, by assuming MΛ = 0 → hΛ = 0, stay in the symmetric phase, as long as there are
no singularities in the static susceptibility GΛ(k).

Unfortunately the flow equations for Γ
(n)
Λ cannot be straightforwardly used, at least if

one chooses simple initial conditions for the flow. Consider the limit of decoupled spins,
HΛ0 = 0: Here we obtain for the connected two-point function of one magnetic moment

G(τ − τ ′) = ⟨T Sα(τ − τ ′)Sα(0) ⟩ = ⟨SαSα⟩ = ⟨(S)2⟩
3

=
S(S + 1)

3
, (2.35)

due to ∂τS(τ) ∼ [H,S(τ)] = 0. Hence the Fourier transform to frequency space is

G(ω) =

Z β

0
dτG(τ) = βδω,0

S(S + 1)

3
. (2.36)

As a consequence, the inverse of G(ω) which determines the two-point vertex Γ(2)(ω) ac-
cording to (2.29) is singular for ω ̸= 0. From this we conclude that ΓΛ[m] is a non-analytic
functional at the initial scale and does not have a proper series expansion around m = 0.
The fundamental issue here, leading to a non-invertible propagator, are conservation laws
for any operator corresponding to one power of the field, here m. For instance, even by
turning on an external magnetic field, the component of the spin parallel to the field is con-
served, so that longitudinal correlations Gzz(ω) still do not acquire a time dependence on the
local level [7]. Consequently we have to search for other parametrizations of the connected
correlation functions, where the respective vertices are well-defined for initial configurations
like the aforementioned isolated spins. In the next section such a workaround is described.
Note that this issue does not occur on the static sector. Hence in the absence of any equi-
librium dynamics, which is the case for classical spin models with S → ∞, JS2 = const.,
since [Sα, Sγ ]/S2 ∼ S−1 → 0, one can reliably stay within the 1-PI framework.

2.2.2 1-JI (VLP) formalism

An alternative to the 1-PI approach is not to start with pure connected correlation function,
but their amputated pendants, as first introduced by Krieg and Kopietz. The corresponding
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generating functional is defined as follows [1, 2]

FΛ[s] = GΛ[−JΛs]−
1

2
(s,JΛs). (2.37)

The amputation is performed with respect to JΛ, whose components are defined by

[JΛ]
α,α′

X,X′ = δα,α′δ(τ − τ ′)JΛ
ij . (2.38)

Its consequences are relatively easy to tackle: The amputated correlation functions are the
functional derivatives with respect to the new source s, evaluated at s = 0. Hence any

F
(n)
Λ , with n ̸= 2, is simply given by the corresponding G

(n)
Λ which is multiplied by factors

of −JΛ, i.e.

Fα1,...,αn

Λ,X1,...,Xn
=

δnFΛ

δhα1
X1
...δhαn

Xn
s=0

= (−1)n
X

j1,...,jn

(JΛ
i1,j1 ...J

Λ
in,jn)

δnGΛ

δhα1

(j1,τ1)
...δhαn

(jn,τn)
h=0

,

(2.39)
while the two-point function acquires an additional term

FΛ = F
(2)
Λ [s = 0] = −JΛ + JΛGΛJΛ, (2.40)

and is commonly referred to as effective interaction [1, 5]. Note that in the past FΛ[s] was

also represented via a path integral
R
D[φ]e−S[φ]+ 1

2
(φ,J−1

Λ φ)+(s,φ), running over a bosonic
auxiliary field φ, which makes use of the quadratic-in-S form of H [1, 2]. It is introduced
by means of a Hubbard-Stratonovich transformation i.e. an inverse Gaussian integration

T exp −
(S + s,A S + s )

2
∼
Z

D[φ] exp − (φ,A−1φ)

2
+(s, φ) T exp (S, φ) , (2.41)

of the time ordered exponential T e(...) in the trace over the Hilbert space. Note that
exp (S, φ) has to be kept under the trace and time-ordering symbol, since S is operator-
valued. As a result one arrives at an interacting action S[φ] that is up to a sign given by the
generating functional G0[φ] of connected correlations for an isolated spin [1, 2]. The exchange
coupling assumes then the role of the Gaussian propagator for the new field φ, justifying
to call the above procedure amputation as in the context of field-theoretical approaches

[3]. The amputated correlation functions F
(n)
Λ can then be identified with connected path-

integral averages of products in φ [2]. Turning JΛ off via a deformation, amounts then to
increasing the flowing mass of the φ-field, i.e. it becoming infinitely heavy for Λ = Λ0. On
the level of the φ-field the deformation of the interaction is thus analogous to the usual
FRG procedure for bosons or fermions, where fluctuations are successively frozen out with
increasing mass [3].

Taking the Λ-derivative of FΛ, we obtain with the help of the relation

δFΛ[s]

δs
= −JΛ

δGΛ[h]

δh
+ s , (2.42)

its exact flow equation,

∂ΛFΛ[s] =
1

2
Tr ∂ΛJ

−1
Λ F

(2)
Λ [s] +

1

2

δFΛ[s]

δs
, ∂ΛJ

−1
Λ

δFΛ[s]

δs
+

1

2
Tr(JΛ∂ΛJ

−1
Λ ), (2.43)
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which is also known as the Polchinski equation [3]. Its subtracted Legendre transform is
then defined as

ΦΛ[η] = (η, s)−FΛ[s] +
1

2
(η,J−1

Λ η), (2.44)

with the magnetic exchange field

η =
δFΛ[s]

δs
= −JΛ⟨T S⟩ − JΛs, (2.45)

and conversely

s =
δΦ

δη
− J−1

Λ η. (2.46)

This functional generates, in contrast to ΓΛ[m], vertices that are irreducible with respect

to cutting a single effective interaction line, F
(2)
Λ . Its second derivative is, for instance,

Φ
(2)
Λ [η] = J−1

Λ + [F
(2)
Λ [s]]−1 = −[JΛ + [G

(2)
Λ [h]]−1]−1. (2.47)

and conversely

G
(2)
Λ [h] = −Φ

(2)
Λ [η][1− JΛΦ

(2)
Λ [η]]−1. (2.48)

which has the structure of a Dyson, i.e. geometric series [18, 29], in JΛΦ
(2)
Λ , featuring in-

finitely many powers of JΛ. Relations between higher order vertices Φ
(n)
Λ and the connected

correlation functions G
(n)
Λ can be obtained by taking derivatives of Eq. (2.48) with respect

to η. Note that we have chosen −J−1
Λ as the regulator matrix instead of RΛ = J−1 − J−1

Λ ,
for the same reason as in the 1-PI average effective action, namely avoiding a finite magne-

tization at the initial scale, that is generated by the condition Φ
(1)
Λ = 0. The flow equation

of ΦΛ[η] reads [1, 2]

∂ΛΦΛ[η] = −1

2
Tr ∂ΛJ

−1
Λ [Φ

(2)
Λ [η]− J−1

Λ ]−1 − 1

2
Tr(JΛ∂ΛJ

−1
Λ ). (2.49)

This equation has also the form of the Wetterich equation [2, 4]. The initial condition of the

vertices Φ
(n)
Λ0

in the case of decoupled sites is simply given by the corresponding connected

correlation functions G
(n)
Λ0

of a single spin. This is easily seen on the level of the tree
expansion because all diagrams that are proportional to two or more correlation functions
of lower order vanish as O(JΛ) for JΛ → 0, due to at least one power of FΛ [2]. Note
that this is a consequence of the Legendre-transform ΦΛ[η] reducing to the aforementioned
bare Hubbard-Stratonovich action for JΛ → 0. Hence this functional is well-behaved even
in the non-interacting limit, which was pathological for the 1-PI effective average action.
Regarding the usefulness of this new functional we note that FΛ = O(JΛ) allows to setup
a high temperature expansion more efficiently than using GΛ[h]. For once, there are no
tree-level terms, implying an infinite resummation in J even in the simplest approximation

Φ
(n)
Λ ≈ Φ

(n)
Λ0

. Furthermore less contributions have to be taken into account at a given order,

since diagrams containing a number of internal lines ḞΛ, FΛ which is larger than the order

in βJ can be neglected. A far more interesting observation is the fact that Φ
(n)
Λ ≈ Φ

(n)
Λ0

amounts to a solution of the infinite hierarchy of equations G
(n)
Λ in the absence of terms

containing at least one closed loop integration. Therefore, if integrals over momentum,
or sums over frequencies, are associated with a small parameter, the hierarchy of flow
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equations can be iterated in
R
K to set up an expansion of Φ

(n)
Λ in powers of the parameter

[1, 2]. Such a small parameter may be an inverse interaction range, if the exchange coupling
is sufficiently long-ranged, or, similarly, an inverse coordination number, for instance on
higher-dimensional lattices, d ≫ 1. This FRG approach is thus equivalent to the spin-
diagrammatic method, set up by Vaks et al. [5, 6], although less cumbersome, since it uses
the relatively straightforward language of the Wetterich equation, instead of relying on their
complicated rules.

The above observations make a great case for employing this framework in situations
where the presence of a small quantity, associated with loop integrals, enables a controlled
expansion in powers of it. On the other hand, if such parameters are absent, one has to
rely on less controlled approximations when truncating the hierarchy of flow equations.
Experience shows then that it performs rather poorly whenever it can be benchmarked
against a 1-PI approach or established methods. For instance, Vaks, Larkin and Pikin
[5] found, that their expansion inevitably breaks down in the critical region, as can be
expected from the large range of correlations. From this alone one anticipates that simple
one-loop equations for, e.g., the static two and four-point vertices are inferior to their 1-PI
pendants [2, 3]. Krieg and Kopietz [1, 2] compared explicitly in the case of classical Ising
and Heisenberg models the results of inserting a d−1-expansion for Φ(2)(k) and Γ(2)(k) into
the static static susceptibility G(k) and found the latter choice to be always superior to the
VLP parametrization. It is likely that many problems in the study of static quantities within

simple approximation schemes can be traced back to Φ
(2)
Λ appearing also in the numerator

of GΛ(k), see Eq. (2.48), as opposed to the 1-PI self-energy, which is the negative of its
inverse.

2.3 Static-dynamic hybrid functional

The points made in the previous sections suggest that one has to seek for alternatives to the
pure interaction-irreducible approach. Fortunately we found that the static sector can and
should be treated as 1-PI with no intricacies arising from an ill-defined initial condition.
On the other hand, this is not the case for anything involving dynamic fluctuations, whose
existence is implied by the non-trivial commutation relations (1.9) between spin operators.
Hence a hybrid parametrization, with the quantum sector treated in a similar manner to
VLP, as 1-interaction irreducible, is a prudent choice. Note that such an approach will
always reduce to the pure 1-PI framework in the classical limit, S → ∞.

2.3.1 Amputation with respect to bare coupling

We begin with a straightforward hybrid formulation, which runs along similar lines to a
previous hybrid approach, albeit constructed in an entirely different context, the symmetry-
broken phase [2, 7]. Appropriate to that configuration one distinguishes between transverse
and longitudinal spin fluctuations, where the former are treated as 1-PI while the latter
are amputated in the same manner as by Krieg and Kopietz, with respect to the flowing
coupling JΛ [2, 7]. Afterwards we argue that in our case applying the same procedure to
the dynamic sector, is not necessarily the most convenient one. Thus adjustments to the
’naive’ implementation will be made, leading to a modified approach.

The starting point of the hybrid formalism, is the auxiliary functional, defined as,

AΛ[s] = GΛ[h
c,hq = −JΛs

q]− 1

2
(sq,JΛs

q). (2.50)
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Here we introduced the following decomposition of the magnetic sources in terms of static
(classical) and dynamic (quantum) components

hi,ω = hc
iβδω,0 + hq

i,ω(1− δω,0) → hi(τ) = hc
i + T

X
ω ̸=0

eiωτhq
i,ω, (2.51)

and expressed hq via the magnetization sources sq. Its functional derivatives are partially
amputated on the quantum sector, i.e. all arguments at ω ̸= 0 imply a multiplication with
−JΛ. In particular the two-point function at vanishing sources are in momentum-energy
representation given by

A
(2)
Λ (k, 0) = GΛ(k), (2.52)

A
(2)
Λ (k, iω ̸= 0) = FΛ(k, iω) = −JΛ(k) + (JΛ(k))

2GΛ(k, iω). (2.53)

In general all purely static quantities are just the corresponding connected spin correlation
functions. Introducing the regulator as

RΛ =
Rc

Λ 0
0 Rq

Λ

, (2.54)

Rc
Λ = JΛ → [Rc

Λ]
αα′

(K,K ′) = δK+K′,0δα,α′JΛ(k), (2.55)

Rq
Λ = −J−1

Λ → [Rq
Λ]

αα′
(K,K ′) = −δK+K′,0δα,α′J−1

Λ (k), (2.56)

we can write the flow equation satisfied by AΛ as

∂ΛAΛ[h
c, sq] = −1

2
Tr ∂ΛRΛA

(2)
Λ [hc, sq] − 1

2

δAΛ

δhc
, ∂ΛRΛ

δAΛ

δhc ω=0

−1

2

δAΛ

δsq
, ∂ΛRΛ

δAΛ

δsq ω ̸=0
− 1

2
Trω ̸=0(JΛ∂ΛR

q
Λ), (2.57)

where the subscripts ω = 0, ω ̸= 0 indicate that we take only the static or dynamic subspace
when calcuting the sum over field components. Introducing then the subtracted Legendre
transform of AΛ, defined as

ΓΛ[m
c,ηq] = (mc,hc) + (ηq, sq)−AΛ[h

c, sq]− 1

2
(mc,Rc

Λm
c)− 1

2
(ηq,Rq

Λη
q), (2.58)

with the classical magnetization

mc =
δAΛ[h

c, sq]

δhc
, (2.59)

and the quantum exchange field corrections

ηq =
δAΛ[h

c, sq]

δsq
, (2.60)

one obtains then its version of the Wetterich equation

∂ΛΓΛ[m
c,ηq] =

1

2
Tr ∂ΛRΛ[Γ

(2)
Λ [mc,ηq] +RΛ]

−1 +
1

2
Trω ̸=0(JΛ∂ΛR

q
Λ). (2.61)

Note that the hybrid functional ΓΛ[m
c,ηq] is related to ΦΛ[η] via a Legendre-Transformation

from static exchange fields ηc to the classical magnetization mc. Introducing the static spin
self energy as

ΣΛ(k) = Γ
(2)
Λ (k), (2.62)
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and the dynamic polarization as

ΠΛ(k, iω) = −Φ
(2)
Λ (K), (2.63)

we can write the corresponding two-point functions in K-space as

GΛ(k) =
1

ΣΛ(k) + JΛ(k)
, (2.64)

FΛ(k, iω) = − JΛ(k)

1 + ΠΛ(k, iω)JΛ(k)
. (2.65)

The latter parametrization is reminiscent of the Random Phase Approximation, e.g. a
screened Coloumb interaction in electronic systems [18, 29], which explains why one often
calls F (k, iω) an effective interaction and ΠΛ(k, iω) a polarization. The Matsubara function
can then be written as

GΛ(k, iω) =
1

Π−1
Λ (k, iω) + JΛ(k)

=
ΠΛ(k, iω)

1 + ΠΛ(k, iω)JΛ(k)
. (2.66)

Assuming JΛ0 = 0 the initial conditions are

GΛ0(k, iω) = βb′0δω,0, (2.67)

ΣΛ0(k) = (βb′0)
−1, (2.68)

ΠΛ0(k, iω) = 0. (2.69)

For negligible quantum dynamics, one obtains, intuitively, the 1-PI effective average action
ΓΛ[m

c,ηq] ≈ ΓΛ[m
c, 0]. On the level of vertices, i.e. the tree expansion, this is easily

discerned from the lack of mixing between static and dynamic sector, which is a consequence
of translational invariance in time and therefore conservation of frequency. Hence the above
construction is warranted. Turning to the dynamic sector we will now explain why the
chosen treatment of quantum fluctuations is still inconvenient. One starts by noting that
due to the lack of dynamics the associated spectral density is simply a Dirac-delta

ImGΛ0(k, ω + i0+) = b′0δ(ω). (2.70)

This is trivial, given that the spin is conserved for H = 0. Measuring a time-ordered
correlation between two spin components at different times produces then always the same
result. On the other hand in an interacting many-body system the individual spins acquire
a non-trivial time evolution. Hence the correlations between corresponding modes in k-
space will also depend on time, implying a non-trivial frequency dependence of G(k, iω)
and Gret(k, ω) for ω ̸= 0. The only exception is the k = 0-mode, i.e. the total spin

P
i Si

which satisfies ∂tS(0) ∼ [S(0),H] = 0, so that the Matsubara function fulfills

GΛ(0, iω ̸= 0) = 0. (2.71)

Hence, the uniform retarded susceptibility Gret(0, ω) of an interacting system is still a δ-
distribution multiplied by the isothermal magnetic susceptibility χ = ∂HM |H=0 [28]. Indeed
one can show that the zero-frequency limit of Gret(k, ω), the isolated Kubo susceptibility,
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is always ≤ ∂HMH=0 [37] and in fact is even ≤ χS = ∂HM(H)S=const. ≤ χ, where χS is the
adiabatic magnetic susceptibility [70, 71].

A question that still lingers: Is there a discontinuity, e.g a Dirac-delta, in the static limit
iω → 0 of susceptibilities for non-conserved operators, i.e. those at k ̸= 0? For instance
Kwok et al. derived for the prefactor of the zero-frequency Dirac-peak in the difference
between G(k, iω → 0)−G(k, 0), i.e. the anomaly the following expression [36, 71]

A(k) =
1

2

h
lim
t→∞

⟨Sz(k, 0)Sz(−k, t)⟩+ lim
t→−∞

⟨Sz(k, 0)Sz(−k, t)⟩
i
. (2.72)

For k = 0 this is obviously non-zero, due to the absent time-dependence. On the other hand,
the anomaly A(k) vanishes, if the expectation value in (2.72) approaches zero for t = ±∞
[36]. The absence of an anomaly is thus consistent with the statement that degrees of
freedom which are not constants of motion, should become uncorrelated for asymptotically
large times. Considering the presumed dissipative dynamics at elevated temperatures, as
laid out by hydrodynamics for a thermodynamic system, N → ∞, it seems suggestive that
at finite momentum A(k) should vanish [35, 41]. An alternative and less handy expression
for the anomaly reads [36],

A(k) =
1

Z

X
m,n

e−βEn |⟨n|Sα(k)|m⟩|2δEn,Em , (2.73)

where one notes the ’same energy’-constraint En = Em.
Moreover one can invoke the concept of ergodicity for thermodynamically large systems,

N → ∞ [28, 71]. Roughly speaking, one expects, if it holds, that starting from any initially
prepared macrostate with fixed energy or temperature, the system relaxes for long enough
times to a steady state, that is determined by the respective statistical ensemble (micro-
canonical, canonical) [28]. More precisely, the time-average of an evolving observable S
over an interval [0, Tm], approaches in the limit Tm → ∞ its statistical average ⟨S⟩ [28, 71],
i.e. on the classical level ⟨S⟩ = limTm→∞

1
Tm

R Tm

0 dtS(t), regardless of the initial value S(0).
A similar statement has to apply to two-point correlation functions S(k, t) or relaxation
functions R(k, t) (in the quantum case), which are also written in terms of a time-averaged
quantity, where the averaging is performed over a second initial time t′ contained in both
observables [28]. From the fulfillment of ergodicity in the outlined sense one can deduce
then that the long-time limit of the autocorrelation functions in Eq. (2.72) should converge
to a product of one-point functions and thus go to zero for finite k [28, 71]. A more re-
cent analysis by Chiba et al. [72] suggests, that the different static spin susceptibilities are
equal for k ̸= 0, if conditions similar to but also weaker than the eigenstate thermalization
hypothesis (ETH) [73] are satisfied, with the latter being also concerned with ergodicity in
the context of quantum systems. The imposed conditions in Ref. [72] require then that for
k ̸= 0 off-diagonal terms of a narrow slice of states in the spectral representation of the
aforementioned anomaly in Eq. (2.73) vanish sufficiently fast in the thermodynamic limit.

While there exists no rigorous proof that the presented conditions hold and the concept
of ergodicity applies to the systems in question [28, 71], we assume that they are valid in
the discussed sense. Thus the dynamic spin susceptibility at finite momentum k ̸= 0 is
taken as continuous in the low-frequency limit, i.e.

G(k ̸= 0, iω → 0) = G(k ̸= 0, iω = 0) = G(k). (2.74)

For the corresponding 1-line irreducible vertices it reads

Π(k, iω → 0) = Σ−1(k). (2.75)
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Hence the isolated Kubo susceptibility Gret(k, 0) will be equivalent to the isothermal static
susceptibility G(k, 0) [28] as introduced in Eq. (1.56). Note that ImGret(k, ω) thus has
to vanish for ω → 0. The restoration of continuity in G(k, iω) can be connected to a
broadening of δω,0 via the introduction of a finite width ∆(k) for J ̸= 0 and k ̸= 0, i.e.
[6, 36]

δω,0 →
∆(k)

|ω|+∆(k)
, (2.76)

which in real frequencies translates to a Lorentzian

δ(ω) → 1

π

∆(k)

ω2 +∆(k)2
. (2.77)

Here the width ∆(k) may be for instance related to typical energy scales, i.e. relaxation
rates, of dissipative processes in paramagnets, e.g. ∆(k) ∼ Dk2 in the case of spin diffusion
[6]. Suppose now that we are explicitly interested in the dynamics of the system at arbitrary
time scales. The continuity condition for ΠΛ (2.75) requires then meticulous fine-tuning for
all JΛ ̸= 0. It does not work to enforce, via suitable vertex corrections or other auxiliary
quantities, that their derivatives coincide

∂ΛΣ
−1
Λ (k) = ∂ΛΠΛ(k, iω → 0), (2.78)

because the initial conditions are different as a consequence of the discontinuity in an isolated
spin. With this relatively straightforward ansatz already disqualified it is hard to discern
another simple approximation for ensuring (2.75).

Another aspect, that hints at potential issues and appears at first less obvious, concerns
the fact, that JΛ(k) is negative definite in a large region of the Brillouin Zone. For instance,
in the case of an antiferromagnet where J > 0, the vicinity of the global minimum is
also the region where ΠΛ(k, iω) is not suppressed in |k − Q|, in contrast to the origin,
where it vanishes. Moreover the thermal frequencies 2πnT become successively smaller with
decreasing temperature. Applying then a simple approximation for ΠΛ(k, iω), e.g. a high-
frequency limit ∝ ω−2, leads to a breakdown of the flow for sufficiently low temperatures,
because [1 + ΠΛ(k, iω)JΛ(k)] becomes negative, thus implying divergencies in FΛ(k, iω).
Hence a stable flow can be only guaranteed if ΠΛ(k, iω) < Σ−1

Λ (k), otherwise one may hit
singularities at finite frequencies and earlier than the order parameter susceptibility GΛ(Q),
which is non-physical. This is consistent with the continuity condition (2.75): The zero-
frequency limit also provides an upper bound for ΠΛ(k, iω), if one assumes ΠΛ(k, iω) to be a
monotonous function of |ω|. More importantly, the above discussion implies that continuity
should always be ensured, even if one only wants to calculate thermodynamic properties
and is not explicitly interested in dynamics.

2.3.2 Amputation with respect to the inverse propagator

To remedy the aforementioned issues we propose the following substitution: Instead of using
JΛ for the amputation, we take the inverse of the flowing static susceptibility GΛ(k). The
new auxiliary functional is

ÃΛ[s] = GΛ[h
c,hq = −J̃Λs

q]− 1

2
(sq, J̃Λs

q), (2.79)

where the components of the subtracted coupling J̃Λ on the quantum sector are defined as

[J̃Λ]
αα′
K,K′ = G−1

Λ (k)δK+K′,0δα,α′ . (2.80)
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Note that the dynamic effective interaction is then given by

F̃Λ(k, iω) = −G−1
Λ (k) + (G−1

Λ (k))2GΛ(k, iω), (2.81)

and n-point correlations with n ̸= 2 are multiplied by −G−1
Λ at finite frequency, while the

purely static n-point functions are not affected by this change in the amputation. Since
∂ΛJ̃Λ(k) ̸= ∂ΛJΛ(k), additional terms are generated in the flow of ÃΛ, containing at finite
frequency the derivative of a residue ∂ΛΣΛ(k). We obtain for its flow equation

∂ΛÃΛ[h
c, sq] = − 1

2

δÃΛ

δhc
, ∂ΛJΛ

δÃΛ

δhc ω=0
− 1

2
Trω=0(∂ΛJΛA

(2)
Λ )− 1

2
Trω ̸=0(J̃Λ[∂ΛJΛ]J̃ΛA

(2)
Λ )

− 1

2
Trω ̸=0(J̃Λ∂ΛJΛ)−

1

2
J̃Λ
δÃΛ

δsq
, [∂ΛJΛ]J̃Λ

δÃΛ

δsq ω ̸=0

+
1

2
(sq, [∂ΛΣΛ]s

q)ω ̸=0 + sq, [∂ΛΣΛ]J̃Λ
δÃΛ

δsq ω ̸=0
. (2.82)

The corresponding subtracted Legendre transform is defined as

Γ̃Λ[m
c,ηq] = (mc,hc) + (ηq, sq)− ÃΛ[h

c, sq]− 1

2
(mc,Rc

Λm
c)− 1

2
(ηq,Rq

Λη
q), (2.83)

with

mc =
δÃΛ[h

c, sq]

δhc
, (2.84)

ηq =
δÃΛ[h

c, sq]

δsq
, (2.85)

and Rc
Λ chosen as in section 2.3.1, whereas J−1

Λ → J̃−1
Λ in Rq

Λ. Accordingly, Γ̃Λ generates
hybrid vertices which are 1-J̃-irreducible for dynamic degrees of freedom and 1-propagator-
line-irreducible on the static sector. Furthermore Γ̃Λ[m

c,ηq] reduces, as the functional of
Sec. 2.3.1, to the classical 1-PI effective action ΓΛ[m

c] in the limit S → ∞. Using

mc =
δΓ̃Λ[m

c,ηq]

δhc
+Rc

Λh
c, (2.86)

sq =
δΓ̃Λ[m

c,ηq]

δηq
+Rq

Λη
q, (2.87)

one arrives at the flow equation satisfied by Γ̃Λ[m
c,ηq]

∂ΛΓ̃Λ[m
c,ηq] =

1

2
Tr(ṘΛ[Γ̃

(2)
Λ [mc,ηq] +RΛ]

−1) +
1

2
Trω ̸=0(J̃Λ∂ΛJΛ)

− 1

2

δΓ̃Λ

δηq
, [∂ΛΣΛ]

δΓ̃Λ

δηq ω ̸=0
, (2.88)

where we have introduced as a generalization of ∂ΛRΛ the matrix

ṘΛ ≡ ∂ΛJΛ 0

0 J̃−1
Λ [∂ΛJΛ]J̃

−1
Λ

. (2.89)

The generalized Wetterich equation (2.88) still involves a residual term ∝ ∂ΛΣΛ. Formally,
the additional contribution retains a tree-structure, with a product of two vertices that
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have the same K-arguments as on the left-hand side, linked by ∂ΛΣΛ. Due to conservation
of total frequency, implied by translational symmetry in time, this term will not appear
in the flow equation of any static vertex, in particular the self-energy ΣΛ. Therefore, its
contribution to the flow of vertices with at least two dynamic legs is at least of first order
in loops.

All vertices Γ̃
(n)
Λ that are generated by Γ̃Λ[m

c,ηq] can be, as already mentioned, related
to the connected correlation functions by means of the tree expansion. The subtracted
dynamic polarization is again defined as

Π̃Λ(k, iω) = −Γ̃
(2)
Λ (k, iω). (2.90)

Thus one can write the dynamic two-point functions as

F̃Λ(k, iω ̸= 0) = −
G−1

Λ (k)

1 +G−1
Λ (k)Π̃Λ(k, iω)

, (2.91)

GΛ(k, iω) =
Π̃Λ(k, iω)

1 +G−1
Λ (k)Π̃Λ(k, iω)

, (2.92)

or more suggestive

GΛ(k, iω) = GΛ(k)
G−1

Λ (k)Π̃Λ(k, iω)

1 +G−1
Λ (k)Π̃Λ(k, iω)

. (2.93)

Hence by comparing F̃Λ(k, iω ̸= 0) with FΛ(k, iω ̸= 0) in (2.65) we find the new dynamic
vertex to be related to ΠΛ(k, iω) via

Π̃−1
Λ (k, iω) = Π−1

Λ (k, iω)− ΣΛ(k, 0). (2.94)

Enforcing continuity (2.74) thus implies

Π̃−1
Λ (k ̸= 0, iω → 0) = 0, (2.95)

meaning that G−1
Λ (k)Π̃Λ(k, iω) has to diverge for ω → 0, so that the frequency-dependent

factor in Eq. (2.93) becomes unity to ensure (2.74). This condition is certainly easier
to realize than the one for the bare coupling amputation, where the static and dynamic
part in GΛ(k, iω) are harder to separate from each other. Furthermore we note that [1 +
G−1

Λ (k)Π̃Λ(k, iω)]
−1 > 0 is always ensured if Π̃Λ(k, iω) > 0, because G−1

Λ (k) ≥ 0. We
already deduced in Sec. 1.3.3 that GΛ(k, iω) is a real, positive and monotonously decaying
function of |ω|, implying that Π̃Λ(k, iω) = [G−1

Λ (k, iω)−G−1
Λ (k)]−1 is also real, > 0 and a

monotonous function of |ω|. Positivity is therefore a generic property of Π̃Λ and should be
satisfied by the outcome of any sound approximation. These properties also transfer to the

unsubtracted polarization ΠΛ(k, iω) =
Π̃Λ(k,iω)

1+Π̃Λ(k,iω)ΣΛ(k)
, given that ΣΛ(k) > 0.

Another aspect which makes the amputation with G−1
Λ (k) in place of JΛ(k) more fea-

sible can be seen by considering the limit of large temperatures, T ≫ |J |. In this limit
the static susceptibility GΛ(k) is asymptotically given by the result for an isolated spin
and is formally an even function of the exchange interaction J . The same symmetry with
respect to J ↔ −J should be present in GΛ(k, iω). This is intuitive, given that a system
with Hamiltonian −H has the same spectrum of eigenstates, except that their order is in-
verted. At infinite temperature, where exp(−βH) = 1, the latter does not matter anymore,
since all states are equally probable, so that all expectation values are indeed independent
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of sign(J). In the new parametrization this is clearly reflected, as long as Π̃Λ(k, iω) also
exhibits this symmetry. In contrast to that the much needed symmetry is not apparent
in the previous parametrization, due to the explicit presence of JΛ(k) in GΛ(k, iω), see
its parametrization in Eq. (2.66), which is obviously asymmetric, regardless of tempera-
ture. From that difference in structure alone one concludes that proper approximations for
ΠΛ(k, iω) are more difficult to construct than for Π̃Λ(k, iω). Note also here that Π̃Λ(k, iω)
has to vanish as T−1 for T ≫ |J | and fixed ω, because the respective expectation values in
real-time ∼ T

R
dωImGret(k, ω)/ω are finite [31]. The ω-dependent function in Eq. (2.93)

converges then to a non-zero limit, reflecting the non-trivial dynamics even at T = ∞
[33]. An additional, although more specific reason, for using the new amputation, can be
given by considering low-dimensional systems for T → 0, e.g. nearest-neighbor magnets
on the square lattice. In that case we know that the most prominent feature in the dy-
namic structure factor S(k, ω) are sharp peaks at the energy of a single magnon E(k).

For both signs of J , the dispersion is roughly proportional to
q
G−1(k)Π̃(k) [21, 23], with

Π̃(k) ∼ k2, ka ≪ 1 and Π̃(k) ∼ |J |−1, ka ∼ O(1). Taking the generic hiqh-frequency
ansatz Π̃(k, iω) ∼ Π̃(k)J2/ω2, we are able to reproduce this basic result for S(k, ω).

Looking at the higher order vertices we will focus on three- and four-point quantities,
since those appear directly in the flow of the two-point vertices, ΣΛ and Π̃Λ. We will use the
Cartesian representation, because in the absence of symmetry-breaking it is less redundant
than the spherical representation, which in turn is a more convenient choice if spin-rotational
invariance is broken. Their initial condition can be obtained from the connected correlation
functions of an isolated spin, which are explicitly given in appendix A.2. The functional
series expansion of Γ̃Λ[m,η] up to fourth order in the fields m,η is given by

Γ̃Λ[m,η] = Γ̃Λ[0,0] +
β

2

Z
k
[JΛ +ΣΛ(k)]mk ·m−k − 1

2

Z
K
[G−1

Λ (k) + Π̃Λ(K)]ηK · η−K

+ [ηxηymz] + [ηxmyηz] + [mxηyηz] + [ηxηyηz] +
1

(2!)2
[mxmxmymy]

+ [mxmxmzmz] + [mymymzmz] +
1

4!
[mxmxmxmx]

+ [mymymymy] + [mzmzmzmz] +
1

(2!)2
[mxmxηyηy]

+ [mxmxηzηz] + [mymyηzηz] + [mxmxηxηx]

+ [mymyηyηy] + [mzmzηzηz] + [mxmyηxηy]

+ [mxmzηxηz] + [mymzηyηz]

+
1

(2!)2
[ηxηxηyηy] + [ηxηxηzηz] + [ηyηyηzηz]

+
1

4!
[ηxηxηxηx] + [ηyηyηyηy] + [ηzηzηzηz] + [mηηη]−vertices + ..., (2.96)

[ηηηη] are shorthand notations for the integrals over the respective monomials, e.g.

[mxηyηz] =

Z
K1

Z
K2

Z
K3

δ(K1 +K2 +K3)Γ̃
xyz
Λ (K1,K2,K3)βδω1m

x
k1
ηyK2

ηzK3
, (2.97)

[ηxηyηz] =

Z
K1

Z
K2

Z
K3

δ(K1 +K2 +K3)Γ̃
xyz
Λ (K1,K2,K3)ηK1ηK2ηK3 , (2.98)
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where δ(K) = βNδω,0δk,0 = δ(ω)δ(k), mK = mkδ(ω). Here we already used that all zero-
frequency correlation functions and therefore vertices with an odd number of legs satisfy

Γ̃
(2n+1)
Λ (k1, ...,k2n+1) = 0, (2.99)

due to an intact spin-rotation symmetry. This relation is a special case of the odd vertices’
antisymmetry under a simultaneous inversion of sign in all frequencies. Furthermore the
terms containing [mηηη] are not considered explicitly, because the associated 4-vertex func-
tions do not contribute directly to the flow of the two-point vertices. The structure of the
three-point vertex with respect to the spin components is

Γ̃αβγ
Λ (K1,K2,K3) = ϵαβγΓ̃

xyz
Λ (K1,K2,K3), (2.100)

implying that the corresponding term in the series expansion can be written as a triple
product, e.g m1 · (η2 × η3). Its tree expansion reads

Γ̃αβγ
Λ (K1,K2,K3) = −[Ã

(2)
Λ (K1)]

−2[Ã
(2)
Λ (K2)]

−1[Ã
(2)
Λ (K3)]

−1Ãαβγ
Λ (K1,K2,K3), (2.101)

and its initial condition at finite frequencies is therefore

Γ̃αβγ
Λ0

(ω,−ω, 0) = −
ϵαβγ
ω

, (2.102)

Γ̃αβγ
Λ0

(ω, ν,−ω − ν) = 0, ω, ν, ω + ν ̸= 0. (2.103)

These expressions are retained in its zero-momentum limit for an interacting system. The
mixed 4-legged vertex Γ̃ααγγ

Λ (K1,K2,K3,K4) does not depend explicitly on α, γ and has
the following tree expansion

Γ̃ααγγ
Λ (K1,K2,K3,K4) = − [Ã

(2)
Λ (K1)]

−2[Ã
(2)
Λ (K2)]

−1[Ã
(2)
Λ (K3)]

−1[Ã
(2)
Λ (K4)]

−1

× Ãααγγ
Λ (K1,K2,K3,K4) +

X
σ

Γ̃αγσ
Λ (K1,K3,−K1 −K3)

× Ã
(2)
Λ (K1 +K3)Γ̃

αγσ
Λ (K2,K4,−K2 −K4), (2.104)

whereas the longitudinal vertex does not involve lower order tree diagrams, due to Γααα
Λ = 0.

Note that due to an intact spin-rotation invariance it is possible to express the longitudinal
vertex solely via the mixed one, namely

Γ̃αααα
Λ (K1,K2,K3,K4) = SK2;K3,K4Γ̃

ααγγ
Λ (K1,K2,K3,K4), (2.105)

where the operator SK1,...;K′
1,...

symmetrizes the expression with respect to two disjunct
tupels {K}, {K ′} of arguments. Considering then solely vertices whose combinations of
frequencies appear directly in the flow of ΣΛ(k) and Π̃Λ(K) we obtain for their initial
conditions

Γ̃αααα
Λ0

(ω1, ω2, ω3, ω4) = −[GΛ0(0)]
−4Gαααα

Λ0
(0, 0, 0, 0) = δω1,0δω2,0δω3,0

|b′′′0 |
β(b′0)

4
, (2.106)

Γ̃ααγγ
Λ0

(0, 0, 0, 0) = −[GΛ0(0)]
−4Gααγγ

Λ0
(0, 0, 0, 0) =

|b′′′0 |
3β(b′0)

4
, (2.107)
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Γ̃ααγγ
Λ0

(ω,−ω, 0, 0) =− [GΛ0(0)]
−2Gααγγ

Λ0
(ω,−ω, 0, 0)

+ 2Γ̃xyz
Λ0

(ω, 0,−ω)Γ̃xyz
Λ0

(−ω, 0, ω)(−G−1
Λ0

(0))

= 0

=− 2Γ̃ααγγ
Λ0

(ω, 0,−ω, 0), (2.108)

Γ̃ααγγ
Λ0

(ω,−ω, ω,−ω) =−Gxxyy
Λ0

(ω,−ω,−ω, ω) + Γ̃xyz
Λ0

(ω,−ω, 0)Γ̃xyz
Λ0

(−ω, ω, 0)GΛ0(0)

= 0

=− 2Γ̃ααγγ
Λ0

(ω, ω,−ω,−ω), (2.109)

Γ̃ααγγ
Λ0

(ω, ν,−ω,−ν) =−Gααγγ
Λ0

(ω, ν,−ω,−ν) + Γ̃xyz
Λ0

(ν,−ν, 0)Γ̃xyz
Λ0

(ω,−ω, 0)G(2)
Λ0

(0)

= 0

=− 2Γ̃ααγγ
Λ0

(ω,−ω, ν,−ν). (2.110)

From the above initial conditions we conclude that only the mixed 3-vertex and static 4-
vertex contribute to leading order in βJΛ to the flow equations of the self-energy ΣΛ(k) and
polarization Π̃Λ(k, iω). The static self-energy ΣΛ(k) satisfies in general

∂ΛΣΛ(k) =
T

2

Z
q
ĠΛ(q)[3Γ̃

ααγγ
Λ (k,−k, q,−q) + 2Γ̃ααγγ

Λ (k, q,−k,−q)]

+
T

2

Z
q

X
ν ̸=0

˙̃FΛ(Q)[3Γ̃ααγγ
Λ (k,−k, Q,−Q) + 2Γ̃ααγγ

Λ (k, Q,−k,−Q)]

+T

Z
q

X
ν ̸=0

[F̃Λ(Q)F̃Λ(Q+ k)]•[Γ̃xyz
Λ (k, Q,−Q− k)]2,

(2.111)

whereas the flow of the interaction-irreducible subtracted polarization Π̃Λ(K) reads

∂ΛΠ̃Λ(k, iω) = −T
2

Z
q

X
ν ̸=0

˙̃FΛ(q, iν)[3Γ̃
xxyy
Λ (K,−K,Q,−Q) + 2Γ̃xxyy

Λ (K,Q,−K,−Q)]

−T
2

Z
q
ĠΛ(q)[3Γ̃

xxyy
Λ (K,−K, q,−q) + 2Γ̃xxyy

Λ (K, q,−K,−q)]

−T
Z
q

X
ν ̸=0,−ω

[F̃Λ(q, iν)F̃Λ(q + k, iν + iω)]•[Γ̃xyz
Λ (−Q,Q+K,−K)]2

−T
Z
q
[F̃Λ(q, iω)GΛ(q + k)]•[Γ̃xyz

Λ (−q + iω, q + k,−k − iω)]2

−T
Z
q
[GΛ(q)F̃Λ(q + k, iω)]•[Γ̃xyz

Λ (−q, q + k + iω,−k − iω)]2

+Π̃2
Λ(k, iω)∂ΛΣΛ(k). (2.112)

Here we introduced the static and dynamic single scale propagators

ĠΛ(q) ≡ −∂ΛJΛ(q)G2
Λ(q) = − ∂ΛJΛ(q)

[ΣΛ(q) + JΛ(q)]2
, (2.113)
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Figure 2.1: Diagrammatic representation of flow equations for a) the static self-energy
ΣΛ (2.111) and b) the dynamic polarization Π̃Λ (2.112). A straight line denotes here a
static fluctuation, while wiggly lines represent dynamic components. Internal lines are the
corresponding two-point functions in these channels, with the slashed ones being the single-
scale propagators. A cross between two internal lines forming a loop indicates the ’product
rule’, e.g. [G(q)G(q + k)]•.

˙̃FΛ(q, iν) ≡ − ∂ΛJΛ(q)

[1 +G−1
Λ (q)Π̃Λ(q, iν)]2

, (2.114)

and the corresponding ’product rule’ appearing in the flow equations as

[F̃Λ(Q)F̃Λ(Q+ k)]• = ˙̃FΛ(Q)F̃Λ(Q+ k) + F̃Λ(Q) ˙̃FΛ(Q+ k), (2.115)

[F̃Λ(q, iω)GΛ(q + k)]• = ˙̃FΛ(q, iω)GΛ(q + k) + F̃Λ(q, iω)ĠΛ(q + k), (2.116)

[GΛ(q)GΛ(q + k)]• = ĠΛ(q)GΛ(q + k) +GΛ(q)ĠΛ(q + k). (2.117)

Both flow equations, (2.111) and (2.112) are depicted in a diagrammatic representation
in Fig. 2.1. Now one should remember the structure of the non-interacting three and

four-legged vertices Γ̃
(n)
0 ({ωi}), which all diverge for ωi → 0. Together with the flow of

Π̃Λ(k, iω) which is ’proportional’ to powers of these vertices, it seems that at least with the
explicit loop diagrams in (2.112) one can arrive at limω→0 Π̃Λ(k, iω) = ∞, as required by
the continuity conditions (2.74) and (2.75). Further below, we will see that by ignoring the
renormalization of higher order vertex corrections the flow of Π̃Λ(K) does not couple to other
frequencies. Hence the loop-terms, which depend then only on the external frequency ω
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and diverge for ω → 0, are indeed compatible with these conditions. Note that the required
ω → 0-singularity is not entirely removed by the self-consistent coupling to Π̃Λ(K), which is

contained in F̃Λ,
˙̃F . Instead it only mitigates the divergence caused by the vertices Γ

(n)
0 (ω),

since one expects that for |JΛ| ≫ |ω| its flow equation has roughly the qualitative structure

∂ΛΠ̃Λ ∝ Γ
(n)
0 (ω)Π̃−l

Λ , l > 0, (2.118)

which implies Π̃Λ ∼ Γ
(n)
0 (ω)

−1/(l+1)
for ω → 0. On the other hand, a term, which still

may prevent us from achieving continuity, is the tree-like contribution ∼ Π̃2
Λ(k, iω)∂ΛΣΛ.

Its presence may simply cause an unstable flow for |JΛ| ≳ |ω|, via a premature singularity at
finite ω as is anticipated with differential equations of the form ∂ΛfΛ = AΛ[fΛ] +BΛ[fΛ]f

2
Λ,

where AΛ and BΛ are > 0 and bounded from above. However, at least in contrast to the
pure JΛ hybrid-formalism, the problematic contribution with respect to continuity is easily
identified in the new framework. Hence by, e.g., ignoring the local term ∝ ∂ΛΣΛ one already
arrives at an approximate flow equation that is compatible with continuity of GΛ(k, iω).

In the following section we will calculate Π̃Λ(k, iω) in the whole range of frequencies.
Before we turn to that, let us consider first some simple truncations and see whether they are
sound, i.e. consistent with the imposed conditions of spin conservation (2.71) and continuity

(2.95). We start by setting Γ̃
(3/4)
Λ ≈ Γ̃

(3/4)
Λ0

. The flow equation of Π̃Λ(k, iω) is then given by

∂ΛΠ̃Λ(k, iω) = − 2T

ω2

Z
q
F̃Λ(q, iω)GΛ(q + k)

•
+ Π̃2

Λ(k, iω)∂ΛΣΛ(k). (2.119)

Besides the already discussed local term, which prevents us from restoring continuity, we also
note that in general ∂ΛΠ̃Λ(0, iω) ̸= 0, which is incompatible with conservation of the total
spin (2.71). By ignoring the renormalization of the two-legged vertices ΣΛ(k) and Π̃Λ(k)
on the right-hand side, so that ḞΛ ≈ ∂ΛF̃Λ, ĠΛ ≈ ∂ΛGΛ, we can perform the Λ-integration
exactly to obtain the one-loop result

Π̃Λ(k, iω) =
2T

ω2

Z
q
G−1

Λ (q + k)GΛ(q)− 1 . (2.120)

One sees that it is compatible with continuity, since Π−1
Λ (k, iω → 0) ∼ ω2 → 0. Furthermore

it now satisfies the exact relation

Π̃Λ(0, iω ̸= 0) = 0, (2.121)

implied by total spin conservation (2.71). Note that this property is still preserved if we
allow for a renormalized ΣΛ(k) ̸= T/b′0 on the right-hand side of the flow equation, i.e.

∂ΛΠ̃Λ(k, iω) = −2T

ω2

Z
q
G−1

Λ (q)G2
Λ(q + k)∂ΛJΛ(q + k)−GΛ(q + k)∂ΛJΛ(q)

=
2T

ω2

Z
q
GΛ(q + k)−G−1

Λ (q + k)G2
Λ(q) ∂ΛJΛ(q). (2.122)

A closer scrutiny reveals that the right-hand side is > 0, consistent with the positivity
of Π̃Λ, e.g. for a ferromagnet both the expression in brackets and the derivative of the
coupling are negative in the vicinity of q = 0, so that their product is positive. Taking
a 1/ω2-expression for Π̃(k, iω) at arbitrary ω, implies with ω2 → −ω2 sharp δ-peaks in

54



CHAPTER 2. SPIN FUNCTIONAL RENORMALIZATION GROUP

ImGret(k, ω) and therefore S(k, ω), which is an unsatisfying result for the spin dynamics, in
particular at high temperatures. Nevertheless there are instances where such an outcome is
encountered. One such case are Green’s function methods, that use undamped T -dependent
auxiliary dynamics to mimick the effect of quantum fluctuations on static properties [65, 66].
Without any feedback from Π̃Λ the solution of (2.122) is only a good approximation for
large frequencies ω ≫ |J |, where the leading frequency dependence is indeed ∝ ω−2 [31].
In such a limit, one also does not have to bother with the tree-term ∝ Π2

Λ(k, iω), since it
is O(ω−4) and therefore subleading. To leading order in JΛ/T the flow equation (2.122)
reproduces the one-loop result (2.120) which reads

Π̃Λ(k, iω) =
2(b′0)

2

Tω2

Z
q
JΛ(q)[JΛ(q)− JΛ(q + k)], (2.123)

and is consistent with Π̃Λ ∼ T−1. It has a simple k-dependence for finite-ranged couplings
and indeed is exact for ω, T ≫ |J | [31].

To go beyond the high-frequency limit, a self-consistent coupling to Π̃Λ(K) is necessary,
thus implying an infinite resummation in ω−2. As already discussed such a coupling will re-
duce the leading low-frequency singularity in Π̃Λ(K), resulting in dissipative dynamics with
a large damping, in contrast to the ω−2-approximation. However, the presence of Π̃Λ(q, iω)
in the integral of, e.g. (2.122), leads also to a violation of the constraint (2.121) implied
by spin conservation. Note that going to the next-highest order, ω−4, in a high-frequency
expansion, requires a lot more effort than the ω−2-expression, namely finite corrections
to higher order vertices. All of these terms have to be kept or at least treated such that
Eq. (2.121) and other constraints like Π̃Λ(K) > 0 are fulfilled. This can be arranged exactly
as long as |JΛ|/T ≪ 1, where the inverse loop frequencies ν−1 ∼ 1/T , in powers of which
one can expand (partially) dynamic vertices, are thermally suppressed. We should also note
here, that truncating at O(ω−4) will, in contrast to the 1/ω−2-limit, cause severe problems
in the low-frequeny sector. One can explain this with the observation that the accompanying
coefficient is negative [31, 74], see Sec. 3.2.1 and Eq. (1.105), thus contradicting the posi-
tivity of Π̃Λ(K) for too small ω and inducing an unstable flow. Judicious extrapolations of
these truncated high-frequency series are thus necessary to keep Π̃Λ(K) physical for smaller
frequencies [33]. Quite generally the necessity of resumming infinitely many powers of J on
the vertex level, even in the high-temperature limit, due to ω ≪ |J | being a perturbatively
inaccessible region, sets the problem of calculating dynamic properties significantly apart
from the computation of thermodynamic quantities.
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Chapter 3

Dynamic structure factor of a
Heisenberg paramagnet

3.1 Derivation of an approximation to calculate Π̃Λ

As observed, a truncation where vertices of third and higher order are kept at their initial
values, while the response of Π̃Λ(K) on the right-hand side is fully retained, violates in
general two major constraints: The vanishing of Π̃Λ(k, iω) at zero momentum and finite
frequency (2.121) and its divergence at finite momentum and vanishing frequency (2.95).
To ensure their fulfillment we propose to replace (2.119) by

∂ΛΠ̃Λ(k, iω) = − 2T

ω2

Z
q

F̃Λ(q, iω)GΛ(q + k)
• − F̃Λ(q, iω)GΛ(q)

•
. (3.1)

As with the approximations in the previous section Eq. (3.1) remains purely local in fre-
quency, since it does not contain any frequency sums, which couple to modes with ν ̸= ω.
This also implies that one can directly consider its analytical continuation and solve for
Π̃Λ(k, ω + i0+) in real frequencies and thus the retarded spin-spin correlation function
Gret,Λ(k, ω), at least if an expression for the flowing static susceptibility GΛ(k) is available.

About the origins of (3.1): First, we removed, as suggested before, the tree-contribution
to ensure continuity (2.75). Second, we subtracted from the loop-diagram in (2.119) its
value at vanishing momentum transfer k, which in general is ̸= 0 due to Π̃Λ(q, iω) ̸= 0
in F̃Λ(q, iω), thus always enforcing (2.121). Formally, the above can be accomplished by
setting up an appropriate flowing four-point vertex, that cancels the contribution ∼ ∂ΛΣΛ

and replaces it with the subtracted k = 0-loop. Such a form should be at the very least
consistent with the initial condition of the vertex in question. The explicit form for the
relevant combination of 4-point vertices is then chosen as follows

Γ̃
(4)
Λ (K) ≡

3Γ̃ααγγ
Λ (0, 0,−K,K) + 2Γ̃ααγγ

Λ (0,K, 0,−K)

2
=

1

ω2
[WΛ(iω) + CΛ(k, iω)], (3.2)

where the Ward identity (2.121) is enforced by the contribution

WΛ(iω) ≡
2
R
q F̃Λ(q, iω)GΛ(q)

•R
q ĠΛ(q)

, (3.3)
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while the continuity condition (2.95) is enforced by

CΛ(k, iω) ≡
ω2Π̃2

Λ(k, iω)∂ΛΣΛ(k)

T
R
q ĠΛ(q)

. (3.4)

Using that ∂ΛJΛ(q) ∼ J one can first check that the denominator behaves in both cases asZ
q
ĠΛ(q) ≈

b′0
T

3
Z
q
∂ΛJ

2
Λ(q) ∼ β3JO(JΛ). (3.5)

For the numerators we start with the dynamic susceptibility, which satisfies for |JΛ| ≪ ω, T

Π̃Λ(k, iω) ∼
βJ2

Λ

ω2
, (3.6)

and therefore its square is ∼ O(J4
Λ). Together with ∂ΛΣΛ ∼ JO(JΛ), we thus find that the

momentum-dependent contribution behaves as CΛ(k, iω) ∼ O(J4
Λ) for JΛ → 0. The second

term is less suppressed, but we still obtainZ
q
[F̃Λ(q, iω)GΛ(q)]

• = −
Z
q
Π̃Λ(q, iω)

˙̃FΛ(q, iω) ≈
Z
q
Π̃Λ(q, iω)∂ΛJΛ(q) = βJO(J2

Λ), (3.7)

so that WΛ(iω) ∼ JΛ, implying that

Γ̃ααγγ
Λ (0, 0,−K,K) = O(JΛ), (3.8)

in accordance with its initial condition. Note that we assumed throughoutZ
q
∂ΛJΛ(q) = 0. (3.9)

However, this is not mandatory for every conceivable cutoff scheme, for instance the average
of the derivative can be non-zero, although an on-site coupling is never generated during
the flow. In that case one has to lower the order of each integral and Π̃Λ by one, namely
Π̃Λ(k, iω) ∼ JΛ and

R
q ĠΛ(q) ∼ J = O(Λ0). Hence the 4-vertex still vanishes to leading

order like JΛ → 0. In the next section, we will see that further modifications will be
necessary to ensure that Π̃Λ(K) complies with all conditions for a physical solution.

3.1.1 Flow equations in the high-temperature limit

Let us take a closer look at the behavior of the right-hand side in (3.1) for large temperatures
T ≫ |JΛ|. As discussed in Sec. 2.3.2, G−1

Λ (k)Π̃Λ(k, iω) has to approach a finite limit for
T → ∞ at any non-zero frequency. Therefore one can write

Π̃Λ(k, iω) = βb′0πΛ(k, iω/J), (3.10)

where πΛ(k, iω/J) is assumed to be finite at T = ∞. Furthermore we inferred that it should
not depend on sign(J), is real-valued and positive definite

πΛ(k, iω/J) = πΛ(k, |ω/J |) > 0. (3.11)
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This implies that the right-hand side of ∂ΛΠ̃Λ has to be > 0. Expanding all static quantities
to the first non-trivial orders in βJΛ in Eq. (3.1), the contribution from the amputated
single-scale propagator becomes

−T 2 ˙̃FΛ(q, iω)[GΛ(q + k)−GΛ(q)] ∼(b′0)
2∂ΛJΛ(q)[JΛ(q)− JΛ(q + k)][1 + πΛ(q, iω/J)]

−2

+O(J3
Λ), (3.12)

which fulfills all of the aforementioned criteria. For a ferromagnetic coupling, J < 0, it
is straightforward to argue that at arbitrary temperatures this term containing GΛ(q +
k) − GΛ(q) will remain consistent with the condition πΛ(q, iω) > 0. The reason for this
is that the integrand always has, due to the behavior of G−1

Λ (q)Π̃Λ(q, iω), more weight
in the region around the origin q = 0, where GΛ(q + k) − GΛ(q) and ∂ΛJΛ(q) are both
< 0. Similar considerations for the antiferromagnet, J > 0, have also to take singular
fluctuations at q = Q ̸= 0 into account. Nevertheless we also find that the integrand is
positive in the vicinity of both, e.g. for q ≈ 0, ∂ΛJΛ(q) and the difference are positive, while
for q ≈ Q both signs flip simultaneously, which is consistent with the integral remaining
> 0. Performing the same expansion for the term containing ĠΛ we obtain

−T 2F̃Λ(q, iω)[ĠΛ(q + k)− ĠΛ(q)] ∼ b′0T∂Λ[JΛ(q)− JΛ(q + k)][1 + πΛ(q, iω/J)]
−1

+ (b′0)
2JΛ(q)∂Λ[JΛ(q)− JΛ(q + k)][1 + πΛ(q, iω/J)]

−1

− (b′0)
2∂Λ[J

2
Λ(q)− J2

Λ(q + k)][1 + πΛ(q, iω/J)]
−1.
(3.13)

Except the first line of (3.13), the generated terms are also compatible with the postulated
T -dependence and parity in J . A net contribution of the former, which is ∼ T and odd in
JΛ, is only produced for finite πΛ(q, iω), i.e. to subleading order in J2

Λ/ω
2. The contribution

∼ JΛ(q)∂Λ[JΛ(q)−JΛ(q+k)] in the second line of (3.13), implied by JΛ(q) in the numerator
of F̃Λ(q, iω), is positive definite. In fact this term is needed to obtain the correct result for
πΛ(q, iω) at infinite temperature and O(ω−2), see Eq. (2.123). This will not be the case
for the last line ∼ ∂Λ[J

2
Λ(q)− J2

Λ(q+ k)], which is created by the temperature dependence
of ĠΛ(q) and again starts to contribute at subleading order in πΛ(q, iω). For ω → 0 and
ka≪ 1 the magnitude of the last term will be larger than the positive definite contribution
in the second line, hence resulting definitely in a negative contribution of (3.13). Considering
also the different weighting [1 + πΛ(q, iω)]

−1 in the Ġ(q + k) − Ġ(q)-term, compared to
[1 + πΛ(q, iω)]

−2 in (3.12), it may lead in total to a negative right-hand side of Eq. (3.1).
This contradicts the conditions that πΛ is real-valued and > 0, implying a non-physical
solution even without the obviously inadequate term in the first line of (3.13). From this
we infer that terms, involving the static single-scale propagator ĠΛ(q), are prone to issues
beyond the leading order in 1/ω2. In principle we can take care of these contributions via

suitable momentum-dependent counterterms in the condition-fixing mixed 4-vertex Γ̃
(4)
Λ (K),

as was the case for fulfilling spin conserivation (2.71) and continuity (2.75).
Let us consider first the case where the contributions implied by the presence of the

static single-scale propagator ĠΛ(q) are completely removed. The corresponding four-point
vertex reads

Γ̃
(4)
Λ (K) → Γ̃

(4)
Λ (K) +

2
R
q F̃Λ(q, iω)[ĠΛ(q + k)− ĠΛ(q)]

ω2
R
q ĠΛ(q)

, (3.14)
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where the additional contribution on top of (3.2) vanishes for JΛ → 0 too. Considering now
the T = ∞-limit, we arrive at the following flow equation

∂ΛπΛ(k, |ω/J |) ≈
2b′0
ω2

Z
q

∂ΛJΛ(q)[JΛ(q)− JΛ(q + k)]

[1 + πΛ(q, |ω/J |)]2
, (3.15)

where one sees that πΛ(k, ω) ∼ k2, ka → 0, as anticipated from (2.121). Now we can
make some further statements regarding its actual behavior, i.e. frequency dependence.
Assuming for simplicity a linear deformation JΛ = ΛJ [2] and small frequencies |ω| ≪ |JΛ|,
for whom πΛ(k, |ω/J |) will diverge, together with the small momentum expansion

πΛ(k, |ω/J |) = πΛ(|ω/J |)k2, ka≪ 1, (3.16)

we see that for d < 4 the integral in (3.15) is dominated by small momenta q ≲ π
−1/2
Λ (|ω/J |),

so that one obtains

πΛ(|ω/J |)d/2∂ΛπΛ(|ω/J |) ∝ Λ
J
p
b′0

|ω|
2
, (3.17)

implying

πΛ(|ω/J |) ∼
JΛ
p
b′0

|ω|

4
d+2

. (3.18)

Conversely above d = 4

πΛ(|ω/J |) ∼
JΛ
p
b′0

|ω|

2
3
, (3.19)

since here one can set the denominator of ḞΛ(q, iω) directly to π2Λ(q, |ω/J |) without risking
an infrared divergence for q → 0. Here we have also used that with the linear deformation
the k-dependence of πΛ(k, |ω/J |) is on the same simple level as for the plain 1/ω2-limit
(2.123), whose result is, up to a factor of two, reproduced for ω → ∞, e.g. πΛ(k, |ω/J |) ∝
[J(0) − J(k)] for a nearest neighbor-coupling J . Moreover a ΛJ-deformation allows one
to write (3.15) at T = ∞ as a differential equation with respect to a frequency variable
(ω̃Λ)

−2 = (JΛ
p
b′0/ω)

2, i.e.

∂(ω̃Λ)−2πΛ(k, |ω/J |) =
1

J2

Z
q

J(q)[J(q)− J(q + k)]

[1 + πΛ(q, |ω/J |)]2
, (3.20)

thus solving for the dynamics during integration of the flow. For d = 3, the low-frequency
limit of πΛ(|ω/J |) diverges as |ω|−4/5. This is incompatible with spin diffusion, whose
existence is not rigorously proven but nevertheless anticipated in three dimensions [41, 42,
74, 77]. In that case one expects πΛ ∼ DΛ|ω|−1, given that GΛ(k, iω) assumes then the
form

GΛ(k, iω) =
b′0
T

|ω|πΛ(|ω/J |)k2

|ω|πΛ(|ω/J |)k2 + |ω|
=
b′0
T

DΛk
2

DΛk2 + |ω|
, (3.21)

which via analytic continuation |ω| → −iω leads to a centered Lorentzian for S(k, ω) ∼
ImGret(k, ω)/ω, consistent with the diffusion form in Eq. (1.115) [35, 41]. In place of the
above one finds for d > 2 subdiffusion, for which the divergence of πΛ is weaker than |ω|−1, so
that the diffusion coefficient DΛ(iω) ∝ |ω|πΛ(|ω/J |) vanishes for ω → 0. The corresponding

scattering intensity S(k, ω) diverges then as |ω|
2−d
2+d for ω → 0 [51], a feature which is not

observed in experiments. Diffusion is solely present in two dimensions, while for d = 1, we
obtain πΛ ∼ |ω|−4/3, which, due to the stronger singularity, is superdiffusive. The results
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in d > 2 imply for small momenta scaling k ∼ ω1/z with a dynamic exponent z = d+2
2 >

2, whereas z = 2 is required for diffusion, as seen in (3.21) and discussed in Sec. 1.4.1.
The outcome of (3.15) is obviously not supported by the phenomenological assumptions of
hydrodynamics for isotropic magnets. Based on homogeneity relations for the solution of the
mode-coupling equations in the long-time region several publications suggested subdiffusive
exponents z > 2, but their explicit values z = d+4

2 [78, 79, 80] do not agree with the
predictions of Eq. (3.15) in d > 2. For reduced dimensions the outcomes seem to be more in
line with previous calculations. While there is a paucity of results for the long-time dynamics
in d = 2, there seems to be mounting evidence [48, 49, 50, 51, 81, 82, 83, 84, 85, 86], that
at least for the integrable S = 1/2-model with nearest-neighbor interaction, the behavior is
superdiffusive too, with the same dynamic index z = 3/2.

The results of (3.15) above d = 2 are disappointing, as they do not agree with the
outlined hydrodynamic picture, on top of lacking corroboration from other methods. The

subdiffusive behavior arises from the quadratic denominator of ˙̃FΛ(q, iω) in Eq. (3.15). Re-
ducing its power, hypothetically, to [1+πΛ(q, |ω/J |)]−1, the integral becomes IR-singular in
the low-ω-limit only for d ≤ 2, with the result in d > 2 always being consistent with diffu-
sion, since setting FΛ(q, iω) → πΛ(q, |ω/J |)−1 becomes valid in the latter case. However, it

turns out that a modification of the ˙̃F -term by virtue of this raise is not necessary. Instead
we can change the above high-temperature equation (3.15) by simply retaining the sole fully
compatible term in the [ĠΛ(q) − ĠΛ(q + k)]-contribution, which thus also reproduces the
leading behavior for ω → ∞, see Eq. (2.123). We obtain

∂ΛπΛ(k, |ω/J |) ≈
2b′0
ω2

Z
q

∂ΛJΛ(q)[JΛ(q)− JΛ(q + k)]

[1 + πΛ(q, |ω/J |)]2
+
JΛ(q)∂Λ[JΛ(q)− JΛ(q + k)]

[1 + πΛ(q, |ω/J |)]
,

(3.22)

which as (3.15) can be recast into a differential equation with respect to J2
Λ/ω

2. Note that
this fixing amounts to the following substitution in the effective interaction

F̃Λ(q, iω) → −JΛ(q)[1 +G−1
Λ (q)Π̃Λ(q, iω)]

−1, (3.23)

i.e. ignoring the self-energy initially contained in the numerator of F̃Λ(q, iω), whose presence
leads to contributions with wrong asymptotic properties for T → ∞ and ω → 0. The
elimination of the unphysical contributions, can, as already described, be realized via a
properly chosen higher order vertex

Γ̃
(4)
Λ (K) → Γ̃

(4)
Λ (K)−

2
R
q ΣΛ(q)[1 +G−1

Λ (q)Π̃Λ(q, iω)]
−1[ĠΛ(q + k)− ĠΛ(q)]

ω2
R
q ĠΛ(q)

. (3.24)

For d > 2 the right term in (3.22) will dominate and therefore lead to diffusion πΛ ∝
|ω|−1, while the initial contribution from (3.15) will be suppressed by a relative factor

∼ π
(2−d)/2
Λ ∼ |ω|(d−2)/2. This also strengthens the previous argument, that keeping terms

∼ ΣΛ(q)[1+G
−1
Λ (q)Π̃Λ(q, iω)]

−1 leads in total to a contradiction, as negative contributions

will dominate compared to the ˙̃FΛ-term. For a nearest-neighbor coupling on a d-dimensional
hypercubic lattice, the k-dependence is, as for Eq. (3.15), simply given by

πΛ(k, iω) = πΛ(ω)
h
1− 1

d

dX
i=1

cos(kia)
i
, (3.25)
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and the low-frequency solution for the sole Fourier amplitude is

πΛ(ω) =
2
√
2d
p
b′0|JΛ|

|ω|

Z
q

1
d

Pd
i=1 cos(qia)

2

[1− 1
d

Pd
i=1 cos(qia)]

1/2
. (3.26)

The corresponding diffusion coefficient can then be obtained from

DΛ = lim
ω→0

|ω|πΛ(ω)a2

2d
. (3.27)

With the above integral it is in d = 3 given by DΛ ≈ |JΛ|
p
b′0a

2. For both S = 1/2
and S → ∞ this is too large by about 70 percent compared to previous estimates in the
literature, but at least it has the same leading dependence on the model parameters J, S
[42, 74]. The simple momentum dependence of the solution may be one of the reasons for the
large numeric deviation. Note also the absent spin-dependence [42] beyond the scaling with
|JΛ|

p
b′0. In the marginal case of two dimensions, one induces a superdiffusive logarithmic

divergence via the new contribution, whereas for d = 1 both terms contribute equally,
leading to the already discussed |ω|−1/3-singularity. We have shown numeric results for the
frequency dependence of π(ω)|ω| obtained from the solution of the first equation (3.15) in
Fig. 3.1 for d = 2, 3 and from the modified flow (3.22) in Fig. 3.2 for d = 1, 2, 3. The
applicability of (3.22) at lower temperatures, especially in the vicinity of the critical point,
is harder to assess, in particular with respect to the scaling behavior, that is expected in this
regime on the ground of definite predictions by the dynamic scaling hypothesis [54, 56, 58].
Note that in this region it is impossible to resolve the flow solely with respect to frequency
due to the non-perturbative built-up of static correlations with JΛ, in contrast to T ≫ |JΛ|.
A tentative analysis of the integrand around q = Q, 0 suggests that the additional Ġ-term
keeps the same, positive, sign for lower temperatures, i.e. JΛ(q) and the Ġ-difference in
(3.13) have the same signs as their pendants with switched derivatives in (3.12). Eq. (3.22)
should therefore stay physical in this regard. On top of the crude numeric estimate for D at
T = ∞, the partial neglect of terms in the numerator of F̃Λ(q, iω) seems somewhat artificial
and one would still like to work with the full expression for the effective interaction. Hence
we will continue our search for alternatives to the equations (3.15) and (3.22).

3.1.2 Integral equation

Returning to the idea of ’raising’ the power in the denominator of F̃Λ, in order to restore

diffusion, we will take a look at integrated equations, where ˙̃FΛ, ĠΛ and ∂ΛΠ̃Λ are replaced
by F̃Λ, GΛ and Π̃Λ. The simplest way of achieving that is to substitute

[F̃Λ(q, iω)GΛ(q + k)]• → ∂Λ[F̃Λ(q, iω)GΛ(q + k)], (3.28)

in Eq. (3.1) at the beginning of section 3.1. The above prescription is also known as the
Katanin substitution [7, 75, 76], meaning that the single-scale propagators are replaced by
total derivatives with respect to the flow parameter,

˙̃FΛ(Q) → ∂ΛF̃Λ(Q) = ˙̃FΛ(Q) + F̃ 2
Λ(Q)∂ΛΠ̃Λ(Q)− ∂ΛΣΛ(q)

[1 + Π̃Λ(Q)G−1
Λ (q)]2

, (3.29)

ĠΛ(q) → ∂ΛGΛ(q) = ĠΛ(q)−G2
Λ(q)∂ΛΣΛ(q). (3.30)
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Figure 3.1: π(ω)|ω|/(|J |
p
b′0), which for ω → 0 corresponds toD(iω)/(|J |

p
b′0), as a function

of the effective flow parameter J2b′0/ω
2 obtained from the solution of the first flow equation

(3.15) for the nearest-neighbor Heisenberg magnet on a hypercubic lattice with d = 2 and
d = 3. In the latter case one sees the subdiffusive trend ∼ |ω|1/5, i.e. a continuous decrease
for 1/ω2 → ∞.

This substitution amounts to effective vertex corrections of finite loop order and can be in
principle taken care off via appropriate choice of higher order vertices, like in the previous
section. Such a procedure was first motivated in the context of the fermionic FRG. There
it was found, that its implementation in the flow of the two-fermion interaction accounted
via the derivative of the self-energy for additional loop corrections, whose presence reduced
in turn the error in some Ward identities, implied by conservation laws [68, 75, 76]. The
self-consistency equation for Π̃(k, iω) reads then

Π̃(k, iω) = −2T

ω2

Z
q
G(q + k)−G(q) F̃ (q, iω). (3.31)

This is not a differential equation and can be directly evaluated at the final scale, hence not
depending on a particular deformation scheme at intermediate scales. The computational
burden is then shifted to solving a integral equation, for instance by iterating it until
convergence is achieved. To leading order in 1/ω2 it has the same shape as the one-loop
expression (2.120), being also compatible with a renormalized ΣΛ(k). A closer scrutiny
reveals that beyond O(ω−2) problems are reintroduced via this manipulation, of which we
already took care of in the previous approximations. Firstly, the kernel is not an even
function of J in the high-temperature limit. Secondly that equation also implies a non-
physical asymptotic behavior of the dynamic polarization for T → ∞, i.e. Π̃(k, iω) ∼ O(1),
instead of O(T−1). Hence the equation in its current form cannot be used.

A potential remedy is the introduction of an appropriate vertex correction into Eq. (3.31),
namely

Π̃(k, iω) = −2T

Z
q
G(q + k) Γ̃xyz(q + k,−q + iω,K)

2

−G(q) Γ̃xyz(q,−q + iω,−iω) 2
F̃ (q, iω). (3.32)

Instead of taking a look at the flow equation of the the three-point vertex Γ̃
(3)
Λ , we resort
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Figure 3.2: π(ω)|ω|/(|J |
p
b′0) as a function of J2b′0/ω

2 obtained from the solution of the
second flow equation (3.22) for the nearest-neighbor Heisenberg magnet on a hypercubic
lattice in d = 1, 2, 3 (counterclockwise, starting top left).

to considering one of the equations of motion for the corresponding three-point function,
which for general combinations of its arguments is given by

−ωGxyz(Q+K,−Q,−K) = G(Q)−G(Q+K) + [J(q)− J(q + k)]G(Q)G(Q+K)

−
Z
Q′
[J(q′)− J(q′ + k)]Gααγγ(Q+K,−Q′ −K,Q′,−Q).

(3.33)

The method for writing down these equations is described in Appendix A.1. We have
differentiated here with respect to a designated frequency ω, contained in the argument K,
which will be later fixed to the external frequency in the equation for Π̃Λ(k, iω) (3.32). The
expression on the right-hand side lacks therefore a symmetry under arbitrary permutations
of the vertex’ arguments. Symmetry can then be only restored by considering the derivative
with respect to the second independent frequency, e.g. ν in the argument Q and matching
the right-hand sides, implying additional conditions for the involved quantities. For our
purpose it is, however, sufficient to consider only one equation of motion, with the indicated
choice of derivative. This particular choice will be justified afterwards. To progress further,
we first have to eliminate the coupling to the connected four-point function. For this, we set
it, only on the right-hand side of the equation of motion (3.33), to its initial or more general
a momentum-independent, and thus local, expression, since then the momentum integrals
∼
R
q J(q) cancel each other. After this, the expression for Gxyz simplifies a lot, since it

can be solely expressed via the propagator G(K) and therefore the two-point vertices. Note
that the neglect of the fourth order correlation function in the equation of motion is mainly
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motivated by this simplification, as we ignore the fact that a momentum-independent four-

point correlation function is not entirely consistent with the vertices Γ̃
(3)
Λ , Γ̃

(4)
Λ used in the

flow equations, via whom one can also construct this quantity.
Let us now write the approximate expression for the three-point function in a different

way

ωGxyz(Q+K,−Q,−K) ≈ −G(Q) 1 +
[J(q)− J(q + k)]G(Q+K)

2

+G(Q+K) 1 +
[J(q + k)− J(q)]G(Q)

2
. (3.34)

To be consistent with the local-in-ω structure of Eq. (3.32), the three-point function and
corresponding vertex should be, as its initial condition, only finite if one out of the three
frequencies is zero. Since we choose ω ̸= 0 as the external frequency of (3.32), that means
either ν = 0 or ν + ω = 0. Thus

ωGxyz(Q+K,−Q,−K) ≈− δν,0G(q) 1 +
[J(q)− J(q + k)]G(q +K)

2

+ δν+ω,0G(q + k) 1 +
[J(q + k)− J(q)]G(q, iω)

2
, (3.35)

which, as expected, is consistent with its initial value

Gxyz
0 (Q+K,−Q,−K) = −βb

′
0δν,0
ω

+
βb′0δν,−ω

ω
. (3.36)

One obtains then for the relevant 3-point vertex via the tree expansion (2.101)

Γ̃xyz(q + k,−q + iω,−K) ≈ − 1

ω
1 +

[J(q + k)− J(q)]G(q, iω)

2

× [1 + Π̃(q, iω)G−1(q)][1 + Π̃(k, iω)G−1(k)]. (3.37)

However, we will also approximate [1 + Π̃(q, iω)G−1(q)][1 + Π̃(k, iω)G−1(k)] by unity, i.e.
explicitly neglect Π̃ in these factors. Furthermore we set G(q, iω) ≈ G(q). Hence

Γ̃xyz(q + k,−q + iω,−K) ≈ − 1

ω
1 +

[J(q + k)− J(q)]G(q)

2
. (3.38)

Note that

Γ̃xyz(q,−q + iω,−iω) ≈ − 1

ω
, (3.39)

which for q = 0 is an exact relation, see appendix A.1. In general the three-point vertex
(3.38) is simply a product of 1

ω and a factor that is determined by the static susceptibility
and exchange interaction. To justify the above simplifications consider

G(q + k) ωΓ̃(q + k,−q + iω,−K)
2 −G(q) = G(q + k)−G(q)

+G(q)G(q + k)[J(q + k)− J(q)]

+G(q)2G(q + k)[J(q + k)− J(q)]2.
(3.40)

Now, using

G(q)G(q+k)[J(q+k)−J(q)] = G(q)−G(q+k)+G(q)G(q+k)[Σ(q)−Σ(q+k)], (3.41)
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we see that the undesired contribution G(q)−G(q + k) encountered in (3.31) is cancelled
with the help of the vertex correction (3.38), so that

G(q + k) ωΓ̃(q + k,−q + iω,−K)
2 −G(q) = G(q)G(q + k)[Σ(q)− Σ(q + k)]

+G(q)2G(q + k)[J(q + k)− J(q)]2.
(3.42)

The term in the second line is positive and ∼ J2/T 3, therefore having the correct properties
after insertion into (3.32). The contribution from the self-energy reads to leading order in
a high temperature-expansion, see also Sec. 3.2 [1, 2]

G(q)G(q + k)[Σ(q)− Σ(q + k)] ∝ 1

T 3

Z
q
[J2(q)− J(q)J(q + k)], (3.43)

which is ∼ J2/T 3 and positive definite. Hence the kernel exhibits all properties, which are
necessary for a physical equation at high temperatures. Taking the derivative with respect
to K, see Eq. (3.33), was therefore warranted. Note that by keeping the frequency finite
in G(q, iω), which is contained in the first form of the 3-vertex in Eq. (3.37), we acquire

a residue besides the above contributions, that is proportional to G(q+k)−G(q)

1+G−1(q)Π̃(q,iω)
which for

ω ̸= 0 is ∝ J/T 2, and thus non-physical. Similarly the factors ∼ [1+G−1(k)Π(K)] featured
in Eq. (3.37) will generate beyond O(ω−2) additional contributions, that are not cancelled
out, with a spurios leading dependence on T , for instance TG(q + k) 2Π̃(K)G−1(k) +

(Π̃(K)G−1(k))2 ∼ T 0, hence contradicting Π̃ ∼ T−1. Note also that a factor [1 +

Π̃(q, iω)G−1(q)]2 implied by Eq. (3.37) would fully eliminate the denominator in F (q, iω)
and therefore destroy the non-linear structure Π̃ ∼ Π̃−m/ω2, m > 0 encountered up to this
point. A linear structure in its place would then be inconsistent with dissipative dynamics
and prone to breakdowns at ω ̸= 0. Hence the omission of these ω-dependent factors is
also justified. Finally we want to emphasize, that we motivated our approximation for the
irreducible 3-point vertex via the equation of motion for the three-point correlation function
and not Γ̃(3) itself. The latter equation has on the level of tree-diagrams a simpler shape,
featuring no explicit dependence on J and depending on the two-point vertices instead of
the propagator. On the other hand it also contains more intricate diagrams with explicit
loop integrations, that couple to Γ̃(3) itself and do not vanish in a local approximation to
the vertices appearing under these integrals. Even in the absence of the loops the direct
dependence on Π̃(q, iω) with its divergent low-frequency limit rather than G(K), would de-
stroy again the benign structure of the integral equation, in a similar vein to the previously
neglected [1 + Π̃(q, iω)G−1(q)]-factors from the tree expansion.

Plugging the vertex correction (3.38) into the self-consistency equation for Π̃(k, iω) we
finally arrive at

Π̃(k, iω) =
1

2ω2

Z
q

G(q + k)

1 +G−1(q)Π̃(q, iω)
G(q) J(q)−J(q+k)

2
+[Σ(q)−Σ(q+k)] . (3.44)

Note that by introducing the 3-point vertex from Eq. (3.38) as a Λ-dependent quantity in the
initial flow equation (3.1) instead of Eq. (3.32), one will not obtain correct high-temperature
asymptotics. Firstly one additional power of J/T is generated with the replacement of

F̃Λ(q, iω) by the single-scale propagator ˙̃FΛ(q, iω), turning it thus subleading for T → ∞.
Secondly the term ∼ Ġ(q + k) − Ġ(q) is not eliminated by the vertex, in contrast to the
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difference of propagators, see Eq. (3.41), so that its problems in the T → ∞-limit are
retained. In principle one can salvage it as in the case of the second approximate flow
equation (3.22), by neglecting ΣΛ in the numerator of F̃Λ(q, iω), see (3.23). In that case
one is left with a flow equation similar to Eq. (3.22) in the T → ∞-limit, differing only

by the absence of the ˙̃FΛ-term, which in turn formed the core of Eq. (3.15). Note that
by introducing the Katanin-substitution (3.28) in the propagators in (3.1) and extending
the Λ-derivative to the now present vertex correction (3.38), while dropping the residue

from the product rule, containing ∂Λ(Γ̃
(3)
Λ )2 ∼ O(J/T ), we also arrive at the above integral

equation (3.44). The neglected residue, whose presence prevents us from trivially integrating
with respect to Λ, shares similar issues with the Ġ-contribution without vertex correction,
discussed in the previous section 3.1.1. As an example it boasts a term∼ T∂Λ[JΛ(q)−JΛ(q+
k)]FΛ(q, iω)GΛ(q)GΛ(q + k) which has spurios high-temperature asymptotics ∼ O(T 0).
As seen several times before the most straightforward way to eliminate such issues is by
dropping ΣΛ(q) in the numerator of F̃Λ(q, iω). We conclude, that from the presented choices
for approximations solely the integral equation (3.44) is capable of keeping the structure of
both propagators intact, while having a physical solution.

Let us conclude this discussion by pointing out, that our assessment of the equations
discussed up to this point relied mostly upon the limit T ≫ |JΛ|. The paramagnetic phase
extends much beyond this limit, in particular for systems in d ≤ 2 dimensions, which are
disordered at any finite temperature [24]. Fortunately, the [J(q)−J(q+k)]2-term in (3.44)
is positive definite, regardless of temperature, and will lead on its own to outcomes that are
in full agreement with the predictions of the dynamic scaling hypothesis [55, 58, 60]. On
the other hand, taking a closer look at the vicinity of the phase transition, we note that
Σ(q)−Σ(q+k) is for small momenta proportional to the negative change of the spin stiffness
−Σ′′ = −∇2

kΣ(k)k=Q, with the bare stiffness determined by J ′′
Q ∼ ∇2

kJ(k)k=Q. Usually,
the renormalized spin stiffness is, due to loop corrections, larger than the bare one, so that
Σ′′ is positive [3]. Thus the contribution would be, in contrast to the high-temperature
limit (3.43), negative definite. In fact this term will dominate in d ≤ 2 the right-hand-
side for ω → 0, implying a non-physical result. An issue with similar severity occurs in
d = 3 too, because there the self energy at T = Tc is known to behave non-analytically as
|k−Q|2−η, η > 0 , so that it does not have a proper series expansion around k = Q. The
negative definite term Σ(q) − Σ(q + k) dominates thus again, implying also a breakdown
of the approximation. Even with a positive sign, the term would introduce an additional
dependence on a non-universal ratio ∼ Σ′′/J ′′

Q in the critical regime, thus contradicting a

dynamic scaling form for Π̃(k, iω). Such issues do not occur for T ≫ |J |. In this limit the
contribution from the self-energy is positive definite. Moreover there are no singular critical
fluctuations at T → ∞ which are for instance necessary for the arguments laid out in the
dynamic scaling hypothesis [54, 56, 58]. Furthermore, since we neglect a lot of terms in our

derivation of the vertex correction Γ̃
(3)
Λ , that translate to higher order contributions in JΛ,

our approximation cannot be expected to remain controlled for lower temperatures. Thus
we will work with (3.44), involving explicitly the Σ(k)-term, only in the high-T limit.

Note that Eq. (3.44) still remains applicable to any other temperature, if one neglects
the momentum dependence of Σ(k), i.e. Σ(k) ≈ Σ, since then one is left with the J2-
contribution. In fact, since η ≪ 1 in d = 3 [26], the effect of neglecting it should be of minor
significance for the qualitative behavior of the dynamic structure factor S(k, ω). Correc-
tions from the small anomalous dimension can not be reasonably captured by experiments
anyways [61]. Moreover one can eliminate the aforementioned issues, generated by a finite
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Σ′′, via the following replacement in the renormalized 3-legged vertex (3.38)

J(q)− J(q + k) → G−1(q)−G−1(q + k), (3.45)

with the new self-consistency equation becoming

Π̃(k, iω) =
1

2ω2

Z
q

G(q + k)G(q)

1 +G−1(q)Π̃(q, iω)
G−1(q)−G−1(q + k)

2
. (3.46)

The proposed substitution eliminates the ’culprit’ ∝ Σ(q)−Σ(q+k) and reduces to (3.44)
for Σ(k) ≈ Σ. It will also produce an equation that for arbitrary Σ(k) will be consistent
with dynamic scaling in the critical regime. Note that a similar substitution was proposed
in the context of mode-coupling theory [55, 60], to reproduce correct dynamic exponents of
ferromagnets for η ̸= 0. However, in contrast to us, the unmodified equation was still fine
by itself, as it did not feature an isolated self-energy term.

We conclude this section by introducing the quantity ∆(k, iω) via

G−1(k)Π̃(k, iω) =
∆(k, iω)

|ω|
, (3.47)

which we will refer to as the dissipation energy. As Π̃(k, iω) it is real-valued and > 0.
Roughly speaking it determines characteristic energies (rates) and thus timescales on which
the decay of spin fluctuations with momentum k takes place. The Matsubara function can
then be written in terms of ∆(k, iω) as

G(k, iω) = G(k)
∆(k, iω)

|ω|+∆(k, iω)
. (3.48)

The multiplication of Π̃(k, iω) with G−1(k) also implies that ∆(k, iω) has a finite limit
for T → ∞, which makes it thus the proper quantity to study in this limit, where it
is equivalent to |ω|πΛ(k, |ω/J |) used for the flow equations in Sec. C.3. Note that the
product G(k)∆(k, iω) = |ω|Π̃(k, iω) may be understood as a generalized Onsager coefficient
[28, 32], see Sec. 1.4.2. Continuity (2.74) of the susceptibility at k ̸= 0, is fulfilled if
∆(k, iω)/|ω| → ∞ for ω → 0, which is the case for the solution of (3.44), a consequence of
its Π̃ ∼ Π̃−l/ω2-structure at low frequencies. Furthermore spin conversation (2.121) implies

∆(0, iω) = 0. (3.49)

∆(k, iω) itself satisfies the integral equation

∆(k, iω) =

Z
q

V (k, q)

∆(q, iω) + |ω|
, (3.50)

where the kernel V (k, q) has units of energy squared and is defined as

V (k, q) =
TG−1(k)G(q + k)

2
G(q) J(q)− J(q + k)

2
+ [Σ(q)− Σ(q + k)] . (3.51)

For small, i.e. hydrodynamic, momenta k ≪ ξ−1 one can deduce from the expansion of
the static quantities that, as long as G−1(0) ̸= 0, the right-hand side of (3.50) will behave
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analytically, in particular as k2 to leading order, with odd contributions in q and k vanishing
under the integral due to inversion symmetry. As an example for Σ(k) ≈ ΣZ

q

V (k, q)

∆(q, iω) + |ω|
=
TG−1(0)

2

Z
q

G(q)2[∇qJ(q) · k]2

∆(q, iω) + |ω|
+O(k4). (3.52)

Therefore the dissipation energy satisfies for k → 0

∆(k, iω) = D(iω)k2 +O(k4), (3.53)

where we already identified the k2-coefficient with a, possibly frequency-dependent, diffusion
constant D(iω) by comparing the expressions for the Matsubara function in (3.48) and
(3.21). One can then write the diffusion coefficient, in complete analogy to its previously
derived relation with S(k, ω) given by (1.116), as

D = D(0) = lim
iω→0

lim
k→0

∆(k, iω)

k2
. (3.54)

Anomalous sub- or superdiffusion is characterized by a vanishing or infinite right-hand side.
Note however that (3.53) actually implies that the occurence of spin diffusion is in our
case equivalent to ∆(k, 0) being non-singular and finite. This means that for diffusion, one
simply has

D = lim
k→0

∆(k, 0)

k2
. (3.55)

On the other hand for anomalous diffusion the low-momentum behavior of ∆(k, iω) as k2

always requires a suppression or singularity in its leading ω-dependence to obtain scaling
with a non-diffusive exponent z ̸= 2. In that case it is therefore consistent with

D(iω) = lim
k→0

∆(k, iω)

k2
∼ |ω|(z−2)/z, (3.56)

and obviously at odds with 0 < ∆(k, 0) <∞.
As already mentioned ∆(k, iω) is a purely real and positive function of |ω|, if the fre-

quency is treated as a continuous parameter, but in contrast to Π̃(k, iω) it may be non-
monotonous-in-ω due to the multiplication with |ω|. Its analytic continuation to frequencies
slightly above the real axis, is in general a complex quantity

∆ret(k, ω) = ∆(k, iω → ω + i0+) = ∆R(k, ω) + i∆I(k, ω). (3.57)

Knowledge of ∆ret(k, ω) can then be used to determine the retarded spin-response function
Gret(k, ω)

Gret(k, ω) = G(k, iω → ω + i0+) = G(k)
∆R(k, ω) + i∆I(k, ω)

∆R(k, ω)− i(ω −∆I(k, ω))

= G(k)
∆2

R(k, ω) + ∆2
I(k, ω)− ω∆I(k, iω) + i∆R(k, ω)ω

∆2
R(k, ω) + (ω −∆I(k, ω))2

,

(3.58)

which as anticipated fulfills Gret(k, 0) = G(k). Note that we used |ω| = −i(iω)sgn(ω)
which is analytically continued to −iω, i.e. iω → sgn(ω)ω, because the spectral density
2ImGret(k, ω) has to be an odd function of ω, whereas ReGret(k, ω) is symmetric. This also
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requires ∆R/I(k, iω) to be an even/odd function [28], and in general amounts to choosing
the ’correct’ branch for determining ∆ret(k, ω) from its Matsubara pendant, since ∆(k, iω)
depends for small frequencies explicitly on |ω|. The dynamic structure factor S(k, ω) written
in terms of ∆ret(k, ω) is then given by

S(k, ω) =
1

π

G(k)

1− e−βω
ImGret(k, ω)

=
1

π

ωG(k)

1− e−βω

∆R(k, ω)

∆2
R(k, ω) + (ω −∆I(k, ω))2

, (3.59)

also implying ∆R(k, ω) > 0, due to S(k, ω) > 0.

3.2 High-temperature limit

We start our investigations with large temperatures T ≫ |J |, see also our first publication,
Ref. [10]. For that we first have to determine the explicit shape of the kernel V (k, q), that
is generally given by Eq. (3.51). For the static two-point function it is sufficient to set
G(k) ≈ b′0/T in V (k, q). Furthermore we need the high temperature behavior of the static
self energy Σ(k) to calculate explicitly the second contribution in V (k, q). It is given by

Σ(k) =
T

b′0
+

Σ2(k)

T
+O J3

T 2
, (3.60)

where the O(J2/T )-contribution reads [2]

Σ2(k) =
1

12

Z
q
J(q)J(q + k) + b′0 +

1

6

Z
q
J2(q), (3.61)

which can be obtained by solving iteratively the flow equation of ΣΛ(k), (2.111), to order
J2
Λ, where it suffices to keep the vertices on the right-hand side at their initial values. The

kernel V (k, q) in Eq. (3.51) can thus be written as

V (k, q) =
b′0
2
[J(q)− J(q + k)]2 + 2[Σ2(q)− Σ2(q + k)] +O J3

T
. (3.62)

For the modified kernel in Eq. (3.46), featuring a difference of G−1(k), only the first term
is present, since the self-energy corrections are subleading in J/T relative to J(q) in that
difference. Note that for a short-ranged exchange coupling Jij its Fourier transform J(k)
is constructed from a finite number of terms. Products of J(q) involve higher order ex-
ponentials, but still have a finite range on the respective Bravais lattice. Furthermore,
exponentials that are created by J(q)J(q+k) and J(q+k)2 can be also written as a prod-
uct of q and k-dependent harmonics. As a consequence the kernel V (k, q) can be expanded
in the following form

V (k, q) =
MX
µ=1

eik·RµVµ(q), (3.63)

where {Rµ} is a set of M vectors on the Bravais lattice. Hence one can also write the
dissipation energy as a finite Fourier series

∆(k, iω) =
MX
µ=1

eik·Rµ∆µ(iω), (3.64)
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with the frequency-dependent amplitudes ∆̃µ(iω) given by the solution of

∆µ(iω) =

Z
q

Vµ(q)PM
µ′=1 e

ik·Rµ′∆µ′(iω) + |ω|
. (3.65)

This greatly facilitates the calculation, since now one only has to deal with a relatively
small number of coupled self-consistency equations for ∆̃µ(iω). The fact that our solution
for ∆(k, iω) can be expanded in a finite Fourier series means that it is analytic in the whole
Brillouin Zone, which in particular is consistent with the small-momentum expansion of
∆(k, iω) in Eq. (3.53).

To proceed further one has to specify the type of interaction and Bravais lattice. A good
starting point is to consider a nearest neighbor interaction J on a d-dimensional hypercubic
lattice with spacing a. The exchange coupling is then

J(k) = J
X
δ

eik·δ = 2dJγ(k), (3.66)

where the sum runs over all 2d vectors δ = ±aei, i = 1, ..., d, connecting the arbitrarily
chosen origin to its nearest neighbors, and we have introduced the normalized nearest
neighbor form factor on a hypercubic lattice

γ(k) =
1

2d

X
δ

eik·δ =
1

d

dX
α=1

cos(kαa). (3.67)

Using the following factorizationZ
q
γ(q)γ(q + k) =

Z
q
γ2(q)γ(k) =

γ(k)

2d
, (3.68)

the O(J2/T )-term in the self-energy becomes then

Σ2(k) =
dJ2

6

h
γ(k) + 12b′0 + 2

i
, (3.69)

and thus its contribution to V (k, q) is proportional to

Σ2(q)− Σ2(q + k) =
dJ2

6

h
γ(q)− γ(q + k)

i
. (3.70)

For our further analysis it is convenient to introduce dimensionless quantities, defined as

∆̃(k, iω) ≡ ∆(k, iω)

|J |
p
b′0
, ω̃ ≡ ω

|J |
p
b′0
. (3.71)

The newly defined dissipation energy is therefore a function of ω̃. Writing ω̃ = ωτ we
already extract the characteristic timescale τ = (|J |

p
b′0)

−1 of the crossover between the
short and long-time regime at large temperatures. Hydrodynamic frequencies then satisfy
ω̃ ≪ 1 ↔ ω ≪ τ−1 at T = ∞, forming together with ka≪ 1 the collision-dominated regime.
The form of τ could be anticipated from the shape of H and the corresponding equations of
motion, given that time-derivatives of spin operators generate terms ∝ J × [Sα, Sγ ], where
the commutator is ∝ S. The corresponding dimensionless kernel Ṽ (k, q) is given by

Ṽ (k, q) =
[γ(q)− γ(q + k)]2

2
+

d

3b′0
[γ(q)− γ(q + k)]. (3.72)

70



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

Note that the contribution from Σ2(k) generates an additional dependence on the spin
quantum number S, which otherwise is fully absorbed in the rescaled frequency variable
ω̃. Turning to the Fourier expansion of ∆̃(k, iω̃) we find that for d ≥ 2 it can be solely
expressed via three independent amplitudes

∆̃(k, iω̃) = (1− γ(k))∆̃1(iω̃) + (1− γ(2k))∆̃
∥
2(iω̃) + (1− γ⊥(k))∆⊥

2 (iω̃). (3.73)

Here γ⊥(k) is the normalized off-diagonal next-nearest neighbor form factor on a hypercubic
lattice in d ≥ 2

γ⊥(k) =
2

d(d− 1)

X
1≤α<α′≤d

cos(kαa) cos(kα′a). (3.74)

It is generated by terms ∼ J(q + k)2 in the kernel, same as γ(2k), where the latter is the
form factor of fourth-nearest (next-nearest in d = 1, third-nearest in d = 2) neighbors on
the hypercubic lattice. In one dimension there is no perpendicular direction, so that only
two amplitudes have to be calculated

∆̃(k, iω̃) = (1− γ(k))∆̃1(iω̃) + (1− γ(2k))∆̃
∥
2(iω̃). (3.75)

The self-consistency equations for d ≥ 2 are given by

∆̃1(iω) = 2d

Z
q

1

|ω̃|+ ∆̃(q, iω)
+

d

3b′0

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)

− 2∆̃
∥
2(iω)− 2∆̃⊥

2 (iω), (3.76a)

∆̃
∥
2(iω) = −d

Z
q

γ(2q)

|ω̃|+ ∆̃(q, iω)
, (3.76b)

∆̃⊥
2 (iω) = −2d(d− 1)

Z
q

γ⊥(q)

|ω̃|+ ∆̃(q, iω)
, (3.76c)

whereas for d = 1, the third equation simply reads ∆̃⊥
2 (iω) = 0. The above system of

equations can be evaluated numerically with modest effort. In the following sections we will
discuss their solution in different dimensions and compare their performance to approaches,
previously used in older publications.

3.2.1 Spin diffusion above two dimensions

For d > 2 one finds that these equations imply a finite static dissipation energy ∆(k, 0),
consistent with spin diffusion, because the behavior of the integrands for small |q| = q is
∼ qd−3, and therefore non-singular. The corresponding amplitudes are solutions of

∆̃1(0) = 2d

Z
q

1

∆̃(q, 0)
+

d

3b′0

Z
q

γ(q)

∆̃(q, 0)

− 2∆̃
∥
2(0)− 2∆̃⊥

2 (0), (3.77a)

∆̃
∥
2(0) = −d

Z
q

γ(2q)

∆̃(q, 0)
, (3.77b)

∆̃⊥
2 (0) = −2d(d− 1)

Z
q

γ⊥(q)

∆̃(q, 0)
, (3.77c)
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and the finite spin diffusion coefficient can be extracted from ∆̃(k, 0) to O(k2) as

D =
|J |
p
b′0a

2

2d
[∆̃1(0) + 4∆̃

∥
2(0) + 2∆̃⊥

2 (0)], (3.78)

where we used γ(k) ≈ 1− (ka)2

2d and γ⊥(k) ≈ 1− (ka)2

d for the form factors. The dominant

scaling with τ−1 ∼ |J |
p
b′0, which is ∝ JS for S ≫ 1, is the same as in the result (3.26)

from the last flow equation (3.22) and consistent with previous estimates provided by older
calculations [42, 74]. Setting ∆(k, iω) ≈ ∆(k, 0) = ∆R(k, 0), which we also call Lorentzian
approximation [55], one obtains for the dynamic structure factor S(k, ω)

S(k, ω) =
b′0
π

∆R(k, 0)

(∆R(k, 0))2 + ω2
. (3.79)

Here we already used that for T → ∞, the detailed-balance factor from the fluctuation-
dissipation theorem is given by the classical expression [1 − e−βω]−1 ≈ (βω)−1. For small
momenta ka≪ 1, S(k, ω) is equivalent to the generic diffusion form in Eq. (1.115) [35, 41]

S(k, ω) =
b′0
π

Dk2

(Dk2)2 + ω2
, (3.80)

which consists of a single elastic peak at ω = 0 with a half-width ∼ Dk2 and a peak
height ∝ (Dk2)−1. As expected it can be cast into the scaling form S(k, ω) = k−2s(ω/k2)
with dynamic exponent z = 2 and is consistent with the outcomes of other theoretical
approaches [74], besides being argued for by hydrodynamics as discussed in Sec. 3.2.1 [41].
The Fourier transform to the time-domain of the diffusion form (3.80) yields then the
previously discussed exponential decay of the spin-correlation function [35, 41]

⟨Sz(k, t)Sz(−k, 0)⟩ ∼ S(k, t) ∝
Z
dω

2π

eiωtDk2

(Dk2)2 + ω2
∝ e−Dk2t = s̃(k2t), (3.81)

generated by the imaginary pole at ω = −iDk2. The autocorrelation function in d dimen-
sions decays then via an algebraic long-time tail as

⟨Sz
0(t)S

z
0(0)⟩ ∼ S(r = 0, t) ∝

Z
q
S(q, t) ∼ (Dt)−d/2. (3.82)

For finite displacements the Fourier transform contains a Gaussian function of |r|(Dt)−1/2,
which approaches unity for t→ ∞ [35, 41]. We shall come back to the last two expressions,
and see that at asymptotically large times neither Eq. (3.81) nor Eq. (3.82) tell the whole
story and that one has to consider the ω-dependence of ∆(k, iω) beyond its static limit.

As a first quantitative test of the self-consistency equations, we consider the limit of
high dimensions d≫ 1, where one can solve for the dynamics, without relying on numerics,
by using that integrals over powers of normalized form factors are small in this limit [2]Z

q
γ(i)(q)n = O(d−1). (3.83)

This property can be explained by the fact that only collinear terms in the integrand do
contribute to these sums, while products of orthogonal exponentials vanish. The number of
these combinations scales then with a smaller power of d than dn, leading to the suppression
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of these integrals. As a consequence only the integral without form factor in Eq. (3.77)
matters to leading order in 1/d, meaning that the amplitudes are given by

∆̃1(0) =
√
2d, ∆̃

∥
2(0) = ∆̃⊥

2 (0) = 0, (3.84)

so that

D = |J |a2
r
b′0
2d
. (3.85)

Note that 2d is just the coordination number c on the hypercubic lattice. We therefore
may extend this formula to the case of any lattice with a large c, by just replacing 2d with
c. The scaling of D with c−1/2 was also found in the literature [42] and in some sense is
intuitive, i.e. that the rate of dissipation should decrease with growing dimensionality.

Results in three dimensions and comparison to previous calculations

Theoretical results for the high-temperature diffusion coefficient are mainly available from
methods pursuing two different paths: first principles and a more phenomenological line.
The first direction usually involves the solution of an integro-differential equation [74, 87, 88,
89, 90, 91, 92, 93], that results from truncating an infinite hierarchy of coupled equations
[74, 87, 89, 91, 93]. The neglect of higher order diagrams is often justified by using the
inverse coordination number 1/c as a small parameter. The leading approximation has
then the shape of a non-linear generalized Langevin equation [33, 39, 74] for the Kubo
relaxation-shape function R̃(k, t) ≡ G−1(k)R(k, t), namely

∂tR̃(k, t) = −
Z t

0
dt′K(k, t− t′)R̃(k, t′). (3.86)

Here the memory kernel or ’friction function’ K(k, t) is related to a two-point relaxation-
shape function for the time derivatives of the spin operators ∂tS [74]. Those are determined
by the equations of motion for S, yielding a four-operator relaxation function in K(k, t),
that is in the simplest approximation written as a product of two spin-spin relaxation
functions [74]. Note also that R̃(k, t) = S(k, t)/b′0 for T ≫ |J |, which helps in applying
such decoupling procedures. Assuming K(k, t < 0) = 0, in accordance with the retarded
nature of (3.86), and taking the one-sided Fourier or Laplace-Transform of Eq. (3.86) with
Im(s) > 0 one obtains [55]

R̃L(k, s) =
1

KL(k, s)− is
, (3.87)

Hence the full Fourier-transform is with KL(k, ω + i0+) = K(k, ω) given by [74]

R̃(k, ω) = 2Re R̃L(k, s = ω + i0+) =
2KR(k, ω)

K2
R(k, ω) + (ω −KI(k, ω))2

, (3.88)

from which we read off by comparing with S(k, ω) in Eq. (3.59) that K(k, ω) fulfills an
analogous role to the retarded dissipation energy ∆ret(k, ω) in our case, i.e. that equiv-
alent expressions for both quantities lead to the same outcome for S(k, ω). In the same
sense ∆(k, iω) assumes a role similar to KL(k, s = iω), the Laplace-transformed memory
kernel for purely imaginary frequencies, given that G(k)Re[∆(k, iω → ω + i0+) − iω]−1 =
ImGret(k, ω)/ω. In the leading mode-coupling approximation K(k, t) is purely local in time,
implying a mixing of frequencies in the self-consistency equation for K(k, ω), contrary to
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our local-in-ω equation for ∆(k, iω). The diffusion coefficient can then be, analogous to our
method, determined from its static limit [74]

D = lim
k→0

1

k2

Z ∞

0
dtK(k, t), (3.89)

provided that the k → 0-limit is finite, which was assumed by most authors solving these
equations [74, 88]. It is however controversial, whether the mode-coupling equation indeed
hosts spin diffusion at asymptotically large times [80]. Scaling arguments for the spin-
correlation function in the t→ ∞, utilizing in part also the mode-coupling equations, predict
dynamic exponents larger than z = 2, incompatible with diffusion [78, 80]. Provided that
the integral in Eq. (3.89) is convergent, one can determine D numerically from integrating
Eq. (3.86) forward in time with the initial condition R̃(k, 0) = 1.

Turning to the phenomenological methods, one notes that all of them rely on the high-
frequency or short-time expansion of R̃, and assume that the long-time or low-frequency
limit is governed by spin diffusion [42, 77, 87, 88, 94, 95, 96, 97, 98]. The relaxation-shape
function at arbitrary times is then obtained via a prudent extrapolation of the short-time
expression. In our language one often makes an ansatz for ∆(k, iω) which amounts to a
terminated continuous fraction [33, 98, 99, 100], e.g.

∆(k, iω) =
δ1(k)

|ω|+ δ2(k)
|ω|+...

≈ δ1(k)

|ω|+ δ2(k)
|ω|+τ−1(k)

. (3.90)

In fact there is a formal motivation for this, since an infinite fraction for ∆(k, iω) is indeed
an exact way to write R̃(k, ω). Such an expansion can be derived via a memory-function
formalism [39, 99], based on a projection procedure with suitable Kubo relaxation functions
to define overlaps (Ai, Aj). More accurately, the fraction is built from an infinite number of
dynamic self-energies, which are defined via scalar products between time-evolved quantities
and their initial value; for n > 1 between components, orthogonal to the (n−1)-th quantity
at t = 0 [33, 99] and for n = 1 by the overlap (S(t),S(0)). Each of them satisfies then
a Langevin equation, with the corresponding friction kernel proportional to the (n + 1)-
th self-energy and δn(k). After successive Laplace-transformations one thus arrives at the
structure in (3.90). Eq. (3.90) is often referred to as the three-pole approximation, because
the denominator of R̃(k, ω) is a third order polynomial in ω2, thus implying three complex
poles for ω2. For r(k) ∼ δ2(k)/δ1(k) ≫ 1 the line-shape consists of a sole central peak,
whereas for r(k) ≪ 1 it features two symmetric maxima at finite frequencies. Note that

r(k)1/2 can be interpreted as the ratio of a damping ∼ δ
1/2
2 (k)/δ1(k) to a dispersion ∼

δ
1/2
1 (k). Such an approach is often used to complement mode-coupling calculations at lower
temperatures and/or larger momenta, where the results of these methods tend to deviate
more from experiments [98]. The parameters δ1(k), δ2(k) are extracted by demanding that
the first two terms to order t2 and t4, in the short-time expansion of R̃(k, t) are reproduced.
A popular choice for the decay rate and termination constant of the fraction τ−1(k) is
∼
p
δ2(k) [98]. Hence ∆(k, iω) ∼ δ1(k)/δ2(k)

1/2f(|ω|τ(k)), and τ(k) separates a low and
high-frequency region. At T = ∞ it is ∼ (|J |

p
b′0)

−1, similar to our characteristic time

scale. The required short-time coefficients of R̃(k, t) are known as its first two moments
⟨ω2⟩k, ⟨ω4⟩k , i.e. [95, 98]

⟨ω2n⟩k =

Z ∞

−∞

dω

2π
ω2nR̃(k, ω) = (−1)n

d2n

dt2n
R̃(k, t)|t=0, (3.91)
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and can be calculated exactly for T ≫ |J | [31, 97, 101]. One can express them via the
coefficients ∆(n)(k) in a high-frequency expansion of ∆(k, iω) [95],

∆(k, iω) = ∆(1)(k)/|ω|+∆(2)(k)/|ω|3 +O(|ω|−5), (3.92)

as
⟨ω2⟩k = ∆(1)(k), (3.93)

⟨ω4⟩k = (∆(1)(k))2 −∆(2)(k), (3.94)

which can for instance be deduced from the relation (1.105) between G(k, iω) and R(k, ω).
This also implies δ1(k) = ∆(1)(k), δ2(k) = −∆(2)(k)/∆(1)(k) for the parameters in the
three-pole ansatz (3.90). Note that the ω−6-decay of R̃(k, ω) implied by (3.90) leads to
all moments beyond ⟨ω4⟩k being ∞ in this approximation. Common to all extrapolation
schemes one finds expressions of the type [77, 87, 88, 95, 98]

D ∝ lim
k→0

k−2 ⟨ω2⟩3/2k

⟨ω4⟩1/2k

. (3.95)

In contrast to first principles calculations the expression (3.95) is analytically known due
to knowledge of the high-temperature moments, which are linear combinations of lattice
harmonics [101]. Extensions, which took the conservation of the sixth order moment into
account were also discussed, and found only a modest effect on the value of D [102]. Note
that an extrapolation scheme yielding equivalent results for D is given by assuming a two-
parameter Gaussian for ∆R(k, ω) ∝ Nq exp(−(ω/(2ω∗

q ))
2) with ∆I(k, ω) determined from

∆R(k, ω) via a Kramers-Kronig relation [88, 94, 95].
For the physical case of d = 3, where c = 6 is relatively small, our asymptotic d → ∞-

expression (3.85) is too rough to serve as a reliable estimate. Hence we have to solve
numerically for the zero-frequency amplitudes to obtain D. For this procedure the result
for large dimensions (3.85), evaluated at d = 3, is still used as an initial guess. The primary
amplitude ∆1(0), also present in the second approximate flow equation (3.22), turns out

to be positive. On the other hand the additional quantities ∆⊥
2 (0) and ∆

∥
2(0) are negative,

thus reducing D compared to the simpler form for ∆(k, 0) in (3.22), which contains only
∆1(0). Our results for the dimensionless quantity D

|J |a2
√

4b′0
as a function of S on the simple

cubic lattice are given in Table 3.1. Comparing the outcome D = 0.217|J |a2 for S = 1/2 to
previous results, which are listed in Table 3.2, we find it to be about 30 percent smaller than
the estimates of mode-coupling theory and extrapolation schemes, using exact moments.
It therefore does not suprise us, that it is closer to estimates, which operate either with
approximate expressions for the moments ⟨ω2n⟩k [88, 90, 91], e.g the leading 1/c-expression,
or use an entirely different ansatz to relate high and low-frequency regions in the spectral
density, e.g. via a truncated Lorentzian for R(k, ω) as done by de Gennes [77]. For S → ∞
the deviation of our result D = 0.193S|J |a2 to established values is about 40 percent. Our
tendency to underestimate D could be anticipated from the fact that the leading expression
for ∆(k, iω) at large frequencies, which is ⟨ω2⟩k/|ω|, is too small by a factor of 2, i.e.

∆(k, iω) ≈ 1

|ω|

Z
q
V (k, q) ≈ b′0

|ω|

Z
q
[J(q)2 − J(q)J(q + k)]

→ ⟨ω2⟩k = c|J |2b′0(1− γ(k)). (3.96)
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One may consider this as a payoff of converting the flow entirely into an integral equation, by
neglecting some residual terms, see Sec. 3.1.2. Multiplication of V (k, q) with two would then
increase D by a factor of

√
2, for instance D = 0.307|J |a2 for S = 1/2 and D = 0.273|J |Sa2

for S ≫ 1. This still leaves us with a residual deviation of about 20 percent for S = ∞. The
fact that these rescaled values are still smaller than the estimate from the flow equation
(3.22), which yields the correct second moment, aligns with the observation that a more
intricate momentum dependence of ∆(k) decreases the magnitude of D. Note that not all of
the older estimates involve an explicit dependence on S, beyond the dominant scaling with
|J |
p
b′0. An example is the outcome (3.89) from a numeric integration of the mode-coupling

equation (3.86), which reads D = 0.57|J |
p
b′0a

2 for the simple cubic lattice [74]. In the
context of extrapolation schemes a spin dependence is introduced via a term ∼ 1/b′0 in the
fourth moment ⟨ω4⟩k [95]. According to (3.94) it can be written in terms of ∆(2)(k) and
∆(1)(k), where the former is in our case given by

∆(2)(k) = − c2 − c

6b′0
|J |4(b′0)2(1− γ(k)). (3.97)

As in the exact result [42, 95] we have an additional term ∼ 1/(b′0) × (1 − γ(k)) with
the correct sign, which depends explicitly on S. Furthermore this expression has up to
prefactors the same k-dependence as the mode-coupling result for ∆(2)(k) [74]. The S-
dependence ∝ (1−A/b′0)

1/2 of D/(|J |
p
b′0) from the extrapolation formula (3.95), is much

less pronounced than for us though [42, 95]. The larger effect of the Σ-term may be partly
explained by the q0-weighting at small loop momentum relative to the J2-contribution to
D, which scales as (q · k)2 for qa ≪ 1, since [J(q) − J(q + k)] ∝ 2(q · k) + k2. We
have compared the explicit spin dependence of the diffusion coefficient with the result of
extrapolation schemes in Tab. 3.3 to illustrate this difference. Accordingly, estimating D
with our moments from a ratio ∆̃(1)(k)3/2(−∆̃(2)(k))−1/2 as in Eq. (3.95), yields also a much
weaker magnitude for the S-dependence than the direct solution of our self-consistency
equation. This serves as a first demonstration that for us the low and high-frequency
sector are not as easily related to each other, as is the case for extrapolation schemes. One
may argue on these grounds that one should not divert too much attention to outcomes
in the high-ω sector, if one is focused on low-frequency properties, that cannot be reliably
estimated from the high-frequency behavior. Note that the strong effect of the contribution
∼ Σ(q) − Σ(q + k) in V (k, q) will become even more apparent in low dimensions d ≤ 2,
where it changes the qualitative behavior in the limit ω → 0.

Another way to gain insights are spin dynamics simulations [103, 104], i.e. by solving
a classical equation of motion for an ensemble of interacting unit vectors, which represent
the spins, using a sufficiently large number of initial randomly generated configurations.
However, results at asymptotically long times are mostly inaccessible, in particular in three
dimensions, where the computational cost increases rapidly for sufficiently large lattice
sizes. Thus one is mostly unable to conclusively determine even the type of the long-type
behavior, which is usually read off from the decay of autocorrelations in the time-domain
[104, 105, 106], with the diffusive case given by Eq. (3.82). As an example the exponents γ
in the long-time tail of S(r = 0, t) ∼ t−γ still evolved with t in the largest available time
windows [104, 105, 106]. Only in recent years significant progress was made for numerical
simulations of one-dimensional systems [85]. We have also repeated the calculation of D for
another three-dimensional isotropic lattice, namely the body-centered cubic (bcc) lattice,
including also for both lattices a next-nearest neighbor coupling. The corresponding results
can be found in Appendix B.1.
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S 1
2 1 3

2 2 5
2 3 7

2 ∞
D

|J |a2
√

4b′0
0.217 0.189 0.179 0.175 0.172 0.171 0.170 0.167

Table 3.1: Our results for the diffusion coefficient D of the nearest-neighbor spin-S
Heisenberg model on a simple cubic lattice with spacing a at T = ∞, obtained from
the numerical solution of (3.77). Note that we have chosen the normalization factorp
4b′0 =

p
4S(S + 1)/3 such that it is unity for S = 1/2. For the modified kernel in

(3.46), this ratio does not depend on S and is equal to the value at S = ∞.

Method D
|J |a2

√
4b′0

de Gennes [77] 0.199

Mori et al. [87] 0.295

Bennett et al. [88] 0.225

Redfield et al. [94] 0.296

Resibois et al. [90] 0.255

Blume et al. [74] 0.286

Reiter [92] 0.205

Tucker [102] 0.297

Myles et al. [93] 0.326

Morita [97] 0.317

our method 0.217

Table 3.2: Comparison of our outcome with other theoretical T = ∞-estimates for D of the
nearest-neighbor S = 1/2 Heisenberg model on the simple cubic lattice.

S 1
2 1 3

2 2 5
2 ∞

D(S)

D(S=1/2)
√

4b′0
1.0 0.871 0.825 0.806 0.793 0.770

Extrapolation scheme 1.0 0.967 0.958 0.955 0.953 0.949

Table 3.3: Comparison of the dependence on S between our results for D in Table 3.1 and
extrapolation schemes, that use the exact second and fourth moment in their expression
[42, 87, 95], see (3.95). In our case the contribution ∝ 1/b′0 has a much larger effect compared
to moment-based approaches.
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3.2.2 Non-analytic corrections to spin diffusion

Since we are not limited to ω ̸= 0 we continue on taking a closer look at ∆(k, iω) for
finite frequencies, which reveals additional features of interest, in particular concerning the
long-time dynamics. Looking at our equations (3.76) for the amplitudes we can first rewrite

1

|ω̃|+ ∆̃(q, iω)
=
h
1− |ω̃|

|ω̃|+ ∆̃(q, iω)

i 1

∆̃(q, iω)
. (3.98)

From the presence of the second term we infer, that the leading correction for ω ̸= 0 is
non-analytic in d ≤ 4. The reason for this lies in an additional power of ∆̃(q, iω), implying
an infrared divergence at small momenta

R
dqqd−5 ∼ 1/q4−d

low , so that for instance in d = 3

the relevant contribution to the integral is cut above k∗ωa ∼ (|ω̃|/D̃)1/2. We therefore obtain
in three dimensions a correction which is ∼ |ω̃|1/2, i.e.

∆̃(k, iω) = ∆̃(k, 0) + ∆̃′(k)|ω|1/2 +O(|ω̃|), (3.99)

or for the corresponding ω-dependent diffusion coefficient

D(iω) ≈ D +D′|ω̃|1/2, (3.100)

while in d = 4 the correction is logarithmic ∼ ω̃ ln(ω̃). ∆′(k) still has to be determined self-
consistently, via linear equations for its amplitudes, which are easily solved, after ∆(k, 0) is
calculated. For the simple cubic lattice the corrections satisfy

∆̃′
1 =− 6

Z
q

∆̃′(q)

∆̃2(q, 0)
− 1

b′0

Z
q

γ(q)∆̃′(q)

∆̃2(q, 0)

− 6 + 1/b′0
4πD̃3/2

− 2∆̃
′,∥
2 − 2∆̃

′,⊥
2 , (3.101a)

∆̃
′,∥
2 = 3

Z
q

γ(2q)∆̃′(q)

∆̃2(q, 0)
+

3

4πD̃3/2
, (3.101b)

∆̃
′,⊥
2 = 12

Z
q

γ⊥(q)∆̃′(q)

∆̃2(q, 0)
+

3

πD̃3/2
, (3.101c)

where we used
R∞
0

dx
1+x2 = π

2 for the terms ∼ D̃−3/2, created by the aforementioned singu-
larity. Explicitly solving those equations, we find that ∆′(k) is positive for small momenta
ka≪ 1 and becomes negative for ka ∼ 1. The solution along one path in the Brilloun Zone
is shown in Fig. 3.3. Inserting the result involving a finite ∆′(k) into S(k, ω) we obtain

S(k, ω) =
b′0
π

∆(k, 0) + ∆′(k)
p
|ω̃|/2

(∆(k, 0) + ∆′(k)
p
|ω̃|/2)2 + (sgn(ω)∆′(k)

p
|ω̃|/2 + ω)2

, (3.102)

where we used for the analytic continuation that (ω̃)1/2 → (1− isgn(ω))(|ω̃|/2)1/2 to ensure
that ImGret(k, ω) is an odd function of ω. Obviously, the square-root distorts the previous
Lorentzian, implying a non-analytic narrowing for ω → 0, instead of a smooth maximum.
Indeed, we saw that D′ > 0, so that S(k, ω) is for small momenta still peaked at ω = 0,
whereas for ka = O(1), the correction is negative, implying a downward slope. At small
momentum one still finds a regime of frequencies, where this non-analytic term is negligible.
This is the case for the so-called strict hydrodynamic limit, given by the prescription k →
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Figure 3.3: ∆̃′(k) for a S = 1/2-Heisenberg Model with nearest neighbor-coupling J on a
simple cubic lattice, from the solution of (3.101), plotted along the path k(p) = pπ

a (1, 1, 1).
We obtain D′ = 0.393|J |a2 for the k2-coefficient in the low momentum expansion.

0 and ω ∝ k2 → 0, so that the leading correction to D(iω ∝ k2) scales as k and can
thus be dropped [44, 107]. Going to the time-domain this limiting procedure amounts to
asymptotically small k and long times restricted by Dk2t = const. In that case one still
finds that the diffusion pole dominates S(k, t) ∼ exp(−Dk2t), while corrections to it can
be dropped due to their scaling as O(k). This is also the limit, which is often implicitly
assumed in theoretical discussions concerning diffusion [44, 74, 90, 107]. In the opposite case,
at fixed momentum k and for small ω or long times free of any constraints the asymptotics
are driven by the contribution ∼ |ω̃|1/2 in ∆(k, iω), since it generates a branch point at
ω = 0 [44, 107]. As a consequence a term ∼ D′k(Dk2t)−3/2 is created in S(k, t) [44], which
as a power-law exhibits a much weaker decrease than the contribution from the diffusion
pole for t → ∞. Note that the non-analytic square-root correction occurs in our case for
any momentum k, so that S(k, t) is in general ∝ ∆′(k)(∆(k, 0)t)−3/2 for t → ∞. Since
there is no exponential suppression, all momenta in the first Brillouin Zone have a similar
non-negligible weight in a k-integral over this branch cut correction, which makes it thus a
non-hydrodynamic contribution. Moreover a potential 1/k2-singularity for k ≪ O(t−1/2) in
the non-hydrodynamic term is regularized by the integration over k in d > 2. In particular
this implies that the long-time tail of the autocorrelation function S(r = 0, t) in d = 3 still
falls off as t−3/2, but is accompanied by a modified coefficient ̸= D−3/2, which is renormalized
via the leading non-analytic term in ∆(k, iω) in the aforementioned manner. Conversely
long-time tails of pair-correlation functions S(r ̸= 0, t) would therefore decay with different
coefficients, determined by the real space transform of the branch cut correction to S(k, t).

We want to emphasize that terms with such effects, will be also generated by our equa-
tion in higher dimensions, even though above d = 4 the first correction to ∆(k, iω) is always
∝ ω̃, so that S(k, ω) retains a Lorentzian shape for small frequencies. This is simply due to
the creation of zero-frequency branch points, by multi-valued roots or logarithms, no matter
how strong their suppression is in the strict hydrodynamic limit [108], which will lack any
exponential decay for t→ ∞. For an odd dimension d = 2l + 1 the first non-analytic term
is of the form

D(iω)−D ∼ (ω̃)l−1/2 ∼ (ω̃)(d−2)/2, (3.103)

79



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

and in even dimensions d = 2l the correction contains a logarithm

D(iω)−D ∼ (ω̃)l ln(ω̃) ∼ (ω̃)d/2 ln(ω̃), (3.104)

Both types lead to an additional contribution ∼ t−d/2 in S(k, t) [108] and therefore S(r, t).
These terms appear also as subleading corrections in lower dimensions. However, the change
implied by them in S(r, t) is negligible for t→ ∞ compared to the diffusion pole and leading
branch-cut term, since the respective exponents in their algebraic tails are larger. A singular
k−2-behavior is then regularized by a k-integration in d > 2, so that their contribution to
S(r, t) retains the exponent from the tail in S(k, t). The involvement of all length scales
in the branch-point contribution to S(r, t) contradicts the assumption of hydrodynamics
[35, 41], namely that the long-time behavior should be governed solely by fluctuations at
long wavelengths. Hence one cannot exclude the possibility of even negative autocorrelations
in the long-time limit, thus implying at least one damped oscillation. Such a behavior
was previously observed in the solution of an approximate kinetic equation, derived by
Résibois and De Leener (RDL) [89, 90]. However, their result for S(0, t) approaches zero via
exponentially damped oscillations, not an algebraic long-time tail [90]. Blume and Hubbard
(BH) [74] showed later that the RDL equation is only applicable for times t ≲ (|J |

p
b′0)

−1,
with their numerical result for S(0, t) staying positive for all times [74].

Note that similar corrections to ∆(k, iω) were also found and discussed in the context of
mode-coupling theory [109, 110]. At vanishing momentum the leading correction to D(iω)
is found to be ∼ |ω|3/2 for the Heisenberg model in d = 3 [109, 110], smaller than our |ω|1/2,
which in turn is a common prediction of mode-coupling theory for fluids [44, 108]. Another
difference is the behavior at finite momentum. In that case these non-analyticities occur as
functions of D̄k2 − iω, e.g. in d = 3 [109, 110, 111]

D(iω)−D ∼ Dk2 D̄k2 − iω
3/2
. (3.105)

As a consequence the branch points are now located at finite frequencies for k ̸= 0, so that in
the time-domain an exponential modulation is introduced on top of the algebraic tails [44],
for example a term ∼ t−5/2 exp(−D̄k2t) [109, 110, 111]. One finds D̄ < D, implying that
these corrections still exhibit a slower decay than the diffusive contribution to S(k, t). In fact
the exponential damping becomes weaker with increasing order [107, 110], so that each term
is eventually becoming more dominant than its predecessors, even if the algebraic tails fall
off more rapidly. This is a highly non-uniform series, so that the exact long-time behavior
of S(k, t) cannot be determined via a truncation at finite order [107, 110]. Nevertheless,
that intricacy does not matter for S(r, t), because the damping with D̄k2 ̸= 0 cuts off the
momentum integrals over the branch point corrections for sufficiently large timescales and,
as already sketched, divergent pre-factors ∼ 1/k2 are regularized by the k-integration in
d > 2. Considering that these corrections are already accompanied by the aformentioned
decaying long-time tails, these terms are therefore suppressed in S(r, t). Hence the long-
time limit of space-resolved correlations is governed by the purely diffusive expression [44],
as postulated by hydrodynamics. In our case the momentum dependence of ∆(k, iω) is, as
a finite superposition of lattice harmonics, incompatible with masked corrections at k ̸= 0,
thus leading to an absent damping in the time-domain. Despite this shortcoming our result
still serves as an illustration on how behavior at asymptotically long times or low frequencies
is not solely driven by hydrodynamics in a naive sense, which are formally only valid in the
aforementioned scaling regime. We have added a more detailed discussion of the long-time
asymptotics, which arise from the non-analytic contributions to ∆(k, iω), in appendix B.2.1.
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Note that in contrast to our approach, extrapolation schemes, e.g. (3.90), which assume
a definite low-frequency limit, based on high-frequency properties, also exclude the possi-
bility of non-analytic corrections to ∆(k, iω)/k2. The first correction to D is then usually of
the order |ω|. Such contributions amount then to simple renormalizations of the diffusion
pole Dk2, i.e. small relative corrections ∼ O(k2) in the exponential decay of S(k, t) [109].
The behavior of the strict hydrodynamic limit can therefore be extended without problems
to asymptotically large times [98].

3.2.3 Anomalous diffusion in reduced dimensions

In low dimensions d ≤ 2 we find that ∆(k, iω) cannot have a finite static limit, therefore
ruling out spin diffusion. As a consequence one has to consider the leading frequency
dependence of the dissipation energy, which turns out to diverge for ω → 0. The reason for
this lies in the infra-red behavior of the integrals, which prevents us from directly setting

ω = 0 in [∆(k, iω) + |ω|]. Instead, the singular behavior of
R dqqd−1

|ω̃|+∆(q,iω) for ω → 0 implies
that the integrations are cut above

k∗ωa = (ω/D(iω))1/2. (3.106)

In this region one can accordingly truncate the expansion of the dissipation energy after
quadratic order

∆̃(k, iω) ≈ D̃(iω)k2 +O(k4). (3.107)

Furthermore we note that one can also approximate in all integralsZ
q

f(q)

|ω̃|+ D̃(iω)q2
≈ f(0)

Z
q

1

|ω̃|+ D̃(iω)q2
, (3.108)

where f(q) is assumed to be a slowly varying function for momenta k ≪ k∗ω, for instance
a form factor. Finite-q corrections to f(q) as well as O(q4)-terms in ∆(q, iω) are then
suppressed as some power of k∗ωa ≪ 1. Note that the integral runs over the whole q-space
in this limit, since it is ultraviolet convergent due to the confinement for small q. The
dissipation energy satisfies therefore in the low-frequency limit

∆̃(k, iω) =

Z
q

Ṽ (k,0)

|ω̃|+ D̃(iω)q2
, (3.109)

with its momentum dependence for ω̃ ≪ 1 entirely generated by

Ṽ (k,0) =
[γ(0)− γ(k)]2

2
+

d

3b′0
[γ(0)− γ(k)]. (3.110)

Note that the first term is O(k4), because the contribution at O(k2) behaves as (k · q)2
thus removing the IR-singularity on that level and featuring an additional suppressed power
of k∗(ω)a ≪ 1 relative to the leading term. Hence the singular contribution to D(iω) is
solely determined by the static self-energy correction ∼ (b′0)

−1. This also means that in
the absence of the latter the approximation (3.107) is inapplicable, and therefore has to be
tweaked. Continuing now with a finite (b′0)

−1-term, we are left with determining D(iω).
Using the small-k expansion of the form factor γ(k), we obtain the self-consistent relation

D̃(iω) =
a2

6b′0

Z
q

1

|ω̃|+ D̃(iω)q2
. (3.111)
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One dimension

Evaluating the right-hand side of (3.111) in d = 1 yields

D(iω) =
|J |

144|ω|
1/3

|J |a2, (3.112)

and its analytic continuation is therefore

D(iω → ω + i0+) =
|J |

144|ω|
1/3

√
3

2
+ i

sgn(ω)

2
|J |a2 = D1

√
3 + isgn(ω)

|J |
ω

1/3
,

(3.113)
implying k∗ω ∼ ω2/3 for the cutoff or characteristic momentum. Note that D(iω) just scales
as |J | instead of |J |

p
b′0, since the dominant small-ω contribution to D(iω) is ∝ (b′0)

−1.
The divergence of the frequency-dependent diffusion coefficient with |ω̃|−1/3 is equivalent to
anomalous superdiffusion. Since the exponent in the singularity is < 1, both imaginary and
real part are of the same order, in accordance with dissipative dynamics. The corresponding
dynamic structure factor reads

S(k, ω) =

√
3D1k

2|ω/|J ||1/3

(
√
3D1k2)2 + (ω|ω/J |1/3 − sgn(ω)D1k2)2

, (3.114)

which yields limk→0 ω
2/k2S(k, ω) ∼ |ω|−1/3 ∼ D(ω), consistent with Eq. (1.116). S(k, ω)

vanishes non-analytically as |ω̃|1/3 for ω → 0 and exhibits as a function of ω a broad
maximum at a finite characteristic frequency ω∗(k) ∼ kz, with a dynamic index z = 3/2 in
contrast to z = 2 for diffusion. This can be seen by casting Eq. (3.114) into the form

S(k, ω) ∼ k−3/2s̃k,ω1 (ω(D1)
−3/4k−3/2). (3.115)

The dependence on the scaling variable ωk−3/2 for small momenta and frequencies implies
accordingly that in the time-domain the scaling form is

S(k, t) ∼ s̃k,t1 ((D1)
3/4k3/2t), (3.116)

with the corresponding scaling function

s̃k,t1 (y) =

Z ∞

0

du

π

√
3u1/3 cos(uy)

3 + (u4/3 − 1)2
, (3.117)

where u = D1k
2/(ω(ω/J)1/3). This will not result in a simple exponential (3.81) at asymp-

totically large times like for ordinary diffusion. In fact one should note here the simultaneous
presence of branching points at u = 0 and complex poles in the denominator, due to the
non-analytic u-dependence. One can contrast that with the diffusion form for S(k, ω) in
Eq. (3.80) which implies purely imaginary poles without any branch points. Transforming
to real space one sees than that S(r, t) decays as t−2/3 for long times, i.e.

S(r, t) ∼ t−2/3s̃r,t1 (rD−1
1 t−2/3), (3.118)

implying also
R
drS(r, t)r2/

R
drS(r, t) ∼ (∆r)2 ∼ t2/3 for the spread in real space. Note

that s̃r,t1 (rt−2/3) is not a Gaussian, opposed to initial findings in numerical calculations,
which simply suggested a diffusion law in non-linear time ∼ t4/3 [48].
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A scaling with exponent z = 3/2 is characteristic of the Kardar-Parishi-Zhang (KPZ)
universality class [81, 86]. For instance the solution of the eponymous non-linear stochastic
partial differential equation in (1 + 1) dimensions [112, 113] belongs to this class. Besides
having the same dynamic exponent it is also believed that the spin-correlation function for
integrable isotropic linear magnets at asymptotically large times is given by the KPZ scaling
function [81, 86]. A scaling form for S(k, ω) like in Eq. (3.115) with a vanishing scattering
intensity for ω → 0, was also found by Sanchez et al. [51, 84] in a semiphenomenological
treatment of the frequency-dependent spin conductivity σ(ω), which can be identified with
our D(iω) [51]. However, other authors arrive at the result that the ω−1/3-divergence of
∆(k, iω) is regularized at k ̸= 0 [49, 113]. In particular this is the case for the exact
KPZ scaling function [113], whose (k, t)-representation is well described by an exponential
decay with a superimposed oscillation [113]. A simple way to account for this is to replace
ω−1/3 → (Ck3/2 + ω)−1/3, so that D(iω) → D(Ck3/2 + ω) [45, 46]. Our result would thus
be equivalent to the limit Ck3/2 ≪ ω, which is also the relevant one to determine the type
of dissipative mechanism as in (1.116) or (3.54). Conversely for ω ≪ Ck3/2 the dissipation
energy scales in the presence of screening as k3/2 instead of k2 [45, 46, 49]. This cannot
happen in our case, because the k-dependence of our solution is determined by a finite-
ranged Fourier expansion. In some sense this is analogous to the situation in d > 2, where
such modifications at non-zero momentum k appear in the corrections to the static limit
∆(k, 0) and shift the branch points to finite values, see Eq. (3.105). In our case without
screening the branch cut contribution to S(k, t), is a power-law for k2t→ ∞, i.e. (kt1/z)−2.
It will always either dominate or be of the same order, compared to terms generated by
poles, i.e. roots of the denominator of s̃k,ω1 , which imply exponentially damped oscillations.
This is due to the fact that in contrast to d > 2, where the cuts are not part of the
hydrodynamic scaling form for S(k, ω) at small k and ω, one cannot neglect them here for
any value of the scaling variable kzt. Correlations S(r, t) in real space and long times are
determined by both, pole and branch cut, as in higher dimensions. However, there is a
salient difference, namely that the contribution from the branch cut to S(r, t) will be also
dominated by small momenta k ≲ O(t−z) in the k-integral analogous to the (super-)diffusion
pole. One can infer this from the 1/k2-behavior of the branch-cut term for t → ∞, which
implies an infrared singularity ∼ 1/k and thus the confinement to small k. We have laid
out in appendix B.2.2 the effect of branch-cut contributions in S(k, ω) on the time-resolved
dynamics in d = 1. Note that a vanishing elastic scattering S(k, 0), implies, according to
the spectral representation of S(k, ω) (1.78) that the contribution of terms with vanishing
energy difference, in particular transitions between degenerate states, remains negligible in
the thermodynamic limit, in contrast to normal diffusion, where S(k, 0) ̸= 0.

In Fig. 3.4 we display the frequency dependence at a small momentum, including also
a correction ∼ ω1/3 to ∆(k, iω), beyond the aforementioned scaling limit, defined by ω ∼
kz, k → 0, where it is negligible. It has no effect on the superdiffusive form (3.114) for
ω → 0, i.e. its vanishing, but changes the curve for frequencies ω ≳ ωPeak. Furthermore this
term does not, in contrast to d > 2, contribute to leading order in t−1/z to S(r, t). As already
mentioned anomalous superdiffusion, characterized by the long-time scaling with dynamic
exponent z = 3/2, is at least in agreement with calculations for the isotropic Heisenberg
spin-1/2 chain with nearest neighbor-coupling [47, 48, 49, 50, 51, 81, 82, 84, 85, 86]. Note
that this model is integrable, i.e. exactly solvable by means of the Bethe-ansatz [114].
Integrability is associated with additional symmetries and in fact with a macroscopic number
of conservation laws. Generalizations of hydrodynamic descriptions, developed specifically
for integrable systems, established arguments for the occurence of superdiffusion in the
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Figure 3.4: Frequency dependence of the dynamic structure factor, built from the first
two low-frequency terms in ∆(k, iω) = ∆′(k)|ω|−1/3 + ∆′′(k)|ω|1/3 + ..., at T = ∞ of the
S = 1/2-Heisenberg Model nearest-neighbor-chain for a fixed momentum ka = 0.1. One
clearly sees the suppression of S(k, ω) for ω → 0.

isotropic limit of the Heisenberg Model [49, 50]. On the other hand chains with a finite
next-nearest neighbor coupling or S > 1/2 are non-integrable and therefore do not possess
the above symmetries. For these models the situation regarding the long-time dynamics
is more controversial. In fact some methods predicted superdiffusion for arbitrary spin
chains [82]. Ultimately the overall evidence favors in this case diffusive dynamics z = 2
for sufficiently large times, so that S(0, t) ∼ t−1/2, see also Eq. (3.82), crossing over from
the superdiffusive z = 3/2 at intermediate timescales. This was convincingly demonstrated
in numerical calculations of the autocorrelation function by Dupont and Moore [85] based
on tensor networks methods. On phenomenological assumptions Nardis et al. argued [83],
that while there is a crossover from z = 3/2 to some weaker decay in S(0, t), the diffusion
constant still diverges logarithmically for t → ∞, which is, however, numerically hard to
resolve for the accessible time windows. Note that in our case, integrability does not play
any role at all, and the behavior of the system is entirely tied to its dimensionality, similar
to normal fluids in mode-coupling theory [44, 45, 46]. One reason for the deviations in the
non-integrable cases, may be the local-in-ω shape of our equation (3.50), accounting only for
elastic processes, which may be an insufficient approximation for too low frequencies. Older
calculations within a modified mode-coupling approximation [79] obtained S(0, t) ∼ t−2/3

in an intermediate time-window, similar to the aforementioned numerical simulations [85] of
non-integrable systems. However, a scaling analysis of the mode-coupling equations suggests
an exponent z = 5/2 instead of z = 2 for asymptotically large times, thus indicative of a
subdiffusive long-time tail in S(0, t) [79, 80].

Two dimensions

In two dimensions the leading singularity is logarithmic, and Eq. (3.111) implies therefore

D(iω) =

s
ln

D(iω)

a2|ω|
|J |a2√
24π

. (3.119)
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In the limit ω → 0 we can solve this equation by iterating the logarithm, i.e. replacing
D(iω) on the right-hand side by the prefactor, hereby neglecting nested terms ln ln(|J |/ω) at
subleading order. We thus obtain for the anomalous diffusion coefficient in real frequencies

D(ω) =
|J |a2√
24π

s
ln

|J |√
24π|ω|

+ i
π

2
sgn(ω) ≈ D2 ln

1/2 |J |√
24π|ω|

, (3.120)

where we used that the imaginary part under the square-root is logarithmically suppressed
compared to the real part. Keeping it to leading order in ln−1(|J |/ω), we simply obtain

D(ω) ≈ D2

s
ln

|J |√
24π|ω|

+ i
π

4
sgn(ω) . (3.121)

The scattering intensity is thus given by

S(k, ω) =
D2k

2 ln |J |√
24π|ω|

−1/2

(D2k2)2 + ω2 ln−1 |J |√
24π|ω|

, (3.122)

with spectral weight suppressed like ln−1/2(|J/ω|) in the low-frequency limit. The loga-
rithmic correction arises from d = 2 being the marginal dimension in Eq. (3.77). The
scaling of the characteristic frequency for ka→ 0 is thus approximatively given by ω∗(k) ∼
k2 ln1/2(1/(ka)) for k → 0, yielding also the position of the broad peak in S(k, ω), or
conversely k ∼ ω1/2 ln−1/4(1/ω̃) ∼ k∗ω ∼ (ω/D(iω))1/2, i.e.

S(k, ω) ∼ k−2 ln−1/2(1/(ka))s̃k,ω2 (ω/ω∗(k)). (3.123)

This implies in turn
S(k, t) ∼ s̃k,t2 (k2 ln1/2(1/(ka))t), (3.124)

which yields a characteristic time scale via k ∼ t−1/2 ln(t/|J |)−1/4, i.e. t∗(k) ∼ ω∗(k)
−1,

leading in the end to

S(r, t) ∼ ln(t)−1/2t−1s̃r,t2 (r ln(t/|J |)−1/4t−1/2). (3.125)

Hence the autocorrelation function vanishes as t−1 ln−1/2(t) [115] in contrast to the result
for normal diffusion, which is S(0, t) ∼ t−1, see Eq. (3.82). For s̃r,t2 we expect, as for the
linear chain, contributions from the branch cut at zero frequency and superdiffusion poles in
s̃k,ω2 , with the relevant region in the k-integration again being confined to small arguments of

the scaling function s̃k,t2 , i.e. k ≲ t−1/2 ln−1/4(t). Note that our outcomes for the divergence
of D(iω) in d = 1 and 2, were also found in the context of mode-coupling theory applied
to fluids [44, 115]. In that context one neglected screening at finite momentum too, thus
implying the same divergence for ω → 0 and arbitrary k. As in d = 1, it is not a bold
proposition to regularize this singularity by means of ln1/2((ω̃)−1) → ln1/2(1/(ka)2 + ω̃−1),
implying a non-analytic correction ∼ ln1/2(ka) to the dispersion. This was later taken care
of in a dynamic renormalization group analysis by Forster et al. using ϵ = 2 − d as a
small parameter for normal fluids [45, 46], where asymptotics expressions of ∆(k, iω)/k2

were given for ω → 0 or k → 0 in reduced dimensions. We emphasize again that the
onset of superdiffusion in reduced dimensions is solely a consequence of the q0-behavior

85



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

of Σ(q) − Σ(q + k) for q → 0. This shows how, on a moment-based level seemingly
inconspicuous, terms like the (b′0)

−1-contribution [42, 95], which is also not accounted for
in mode-coupling theory for magnets [74], may alter the whole structure of the solution.

Unfortunately, converged results regarding the long-time or low-frequency behavior of
the dissipation energy and therefore spin-correlation functions are not available up to this
point in two dimensions, in contrast to d = 1. Extrapolation schemes are based on the
assumption of diffusive long-time asymptotics [95, 97, 116]. Numerical solutions of the
mode-coupling equations, as first performed by Blume and Hubbard [74], are consistent
with normal diffusion in low dimensions [117], while a more recent scaling analysis by
Lovesey and Balcar [80] rules out ordinary diffusion, although with a subdiffusive exponent
z > 2. An explicit numerical evaluation of the mode-coupling equations, again by Lovesey
[80], predicts in an intermediate time-window a dynamic exponent z that is slightly below
2, thus indicative of superdiffusion. For t → ∞ it is then expected to change over to the
subdiffusive value from the scaling argument. Superdiffusive intermediate behavior was also
found in an experiment by Hild et al. performed on ultracold atoms, where the setup is
reasonably described by an isotropic Heisenberg ferromagnet [118]. There are no available
numerical simulations of the spin dynamics, that can give conclusive results on the t→ ∞-
asymptotics, with the more recent ones still being unable to leave intermediate times [106],
i.e achieve convergence. In any case a numeric corroboration of a logarithmic divergence in
the time-domain, as found here, is a challenging endeavour.

Alternative equation

Let us also briefly discuss the changes to our solutions in reduced dimensions if one removes
the contribution generated by the momentum dependence of Σ(k), which amounts to solving
(3.46). Since this term is ∝ (b′0)

−1, the results here can be formally considered as an
intermediate frequency dependence in the initial equation (3.50) as long as S ≫ 1, so that
the self-energy term is suppressed. For ω → 0 one would still arrive at the previously
discussed behavior. As mentioned, the k2-term in ∆(k, 0) is suppressed compared to all
terms of higher order in k, due to the accompanying q2-factor. Hence a truncation, retaining
only D(iω)k2 in its expansion does not work out. It turns out that, at least in d = 1, it is
sufficient to include the k4-term. Thus we approximate

∆(k, iω) ≈ D(iω)k2 +D′′(iω)k4, (3.126)

D(iω) =
2b′0(J

′′)2a2

π

Z π/a

0

dqq2

|ω|+D(iω)q2 +D′′(iω)q4
, (3.127)

D′′(iω) =
b′0(J

′′)2a4

2π

Z π/a

0

dq

|ω|+D(iω)q2 +D′′(iω)q4
. (3.128)

These two equations can be solved by the following ansatz

D(iω) = D(1)|ω/J ′′|1/5|J ′′|a2, (3.129)

D′′(iω) = D(2)|ω/J ′′|−3/5|J ′′|a4. (3.130)

with the numeric coefficients satisfying D(1/2) satisfying

(D(1))
5
2 =

2b′0
π

Z ∞

0

duu2

1 + u2 + D(1)√
D(2)

4
u4
, (3.131)

86



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

Figure 3.5: Frequency dependence of the k2-coefficient D(iω) at T = ∞ of the Heisenberg
Model on a square lattice with nearest neighbor interaction J , obtained by solving the
modified integral equation (3.46) without (b′0)

−1-contribution.

D(2) =
b′0

2π
√
D(2)

Z ∞

0

du

1 + u2 + D(1)√
D(2)

4
u4
, (3.132)

where we performed the substitution u = q(D(iω)/ω)1/2 and used that the resulting in-
tegrals are UV-convergent, allowing us to extend their boundaries to infinity. The regime
of validity for ’nearly’ classical systems with S ≫ 1 is therefore O(S−2) ≪ |ω/J |4/5 ≪ 1,
before one would again encounter a singular increase of D(iω) together with a crossover
of ∆(k, iω) from ω−3/5 to a weaker ω−1/3-divergence. This is somewhat peculiar, as a de-
crease in the zero-frequency singularity of ∆(k, iω) leads to a crossover from subdiffusive
to superdiffusive behavior, instead of the other way round, as observed in the decay of the
autocorrelation function S(0, t) in computer simulations [85, 104]. We therefore obtain in
d = 1 a scaling of the characteristic energy ω∗(k) ∼ k5/2, i.e. the subdiffusive exponent
z = 5/2. Note that S(k, ω) vanishes like |ω|3/5 for ω → 0, even though D(iω) has an entirely
different behavior compared to the previous superdiffusive solution. This can be contrasted
with the subdiffusive solutions of the flow eq. (3.15), where S(k, ω) diverges for ω → 0. The

respective scaling function sk,ω1 involves two terms in contrast to the previous superdiffusion
form (3.115). In the end this amounts to a t−2/5-tail in the time-resolved autocorrelation
function, with a modulation that depends on rt−2/5 for finite r. Such an exponent in the
long-time asymptotics was also found in the context of the aforementioned scaling analysis
of the mode-coupling equations by Lovesey et al. [79, 80].

The situation in d = 2 is more complex, being the marginal case. On a qualitative
level we expect results analogous to d = 1, namely that D(iω) → 0 and D′′(iω) → ∞ for
ω → 0, with S(0, t) exhibiting a weaker decay than t−1. We have confirmed numerically,
that ∆(k, iω) diverges in the zero-frequency limit, while in D(iω) the singularities of the
amplitudes cancel each other, leading to its vanishing and therefore subdiffusion. The
behavior of D(iω) is demonstrated in Fig. 3.5. The singularities of ∆(k, iω) beyond O(k2)
imply again that S(k, ω) vanishes for ω → 0. Note that the exponent in two dimensions,
proposed by Lovesey’s analysis in mode-coupling theory z = 3 [80] is, in contrast to d = 1,
inconsistent with our new equation. Same goes for d > 2, where the modified equation still
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predicts diffusion, also at odds with the mode-coupling analysis of Ref. [80]. One would
obtain z = d+4

2 for the exponents by applying the same approximation (3.126) as in d = 1,
but due to the previously stated reasons, it is invalid.

3.2.4 General frequency and momentum dependence and correlations in
real space

We will conclude our discussion of the dynamics at T = ∞ by taking a look at the fre-
quency and momentum dependence of S(k, ω) for arbitrary k and ω, i.e. going beyond
the hydrodynamic regime. For this purpose one solves directly the analytically continued
self-consistency equations for the Fourier amplitudes of the dissipation energy. The continu-
ation can be easily performed, because ω is simply an external parameter in each equation.
This procedure doubles the number of quantities, because now ∆(k, ω) also has a finite
imaginary part. On a hypercubic lattice the set of equations is given by

∆̃1(ω) = 2d

Z
q

∆̃R(q, ω)− i∆̃I(q, ω) + iω̃

(ω̃ − ∆̃I(q, ω))2 + ∆̃R(q, ω)2
+

d

3b′0

Z
q

γ(q)[∆̃R(q, ω)− i∆̃I(q, ω) + iω̃]

(ω̃ − ∆̃I(q, ω))2 + ∆̃R(q, ω)2

− 2∆̃
∥
2(ω)− 2∆̃⊥

2 (ω), (3.133a)

∆̃
∥
2(ω) = −d

Z
q

γ(2q)[∆̃R(q, ω)− i∆̃I(q, ω) + iω̃]

(ω̃ − ∆̃I(q, ω))2 + ∆̃R(q, ω)2
, (3.133b)

∆̃⊥
2 (ω) = −2d(d− 1)

Z
q

γ⊥(q)[∆̃R(q, ω)− i∆̃I(q, ω) + iω̃]

(ω̃ − ∆̃I(q, ω))2 + ∆̃R(q, ω)2
. (3.133c)

In experiments one often measures the intensity of inelastic neutron scattering on a magnetic
sample [31, 33]. As given by Eq. (1.72) in Sec. 1.3.2, the scattering cross sections are
proportional to the dynamic structure factor S(k, ω). Scans are performed at a fixed energy
(frequency) or momentum transfer. We can also take a look at such line-shapes, by plotting
S(k, ω) at fixed k or ω as a function of ω or k. However, we will refrain here from an explicit
comparison to experimentally determined inelastic neutron scattering. Firstly, there is a
scarcity of such measurements in an effective high temperature regime, with T being at most
three to four times larger than the critical temperature Tc [119, 120, 121], thus requiring
that corrections at finite temperature are taken into account. Secondly, salient features
of the theoretical curves, like the non-analytic cusp around ω = 0, can be obscured by a,
necessarily, finite experimental resolution δω [92, 119]. Note that satisfying agreement was
found between the outcomes of mode-coupling theory [74] and related approaches [92] for
S(k, ω), which predict a Lorentzian for small k, ω, and fixed momentum scans recorded
for the simple cubic antiferromagnet RbMnF3 at T = 3.5Tc [92, 119]. Instead we focus
on the comparison of our results for the spin diffusion coefficient with the extracted values
from experiments on isotropic magnets at large temperatures [120, 122, 123]. These results
are presented in the corresponding appendix B.1 concerned with different cubic lattices.
In Sec. 3.3.4 we will actually compare experimentially measured line-shapes in the critical
region with our results.

Frequency dependence - k = const.

As already discussed, S(k, ω) has in three or more dimensions, as a function of ω, a single
maximum at ω = 0 with height ∼ [Dk2]−1 for small momentum ka ≪ 1. In d = 3
it is approached via a non-analytic square-root cusp with a (half-)width that is ∼ Dk2.
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Figure 3.6: Frequency dependence of the dynamic structure factor at T = ∞ of the S =
1/2-Heisenberg Model with nearest-neighbor interaction J on the simple cubic lattice for
fixed momenta ka = π(1, 0, 0), π(1, 1, 0), π(1, 1, 1) from the numerical solution of (3.133).
Especially for the largest momentum we observe a sharp flank, somewhat reminiscent of
Blumes mode-coupling solution [74] and a simpler analytic approximation by Reiter [92],
with the latter also sharing the abrupt vanishing above a finite frequency.

Conversely, for momenta far away from the origin, i.e. sufficiently short wavelengths, we
observe a minimum at ω = 0, with a similar non-analytic narrowing and two broad humps
located at finite frequencies ± ωpeak ∼ O(|J |

p
b′0). The latter peaks cannot be ascribed to

propagating excitations, since their width is of the same magnitude as the peak position,
indicating overdamped modes. In lower dimensions S(k, ω) exhibits, regardless of the value
of k, two peaks at finite frequencies ± ωPeak and a vanishing elastic scattering S(k, 0) = 0.
For hydrodynamic momenta the peak position ωPeak scales as kz with a height ∼ k−z and a
width ∼ ωPeak. Results for the ω-dependence of S(k, ω) at a few select momenta ka ∼ O(1)
are shown in Fig. 3.6, 3.7 and 3.8 for nearest-neighbor Heisenberg models on hypercubic
lattices in d = 1, 2, 3. In contrast to the low-frequency behavior, where the solutions
in reduced dimensions imply a vanishing S(k, 0), the qualitative behavior is qualitatively
similar at larger frequencies ω ∼ O(J). In all cases one observes broad peaks. For momenta
at the corner of the Brillouin zone, the maxima exhibit a pronounced asymmetry with a
strong decrease for ω > ωPeak, meaning that most of the spectral weight is concentrated in
|ω| < ωPeak. Such a flank at short wavelengths in S(k, ω) should be reflected in the time-
domain by oscillations of S(k, t) [74]. Note also that a rapid decay of S(k, ω) is consistent
with all high-frequency moments being finite, in contrast to the three-pole approximation
(3.90). In fact above a cutoff frequency ωc we obtain ∆R(k, ω > ωc) = 0, so that

S(k, ω) ∝ δ(ω −∆I(k, ω)) = 0, (3.134)

since ω > ∆I(k, iω). Such a sharp cutoff is reminiscent of de Gennes’ ansatz for the
relaxation-shape function [77]. This could have been expected from the form of the high-
frequency expansion for ∆(k, iω) which contains only odd powers of |ω|−1. After analytic
continuation the asymptotic large-ω expression is therefore a purely imaginary quantity, so
that a finite real part can be only realized via a kink at an intermediate frequency ωc. We
obtained ωc × (|J |

p
b′0)

−1 ≈ 3.1, 4.4, 5.3 for the hypercubic lattice in d = 1, 2, 3. This
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Figure 3.7: Frequency dependence of the dynamic structure factor at T = ∞ of the S =
1/2-Heisenberg Model with nearest-neighbor interaction J on the square lattice for fixed
momenta k = π

a (1, 0),
π
a (1, 1) from the numerical solution of (3.133). Note that in contrast

to d = 3 the scattering intensity goes to zero for ω → 0.

should be contrasted with extrapolation formulas, like (3.90), where S(k, ω) > 0 for any
|ω| < ∞. Note that this feature of our solution is another sign of how low and high-ω
sectors do not connect to each other by means of a simple interpolation.

Momentum dependence - ω = const.

For the k-dependence at constant ω, one first notes that, due to total spin conservation
(2.71), S(k, ω) will always vanish for k → 0, namely as k2 like ∆(k, iω). For hydrodynamic
frequencies single peaks occur at long wavelengths with their location scaling as k∗ ∼ (ω̃)1/z,
a width of the same order and a height ∼ ω−1. Note that non-analytic corrections to
∆(k, iω), e.g. the |ω|1/2-term in d = 3, are only small corrections in the regime of small
ka ≲ (ω̃)1/z. At larger ω̃ ∼ O(1) a broad single peak is located at a momentum ka ∼ 1.
For brevity we show in this section only the momentum dependence on a linear nearest-
neighbor chain in Fig. 3.9, because it suffices for illustrating the main aspects and there is
only one k-direction in this case. In appendix B.1 we also show results for the momentum
dependence of the dissipation energy and its inverse in the (quasi-)static limit ω ≪ |J | for
select paths in the first Brillouin Zone, with ∆−1(k, ω) being proportional to S(k, ω), i.e.

S̃(k, ω) ≈ b′0
π

∆̃R(k, ω)

|∆̃(k, ω)|2
, (3.135)

for Heisenberg models with couplings J1 and J2 between nearest and next-nearest neigh-
bors on hypercubic lattices. Note that constant frequency scans can help with identifying
different line shapes, since ωpeak is ̸= 0 for arbitrary k and therefore depends on the cor-
responding profile for S(k, ω). We will make use of this property when discussing neutron
scattering in the critical region, see Sec. 3.3.4.
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Figure 3.8: Frequency dependence of the dynamic structure factor at T = ∞ of the S = 1/2-
Heisenberg Model with nearest-neighbor interaction J on the linear chain for constant
momenta k = π

2a ,
π
a from the numerical solution of (3.133).

Frequency-dependent correlation functions in real space

Besides S(k, ω), let us shortly discuss ω-dependent correlations in real space. One example
is the autocorrelation function

S(r = 0, ω) =

Z
k
S(k, ω) ≥ 0. (3.136)

In the case of normal diffusion this quantity has a finite static limit. Its value at ω = 0
is then proportional to the Brillouin zone average of ∆(k, 0)−1. In lower dimensions, we
find that due to IR-singular behavior of the integrand ∼ kd−2 the above quantity diverges
for ω → 0. We obtain ω−1/3 for its leading singularity in d = 1 and ln(|J |/ω) in two
dimensions. The coefficient of that singularity is thus solely determined by the numeric
constant in the divergent D(iω), as the integrals are confined to k ≲ k∗ω ∼ (ω/D(iω))1/2.
Note that in reduced dimensions low-frequency singularities also occur for normal diffusion,
due to the same low-momentum asymptotics ∆(k, iω) ∼ k2, implying ω−1/2 in d = 1 and
again ln(|J |/ω) in d = 2 [124, 125]. The same leading dependences in the low-frequency
limit ω ≪ |J | can be found for pair-correlation functions with r ̸= 0,

S(r, ω) =

Z
k
eik·rS(k, ω), (3.137)

e.g. between nearest neighbors on a cubic lattice, where eik·r → γ(k). In d > 2 these
quantities are finite at zero frequency as the autocorrelation function, whereas in reduced
dimensions their divergence does not depend on r, due to the k → 0 singularity, so that
eik·r ≈ 1. For larger frequencies ω̃ ≳ 1, correlations between spins at different sites feature
damped oscillations. Note that as for S(k, ω) these correlations vanish above ω > ωc in our
approximation. Results for the frequency dependence of S(r, ω) on distances |r| ∼ O(a)
are shown in Fig. 3.10 and 3.11 for a nearest-neighbor magnet on the simple cubic lattice
and linear chain. We want to point out that one can write our solution, see (3.77), for the
zero-frequency amplitudes ∆̃(0) in d > 2 as a linear combination of short-ranged S(r, 0),
since S(k, 0) ∼ 1

∆(k,0) . Hence the diffusion coefficient D is also a finite sum of auto- and
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Figure 3.9: k-dependence of the dynamic structure factor at T = ∞ of the S = 1/2-
Heisenberg Model with nearest-neighbor interaction J on the linear chain for fixed frequen-
cies ω̃ = 0.1, 0.5, 1.0.

pair-correlations at vanishing frequency. For ω ̸= 0 one can interpret the terms on the right-
hand-sides of (3.76) as Laplace-transforms of the relaxation-shape function in real space,
i.e R̃L(r, ω) =

R
k e

ik·r[∆(k, iω) + ω]−1 [124, 125].
As an alternative route for measuring spin dynamics, one can extract the discussed

real-space correlation functions via nuclear magnetic resonance (NMR) experiments, which
determine the spin relaxation rates τ−1

N of the nuclei that form the magnetic compound. The
linewidths τ−1

N can then be written as a linear combination of zero-frequency correlations
at short distances, analogous to ∆(k, 0) in our case [122, 123]. Note that the ω-dependence
of S(r, ω) in a paramagnet, at least for T ≫ |J |, can be accessed via the dependence of τ−1

N

on sufficiently weak external fields |H| ≪ T [123].

3.3 Three-dimensional ferromagnet close to the phase tran-
sition

We will consider now the critical region above the transition, where (T−Tc)/Tc ≪ 1, includ-
ing the critical point itself, T = Tc, describing hereby calculations contained in our second
publication Ref. [11]. In this regime the static susceptibility G(k) = [Σ(k) + J(k))]−1 is
strongly peaked around the ordering vector Q, which is equal to 0 for the ferromagnet. Its
singular behavior allows, at least in the physical case d = 3, the application of additional
approximations during the study of the integral equation (3.50) at small frequencies ω ≪ |J |
and momenta ka ≪ 1, as will be demonstrated below. Neglecting the momentum depen-
dence of Σ(k) and expanding the exchange interaction on a lattice with cubic symmetry to
leading order around k = 0

J(k) ≈ J(0) + J ′′(ka)2 +O(k4), (3.138)

one can write G(k) for small momenta ka≪ 1 as

G(k) ≈ χ

1 + (kξ)2
= χg(kξ). (3.139)
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Figure 3.10: Frequency-dependent two-spin correlations S(r, ω) on the same site (purple)
or between nearest (green) and next-nearest neighbors (blue) at T = ∞ from the numerical
solution of (3.133) for a S = 1/2 Heisenberg model with a nearest-neighbor interaction J
on a simple cubic lattice. The ω-dependences below ωc, in particular for r ̸= 0, are in
qualitative agreement with results of mode-coupling theory [74] and extrapolation schemes
[95]. Note however that we obtain a plateau with a slight increase in S(0, ω), followed by a
region with negative curvature. Such features are absent in outcomes of the aforementioned
theoretical approaches in d = 3 [74, 95].

Here χ = G(0) is the magnetic susceptibility and ξ ≫ a is the correlation length, defined
as

ξ =
√
ρ0χ, (3.140)

with the spin stiffness given by the bare expression

ρ0 = J ′′a2, (3.141)

since Σ′′ = 0. At the critical point, where χ−1 = 0, the correlation length ξ is infinitely
large so that G(k) = [ρ0k

2]−1. The above shape of G(k) is the Ornstein-Zernicke form
(1.52) with static scaling function g(x) = [1+ x2]−1. This form is automatically implied by
Σ(k) ≈ Σ so that the anomalous dimension η is assumed to be zero. As already discussed,
neglecting η is justified in d = 3, since the actual numeric value ≈ 0.03 [26] is quite small
and therefore of almost no relevance in experiments. In the same vein one can expand the
difference in the kernel V (k, q) from Eq. (3.51) as

[J(q)− J(q + k)]2 ≈ (ρ0)
2[k2 + 2k · q]2, (3.142)

leading therefore to

V (k, q) =
Tρ0
2

[1 + (kξ)2][k2 + 2k · q]2ξ2

[1 + (qξ)2][1 + (k + q)2ξ2]
, (3.143)

and the following self-consistency equation for the dissipation energy ∆(k, iω) in d dimen-
sions

∆(k, iω) =
Tρ0va

d

2

Z
ddq

(2π)d
[1 + (kξ)2][k2 + 2k · q]2ξ2

[1 + (qξ)2][1 + (k + q)2ξ2]

1

|ω|+∆(q, iω)
. (3.144)
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Figure 3.11: Frequency dependence of S(r = x, ω) for a linear S = 1/2-chain at T = ∞,
with x = 0, a, 2a and ω ≲ ωc. One clearly discerns the low-frequency divergence, which is
the same for all x. The qualitative agreement in d = 1 with other methods is better than in
d = 3, even if extrapolation schemes [95], for instance, assume a diffusion form, leading to
a different exponent in the ω → 0 singularity. The only feature not shared by, e.g. Ref. [95]
is a weak growth in S(r, ω) at intermediate ω.

Here we have introduced the ratio v of the volume of the primitive unit cell of the isotropic
Bravais lattice to the volume of the conventional unit cell, given by ad, since it is a cube
that may contain more than one atom.

Confining ourselves to a small momentum expansion of G−1(q) and V (k, q) is a justified
approximation below a critical dimension d = dc, which in the case of a ferromagnet is dc = 6
[57], larger than the upper critical dimension for static properties d = 4 [3]. This can be
deduced from the fact that in the small frequency-region ∆(k, iω) behaves for k ≫ ξ−1 as
k4, since the integrand in Eq. (3.144) becomes ∝ k4G−1(k)G(q + k). Then the ultraviolet
behavior, qa ≫ 1, is in d dimensions

R
ddqq2/q8 ∼ qd−6

c , so that the integrand shows a
stronger decay than q−1 for d < dc = 6. Thus the integrals are UV-convergent, allowing us
to extend their boundaries to ∞. Contributions to higher order in q, contained in G−1(q)
and J(q), are negligible near Tc, because they are suppressed in ξ−1 or another, e.g. ω-
dependent, cutoff momentum ≪ 1, depending on which is larger. On the other hand for
d > dc one has to take the full momentum dependence of G(k) and J(k) into account, as
the integrals are not restricted to small momenta ka≪ 1 anymore.

Substituting r = qξ in the integral Eq. (3.144) and introducing a characteristic timescale

τ =

r
2

TvJ ′′ (ξ/a)
z, (3.145)

where the dynamic exponent reads

z =
d+ 2

2
, (3.146)

one sees that the dissipation energy satisfies

∆(k, iω) = τ−1A(x = kξ, iy = iωτ), (3.147)
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with the dimensionless scaling function A(x, iy) being the solution of

A(x, iy) = [1 + x2]

Z
ddr

(2π)d
(x2 + 2x · r)2

(1 + r2)[1 + (x+ r)2]

1

A(r, iy) + |y|
. (3.148)

The Matsubara function is then given by the scaling form

G(k, iω) = χg(kξ)
A(kξ, iωτ)

A(kξ, iωτ) + |ω|τ
. (3.149)

The energy scale τ−1 marks the crossover between a hydrodynamic ωτ ≪ 1 and collisionless
regime ωτ ≫ 1. It assumes therefore the same role as at high temperatures, with the
difference that now τ−1 is ≪ |J |, thus leaving room for another low-frequency regime in
τ−1 ≪ ω ≪ |J |. For T → Tc, the hydrodynamic region shrinks steadily, due to τ ∼ ξz → ∞
until one is left, at T = Tc, with the collisionless regime in the whole low-frequency sector.
Taking the analytic continuation of G(k, iω) and using the fluctuation-dissipation theorem
(3.59), where for small frequencies ω ≪ |J | ≲ Tc ≈ T the detailed-balance factor is equal to
the classical expression

(1− e−ω/T )−1 ≈ T/ω, (3.150)

we obtain for the dynamic structure factor

S(k, ω) =
Tχg(kξ)

πω
Im

A(kξ, ωτ + i0)

A(kξ, ωτ + i0)− iωτ
. (3.151)

It can also be written in terms of a scaling function Φ(x, y) for its frequency dependence

Φ(x, y) =
1

y
Im

A(x, y + i0)

A(x, y + i0)− iy
. (3.152)

as

S(k, ω) =
Tτχg(x)

π
Φ(x, y). (3.153)

Note that Φ(x, y) is, up to a factor of two, the scaling form for the corresponding Kubo
relaxation-shape function R̃(k, ω), and S(k, ω) is thus an even function of ω in the low-
frequency region ω ≪ T . The dominance of fluctuations on macroscopic length and time
scales below the critical dimension dc, leading to the above scaling forms, was also found in
the coupled-mode approach to critical dynamics, see Sec. 1.4.2. Furthermore it is central to
the dynamic scaling hypothesis. The dynamic exponent z = (d+ 2)/2 fully agrees with its
predictions for the dynamic universality class of Heisenberg ferromagnets [54, 58]. Note also
that the decay rate τ−1 ∼ ξ−z in the above scaling forms corresponds to the characteristic
frequency in the hydrodynamic limit as proposed by the DSH [58], see Sec. 1.4.3. Incorpo-
rating η ̸= 0, which requires in our case the aforementioned modified equation (3.46), we
obtain z = (d + 2 − η)/2, thus agreeing with dynamic scaling too [55, 58, 60]. Note that
above d = dc there is no singular coupling to long wavelength fluctuations and therefore
the dynamic exponent is z = 4 as predicted by the older and simpler van Hove theory,
which rests on the assumption that Onsager coefficients are determined by fluctuations on
all length scales, similar to the behavior far away from Tc [32, 56]. On top of that above
dc the scaling function for S(k, ω) at asymptotically small k, ω has a simple form like for
T ≫ Tc, featuring only the leading term ∆ret(k, ω) ∝ G−1(k)k2. Conversely for d < dc the
scaling functions A(x, iy), Φ(x, y) in the critical region have a non-trivial shape, which will
be determined by us.
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Figure 3.12: The numerical solution of Eq. (3.154) for the scaling function A(x, iy) of the
dissipation energy ∆(k, iω), defined via (3.147), in d = 3 as a function of dimensionless
frequency y = ωτ for different values of the momentum variable x = kξ. Note that we
divided A(x, iy) by x2[1 + x], since this factor contains most of the dependence on x.
Reprinted with permission from Ref. [10] ➞ [2021] American Physical Society.

To calculate the scaling function Φ(x, y) we have to solve the self-consistency equation
for A(x, iy). In the physically relevant case of d = 3 the angular integrations over ϕ, θ can
be performed exactly, leaving us with the integral equation

A(x, iy) =
1 + x2

2π2

Z ∞

0

drr2

A(r, iy) + |y|
x2

1 + r2
+

1 + r2

4xr
ln

1 + |r + x|2

1 + |r − x|2
− 1 .

(3.154)

This is a simplification compared to the mode-coupling equations [55, 60], where the inte-
gration over the angle θ between x and r has to be performed numerically too. Eq. (3.154)
was solved by simply iterating it, starting from y = 0. For the initial estimate of A(x, 0) we
have ignored anything beyond x2 in the integral on the right-hand-side, thus allowing us to
obtain an analytic expression for the starting point. In Fig. 3.12 numerical results for the
y-dependence of A(x, iy) at chosen values for x are displayed, where we have scaled out the
dominant momentum dependence ∼ x2[1 + x2]. The resulting scaling function Φ(x, y) is
plotted as a function of y at different x in Fig. 3.13. Note that the latter plots are directly
proportional to the frequency dependence on constant momentum scans of the scattering
intensity at a fixed correlation length and thus temperature. Conversely, the x-dependence
for different values y may be interpreted as the k-dependence in constant energy scans at
the same T . For sufficiently large x ≳ O(1) the scaling function Φ(x, y) exhibits peaks,
whose position y∗ and halfwidth ∆y∗ increase rapidly as a function of x. In fact, one finds
that y∗, ∆y∗ ∼ x5/2 for x ≫ 1, which translates into a dispersion ωk ∝ k5/2 for k ≫ ξ−1

with damping of the same order of magnitude. To demonstrate this explicitly, one should
use another scaling variable ν for the frequency, so that the aforementioned features occur
at values |ν| ≲ O(1), with accompanying new scaling functions in place of A(x, iy) and
Φ(x, y). A prudent choice for the new variable is

ν =
y

xz
=

ωτ

(kξ)z
=

ω

ωk
, (3.155)
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Figure 3.13: Plot of the scaling function Φ(x, y) of S(k, ω) in d = 3, obtained from A(x, y+
i0+), see also Eq. (3.153), as a function of y for different values of x. As discussed in the
main text, it describes the frequency dependence of the dynamic structure factor at fixed
T . Reprinted with permission from Ref. [10] ➞ [2021] American Physical Society.

where we introduced the characteristic frequency, see also Sec. 1.4.3,

ωk = (kξ)zτ−1 = ω∗(ka)
z, (3.156)

which contains a non-universal energy scale ω∗, already encountered in the definition of τ

ω∗ =

r
TvJ ′′

2
≈
r
TcvJ ′′

2
. (3.157)

The dissipation energy and dynamic structure factor can then be written in terms of new
scaling functions as

∆(k, iω) = ωkB(kξ, iω/ωk), (3.158a)

S(k, ω) =
Tχg(kξ)

πωk
Ψ(kξ, ω/ωk). (3.158b)

From a comparison of the expressions for ∆(k, iω) and S(k, ω) in (3.147) and (3.153) with
(3.158) we obtain the following relations

B(x, iν) = x−zA(x, iνxz), (3.159a)

Ψ(x, ν) = xzΦ(x, νxz), (3.159b)

with the scaling form for the frequency dependence of S(k, ω) now given by

Ψ(x, ν) =
1

ν
Im

B(x, ν + i0)

B(x, ν + i0)− iν
. (3.160)

After the substitution r = xρ in Eq. (3.154) we arrive at the following self-consistency
equation for the new scaling function B(x, iν) in d = 3

B(x, iν) =
1 + x2

2π2x2

Z ∞

0

dρρ2

ρ5/2B(xρ, iν/ρ5/2) + |ν|

h x2

1 + x2ρ2

+
1 + x2ρ2

4x2ρ
ln

1 + x2|ρ+ 1|2

1 + x2|ρ− 1|2
− 1
i
. (3.161)
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As for A(x, iy) we solve this equation by taking as an initial estimate B(x, 0) ∼ x2−z[1+x2],
which amounts to ∆(k, 0) ∼ k2G−1(k). Results for the ν-dependence B(x, iν) and Ψ(x, ν)
at different values of x from the numerical solution of (3.161) are shown in the Figures 3.14
and 3.15. Conversely to Φ(x, y), the ν-dependence of Ψ(x, ν) at different x = const. can be
directly interpreted as the frequency dependence of S(k, ω) at different temperatures and
the same momentum. We see then in Fig. 3.15 that the position of the peaks ν∗, together
with their width ∆ν∗, indeed have a finite limit for T → Tc, so that one can interpret
ωk ∼ k5/2 as the dispersion of an overdamped, i.e. dissipative mode. Note that the elastic
scattering reduces with increasing x and therefore diminishing distance to Tc, approaching
the behavior of the solution at the critical point, which will be explicitly discussed.

3.3.1 Spin diffusion in the vicinity of T = Tc

In the limit of hydrodynamic frequencies |y| ≪ 1 one can, analogous to T = ∞, set
A(x, iy) ≈ A(x, 0), yielding the following equation for the static dissipation energy

A(x, 0) =
1 + x2

2π2

Z ∞

0

drr2

A(r, 0)

x2

1 + r2
+

1 + r2

4xr
ln

1 + |r + x|2

1 + |r − x|2
− 1 . (3.162)

According to (3.53) we can expand A(x, 0) for hydrodynamic momenta x≪ 1 as

A(x, 0) = A2x
2 +O(x4), (3.163)

where the numerical solution of Eq. (3.162) yields A2 ≈ 0.078 in d = 3. For general d < dc
this numeric constant is given by

A2 =
[1 + x2]

d

Z
ddr

(2π)d
r2

[1 + r2]2
1

A(r, 0)
, (3.164)

where we used (x · r) → x2r2/d due to isotropy. Hence we find that to leading order in
x≪ 1 and y ≪ 1 the dissipation energy is given by the diffusive result

∆(k, 0) ≈ A2(kξ)
2τ−1 = Dk2, (3.165)

from which we read off the spin diffusion coefficient as

D = A2ξ
2τ−1 =

A2ω∗a
2

(ξ/a)(d−2)/2
. (3.166)

We thus see that the diffusion coefficient vanishes for T → Tc as ξ−1/2 ∝ χ−1/4 in three
dimensions, or D ∼ ξ2−z ∼ ξ(2−d)/2 for arbitrary d, i.e. D ∼ (T − Tc)

(d−2)ν/2, with ξ ∼
(T − Tc)

−ν . One therefore obtains a divergence ∼ ξ3/2 for the corresponding Onsager-
coefficient L ∼ limk→0 k

−2|ω|Π̃(k, iω) in d = 3, a consequence of coupling to singular
order parameter fluctuations. As expected this dependence on T − Tc agrees fully with the
predictions made by dynamic scaling in the hydrodynamic regime [58]. With ν ≈ 0.7 it is
in d = 3 explicitly given by D ∼ (T − Tc)

0.35, in reasonable agreement with experiments
[121]. This has to be contrasted with the stronger decay D ∼ χ−1 ∼ ξ−2 postulated by van
Hove, which assumed a finite Onsager coefficient, yielding D ∼ (T − Tc)

2ν . The van Hove
expression can already be ruled out visually in measurements, since it implies a vanishing
slope for T → Tc due to ν > 1/2. Our result for D in Eq. (3.166) is also an outcome of more
sophisticated mode-coupling calculations [88, 126, 127, 128], with a similar dependence on
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Figure 3.14: Numerical solution of Eq. (3.161) for the alternative scaling function B(x, iν)
of the dissipation energy in d = 3, defined in Eq. (3.159a), plotted as a function of the new
frequency variable ν = ω/ωk for different x. We show B(x, iν)/(x2−z[1 + x2]), equivalent
to A(x, iνxz)/(x2[1 + x2]), because this eliminates again the dominant dependence on x.
Reprinted with permission from Ref. [11] ➞ [2022] American Physical Society.

microscopic parameters in ω∗. The generic fact of D vanishing at Tc is a manifestation of
critical slowing down, as the decay rate of fluctuations in the vicinity of the ordering vector
tends to zero for T → Tc. From the autocorrelation function at vanishing frequency, a
Brilloun zone average of the elastic scattering S(k, 0), one obtains one of the contributions
to the NMR linewidth [58]. In d < dc dimensions it diverges near Tc as

S(r = 0, ω = 0) ∝ τ

Z
dkkd−1

A(kξ, 0)

χ

[1 + (kξ)2]
∝ ξz−d+2 ∼ ξ(6−d)/2. (3.167)

Here we used that the integral is cut above kξ ∼ 1, due to A(x, 0) ∝ x4 for large momentum.
In three dimensions the asymptotic behavior is ∼ ξ3/2 ≈ |T −Tc|−1, in agreement with [58].
For d > 6, where van Hove theory is valid, it is finite.

Employing the same reasoning as for T ≫ |J |, non-analytic corrections to A(x, 0) occur
at finite y, which are ∼ |y|1/2 in d = 3, i.e.

A(x, iy) = A(x, 0) +A1(x)|y|1/2 +O(y). (3.168)

Again they can be dropped in the strict hydrodynamic limit kξ → 0, ωτ ∼ (kξ)2 or equiv-
alently τ ≪ t ≲ O((Dk2)−1), i.e. (ξ/a)z ≪ ω∗t ≲ k−2ξz−2, yielding thus the exponential
exp(−Dk2t) for S(k, t), generated by the diffusion pole. Conversely one expects for larger
times again a t−3/2-decay due to the zero-frequency branch point implied by the square-
root. The distortion of the Lorentzian in the frequency domain via a non-analytic cusp at
small frequencies is clearly seen in plots of the scaling functions Φ(x, y) and Ψ(x, ν) in Fig.
3.13 and 3.15. Like at T = ∞ there is a crossover at finite k between a positive sign of
A1(x) for x ≪ 1 and a negative one for x ≫ 1. The different low-frequency behavior of
A(x) for small and large x can be discerned in Fig. 3.12.
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Figure 3.15: Alternative scaling function Ψ(x, ν), defined in Eq. (3.160), of S(k, ω) as a
function ν, shown for different values of x. Reprinted with permission from Ref. [11] ➞
[2022] American Physical Society.

3.3.2 Scaling function at the critical point

At the critical point T = Tc, where kξ = ∞, the scaling functions depend only on one
residual variable, i.e.

Bc(iν) = B(∞, iν), (3.169)

Ψc(ν) = Ψ(∞, ν), (3.170)

with the critical line-shape given by

Ψc(ν) =
1

ν
Im

Bc(ν + i0)

Bc(ν + i0)− iν
. (3.171)

The dissipation energy and dynamic structure factor for T = Tc are therefore

∆(k, iω) = ωkBc(iω/ωk), (3.172)

S(k, ω) =
TcG(k)

πωk
Ψc(ω/ωk). (3.173)

Setting x = ∞ in the integral equation (3.161) for B(x, iν) we obtain the following self-
consistency equation for the scaling function of the critical dissipation energy in d = 3

Bc(iν) =
1

2π2

Z ∞

0

dρ

ρ5/2Bc(iν/ρ5/2) + |ν|
1 +

ρ3

2
ln

ρ+ 1

ρ− 1
− ρ2 . (3.174)

Before turning to the explicit numerical solution of (3.174), one can already infer the be-
havior the dissipation energy for small and large ν. For |ν| ≪ 1 we can use that the integral
is cut above ρ ∼ O(|ν|2/5). This means that we can set the slowly varying expressions
in the brackets of (3.174) approximately to their value at ρ = 0, which is equal to unity.
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Substituting s = |ν|/ρ5/2 in Eq. (3.174) we thus extract for |ν| → 0

Bc(iν) =
1

2π2

Z ∞

0

dρ

ρ5/2Bc(iν/ρ5/2) + |ν|

=
|ν|(2/5)−1

5π2

Z ∞

0

dss−2/5

Bc(is sgnν) + |s|

=
B0

|ν|3/5
, (3.175)

where the numeric prefactor B0 is determined self-consistently by the full solution,

B0 =
1

5π2

Z ∞

0

dss−2/5

Bc(is sgnν) + |s|
. (3.176)

For the high-frequency asymptotics |ν| ≫ 1, one can expand the term in the brackets in
(3.174) to leading order in 1/ρ,

1 +
ρ3

2
ln

ρ+ 1

ρ− 1
− ρ2 =

4

3
+O(1/ρ2), (3.177)

because the integral is now dominated by ρ ≳ |ν|2/5 ≫ 1. Hence Bc(iν) has in this limit up
to a modified numeric constant the same shape as for |ν| → 0, i.e.

Bc(iν) ∼
4

3

B0

|ν|3/5
. (3.178)

Note that above Tc one obtains the same behavior of B(x, iν) for |ν| ≫ 1, if (ω/ω∗)
1/z ≫

max{(ξ/a)−1, ka} or equivalently |ν|1/z ≫ max{x−1, 1}, i.e. when a frequency-dependent
characteristic momentum, see further below, is the largest scale. We conclude from the
high-ν asymptotics of Bc(iν) in Eq. (3.178) that the dynamic structure factor decays for
|ω| ≫ ωk as

S(k, ω) ∝ |ω|−13/5, (3.179)

consistent with older calculations [127, 132] and in contrast to a Lorentzian, like in the
diffusion form (1.115), whose large-frequency tail is ∝ ω−2. Conversely the low-frequency
behavior of Bc(iν) yields for the scattering intensity in the limit |ω| → 0

S(k, ω) ∝ |ω|3/5, (3.180)

i.e. a non-analytic vanishing of S(k, ω), analogous to the line-shapes found by us in d ≤ 2
at elevated temperatures. This differs from the outcome of mode-coupling theory [127, 128]
and extrapolated perturbative renormalization group expansions [131, 132]. Instead one
arrives in those cases at 0 < limν→0Bc(iν) <∞, such that the elastic scattering is non-zero
S(k, 0) ̸= 0. Hence contrary to a singular frequency dependence, one obtains a modified
k-dependence for k > kω, i.e. ∆(k, iω) ∼ ωk ∼ k5/2, implying Π̃(k, iω) ∼ k1/2/|ω|. The
dynamic structure factor around ω = 0, i.e. for ω ≲ ωk is then approximately given by
a centered Lorentzian [133] with a half-width ∝ k5/2, instead of Dk2 ∼ k2ξ−1/2 as in the
hydrodynamic regime. In our case this is prevented by the low-frequency divergence in
Bc(iν), leading to ∆(k, iω) ∝ k4.
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Figure 3.16: Numerical solution of (3.174) for the critical scaling functionBc(iν) = B(∞, iν)
of the dissipation energy in d = 3. We display the quantity |ν|3/5Bc(iν), as it approaches
finite values for ν = 0 and ν → ∞ due to the derived behavior of Bc(iν) in Eq. (3.175) and
Eq. (3.178). Reprinted with permission from Ref. [11]➞ [2022] American Physical Society.

For the sake of completeness, let us state the general asymptotics for d < dc in both
cases of small and large frequencies

Bc(iν) ∼ |ν|1−4/z ∼ |ν|(d−6)/(d+2), ν → 0, (3.181)

Bc(iν) ∼ |ν|(d−6)/(d+2), ν → ∞, (3.182)

implying
S(k, ω) ∝ |ω|(6−d)/(d+2), ω ≪ ωk, (3.183)

S(k, ω) ∝ |ω|(10+d)/(d+2), ω ≫ ωk. (3.184)

Results for the ν-dependence of Bc(iν) and Ψc(ν) in d = 3 are shown in the figures 3.16 and
3.17. We observe the previously described behavior at small and large frequencies with a
broad maximum at ν ≈ 0.2, which is a consequence of the asymptotics exhibited by Bc(iν).
Similar to the solutions for A(x, iy) and B(x, iν), we have first inserted an estimate from a
truncation, where only the k4-term in ∆(k, iω) is retained, serving as a starting point for
iterations, which converge rapidly to the full solution of (3.174).

Turning explicitly to the momentum dependence of the critical scattering intensity at
fixed frequency, we first introduce a corresponding momentum variable p via

ν =
ω

ωk
=

kω
k

z

= p−z, (3.185)

yielding kωa = (ω/ω∗)
1/z for the characteristic momentum and therefore

p = k/kω = ν−1/z. (3.186)

We find then that the k-dependence is proportional to a function, defined by

Ψ̃c(p) = p−9/2Ψc(p
−5/2), (3.187)

which is shown in Fig. 3.18. For k → 0 the dynamic structure factor vanishes as
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Figure 3.17: Scaling function Ψc(ν), defined in Eq. (3.171), of the dynamic structure factor
in three dimensions, yielding the frequency dependence of S(k, ω) at T = Tc. Reprinted
with permission from Ref. [11] ➞ [2022] American Physical Society.

S(k, ω ̸= 0) ∝ k2, (3.188)

due to total spin conservation (2.71). A Lorentzian shape leads to a non-analyticity

S(k, ω) ∼ k1/2, i.e. kz−2 = k
d−2
2 for arbitrary d, in accordance with dynamic scaling.

In the opposite limit k ≫ kω the function S(k, ω) decays in any dimension as k−6, stronger
than for a Lorentzian, which in turn vanishes in d = 3 as k−9/2 for large momenta, or more
general k−2−z = k−(d+6)/2. Between both limits one encounters a single broad peak. Since
ω ≪ ωk ↔ k ≫ kω the Lorentzian behavior for large momenta is also exhibited by the line-
shapes of the leading mode-coupling approximations [127, 128, 129] and extrapolated RG
expansions [131, 132, 134, 135], in disagreement with our outcome. Conversely the vanish-
ing as k2 for k ≪ kω is, as the high-frequency behavior, consistent with the aforementioned
line-shapes [127, 134]. Note that the one-peak structure in ω = const. scans is fairly generic.
On the other hand, the fact that the maximum is located at a finite k = k∗(ω), means that
not only its width ∆k(ω) but also its position are sensitive to the precise line-shape. Thus
one can better distinguish between different results for the scaling function. This becomes
particularly useful for comparisons to experimental data, where low-frequency features may
be concealed in the measured scattering intensity due to a finite resolution. We will discuss
this in more detail in section 3.3.4, which is explicitly concerned with measurements of the
scattering intensity at constant k and ω.

The scaling function Ψ̃c(p), defined via Eq. (3.187), is also a convenient starting point
for calculating the Fourier transform of S(k, ω) to real space, thus yielding scaling forms
for ω-dependent correlation functions at large distances |r| ≫ a. One obtains then

S(r, ω) ∼
Z
k
k−9/2
ω Ψ̃c(k/kω)e

ik·r ∼ k−3/2
ω

Z
u
u−9/2Ψc(u

−5/2)eikωu·r = k−3/2
ω s̃k,ω(kω|r|),

(3.189)
where the convergence of the integral is ensured by strong oscillations of the exponential
for |r| ≫ k−1

ω → ∞, as S(k, ω) decays like k−6, confining it in d < dc to |k| ≲ kc(r) ≪ kω,
or for |r|−1 ≫ kω → 0 by the k4-behavior of the dissipation energy, meaning that the
integral is cut above k ∼ kω. In both cases it is therefore sufficient to retain only the
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Figure 3.18: Scaling function for the momentum dependence of S(k, ω) at T = Tc, defined in
Eq. (3.187). Reprinted with permission from Ref. [11]➞ [2022] American Physical Society.

low momentum limit p ≪ 1 of our scaling function. Conversely we can evaluate it at
short distances, i.e. the auto- or pair correlation function between adjacent sites, where
we can use again that for small frequencies the integral is restricted to k ≲ kω. We find

then that short-distance correlations diverge as k
−3/2
ω ∼ ω−3/5 for ω → 0 or ω(d−6)/(d+2)

in arbitrary dimensions, which is consistent with the behavior of the zero-frequency limit
∼ ξ(6−d)/2 above Tc for a ferromagnet [58]. This could be anticipated since the behavior of
our solution is corroborated by other methods for k ≲ kω. Note that the solution at large
|r|, i.e. the scaling regime, has the same low-frequency asymptotics, if kω|r| ≪ 1.

For an investigation of k-dependent correlations in the time-domain Ψc(ν) itself is the
appropriate starting point. Assuming t ≫ |JS|−1 one finds then for the time-dependent
correlation function

S(k, t) ∼
Z ∞

−∞

dω

2π
S(k, ω)eiωt ∼ G(k)

Z ∞

−∞

dν

2π
eiωkνtΨc(ν) ∼ k−2s̃k,t(ωkt) (3.190)

The actual behavior of the critical scaling function s̃k,t(ωkt) is controversial, besides the fact
that it is not a simple exponential [33]. Here the main question is whether it exhibits damped
oscillations or approaches zero monotonously, with more recent numeric integrations of the
mode-coupling equations predicting the former for kξ → ∞ [55, 129, 130]. In our case,
s̃k,t(ωkt), should due to the branch point of Ψc(ν) at ν = 0, caused by the non-analytic
ν-dependence, fall off as a power-law for t→ ∞, namely (kt1/z)−4. Note that the frequency
dependence of Bc(iν), shown in Fig. 3.16, does not allow for an analytic calculation of
S(k, t), in contrast to the high-T results for the scaling forms in reduced dimensions. Doing
otherwise, i.e. by neglecting the full dependence of Bc(iν) and following the calculation in
appendix B.2.2 one produces an error ∼ O(1). We found that such a crude approximation
results in an exponentially damped oscillation in the time-domain, similar to Ref. [129]. For
the transform to real space we have to take the factor 1/k2 from G(k) into account. S(r, t)
is in d < dc then given by t−(d−2)/z s̃r,t(rt−1/z). The spatial scaling function s̃r,t should then
be determined by contributions with k ≲ t−1/z in the k-integral over s̃k,t(ωkt), similar to
the behavior in d ≤ 2 for T = ∞.

104



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

3.3.3 Comparison of the critical scattering with theory

Returning to the frequency dependence of the dynamic structure factor, we found that
limω→0 S(k ̸= 0, ω) = 0 is at odds with previous calculations. All these methods predict
a single maximum at ν = 0 in the scaling function Ψc(ν), albeit of a broader shape and
a steeper decay for ω ≳ ωk, compared to a Lorentzian [55, 128]. The bell or Gaussian-
like shape of S(k, ω) can be interpreted in terms of a strong overlap between a dissipative
component at ω = 0 and overdamped ’spin waves’ with hidden peaks at ω ̸= 0 [121].

Mode-coupling approaches boil down to the solution of an integro-differential equation
for the relaxation-shape function R̃(k, t) [60, 127, 128, 129, 130]. Here one uses an analogous
decoupling of higher order spin relaxation functions as for T → ∞, so that one arrives at the
same high-T equation (3.86) as solved by Blume and Hubbard [74]. This approximation,
together with using a classical fluctuation-dissipation theorem, i.e. its low-frequency limit
(3.150), for the relation between S(k, ω) and R̃(k, ω) was argued to produce only a small
error for T ≳ Tc in d = 3 [128], invoking in this process the limit of a sufficiently large
coordination number c and therefore large Tc ∝ c|J |. The Fourier-transform of the memory
kernel, which, as discussed in Sec. 3.2.1, plays the same role as the analytically continued
dissipation energy ∆ret(k, ω), assumes then the form [127, 128]

K(k, ω) ∝ G−1(k)

Z ∞

−∞

dν

2π

Z
q
[J(q)−J(q+k)]2G(q)G(q+k)R̃(q, ν)R̃(q+k, ν+ω), (3.191)

which exhibits the same dependence on static quantities as our equation. For ka ≪ 1
and ω ≪ |J |S one can show that K(k, ω) satisfies dynamic scaling with the predicted
dynamic exponent for this universality class [127, 128]. Eq. (3.191) is a convolution in
frequency space and follows from the purely local-in-t form of K(k, t), whereas ∆ret(k, t)
in our approximation would satisfy a non-local equation. One can also study the short-
wavelength region with (3.191), although mode-coupling-theory is known to compete worse
in this regard compared to extrapolation schemes [55], like the three-pole approximation
(3.90) [98, 136]. These schemes also made use of similar approximations to obtain closed
expressions for the moments ⟨ω2⟩k, ⟨ω4⟩k and therefore ∆(k, iω) at arbitrary temperatures.
However, an analysis based on high-frequency properties is unsuitable for providing reliable
results in the scaling regime. In particular they do not reproduce the correct dynamic
exponent z below dc due to an absence of singularities in the moments used for the low-
frequency extrapolation [87, 88], leading therefore to Van Hove-behavior.

The other path for calculating S(k, ω) close to Tc is based on an extrapolation of the
expansion for the dissipation energy in powers of ϵ = 6 − d. It was explicitly calculated
within a perturbative renormalization group treatment of an effective equation of motion
(1.123) for the spin degrees of freedom S at long wavelengths [57, 131, 132], under the
assumption of a Ginzburg-Landau theory (1.50) of its static properties. The structure of
this equation and basic aspects of its derivation were sketched in section 1.4.2 about the
coupled-mode approach to critical dynamics. Note that these effective field dynamics and
mode-coupling theory, as described in the paragraph above, can be derived along similar
lines, based on the memory-function framework by means of projections to separate ’slow’
and ’fast’ variables [55, 56], as mentioned in Section 1.4.2. In fact the outcomes for the
two-spin correlation function in the scaling region turn out to be quite similar, which may
be attributed to the common origin of these methods [55, 129].

Besides finding to O(ϵ) the predicted value for the dynamic exponent z = (8 − ϵ)/2 =
(d+2)/2 [57], it was shown in this context that the scaling function is finite and analytic for
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ω → 0 [57, 131, 132] in contrast to our findings, which acquire a non-analytic supression for
any ϵ > 0. This can be already seen as a strong argument against our low-frequency results
in d < dc. Note also that except for one calculation [137], where the authors presumably
made a computational error and predicted a two-peak structure, it is recognized that to
linear order in ϵ the scaling function has, down to ϵ = 3, a sole maximum at ω = 0 [132], in
agreement with mode-coupling theory [127, 128]. The O(ϵ)-result is properly extrapolated
by enforcing that the correct behavior for ν → ∞ is reproduced [132, 135]. Technically this
requires knowledge of infinitely many higher orders in ϵ to obtain the exact numeric value
2+ ϵ/(8− ϵ) for the exponent in the high-frequency tail [131, 132]. For instance this can be
realized by exponentiating the result for the dissipation energy to first order in frequency
with ϵ/(ϵ− 8), where the free parameters of this ansatz are fixed by the conditions that the
zero-frequency amplitude and linear-in-ω term are exactly reproduced [132, 135]. Using our
language one obtains [132, 134]

Ψc(ν) ∼ Re
1

∆(ν)− iν
, (3.192)

∆(ν) = ∆(0)[1 + bϵiν +O(ν2)] → ∆(0)(1 + b(8− ϵ)iν)−ϵ/(8−ϵ), (3.193)

where the arrow in the second line denotes the extrapolation. b is a numeric constant
which follows from the expansion of the integrals in the effective equations of motion to
O(ϵ) [132]. As in our case the characteristic frequency behaves like ωk = ω∗k

z with a
non-universal energy scale ω∗. The above form for the dissipation energy is analogous
to the one discussed in Sec. 3.2.3 for reduced dimensions [45, 46]. In general one may
consider extrapolating to ϵ = 3 as an audacious move, because besides ϵ being large, one
trespasses d = 4, the static critical dimension. Then the quartic coupling u in ϕ4-theory
becomes relevant, implying a non-Gaussian fixed point, contrary to d > 4 where u was
ignored due to its irrelevance [131, 135]. In spite of these subtleties the scaling form implied
by Eq. (3.193) is in good agreement with mode-coupling theory and gives a satisfactory
description of the measured critical scattering [55]. We will refer to (3.193) also as the
interpolation formula of asymptotic RG, since this expression is a simple way to connect
both limits ν ≪ 1 and ν ≫ 1. Note that its usage is restricted to the scaling region, i.e.
one cannot study properties at large momenta and frequencies. Let us emphasize again
that the dynamic scaling hypothesis itself does not make any definite statements about the
line-shape Ψc(ν) at T = Tc, contrary to the hydrodynamic region, where a diffusion form is
anticipated. However, it usually assumes that the elastic scattering is finite [58, 131], which
lacks a rigorous argument in its favour, although it is corroborated by the ϵ-expansion and
mode-coupling theory.

Numerical simulations of the spin dynamics, by integrating the equations of motion for
an ensemble of classical spins, can, in principle, provide clarification of this issue. However
up to now, no definite results could be extracted for the line-shape at T = Tc in the scaling
regime of very small momenta [138], given that large lattice sizes are necessary to obtain
a good resolution, implying large computational costs in d = 3. Instead those calculations
were mainly focused on confirming the fulfillment of dynamic scaling laws by analyzing the
dependence on the finite system size [138, 139], or the behavior at short wavelengths, i.e.
the non-universal region [140]. Investigations concerned with the latter found for instance
evidence for the existence of propagating spin waves at short wavelengths λ ≲ O(a) and
large energies ω ∼ |J | above Tc in a Heisenberg ferromagnet [140], agreeing with older
neutron scattering data on iron [141]. A one-peak structure of S(k, ω) for small momenta
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was mentioned by the authors of Ref. [140], but never explicitly shown and a scrutiny of
the corresponding PhD Thesis [142] did not reveal anything further concerning this aspect.
A later review by Folk and Moser about critical dynamics in the scaling regime [56] did not
reference this simulation, perhaps due to the focus of [140] on non-universal properties. The
issue regarding the explicit form of the critical scaling function was therefore still seen as
unresolved, but no further attempts were made thereafter to calculate Ψc(ν). Considering
also the satisfying agreement of the mode-coupling and RG results with energy/momentum-
resolved neutron scattering data, see the following Sec. 3.3.4, the available evidence is
suggestive of our results being incorrect for ω ≪ ωk, although a residual ambiguity persists.

Proposals for refinement

Focusing for a moment on the mode-coupling results, the modified k-dependence of ∆(k, iω)
at T = Tc for ω ≪ ωk, i.e. large k, arises there because the q-integral in the corresponding
equation for Ψc(ν) [127, 128] was cut above momenta q ∼ k, as evidenced by an ultra-violet

behavior ∼
R d3q

q9/2
∼ q

−3/2
c [127], or q

(d−6)/2
c for d < 6. In the opposite high-frequency limit

ω ≫ ωk the q-integral is cut by the frequency, i.e for q ∼ kω ∼ (ω/ω∗)
1/z. While the latter

is also realized in our context, the former situation cannot occur for our equation, due to an
insufficient damping of the integrand in the infra-red limit q → 0. Inserting ∆(q, iω) ∼ q5/2

would then produce an IR-singularity
R d3q

q9/2
∼ q

−3/2
low . Hence, the integrals are cut above

k ∼ kω too, even if the largest scale is given by the external momentum, leading to the
k4/ω8/5-behavior of the dissipation energy in both limits. For T > Tc one also has to take
ξ−1 ̸= 0 as a potential cutoff into account. The hydrodynamic region would then be given
by ξ−1 ≫ max{k, kω}, the critical region by k ≫ max{ξ−1, kω} and the high-frequency
regime is kω ≫ max{ξ−1, k}, as previously mentioned. Our equation reproduces then two
out of the three possible cases correctly.

One should note that one contribution to V (k, q) is compatible with a finite ∆(k, 0),

namely the term ∼ (k · q)2, since
R d3q

q5/2
∼ q1/2 is non-singular. Hence by replacing

[k2 + 2k · q]2 → 4[k · q]2, (3.194)

one induces a sufficient suppression, to allow for setting [ω + ∆(k, iω)] → ∆(k, 0) with
∆(k, 0) ∝ kz. We have checked on its effect and found that, although now S(k, 0) ̸= 0, the
modified scaling form does not feature an elastic peak. In its place we obtained a minimum
with a non-analytic narrowing caused by corrections at finite frequency. Obviously the
proposed raise in the leading power of loop momentum for q → 0 does not introduce a
masking of deviations from analytic behavior in |ω|. Furthermore the above change moves
our equation further away from our own three-point vertex (3.38) and the mode-coupling
approximation, which contained the same static part ∼ [J(q) − J(q + k)]2G(q)G(q + k)
on the right-hand side.

While the non-local coupling between different frequencies in the mode-coupling kernel
(3.191) is the most conspicuous difference between our equations, the origin of the screening
at finite momentum is, more likely, found in additional momentum transfers, that appear
directly in the dissipation energy. A modification of (3.50) may look like this

∆(q, iω) → 1

2
∆(q, iω) + ∆(q + k, iω) . (3.195)

For k ̸= 0 all previously encountered q → 0-singularities are regularized, so that ∆(k, 0)
always has a finite limit. The modification (3.195) also introduces for k ̸= 0 a screening of
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non-analytic corrections to diffusion above two dimensions [44, 109], which were discussed in
3.2.2. Note that one cannot perform in d = 3 the integration over the angle between k and
q analytically like in the previous case. At elevated temperatures the above substitution
will prevent us from writing ∆(k, iω) as a finite-ranged Fourier series like in Eq. (3.64). The
dissipation energy will not have a form as simple as in the RG interpolation formula (3.193)
from Ref. [134]. Furthermore it is a priori unclear, whether the solution for ∆(k, iω) from
an accordingly modified equation indeed leads to a elastic peak or a central dip in S(k, ω)
at Tc. Note that a similar type of equation was also proposed for lowest-order coupled-
mode contributions to the dissipation energy at long wavelengths [44, 109]. In that context
the equations were formulated using the hydrodynamic dispersion λ(q) under the integral,
which is defined by the solution of the self-consistency equation λ(q) = ∆(q,−iλ(q)) [44],
i.e. the poles of the relaxation function.

3.3.4 Comparison of the critical scattering with experiments

We have established, that our line-shape does not agree for small frequencies ω ≪ ωk with
the result from mode-coupling theory and asymptotic RG. For experiments the feature of a
non-analytic suppression of spectral weight at small frequencies is likely obscured by a finite
energy resolution [61, 144], which turns out to be of the same order as the characteristic
frequency ωk. As a consequence of that smoothing spectral weight is transferred to ω = 0,
so that the measured scattering exhibits either a two-peak structure with a finite, analytic
minimum or blends both maxima into a single peak at ω = 0. Hence qualitative differences of
the theoretical line-shapes cannot be reasonably discerned in the convoluted cross section at
low frequencies. The same reasoning applies to the non-analytic distortion of spin diffusion
above Tc, which by this means also becomes practically invisible. Hence one is not able to
rule out salient low-frequency features as found in our scaling functions by purely visual
cues in the experimental data. Nevertheless one can assess the applicability of our result
for the critical line-shape by fitting it to available data from inelastic neutron scattering
experiments at T = Tc.

Experimental data of neutron scattering intensities can be for instance found in Ref. [61,
144] for the magnetic insulator EuO at Tc = 69.25 K. This material is aptly described by an
isotropic Heisenberg Model on a face-centered cubic lattice with nearest and next-nearest
neighbor interactions, J1 = 1.21 K and J2 = 0.24 K and a lattice spacing a = 5.12 Å.
Here the spacing a refers to the conventional unit cell, which is four times larger than
the primitive cell, implying v = 1/4 [143]. To explicitly enable a comparison, we have
to perform the aforementioned smoothing of our theoretical result for S(k, ω). For that
purpose one convolutes S(k, ω) with the experimental resolution function E(ω) [61], so
that the measured intensity due to magnetic scattering is up to a conversion factor given
by

Scon(k, ω) =

Z ∞

−∞
dω′E(ω − ω′)S(k, ω′). (3.196)

A common choice for E(ω) is a normalized Gaussian [139]

E(ω) =
1p
2πδ2ω

exp
h
− ω2

2δ2ω

i
, (3.197)

with its width δω being the aforementioned energy resolution. In the second experiment by
Böni et al. on EuO in Ref. [144] it is given by δω = 0.05 meV. For the measured neutron
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scattering intensity at fixed momentum k = const. the following ansatz is made, analogous
to the procedure used in Ref. [144],

Ik(ω) = CScon(k, ω) +B. (3.198)

This quantity has units of counts per time interval, see the following figures. For the
unconvoluted S(k, ω) we take corrections up to quadratic order in ω/T to the classical
detailed-balance factor (3.150) into account. The (ω/T )2-contribution is then already found
to be very small, i.e negligible. Note that non-magnetic scattering at ω = 0 was subtracted
from the data given in Ref. [144]. This leaves us with the background scattering B as the sole
source of contributions not covered by the Heisenberg description. It is then, together with
the normalization constant C, a parameter of a χ2-fit, using Eq. (3.198). Furthermore the
characteristic frequency ωk and thus the non-universal energy scale ω∗ = ωk(ka)

−5/2 is also
determined from the fit, like for the RG formula [134, 144]. Adjusting ωk can be interpreted
as allowing for corrections to the bare spin stiffness ρ0 from a non-trivial but still analytic
momentum dependence of the static self-energy Σ(k), i.e. 0 < Σ′′ <∞. In our context the
latter can be considered a consequence of taking the solution of the equation with modified
G−1-kernel (3.46). Afterwards one proceeds to the data recorded at ω = const., by fitting
it to [144]

Iω(k) = CScon(k, ω) +B′, (3.199)

with the background B′ being the sole free parameter of the fixed-ω fit, whereas C, ωk

are determined via the previous scan at constant momentum. One anticipates that our
result for the line-shape can be only applied for sufficiently large ω, so that data at too low
frequencies should be excluded from our fit. The explicit prescription is given by removing
all data points fulfilling the condition |ω| ≲ Γk, where Γk = Γ′(ka)5/2 is the measured
linewidth for a Lorentzian curve, i.e. [61, 133, 144]

S(k, ω) ∝ Γk

(Γk)2 + ω2
. (3.200)

For the material EuO the non-universal constant is given by Γ′ = 0.139 MeV [61]. Note
that before one employed more theoretically grounded line-shapes, like Eq. (3.193), for the
analysis of experimental data the Lorentzian was empirically modified as [61, 146]

S(k, ω) ∝ Γk

(Γk)2 + ω2

ϵ(ω)
. (3.201)

The exponent ϵ(ω) is given by [61, 146]

ϵ(ω) = 1 +
α(|ω| − Γk)

Γk
Θ(|ω| − Γk), α > 0, (3.202)

where α is a non-universal fit parameter, that depends on the studied material [61, 146]
and therefore cannot be properly connected to a dynamic scaling ansatz [134]. This form
decays much faster than the simple Lorentzian for |ω| > Γk. The motivation for Eq. (3.201)
was to provide a better description of the data at large frequencies, since the Lorentzian
has a too large tail for |ω| ≫ Γk [61] and is therefore only a reasonable approximation in
the vicinity of ω = 0. This also explains, why we use the same condition for separating low
and high-frequency data, since our prediction for the line-shape is presumably valid in the
latter Non-Lorentzian region. The heuristic ansatz (3.201) was shown to yield quite similar
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Figure 3.19: Fit to experimental neutron scattering data at T = Tc and a fixed momentum

k = 0.15 Å
−1

, shown in Fig. 2 of Ref. [144], using our theoretical prediction for the
convoluted neutron scattering intensity in Eq. (3.198). Data with small frequencies |ω| ≲
Γk = 0.072 meV was dropped, as described in the text. Note that Ref. [144] provided the
error bars only for select data points. We therefore assigned the same error bars to adjacent
points as an estimate of the remaining ones. Reprinted with permission from Ref. [11] ➞
[2022] American Physical Society.

results to the interpolation formula from asymptotic RG (3.193), which superceded it in
subsequent analyses of the data [134].

Returning to our result for the convoluted scattering cross section, we show in Fig. 3.19

a fit to measured data, displayed in Fig. 2 of Ref. [144], at fixed momentum k = 0.15 Å
−1

with a determined Lorentzian half-width Γk ≈ 0.072 MeV. We obtain ωk = 0.222 MeV
for the characteristic frequency and therefore ω∗ = 0.429 MeV. This is larger than the
estimates ωk = 0.158 MeV, ω∗ = 0.306 MeV from the solution of the integral equation, if
one takes only the contribution from J ′′ = J1 + J2 = 1.45 K to the stiffness into account.
The position of the broad peak in the theoretical curve with fitted ωk would thus lie at
ω∗(k) = 0.2× ωk ≈ 0.045 MeV ≈ 0.62Γk, which is even smaller than δω. This explains why
the convoluted line-shape exhibits only a single elastic peak. Hence a non-analytic low-
frequency suppression of S(k, ω) is, together with a two-peak structure, entirely hidden.
Our result for the background B = 31 counts is relatively close to the fixed value B ≈
28 counts. The latter was extracted from the measured scattering at low temperatures,
since this baseline can be accurately determined due to almost all spectral weight being
concentrated in sharp spin-wave peaks [144]. Fitting the data to the interpolation formula
(3.193) yields directly B = 28 counts, suggesting that it performs a bit better in the
considered region [144]. However, if we use the low-temperature background for our fit the
remaining parameters C and ωk change only modestly. A Lorentzian fit, also shown in Fig.
2 of Ref. [144] yields B ≈ 0 counts, which is obviously way too low and caused by the too
slow decrease for |ω| ≫ Γk. Altogether the fit in Fig. 3.19 indicates that beyond ω ∼ Γk

the experimental scattering intensity can be, as anticipated, adequately described by our
line-shape. To check that our ansatz becomes less applicable for small frequencies we fit
it to the whole set of data, which is shown in Fig. 3.20. The relevant fit parameters are
now given by ωk = 0.177 MeV → ω∗ = 0.342 MeV, which is much closer to the theoretical
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Figure 3.20: Fit to the full data at k = 0.15 Å
−1

shown in Fig. 2 of Ref. [144] using our
prediction for the convoluted scattering intensity. Reprinted with permission from Ref. [11]
➞ [2022] American Physical Society.

estimate, and B = 37 counts. The significant enlargement of the fitted background hints
at the fact, that our line-shape lacks spectral weight for ω → 0, and thus indicates that it
may not properly describe the low-frequency behavior.

An alternative method of assessing our result for S(k, ω), is given by a fit of the con-
voluted line-shape to scattering data at fixed frequency transfer by means of Eq. (3.199).
As already mentioned, these scans are much more shape-specific due to the location of the
peak at finite momentum k∗(ω). The theoretical results for the peak position and width
are for our solution given by

k∗(ω)a = [3.25ω/ω∗]
2/5 > kωa, ∆k(ω) = 0.5k∗(ω), (3.203)

as can be inferred from Ψ̃c(p) depicted in Fig. 3.18. Conversely for the Lorentzian one
finds k∗(ω)a = [ω/(3Γ′)]2/5 and ∆k(ω) = 1.57k∗(ω), while the peak parameters from the
line-shape in the RG interpolation formula (3.193) are given by k∗(ω)a = [ω/(1.3Γ′)]2/5

and ∆k(ω) = 0.75k∗(ω) [134, 135]. The latter is close to the experimentally determined
k∗(ω)a = [ω/(1.27Γ′)]2/5 [144]. The values of the RG formula and the Lorentzian can be
compared directly for arbitrary values of Γ′, due to Γ′ being approximately the same for both
types of line-shapes [144]. One finds then that k∗(ω)a for the Lorentzian is too small by 30
percent and the width is larger by 50 percent, another indication that a Lorentzian is inferior
to the RG result (3.193). For a comparison to our line-shape, one explicitly needs the ratio
ω∗/Γ

′, which depends on the material. From the fit to data at fixed k, we obtain ω∗/Γ
′ ≈ 3.

Our peak position is thus 15 percent larger than the RG result, with a width that is too
slim by about 30 percent. As before, we exclude data from the ω = const.-fit, for which our
ansatz presumably does not work. Consistent with the scans at constant momentum we
only keep data points with momenta satisfying ka ≲ (ω/Γ′)2/5 ≈ 1.36, which is equivalent
to ignoring frequencies below Γ′(ka)5/2 in scans at constant momentum. In Fig. 3.21 a fit
to a scan at fixed ω = 0.3 meV, see Fig. 3 of Ref. [144], is shown. Note that the boundary
momentum lies almost at the position of the maximum of our line-shape, k∗(ω)a ≈ 1.4,
which remains practically unaltered after convolution with the resolution function. We
obtain B′ = 92 counts for the background, fairly close to B′ = 83 counts given in Ref. [144],
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Figure 3.21: Fit to experimental scattering data at T = Tc and fixed frequency ω = 0.3 meV
shown in Fig. 3 of Ref. [144] using our theoretical prediction for the convoluted scattering
intensity given in Eq. (3.199). Only data fulfilling ka < (ω/Γ′)2/5 ≈ 1.36 was taken into
account, since for k ≳ kω we expect that our ansatz fails. Note that the data displayed
here is collected during a larger time-interval than in Fig. 3.19, hence the larger values.
Reprinted with permission from Ref. [11] ➞ [2022] American Physical Society.

extracted by using the RG interpolation formula (3.193) for the fit. Overall, the data does
not appear to contradict our prediction for the line-shape. The number of available points
is quite small though. In conjunction with the large statistical errors, it is therefore hard
to assess the compatibility of our result with the measured data of Ref. [144]. Fitting our
ansatz to an intensity recorded at the smaller frequency ω = 0.2 MeV, see also Fig. 3
of Ref. [144], the agreement with the data is significantly reduced. However, in that case
the number of data points, satisfying ka < (ω/Γ′)2/5, is even smaller. Hence the available
data for EuO does not suffice to make definite statements regarding the applicability of our
approximation in the low-momentum region k ≲ kω. For the sake of completeness we have
also fitted our ansatz to the full data at fixed ω = 0.3 MeV, which is shown in Fig. 3.22,
using ω∗ from the fixed k-fit in Fig. 3.20. In contrast to the full-data scan at constant
momentum it decisively confirms that our result is inappropriate for too large momenta or
too small frequencies, due to the strong dislocation of the peak.

Fortunately, EuO is not the only magnetic material, for which experimental data is
available in the critical region. The spin dynamics near Tc of the related compound EuS
were also investigated via inelastic neutron scattering [145]. Like EuO it is a Heisenberg
ferromagnet on a fcc lattice with spacing a = 5.95 Å, nearest / next-nearest neighbor
interactions J1 = 0.47 K, J2 = −0.24 K and a transition temperature Tc = 16.5 K [143].
Analogous to the analysis concerning EuO only data at sufficiently large frequencies or small
momenta is kept, with the same criteria |ω| ≳ Γk = Γ′(ka)5/2 and ka ≲ (ω/Γ′)2/5, where
Γ′ = 0.026 MeV for EuS. The experimental resolution of Ref. [145] is δω = 0.035 MeV. In

Fig. 3.23 a fit, using (3.198), to a scan at fixed k = 0.22 Å
−1

is shown, see Fig. 2 of Ref. [145],
where frequencies |ω| ≲ 0.051 MeV are omitted. We obtain ω∗ = 0.079 MeV → ωk =
0.154 MeV, which is again larger than the estimates ω∗ = 0.058 MeV, ωk = 0.113 MeV.
Our fit shows a similar agreement to the data as for EuO. The obtained background almost
coincides with B ≈ 15 counts for EuS, where the latter is extracted from the measured low-
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Figure 3.22: Fit to a scan at fixed ω = 0.3 meV, where the whole data of Fig. 3 in Ref [144]
is retained. One can discern that our ansatz is inadequate for this purpose, as indicated by
the too large peak position, resulting in a systematic deviation of the fitting curve from the
data.

temperature scattering. Like in the case of EuO the putative peaks featured by our Ψc(ν)
lie at about 60 percent of the Lorentzian width Γk = 0.051 MeV. This is smaller than the
energy resolution δω, so that again we observe a broad single peak at ω = 0 in the convoluted
line-shape. In fact, δω/ωk ≈ 0.22 is practically the same for EuO and EuS. Furthermore
the ratio ω∗(EuO)/ω∗(EuS) ≈ 5.4 of non-universal constants in both materials is nearly
identical with Γ′(EuO)/Γ′(EuS), which supports the conclusion that our result is suited for
describing the high-frequency behavior. Turning to the data collected at constant frequency
ω = 0.15 MeV, which is shown in Fig. 3 of Ref. [145], we find that even after excluding
large momenta ka > (ω/Γ′)2/5 = 2.0, a significantly larger number of points can be used for
the fit in the presumed low-momentum region. In Fig. 3.24 a fit to the reduced data, using
(3.199), is shown. Our prediction shows satisfying agreement with the scattering data, in
particular for the lowest-lying momenta. Only close to the peak discernible deviations set
in, given that our prediction k∗(ω)a ≈ 2.1 for the location of the maximum is, like for EuO,
15 percent larger than the experimental / RG value and lies again in the vicinity of the
crossover between low and high-momentum regime.

The main takeway of our analysis is, that the interpolation formula from the asymptotic
RG approach, Eq. (3.193), which was previously used for analyzing the experimental data
performs better at explaining measured scattering intensities. This is especially the case
for scans at constant frequency transfer. The non-analytic suppression of spectral weight in
S(k, ω → 0) is therefore in all likeliness an artifact of our approximation. Still, for large fre-
quencies or small momenta our line-shapes are consistent with the experimental scattering
data and clearly superior to a Lorentzian in these regions. As noticed in previous investiga-
tions, and also found by us, the region where the experimental scattering satisfies dynamic
scaling laws is quite extended [144, 145]. For instance the fixed k-scans analyzed here were
taken at ka = 0.768 for EuO and ka = 1.309 for EuS. This is somewhat unexpected, since
these values are close to or larger than the boundaries set by theoretical approaches, which
demand that ka≪ 1 has to hold for the scaling region [55].

Note that we have focused on data for only two materials, since it sufficed for checking
on the validity of our line-shape. We explicitly chose these two compounds, because they

113



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

Figure 3.23: Fit to a scan of the experimentally measured scattering of EuS at T = Tc
and k = 0.22 Å

−1
, shown in Fig. 2 of Ref. [145], using our prediction for the convoluted

scattering intensity in Eq. (3.198). Small frequencies |ω| ≲ Γk = 0.051 meV were for
the sake of consistency already removed from the data. As in the case of EuO, error bars
were assigned to groups of adjacent points, since only a few where indicated in Ref. [145].
Reprinted with permission from Ref. [11] ➞ [2022] American Physical Society.

are not conductors [121, 143], so that the major cause of their magnetism is likely the
interaction between localized moments, as represented by the Heisenberg model. On the
other hand a substantial amount of neutron scattering experiments were performed on
metals like Iron (Fe) and Nickel (Ni) [146, 147, 148]. For these systems one would expect
that their magnetism may be partially attributed to itinerant conduction electrons [14,
18]. Nevertheless data in the critical region revealed, that the scattering is consistent
with dynamic scaling for the universality class of isotropic ferromagnets with z = 5/2
[146, 147, 148]. In fact, energetic considerations suggest that the magnetic properties of Fe
and Ni can be explained by exchange between localized moments [150, 151]. Data from Ni for
T ≥ Tc was also found to be satisfactorily described by a modified RG interpolation formula
for S(k, ω) with multiple adjustable parameters [148, 153]. Furthermore the exponent in
the high-frequency decay of the dynamic structure factor was explicitly measured for Ni.
It was found to be ≈ 2.3, which corroborates again that the line-shape is non-Lorentzian,
although with a weaker tail compared to the theoretical prediction S(k, ω) ∼ |ω|−2.6 [148].

Finally we like to point out a caveat in the analysis of experimental data for ferromag-
nets. Long-ranged dipolar interactions, present in realistic materials, that have a much
smaller magnitude than the exchange coupling J [14], still induce a crossover to different
critical behavior at very long wavelengths [55, 149]. This is accompanied by a change in the
dynamic universality class, as now the order parameter is not conserved. The Heisenberg
results thus become inappropriate for momenta below a cutoff wave vector kD, that is de-
termined by the dipolar interaction strength [55, 149]. Such deviations from the theoretical
results for exchange-based magnets were indeed measured for EuO at Tc [152], where the
line-shape for k → 0 resembled again a Lorentzian and not the critical scaling function of
the Heisenberg ferromagnet. Hence a description that takes solely short-ranged exchange
into account retains its validity only for k > kD, which fortunately holds true for the data
analyzed by us. At temperatures slightly above Tc, the effect of dipolar forces on the scat-
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Figure 3.24: Fit to a scan at T = Tc and fixed frequency ω = 0.15 meV of the experimentally
determined scattering of EuS, shown in Fig. 3 of Ref. [145], using our own theoretical
prediction given by (3.199). Large momenta ka ≳ (ω/Γ′)2/5 ≈ 2.0 were omitted for this
fit. Reprinted with permission from Ref. [11] ➞ [2022] American Physical Society.

tering becomes even more pronounced. For instance the temperature dependence of the
peak positions and width in scans at ω = const. for EuS [145] could not be explained by the
prediction of asymptotic RG for exchange-based magnets [154]. Mode-coupling calculations
taking dipole-dipole interactions into account confirmed that the presence of dipolar terms
causes these changes [149].

3.4 Discussion of the antiferromagnet in d = 3 close to Tc

In section 3.3 we investigated the critical dynamics of a ferromagnet, where the magneti-
zation is also the order parameter, leading to only one relevant slow mode. The antifer-
romagnet, on the other hand, has a non-conserved order parameter at finite momentum
Q = QN and the conserved magnetization at q = 0, implying therefore two types of slow
fluctuations coupling to each other. Hence close to the critical temperature Tc, one has
to compute two different scaling functions [56, 58, 60]. A compelling reason to study the
antiferromagnet is that numeric benchmark calculations [155], including the regime of ar-
bitrarily small momenta, are readily available, thus giving conclusive evidence regarding
the line-shape, in contrast to the ferromagnet. Furthermore the presence of dipolar forces
in real antiferromagnets does not alter the critical properties and therefore the dynamic
universality class. Employing a Heisenberg description therefore suffices for studying the
scaling regime and explain the corresponding experiments on real materials. Note that
this section is mainly concerned with the scaling behavior and does not contain explicit
results for the shape function. In appendix B.3 we have given results for the T -dependence
of key quantities, like D, in the whole paramagnetic phase for a Heisenberg magnet with
nearest-neighbor coupling J > 0.

For the explicit treatment of an antiferromagnet one first needs to introduce the relevant
static susceptibilities. We assume a non-frustrated antiferromagnet with nearest-neighbor
interaction J > 0 on a bipartite lattice, thus enabling a Néel-ordered ground state with
Q = QN , i.e. a finite staggered magnetization. Valid isotropic lattices are therefore simple
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cubic (sc) or body-centered cubic (bcc), but not the face-centered cubic (fcc) lattice [156].
For such systems the exchange interaction satisfies

J(q +Q) = −J(q), (3.204)

and in particular J(0) = |J(Q)|. For the non-singular (uniform) region around q = 0, we
simply have

G(q) ≈ χ, qa≪ 1, (3.205)

where χ ∼ J−1 is the magnetic susceptibility. For Σ(k) ≈ Σ it is χ ≈ 1/(2|J(Q)|).
Conversely, in the vicinity of the ordering vector Q we assume again an Ornstein-Zernicke
form

G(q +Q) ≈ χN

1 + (qξ)2
, qa≪ 1, (3.206)

with the staggered susceptibility χN = ξ2/ρ0, where ξ and ρ0 are the correlation length
and bare spin stiffness with ρ0 = J ′′

Qa
2 = |J |a2. The coupling to the uniform region arises

from the momentum transfer ∼ Q in the equation for the dissipation energy ∆(Q, iω) at
the Néel ordering vector. Hence one susceptibility in the product G(q)G(q+Q) is singular,
namely G(q+Q), which is the same divergence 1/q2 as in the contribution around Q where
G(q) is singular. In the equation for the diffusive component in ∆(k → 0, iω) ∝ k2 only
terms in the vicinity of Q have relevant weight, with G(q)G(q + k) yielding a singularity
∼ 1/q4. Finally one needs that for kξ ≫ 1, ka ≪ 1, where k is either the distance to 0 or
Q, both ∆(k, iω) and ∆(Q+k, iω) behave as k2. From this information one can infer that
the upper critical dimension, where the integrals are solely determined by small momenta
around the singularities of G(q), G(q+k) is now given by dc = 4, because the integrals are
only UV-convergent as

R
ddq/q4 ∼ 1/q4−d

c . Then one can set qc → ∞ in the integrations
and use J(q+Q) ≈ J ′′

Q(qa)
2. Note that in contrast to a ferromagnet the critical dimensions

for statics and dynamics do coincide. This implies that a renormalization group analysis of
the equations of motion to first in order ϵ = 4 − d, already has to take into account that
the static critical properties are described by the non-Gaussian Wilson-Fisher fixed point.

With the above results one can now explicitly show that both types of dissipation ener-
gies satisfy dynamic scaling relations, at least if one neglects the momentum dependence of
the static self-energy. For the hydrodynamic region k, ω → 0 it is then convenient to write
them in terms of the following scaling functions

∆(k, iω) = τ−1A0(x = kξ, iy = iωτ), (3.207)

∆(Q+ k, iω) = τ−1AN (x, iy). (3.208)

Here the characteristic timescale is given by

τ =

s
1

|J(Q)|vT
(ξ/a)d/2 =

(ξ/a)d/2

ω∗
, (3.209)

implying the dynamic exponent z = 3/2 in d = 3, in contrast to van Hove theory where
z = 2 and in agreement with the predictions of the dynamic scaling hypothesis [54, 58]. Fur-
thermore the qualitative form of the non-universal constant ω∗ agrees with mode-coupling
theory [60, 157]. In this context one also notes that, in contrast to the ferromagnet, the dy-
namic exponent z remains the same if the anomalous dimension η is finite [58, 60]. Note that
for a momentum-dependent self-energy one has to fulfill the constraint 4χ|J(Q)|2 = χ−1,
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in order to get rid of non-universal parameter ratios, which implies χ = (2|J(Q)|)−1 and
is thus equivalent to the intuitive condition Σ(0) = Σ(Q) ≈ |J(Q)|. The self-consistency
equations for the dissipation energies are then given by

A0(x, iy) =

Z
ddr

(2π)d
(x2 + 2x · r)2

(1 + r2)(1 + (x+ r)2)

1

AN (r, iy) + |y|
, (3.210)

AN (x, iy) = [1 + x2]

Z
ddr

(2π)d
1

(1 + (x+ r)2)

1

A0(r, iy) + |y|
+

1

(1 + r2)

1

AN (r, iy) + |y|
,

(3.211)
where we approximated for the second equation J(q)2 ≈ J(0)2 = J(Q)2. Note that the
contribution from the Néel region onto itself has a trivial momentum dependence ∝ [1+x2].
The scaling functions of the frequency dependence of the dynamic structure factor around
k = 0 and k = QN are

Φ0(x, y) =
1

y
Im

A0(x, y + i0)

A0(x, y + i0)− iy
, (3.212)

ΦN (x, y) =
1

y
Im

AN (x, y + i0)

AN (x, y + i0)− iy
, (3.213)

so that the corresponding scattering intensities can be written as

S0(k, ω) =
Tτχ

π
Φ0(x, y), (3.214)

SN (k, ω) =
TτχN

π[1 + x2]
ΦN (x, y). (3.215)

Diffusion coefficient and order parameter relaxation for T → Tc

For the zero-frequency limit y → 0, we obtain finite solutions A0(x, 0) and AN (x, 0). From
the expansion of A0(x, 0) to O(x2) we extract the spin diffusion coefficient

D = A0,2ξ
2τ−1 = A0,2ω∗a

2ξ(4−d)/2, (3.216)

with a numeric constant A0,2 that is determined from the numerical solution of the integral
equations. We see that D diverges for T → Tc in three dimensions as ξ1/2 ∼ (T − Tc)

−ν/2,
which can be interpreted as a form of critical speeding up. This agrees with the extended
dynamic scaling hypothesis [58], mode-coupling theory [158] and was also confirmed by
neutron scattering experiments [120]. The conventional van Hove theory predicts a finite
diffusion coefficient for T → Tc, i.e. a change by O(1) from the T = ∞-value [32]. The
relaxation rate of the staggered magnetization behaves as

ΓN = τ−1AN (0, 0) ∝ ξ−d/2. (3.217)

Its vanishing is, like for D in the ferromagnet, a manifestation of critical slowing down
[58, 158]. Note that in the conventional theory ΓN ∝ ξ−2, a generic result for the transport
coefficient associated with the order parameter. The autocorrelation function at ω = 0 can
then be estimated as

S(r = 0, 0) ∝
Z
dkkd−1 χNτ

AN (x)[1 + (kξ)2]
∝ ξz+2−d ∼ ξ(4−d)/2, (3.218)
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where we used that AN ∝ x2 at large x = kξ, acting thus as a UV-cutoff to the integral.
Note that the contribution from the uniform region is negligible as it lacks a divergence in
the susceptibility. In d = 3 the linewidth diverges as ξ1/2 ∼ |T −Tc|−1/3, again in agreement
with [58]. Above d = 4 the integral remains non-singular for T → Tc.

Scaling behavior at T = Tc

The scaling functions at the critical point, where ξ = ∞ → τ = ∞, depend on a sole
variable ν = ω/ωk, in complete analogy to the ferromagnet. The characteristic frequency is
in this context given by

ωk = ω∗(ka)
z, z = d/2. (3.219)

As before one can also introduce a corresponding momentum variable p = k/kω with the
characteristic wave-vector given by

kω = (ω/ω∗)
1/z. (3.220)

The dissipation energies can thus be written in terms of critical scaling functions as

∆(k, iω) = ωkB0,c(iω/ωk), (3.221)

∆(k+Q, iω) = ωkBN,c(iω/ωk), (3.222)

with the corresponding self-consistency equations

B0,c(iν) =

Z
ddu

(2π)d
(p2 + 2u · p)2

u2(u+ p)2[uzBN,c(i|ν|u−z) + |ν|]
, (3.223)

BN,c(iν) = p2
Z

ddu

(2π)d
1

(u+ p)2
1

[uzB0,c(i|ν|u−z) + |ν|]
+

1

u2
1

[uzBN,c(i|ν|u−z) + |ν|]
,

(3.224)
where p = |ν|−1/zp̂. Again one can infer the asymptotic behavior of the scaling functions
for ν ≫ 1 (p ≪ 1) and ν ≪ 1 (p ≫ 1) from these equations. In the high-frequency
limit one obtains for both scaling functions B0,c ∼ |ν|1/z−1 and BN,c ∼ |ν|1/z−1. In three
dimensions this implies a Non-Lorentzian decay ∝ |ν|−4/3 for both scaling functions in
full agreement with previous calculations [157], leading to a structure factor decaying as

ω−7/3. Accordingly this translates into a k
−1/2
ω ∼ ω−1/3-divergence in the critical auto-

and pair-correlation functions in real space, consistent with the divergence at ω = 0 as
ξ1/2 for T → Tc. In the low-frequency sector ν ≪ 1 we encounter the same problem as
for the ferromagnet, namely that the contributions from the order parameter region are
insufficiently damped for q → Q, thus implying that one cannot set ν → 0 on the right-
hand side. The contribution from the uniform region to BN,c allows for this though and
is therefore suppressed in this regime. We therefore obtain divergent dissipation energies
B0/N,c ∼ |ν|1/z−1, implying that S(k, ω) vanishes in the whole Brillouin zone as |ω|1/3 for

ω → 0. The branch point at ν = 0 should then produce in the time-domain a 1/(kt1/z)2

long-time decay for both types of fluctuations. In real space one has S(r, t) ∼ t−(d−2)/z,
due to the dominant staggered fluctuations.

A non-analytic suppression in the zero-frequency limit is, like for the ferromagnet, at
odds with predictions by mode-coupling theory [157, 158], RG calculations [159, 160] to
first order in ϵ = 4 − d and in particular spin dynamics simulations [155], which were
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able to access, in contrast to ferromagnets, the line-shape in the scaling region. From
this we conclude that these ubiquitous low-frequency divergences are an artifact of our
approximation. Interestingly an RG analysis of the O(n)-model at arbitrary n [160] obtained
to O(ϵ) that the zero-frequency spectral weight at the Néel point is continuously reduced
with increasing n. This does not apply to scattering in the vicinity of q = 0, which
will always exhibit an elastic peak [56, 159]. Note that in contrast to the ferromagnet,
mode-coupling theory and RG calculations did not yield a critical line-shape, which is fully
consistent with experiments [62]. Their outcome is a two-peak structure for S(k, ω) close
to QN , analogous to high-temperature scattering at the zone boundary. On the other
hand, numerical simulations and experiments clearly showed a three-peak structure around
the Néel vector [62, 155], i.e. an additional maximum at zero frequency. In the context
of the renormalization group it was noted that two-loop calculations alter significantly
the position of the dynamic fixed point [56]. The result is then approximately the same
as for the O(2)-model at O(ϵ) which exhibits only a central peak. Up to this point no
successful reconcilliation between numeric simulations/experiments and simpler theoretical
approximations was achieved.

3.5 Ferromagnets in reduced dimensions at low tempera-
tures

We conclude our studies of the spin dynamics by taking a look at isotropic ferromagnets
below three dimensions in the low-temperature regime T ≪ |J |. In contrast to systems in
d > 2 there is no phase transition at a finite temperature, as a consequence of the Mermin-
Wagner theorem [24], so that Tc = 0. Thus one is always located in the symmetric phase for
T > 0, with a singular magnetic susceptibility and correlation length for T → 0. Note that
we will use directly the alternative integral equation (3.46) with the G−1(q)−G−1(q+ k)-
kernel. As pointed out earlier, Eq. (3.44), which contains the contribution Σ(q)−Σ(q+k),
guarantees physical results only in the high-temperature limit T ≫ |J |. Also remember that
the solution of the alternative equation (3.46) exhibits different dynamics for hydrodynamic
frequencies, compared to the initial equation (3.44), as discussed for T = ∞.

3.5.1 One dimension

The static susceptibility G(k) for small momenta ka ≪ 1 is in d = 1 given by a Ornstein-
Zernicke form (η = 0) [161, 162]. The correlation length diverges for T → 0 as

ξ ∼ 1/T, (3.225)

and the magnetic susceptibility behaves thus as

χ = ρ−1ξ2 ∼ 1/T 2, (3.226)

where ρ = J ′′ + Σ′′ is the full, i.e. renormalized, spin stiffness. The numeric constants
in the quantities χ and ξ have been calculated by means of several methods. A quite
straightforward one is the modified spin-wave theory by Takahashi [161, 162]. It differs
from orthodox spin-wave theory by the introduction of a self-consistent non-zero chemical
potential in the magnon dispersion, thus regularizing the ubiquitous infra-red divergences
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implied by the naive method in d ≤ 2 [16, 161, 162]. His results for a ferromagnetic chain
with nearest-neighbor coupling J are given by

χ =
2|J |S4

3T 2
, (3.227)

ξ

a
=

|J |S
T

, (3.228)

which agrees with χ obtained from a numeric evaluation of the thermodynamic Bethe-
ansatz equations for the S = 1/2-chain [163]. Note that Arovas and Auerbach found on
the basis of a Schwinger-Boson mean-field theory that χ is larger by a factor of 3/2, while
obtaining the same expression for ξ [164]. A combination of a one-loop renormlization
group calculation together with a Quantum Monte Carlo simulation of the ferromagnetic
S = 1/2-chain obtained that the result for ξ lies almost within the error bars, while the
pre-factor for χ is found to be smaller than Takahashis result [165]. The question of the
exact numeric pre-factor is, however, not pertinent to the present analysis, given that all
these approaches arrive at the same asymptotic T -dependence.

Repeating the steps from the previous sections we first introduce the scaling function of
the dissipation energy

∆(k, iω) = τ−1A(kξ, iωτ), (3.229)

where we assumed again small frequencies and momenta, leading therefore to a singular
coupling to critical fluctuations in the integral equation and the onset of dynamic scaling,
as implied by (3.229). The characteristic timescale τ of the hydrodynamic regime is here
given by

τ =

r
2χξ

aT
∝ ξ2, (3.230)

since ξ ∼ T−1. The dynamic exponent is therefore z = 2, and not z = (d + 2)/2 =
3/2 as suggested by dimensional analysis of the integral above two dimensions. This is a
consequence of Tc = 0, implying that the factor of T in front of the integral contributes
to the low-temperature asymptotics as well. Such an exponent is the most straightforward
result, if the solution features spin waves with a k2-dispersion in the ground state [21],
and a scaling form continuously connecting to the zero-temperature limit is also satisfied.
Note in this context that the dynamic scaling hypothesis as formulated by Halperin and
Hohenberg [54, 58] does not consider transitions at zero temperature, but only at elevated
temperatures, i.e. with a classical critical point, as for Heisenberg magnets in d > 2. The
self-consistency equation satisfied by the scaling function is in d = 1 given by

A(x, iy) = [1 + x2]

Z ∞

−∞

dr

2π

(x2 + 2xr)2

(1 + r2)[1 + (x+ r)2]

1

A(r, iy) + |y|
. (3.231)

Furthermore we consider again the scaling function of the line-shape Φ(x, y), i.e.

Φ(x, y) =
1

y
Im

A(x, y + i0+)

A(x, y + i0+)− iy
, (3.232)

from which one can directly read off the frequency dependence of the dynamic structure
factor S(k, ω) in the classical limit ω ≪ T ∼ ξ−1. Note that the classical regime includes the
whole range of hydrodynamic frequencies ω ≪ τ−1 ∼ T 2. In addition to the hydrodynamic
region, the classical regime shrinks also as one approaches T → 0, so that for ω ≳ T
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Figure 3.25: Numerical solution of (3.231) for the scaling function A(x, iy), defined in
Eq. (3.229), of the dissipation energy in d = 1. Like in Fig. 3.12 we plot A(x, iy)/(x2[1+x2])
because this quantity exhibits only a modest x-dependence. Reprinted with permission from
Ref. [11] ➞ [2022] American Physical Society.

one has to take the full detailed-balance factor [1 − e−βω]−1 into account. Φ(x, y) can
also be used directly for the ω-dependence in the collisionless region kξ, ωτ ≫ 1, as long
as T 2/|J | ≪ ω ≪ T . Anticipating a ’dispersion’ ωτ ∼ (kξ)2 this implies the condition
(ξ/a)−1 ≪ ka≪ (T/|J |)1/2 for the associated momenta.

In Fig. 3.25 and 3.26 we display results for A(x, iy) and Φ(x, y). One can compare the
latter for instance with modified spin-wave theory [166], which also predicts line-shapes
that are consistent with dynamic scaling with the same index z. In fact modified spin-wave
theory provides an analytic expression for Φ(x, y), with a similar structure for the relaxation
time τ−1 as in our case, i.e. its dependence on microscopic parameters. The most salient
difference to our result is the low-frequency behavior of Φ(x, y). For x, y ≪ 1, i.e. the
hydrodynamic region, our solution behaves as

A(x, iy) ∼ A1x
2|y|1/5 +A2

x4

|y|3/5
. (3.233)

This result is analogous to the prediction of (3.46) for small k, ω amd elevated temperatures
discussed in Sec. 3.2.3, that can be considered as subdiffusive due to the vanishing of the
x2-coefficient for y → 0. The leading divergence for y → 0 persists at arbitrary x, e.g. for
large momenta x ≫ 1 the dissipation energy is ∝ x4|y|−3/5. Hence S(k, ω) always goes
to zero as |ω|3/5 for ω → 0 and finite k. Contrary to our result Takahashi’s solution for
Φ(x, y) consists of a single elastic peak for x ≲ 1 [166]. Conversely at larger momenta x ≳ 1
the elastic scattering is still finite, being now an analytic local minimum of S(k, ω). Note
however that Takahashi’s scaling function Φ(x, y) does not reduce to a simple Lorentzian
in the hydrodynamic regime x, y ≪ 1. Moreover it has dissipative poles at y ∼ ±ix, so
that the relevant decay rate is x/τ ∼ k/ξ instead of x2/τ ∼ Dk2 [166]. A mode-coupling
analysis found spin diffusion in the hydrodynamic region [167]. In that context one obtains
a finite T = 0-limit of D, consistent with z = 2, which is not surprising given the structure
of the mode-coupling kernel [167]. This is incompatible with critical slowing down of spin
fluctuations, as exhibited above d = 2 near Tc ̸= 0 [3, 58]. Given that our solution does

121



CHAPTER 3. DYNAMIC STRUCTURE FACTOR OF A HEISENBERG
PARAMAGNET

Figure 3.26: Dependence on y = ωτ of the scaling function Φ(x, y), defined in Eq. (3.232),
of S(k, ω) for linear Heisenberg ferromagnets, evaluated at different values of x = kξ.
As discussed such a plot yields for ω ≪ T directly the frequency dependence of S(k, ω) for
different momenta k. Reprinted with permission from Ref. [11]➞ [2022] American Physical
Society.

not feature spin diffusion, a direct comparison is impossible. The k2 and k4-coefficient of
∆(k, iω) diverge in our case for T → 0 as T−2/5 and T−4/5, again a consequence of scaling,
but now even as a critical speeding up. Note that there is no consensus on the predicted
T -dependence of D or even the type of long-time/low-energy behavior. For the former,
a violation of dynamic scaling, leads automatically to a different outcome, as found for
instance by the three-pole approximation (3.90), using classical moments, where D ∝ T for
T → 0 [168]. However, being based on an extrapolation of a short-time expansion, it is prone
to errors in the critical region. As already discussed, recent calculations suggest at high
temperatures anomalous diffusion with a divergent diffusion coefficient D(iω) ∼ |ω|−1/3 at
least for integrable spin chains [85]. Extensions to low temperatures for the antiferromagnet
show that this mechanism is still present in the asymptotic long-time limit [82, 169], with
the time-scale at which it occurs becoming increasingly larger, due to the narrowing of the
hydrodynamic region for T → 0. Note that the question on whether S(k, ω) is finite or
vanishes for ω → 0 in the absence of normal diffusion cannot be definitely answered at
this point, although the former is more likely [113]. At least for critical three-dimensional
systems we have conclusive evidence to the contrary. A modification of our equation to
avoid the non-analytic vanishing of S(k, ω → 0) was described in Eq. (3.195).

Returning to our comparison with Takahashi’s line-shapes, we find for kξ ≫ 1, that our
result exhibits, as his solution for Φ(x, y) [166], peaks with a position scaling as y ∼ x2, i.e.
ω∗(k) ∼ k2, reminiscent of a magnon dispersion. As discussed for d = 3, this can be seen
more clearly if one introduces a different scaling form

Ψ(x, ν) = x2Φ(x, νx2), (3.234)

with the new variable
ν = ω/ωk, ωk = (kξ)2/τ = ω∗k

2. (3.235)

In Fig. 3.27 we show a plot of the ν-dependence of Ψ(x, ν) for different x. These curves
collapse for x≫ 1, thus confirming our assumption for the ’spin-wave’ dispersion. However,
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Figure 3.27: Dependence on ν = ω/ωk of the alternative scaling function Ψ(x, ν) of S(k, ω),
see Eq. (3.234), for a linear ferromagnet, evaluated at different values of x. Such plots
are equivalent to the ω-dependence of S(k, ω) for different temperatures and ω/T ≪ 1.
Reprinted with permission from Ref. [11] ➞ [2022] American Physical Society.

one sees that their maxima are broad, i.e. the width ∆ω(k) is of same order as the associated
energy. Such an outcome is heavily at odds with Takahashi’s results. In his approximation
the ratio ∆ω(k)/ω∗(k) vanishes for x → ∞ as xτ−1 ∼ 1/x. The line-shape at T = 0 is
then simply given by a δ-peak at the classical one-magnon energy E(k) (1.17) for arbitrary
momenta in the Brillouin zone [166]. Note that in the language of the high-ω expansion for
∆(k, iω), such a solution implies that all coefficients of higher order in its expansion should
vanish for T → 0, i.e ∆(k, iω) ∼ |ω|−1. Other approximate calculations also predict that
the width of the associated peaks in S(k, ω) and therefore the quasiparticle damping Γk are
zero at T = 0 [168, 170, 171]. Since for generic ferromagnets [21] the zero-magnon vacuum is
indeed the ground state, and states containing one spin wave excitation anywhere in the first
Brillouin zone are exact eigenstates, the absence of a damping seems quite reasonable. Note
that otherwise transition matrix elements between the vacuum state and some high energy
multimagnon states have to be finite as can be inferred from the spectral representation of
S(k, ω) (1.78). In the appendix B.4.2 a short description of our zero-temperature solution in
reduced dimensions is given, which turns out to be a sharply cut, broad continuum, around
the spin-wave energies.

The T = 0-failure is fully shared by the solution of the conventional mode-coupling
integro-differential equation [167]. That is not unexpected, given the similar dependence
on static quantities in both cases, so that for instance higher order terms in a large-ω
expansion of ∆(k, iω) do not vanish for T → 0. Ad hoc changes to the mode-coupling
equations had to be implemented as a remedy. One approach by McLean and Blume
introduced magnetic short-range order for the spin-wave region kξ ≳ 1 [167], thus explicitly
distinguishing between transverse and longitudinal fluctuations. Another approximation
by Lovesey and Megann was based on appropriate rescalings of the time-variable and the
prefactorG−1(k), enforcing that the first two moments, at least in the classical limit S → ∞,
are exactly reproduced [170]. However, these procedures, in particular the second one,
lead to solutions that are inconsistent with dynamic scaling. For instance D ∼ T−1/4

is predicted by the latter refinement of the mode-coupling equations [170]. In fact, the
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question whether dynamic scaling relations are obeyed in low-dimensional systems remains
unsettled [171, 172, 173]. Unfortunately there are no calculations of the dynamic structure
factor available for integrable linear ferromagnets, which utilize the exact Bethe-ansatz
solution and are therefore capable of clarifying the above issues.

3.5.2 Two dimensions

Although the main features of the low-temperature dynamics were outlined in the previous
section about d = 1, let us also take a look at the marginal case of two-dimensional ferro-
magnets. These systems are of some interest, because the static susceptibility G(k) is not
given by an Ornstein-Zernicke form. As an example, modified spin-wave theory predicts
the following scaling function for G(k) = χg(kξ) in the vicinity of k = 0 [161, 162]

g(x) =
ln(x+

√
x2 + 1)

x
√
x2 + 1

. (3.236)

The magnetic susceptibility and correlation length are known to diverge exponentially for
T → 0, i.e.

χ ∼ Cχe
2α/T , (3.237)

ξ/a ∼ Cξe
α/T . (3.238)

Assuming a nearest neighbor-coupling J < 0 on a square lattice the constant α in the
exponent is given by 2π|J |S2. The pre-factors Cχ and Cξ are in modified spin-wave theory
given by Cχ = 1/(12π|J |S) and Cξ =

p
|J |S/T [161, 162], implying the following relation

for T ≪ |J |
χ

T (ξ/a)2
= const. (3.239)

Note that Cχ, Cξ coincide with the predictions of a one-loop RG calculation [174] and the
Schwinger boson-mean field theory [164], with the one-loop momentum shell RG shown
to be actually equivalent to modified spin-wave theory and the Schwinger boson approach
[165]. A two-loop RG calculation predicts modified T -dependences, i.e. Cχ ∼ T 2 and
Cξ ∼ T 1/2 [174], but the relation (3.239) between χ and ξ is preserved. This relation is also
the reason, for why the Ornstein-Zernicke ansatz g(x) = [1 + x2]−1 cannot be used, as it
would imply that G(k) ∼ (T/J2)/(ka)2 for kξ → ∞. On the other hand the modified form
for g(x) ensures that G(k) ∝ 1/(ka)2 is finite for T = 0. Using the modified g(x) yields the
following integral equation for the scaling function of ∆(k, iω)

A(x, iy) = g−1(x)

Z
d2r

(2π)2
g(r)g(|x+ r|)

g−1(r)− g−1(|x+ r|) 2

A(r, iy) + |y|
, (3.240)

where the hydrodynamic crossover scale is now

τ =

r
2χ

T

ξ

a
=

s
2χa2

Tξ2
ξ

a

2
. (3.241)

As a consequence of (3.239) one obtains τ = ω−1
∗ ξ2, i.e. scaling with a dynamic index z = 2

as in one dimension. This agrees with the result from dimensional analysis z = (d+2)/2 and
modified spin-wave theory [166], exhibiting a similar dependence on microscopic parameters
in ω∗ as Ref. [166]. Note that for an Ornstein-Zernicke form of the static susceptibility,
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Figure 3.28: Numerical solution of Eq. (3.240) for the scaling function A(x, iy) of the dissipa-
tion energy in d = 2, defined as in Eq. (3.229). Like in Fig. 3.25 we show A(x, iy)/(x2[1+x2]),
which has a much weaker x-dependence than A(x, iy). Reprinted with permission from
Ref. [11] ➞ [2022] American Physical Society.

where χ/ξ2 = const. the factor T ∼ ln−1(ξ/a) would generate an additional logarithmic
dependence on ξ in the relaxation time τ ∼ ξ2 ln1/2(ξ/a). Compared to the equations in
d = 1 and 3 the modified scaling function in two dimensions, does not allow for an analytic
evaluation of the angular integration, which was therefore performed numerically.

In Fig. 3.28 and 3.29 results for the frequency dependence of the scaling functions
A(x, iy) and Φ(x, y), defined as in one dimension, are shown for different values of x. Like in
d = 1 and at larger temperatures the low-frequency behavior is characterized by a vanishing
Φ(x, 0), i.e. a divergent dissipation energy for y → 0, always leading to maxima at ω ̸= 0,
which is at odds with normal diffusion. Again this differs from Takahashi’s analytic result
[166], where S(k, 0) ̸= 0. Note that like in d = 1 his analytic solution for Φ(x, y) does not
yield a simple Lorentzian for x, y → 0, featuring the same hydrodynamic decay rate ∼ x/τ
instead of Dk2 ∼ x2/τ . A Schwinger-Boson approach by Chubukov lead to diffusion in the
hydrodynamic regime, but with a singular logarithmic-in-ξ dependence of D, i.e. additional
corrections to scaling with plain z = 2 [175].

For large x, the positions of the peaks ω∗(k) is ∝ x2 ∼ k2, similar to d = 1, which
we demonstrate explicitly by plotting again the alternative scaling function Ψ(x, ν) from
Eq. (3.234) with ν = y/x2 = ω/(ω∗k

2) in Fig. 3.30. Similar to one dimension, our solution
suffers from a width ∆ω(k), which has the same order of magnitude as ω∗(k) for x → ∞.
Again this is at odds with the predictions of modified spin-wave theory [166] or other ap-
proaches, also working within a spin-wave picture [171]. In those cases the zero-temperature
result for S(k, ω) is again given by a sharp δ-peak corresponding to well-defined magnon
excitations [166]. As already argued for one dimension, this seems reasonable, given the
structure of the eigenspectrum [21]. We conclude that our equation shares some problems
with the conventional mode-coupling theory in low dimensions [117, 167, 171], that can be
attributed to the similar structure regarding the feedback of static quantities onto the spin
dynamics. The fulfillment of scaling relations is in accordance with modified spin-wave the-
ory [166], although like in d = 1, the question on whether they really hold is not definitely
answered [171, 172, 173, 175].
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Figure 3.29: Dependence on the frequency variable y of the scaling function Φ(x, y) of
S(k, ω) in d = 2, defined as in Eq. (3.232), evaluated at different x. Reprinted with
permission from Ref. [11] ➞ [2022] American Physical Society.

Figure 3.30: Dependence on the frequency variable ν of the alternative scaling function
Ψ(x, ν) of S(k, ω), introduced in Eq. (3.234), in d = 2 evaluated at different x. Reprinted
with permission from Ref. [11] ➞ [2022] American Physical Society.
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Chapter 4

Zero-field thermodynamics of
isotropic Heisenberg magnets
above T = Tc

In Chapter 3 we have calculated the spin dynamics of isotropic Heisenberg models in the
symmetric phase under some basic assumptions about the static behavior of the system,
i.e. the shape of the static susceptibility G(k). Conversely we can calculate thermodynamic
properties above Tc in a vanishing external field H = 0. This entails solving the flow
equation of the static self-energy ΣΛ(k), which in turn determines the static susceptibility
GΛ(k) = [ΣΛ(k) + JΛ(k)]

−1. We will discuss several approximations to the flow equations
of ΣΛ(k), starting from a purely classical approach, which completely ignores dynamic
fluctuations that arise from the non-trivial spin algebra (1.9). Most of these calculations
are based on the work described in Ref. [12].

4.1 Static approximation

Considering only static fluctuations one can work entirely within a 1-PI parametrization, i.e.
with the vertices generated by the classical effective average action ΓΛ[m

c] = Γ̃Λ[m
c,ηq =

0]. This becomes exact in limit S → ∞, while for finite S the neglect of quantum con-
tributions amounts to an approximation. As such it cannot reproduce some additional
dependencies on S, with these corrections potentially having a large effect in the quantum
limit S = 1/2. For a description of universal critical properties of classical phase transitions
at finite temperature, such a description is sufficient though, a consequence of critical slow-
ing down [3]. For instance one thus should be able to obtain the renormalization group fixed
point associated with the transition in the Heisenberg universality class [3]. Quantum dia-
grams, representing the effect of spin dynamics, affect then only non-universal parameters,
like the explicit value of the critical temperature Tc or the spin stiffness ρ.

4.1.1 Flow equations

In the static approximation ΣΛ(k) satisfies the flow equation

∂ΛΣΛ(k) =
T

2

Z
q
ĠΛ(q)[3Γ̃

ααγγ
Λ (k,−k, q,−q) + 2Γ̃ααγγ

Λ (k, q,−k,−q)], (4.1)
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while the mixed static 4-legged vertex obeys

∂ΛΓ̃
ααγγ
Λ (k1,k2,k3,k4) =

T

2

Z
q
ĠΛ(q)[Γ̃

ααγγγγ
Λ (k1,k2,k3,k4, q,−q)

+Γ̃ααααγγ
Λ (k1,k2, q,−q,k3,k4) + Γ̃xxyyzz

Λ (k1,k2, q,−q,k3,k4)]

−T
2

Z
q
[ĠΛ(q)GΛ(q + k1 + k2)]

•Γ̃ααγγ
Λ (k1,k2, q,−q − k1 − k2)

×Γ̃ααγγ
Λ (−q, q + k1 + k2,k3,k4)−

T

2

Z
q
Sk1;k2Sk3;k4 [ĠΛ(q)GΛ(q − k1 − k3)]

•

×Γ̃ααγγ
Λ (k1, q − k1 − k3,k3,−q)Γ̃ααγγ

Λ (k2, q,−q + k1 + k3,k4)

−T
2

Z
q
[ĠΛ(q)GΛ(q − k1 − k2)]

•Γ̃ααγγ
Λ (k1,k2, q − k1 − k2,−q)

×[Γ̃ααγγ
Λ (−q + k1 + k2, q,k3,k4) + Γ̃ααγγ

Λ (−q + k1 + k2,k4,k3, q)

+Γ̃ααγγ
Λ (−q + k1 + k2,k3, q,k4)] + (k1,k2 ↔ k3,k4). (4.2)

Here we have also expressed the longitudinal 4-vertex Γ̃ααγγ
Λ via its mixed pendant, see

Eq. (2.105). A graphical representation of Eq. (4.2) is shown in Fig. 4.1. A popular strategy
to truncate the hierarchy of flow equations, amounts to neglecting the renormalization of

the six-point vertices, i.e. replacing them by their initial values Γ̃
(6)
Λ0

[1, 2, 3]. However,
we will start our investigation, by truncating on an even lower level, namely by setting the

4-point vertex to its initial value Γ̃
(4)
Λ0

. It turns out that such a primitive approximation is
already able to provide valuable insight. Note that for S → ∞ the dependence on S has to
be eliminated, by defining appropriate energy scales, which remain finite in this limit, i.e.

one should keep JΛS
2 = const, ΣΛS

2 = const, Γ̃
(4)
Λ S4 = const and so on.

For the sake of completeness let us briefly state what happens under full neglect of
the flow equations, which amounts to setting ΣΛ ≈ ΣΛ0 . The expression for the static
susceptibility reads thus

GΛ(k) =
1

T/b′0 + JΛ(k)
=

b′0/T

1 + b′0JΛ(k)/T
, (4.3)

which is equivalent to the tree-aproximation [2, 5, 6, 7]. It yields a phase transition at
the mean-field critical temperature TMF

c = b′0|J(Q)| with the corresponding values for the
critical indices γ = 2ν = 1. It is more reliable for large dimensions, if not too close to Tc
[1, 2, 5], while being very rough in physical dimensions d ≤ 3. This is particularly true for
d ≤ 2, where finite-temperature order is a priori excluded [24].

4.1.2 Deformation schemes

Before solving explicitly the flow of ΣΛ and Γ̃
(4)
Λ one has to specify the deformation scheme

for the flowing exchange coupling JΛ(k). We have considered two different schemes, which
satisfy the conditions JΛ=0(k) = 0 and JΛ=1(k) = J(k). The first is the so-called interaction-
switch cutoff scheme

JΛ(k) = ΛJ(k), (4.4)

so that ∂ΛJΛ(k) = J(k), which was already used in the study of dynamics in Sec. 3.1.1.
A linear deformation may be directly interpreted in terms of an infinite resummation of
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Figure 4.1: Flow equation of the mixed static 4-legged vertex Γxxyy
Λ (k1,k2,k3,k4), see also

Eq. (4.2), within a purely static approximation, where all diagrams involving fluctuations
at finite frequencies are neglected.

diagrams in a high-temperature expansion. This can be seen by means of rescaling all
quantities with powers of T−1, in order to make them dimensionless, i.e.

ΣgΛ(k) = (b′0/T )ΣΛ(k), (4.5)

Γ̃ααγγ
gΛ

(k1,k2,k3,k4) = (b′0/T )Γ̃
ααγγ
Λ (k1,k2,k3,k4), (4.6)

J̃Λ(k) = (b′0/T )JΛ(k) = gΛγNN (k), (4.7)

where
gΛ = cΛJb′0/T, ∂ΛgΛ = cJb′0/T. (4.8)

Here we assumed for simplicity that J(k) = cγNN (k), i.e. a nearest-neighbor interaction
on a lattice with coordination number c. From the shape of gΛ we infer that it assumes
the role of an inverse flowing temperature, which is initially zero and is increased to some
finite value during the flow, i.e. |gΛ| = TMF

c /T . Dividing the flow equations of the rescaled

quantities by ∂ΛgΛ, they can then be cast into the form ∂gΛΣgΛ = ..., ∂gΛΓ̃
(4)
gΛ = ... and so

on. Hence one can directly solve for the temperature dependence of any quantity in a set
window [0, |gΛ=1|]. This is a significant advantage compared to other deformation schemes.
However, one should not ignore drawbacks of this somewhat primitive procedure. The most
conspicuous one is that one cannot interpret it in terms of a mode elimination process, which
is the foundation of the conventional momentum-shell RG or its FRG pendants [3]. Hence
it cannot be employed to search directly for renormalization group fixed points with their
corresponding eigenvalues, i.e. by studying properly rescaled flow equations in a logarithmic
RG time l. This may be seen as an encumbrance in the investigation of critical properties,
which is strongly facilitated if one can relate the FRG flow to ordinary RG equations. A
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scheme which remedies this issue, is given by [176]

JΛ(k) = Jk −Θ(J(k)) (J(k)− JmaxΛ)Θ (J(k)− JmaxΛ)

+ Θ (−J(k)) (−J(k) + JminΛ)Θ (−J(k) + JminΛ) . (4.9)

Such a deformation with Litim-type regulator [3, 177] turns on gradually the bandwidth
of the coupling ∆JΛ = Λ(Jmax − Jmin). The exchange interaction is then given by the
non-deformed result J(k) in the window J(k) ∈ [ΛJmin,ΛJmax], whereas beyond these
boundaries it is replaced by a flat value JmaxΛ, JminΛ. Hence the interaction vanishes
for Λ → 0, in accordance with the enforced initial condition. The scale derivative of the
deformed coupling is

∂ΛJΛ(k) = JmaxΘ(J(k))Θ (J(k)− JmaxΛ) + JminΘ(−J(k))Θ (−J(k) + JminΛ) . (4.10)

It is only non-zero outside the flowing edges of the band. Note that the single-scale propa-
gator can be written as

ĠΛ(k) = −JmaxΘ(J(k))Θ (Jk − JmaxΛ)

[ΣΛ(k) + JmaxΛ]2
− JminΘ(−J(k))Θ (JminΛ− J(k))

[ΣΛ(k) + JminΛ]2
. (4.11)

For the case of ΣΛ(k) ≈ ΣΛ only the numerator is momentum-dependent, meaning that
everything else can be moved in front of integrals in the classical flow equations. Multiplying
the above expressions with additional powers of GΛ(k) will just create additional factors
[ΣΛ+Jmax /minΛ]

−1. Such diagrams occur in approximations where all vertices do not carry
a momentum dependence, i.e. where the external momentum transfer of the loops is always
zero, which will be discussed in more detail in the next sections. In these situations one
only has to deal with integrals of the type

I>Λ =

Z
k
Θ(J(k))Θ(J(k)− JmaxΛ), I

<
Λ =

Z
k
Θ(−J(k))Θ(JminΛ− J(k)), (4.12)

i.e. the corresponding diagrams are simplyZ
q
ĠΛ(q)[GΛ(q)]

n = − Jmax

[ΣΛ + JmaxΛ]n+2
I>Λ − Jmin

[ΣΛ + JminΛ]n+2
I<Λ . (4.13)

The meaning of these integrals can be understood in terms of the number of states in
the first Brillouin zone, with energies Jmax > J(k) > JmaxΛ and Jmin < J(k) < JminΛ.
Introducing explicitly the density of states for the exchange interaction

ρ(ϵ) =

Z
k
δ(ϵ− J(k)), (4.14)

which yields the number of states at a fixed energy ϵ, we can instead write I>,<
Λ in terms

of integrals over energy

I>Λ =

Z Jmax

JmaxΛ
dϵρ(ϵ), I<Λ =

Z JminΛ

Jmin

dϵρ(ϵ). (4.15)

This clearly confirms the identification in terms of a total number in the given intervals. Note
that for systems with interactions on bipartite lattices, i.e. those that fulfill J(q +QN ) =
−J(q), both integrals are equivalent I>Λ = I<Λ since the density of states is symmetric,
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ρ(−ϵ) = ρ(ϵ). Assuming J(k)− Jmin ∝ k2 the behavior of ρ(ϵ) in the vicinity of the global
minimum, is in d dimensions given by

ρ(ϵ) ∼ (ϵ+ Jmin)
(d−2)/2, |ϵ+ Jmin|/|Jmin| ≪ 1, (4.16)

and the total number of states in the vicinity of the band edge scales therefore as (∆ϵ)d/2.
Note that the mathematical expressions for ρ(ϵ) are equivalent to the density of states for
free fermions with a tight-binding dispersion [15]. Writing the diagrams in terms of an
energy integration, which contains ρ(ϵ), is also possible for the ΛJ-cutoff (4.4) with the
same assumptions for the momentum dependence of the vertices. The resulting integrals do
not have a simple interpretation in terms of a number of states though, since they involve
powers of [ϵ + Σ]−1 in the integrand. In contrast to a linear deformation, the bandwidth-
scheme clearly distinguishes between two types of fluctuations, i.e. those that lie within and
beyond these Λ-dependent boundaries, that define manifolds in momentum space. Indeed

we can take a look at the dependence of the vertices on 1−Λ = e−2l and rescale ΣΛ, Γ
(4)
Λ , ...

with powers of Λ according to their respective canonical dimension [3]. For e−2l ≪ 1 one can
then recover equations which are equivalent to the ordinary (one-loop) RG flow equations
for the Heisenberg universality class, yielding the same fixed points and eigenvalues, as will
be shown in Appendix C.1. In contrast to the linear cutoff, this procedure suffers, however,
from a more intricate intermediate k-dependence of the deformed interaction. In particular
this means that one cannot solve as a function of T−1 during the flow and has to integrate
the differential equations individually for each temperature.

4.1.3 Level 1 truncation

We start by considering the so-called level-one truncation, a term coined by Metzner et
al. in the study of the FRG flow for fermionic systems [178]. Here ’level-n’ refers to the
number of pairs of external legs, beyond which one discards the renormalization of the
corresponding vertices. Thus a level-one truncation amounts to neglecting the flow of the
four-point vertex, which is then approximated by its initial value

Γ̃ααγγ
Λ (k1,k2,k3,k4) ≈ Γ̃ααγγ

0 (k1,k2,k3,k4) = − Tb′′′0
3(b′0)

4
≡ U0

3
, (4.17)

where the third derivative of the Brillouin function b(y) at vanishing argument is given by

b′′′0 = −(2S + 1)4 − 1

120
= −6

5
b′0 b′0 +

1

6
< 0. (4.18)

As a consequence the static self-energy does not acquire a momentum dependence in this
approximation. Its flow equation reads

∂ΛΣΛ = −5TU0

6

Z
q

∂ΛJΛ(q)

[JΛ(q) + ΣΛ]
2 . (4.19)

The right-hand side is positive definite, since the integrand is peaked at q = Q, where
∂ΛJΛ(q) < 0. Thus we observe an enhancement of the self-energy due to thermal fluctua-
tions, i.e. a decrease of the transition scales compared to the mean-field result, as expected.
In fact Eq. (4.19) does not predict a finite Tc below four dimensions. In its place the inverse
of the order parameter susceptibility G−1

Λ (Q) vanishes only for T → 0, so that Tc = 0.
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Using for instance the ΛJ-scheme one can determine the leading temperature dependence
for T ≪ |J |. For this we consider the flow of

∂ΛG
−1
Λ (Q) = ∂Λ(ΣΛ + JΛ(Q)) = ∂ΛJΛ(Q) +

5TU0

6

Z
q
ĠΛ(q), (4.20)

and write
GΛ(q) = [G−1

Λ (Q) + JΛ(q)− JΛ(Q)]−1, (4.21)

with the low momentum expansion

JΛ(q)− JΛ(Q) = ΛJ ′′
Q|q −Q|2. (4.22)

Assuming G−1
Λ (Q)|J |−1 ≪ 1 one can approximate the loop in d ≤ 4 asZ

q
ĠΛ(q) ≈ Kd|J(Q)|

Z ∞

0

dqqd−1

[G−1
Λ (Q) + ΛJ ′′

Qq
2]2

=
Kd|J(Q)|(G−1

Λ (Q))(d−4)/2

(ΛJ ′′
Q)

d/2

Z ∞

0

dqqd−1

[1 + q2]2
,

(4.23)
where Kd = Ωd/(2π)

d. Setting G−1
Λ (Q) = 0 does not work below d = 4, because one runs

into an infra-red singularity in the integral for |q −Q| → 0. Since the above term, which
diverges as GΛ(Q)(4−d)/2, is positive definite a transition for a Tc ̸= 0 cannot occur. Only
in the low-temperature limit the factor TU0 ∼ T 2 in front of the integral is able to suppress
this divergence. Enforcing now for |ΛJ/T | → ∞ the stationary condition

∂ΛG
−1
Λ (Q) = 0, (4.24)

which in turn implies

|J(Q)| = 5TU0

6

Z
q
ĠΛ(q), (4.25)

and using the previous expression for the low-T limit of that integral, we obtain

G−1
Λ (Q) ∼ (T/(ΛJ ′′

Q))
4/(4−d). (4.26)

From the above expression one reads off ξ ∼ T−2/(4−d) for the corresponding correlation
length. In low dimensions this implies ξ ∼ T−2/3 (d = 1) and ξ ∼ T−1 (d = 2) which in
both cases is a too weak divergence, compared to the true behavior as T−1 and exp(α/T ) in
one and two dimensions [165, 174]. This could be anticipated given the strong enhancement
of thermal fluctuations, thus destroying long-range order at T ̸= 0 in three dimensions too.
In fact by solving these equations in both schemes numerically we corroborated the derived
low-temperature behavior, which is also exhibited by the Litim-solution, showing that this
feature is intrinsic to the truncation. Note that by considering the corresponding RG flow

of the rescaled interaction ul ∼ e(4−d)lΓ̃
(4)
Λ at large 2l = − ln(1 − Λ) one can also see that

the Level-1 truncation is incompatible with Tc ̸= 0, because below d = 4 the fixed point is
repulsive, i.e. ∂lul ∼ (4− d)ul > 0, implying a runaway flow.

Nevertheless the numerical solution of the flow equation (4.19) is still able to give valu-
able information, even about the ordering scales Tc. We have solved it explicitly for a
non-frustrated J1 − J3 Heisenberg Model on a simple cubic lattice, where J1/3 > 0. The
exchange interaction is given by

J(k) = 6J1γ
(1)(k) + 8J3γ

(3)(k), (4.27)
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where

γ(1)(k) =
cos(kxa) + cos(ky) + cos(kza)

3
, (4.28)

γ(3)(k) = cos(kxa) cos(kya) cos(kza). (4.29)

We observe that the resulting curves for G−1(Q) exhibit a turn or kink at a temperature
of the order T ∼ c|J |b′0, thus preventing the susceptibility from becoming 0, in line with
the above arguments. The position of this kink is thus ’the crossover scale’ between the
high-temperature behavior of G−1(Q) and its vanishing ∼ T 4/(4−d) for T ≪ |J ′′

Q|. As a
kink, i.e. a point where the curvature has its extremal value, it is given by the maximum of
d2G−1(Q)

dT 2 = d2Σ
dT 2 or a turning point in the first derivative dΣ

dT . Given that in three dimensions
the solution behaves as T 4 for T → 0, implying that the curvature vanishes as T 2 and one
starts with G−1(Q) ∝ T , i.e. zero curvature, there is indeed an intermediate maximum in
the second derivative. Using a RG picture one can also say that the influence of the ’true’
critical fixed point is already felt at this temperature, before one is ultimately repelled from
it. Hence we use this scale in d = 3 to estimate transition temperatures of the system.

In Fig. 4.2 plots of the inverse susceptibility and its second T -derivative are shown for
the nearest neighbor Heisenberg model with S = 1/2, ∞, utilizing the bandwidth cutoff
(4.9). Crossover scales obtained via the prescription above are listed in Table 4.1 for both
types of cutoffs. In the case of the bandwidth deformation scheme one obtains reasonable
agreement with benchmark results for Tc, extracted from Quantum Monte Carlo simulations
[179, 180, 181] or high temperature expansion series [182]. Especially for larger spin values
the agreement is very good. Note the absent dependence of Tc on sgn(J). This follows
from the J(q) = −J(q + Q) - property of couplings on bipartite lattices, meaning that
one integrates in Eq. (4.19) over the same contributions but in reversed locations of the
Brillouin zone. For the interaction-switch scheme the deviations from the benchmark values
are more spread out. This is not very surprising, because the RG interpretation in terms of
’feeling’ the vicinity of the fixed point, appears less justified within this scheme.

In lower dimensions, d ≤ 2, one may be also inclined to interpret kinks of the G−1(Q)-
curve at T ̸= 0 in terms of a transition at the respective temperature. However one can
still infer in these cases that the true critical temperature is zero, in agreement with the
Mermin-Wagner theorem. To justify that, one takes a look at the low-temperature behavior
of G−1(Q). In two dimensions the inverse susceptibility behaves as ∼ T 2 for T → 0. This
means that d2Σ/dT 2 has a finite value at T = 0, instead of approaching zero like in d > 2.
For one dimension one observes a divergence for T → 0, since d2Σ/dT 2 ∼ T−2/3 → ∞.
Hence the different T → 0-behavior compared to d > 2 may be used to argue for the absence
of long-range order at finite Tc. Note that the Level 1-approximation may be also applied,
without further adjustments, to systems with finite frustrating couplings Ji to neighbors of
higher order, that introduce a competition between different states Qj . However, it does
not offer any new insights, compared to a discussion of the extremal field configurations
for the classical total energy. As long as J ′′

Q ̸= 0 we find the same qualitative behavior for

G−1(Q) and thus its T -derivatives. Only in the case of degenerate ground states, one may
encounter distinct behavior, due to J ′′

Q = 0, meaning that J(q) − J(Q) vanishes with a
larger power in |q −Q|. In turn this leads to a reduction of the effective dimensionality in
the integral

R
q ĠΛ(q), so that in three dimensions one also extracts Tc = 0 at the classical

phase boundaries in the plane of couplings.
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Figure 4.2: T -dependence of a) the inverse order parameter susceptibility G−1(Q) and b)
d2Σ/dT 2 of the S = 1/2 and classical (S = ∞) nearest neighbor Heisenberg magnet on a
simple cubic lattice in a Level 1-truncation (4.19), using the Litim-cutoff scheme (4.9) for
the deformed coupling. The red crosses in the upper plot mark the kinks and correspond
to the maxima in the lower figure.
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Tc/T
MF
c rel. error / %

S J1 J3/J1 switch Litim benchmark switch Litim

1/2 < 0 0 0.651 0.568 0.559 16.5 1.6
1/2 > 0 0 0.651 0.568 0.629 3.5 9.7
1 < 0 0 0.726 0.668 0.650 11.7 2.8
1 > 0 0 0.726 0.668 0.684 6.1 2.3

3/2 < 0 0 0.745 0.695 0.685 8.8 1.5
3/2 > 0 0 0.745 0.695 0.702 6.1 1.0
1/2 > 0 0.2 0.746 0.701 0.722 3.3 2.9
1/2 > 0 0.4 0.782 0.753 0.768 1.8 2.0
1/2 > 0 0.6 0.800 0.776 0.794 0.8 2.3
1/2 > 0 0.8 0.807 0.787 0.808 0.1 2.6
∞ ≠ 0 0 0.766 0.725 0.722 6.1 0.4

Table 4.1: Critical temperatures obtained for the J1 − J3 model on a simple cubic lattice
within a Level 1-truncation (4.19), which are given by turning points / peak positions of
dΣ/dT, d2Σ/dT 2. For the cases with S = 1/2 the benchmark values are Quantum Monte
Carlo results [179, 180, 181], while for larger spins the values are taken from an Padé-
approximated high temperature series [182].

4.1.4 Level 2 truncation

In the previous section it was demonstrated that without a flowing four-point vertex one does
not obtain a phase transition at finite temperature below d = 4. Hence one should proceed
one level further in the hierarchy and retain the flow equation of Γααγγ

Λ . In the classical
approximation the hierarchy is closed by neglecting the flow of the six-point vertices, whose
local initial values are given by

Γ̃ααγγγγ
0 = 3Γ̃xxyyzz

0 =
T

5(b′0)
6

10(b
′′′
0 )

2

b′0
− b(5) =

V0
5
, (4.30)

where the fifth derivative of the spin-S Brillouin function at vanishing argument reads

b(5) =
(2S + 1)6 − 1

252
. (4.31)

One still has to deal with the momentum dependence of the four-point vertex. Fortunately,
running along similar lines, as one-loop approximations to conventional momentum shell
RG calculations [2, 3] it is sufficient for our purposes to approximate

Γ̃ααγγ
Λ (k1,k2,k3,k4) ≈ Γ̃ααγγ

Λ (Q,−Q,Q,−Q) =
UΛ

3
. (4.32)

Here Q is the classical ordering vector, i.e. for either the ferromagnetic Q = 0 or Néel
ground state Q = R = π

a (1, 1, 1). This is certainly justified in the absence of frustrating
interactions, i.e. non-competing classical ground states. As a consequence, ΣΛ(k) loses
again its momentum dependence, i.e

ΣΛ(k) ≈ ΣΛ(Q) = ΣΛ. (4.33)
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Hence one arrives at the following two differential equations

∂ΛΣΛ = −5TUΛ

6

Z
q

∂ΛJΛ(q)

[JΛ(q) + ΣΛ]
2 , (4.34)

∂ΛUΛ = T

Z
q
ĠΛ(q)

7

10
V0 −

11

3
U2
ΛGΛ(q) . (4.35)

The term ∝
R
q ĠΛ(q) in (4.35) is due to V0 > 0 positive definite as in the flow of ΣΛ,

countering the decrease of UΛ, which is driven by the quadratic term ∝
R
q ĠΛ(q)GΛ(q).

The latter decrease of UΛ is responsible for restoring magnetic order below d = 4, i.e.
the reduction of the sole diagram in ∂ΛΣΛ, which previously prevented a transition at
Tc ̸= 0. Note that we used for (4.35) that Q±Q, which appears as a momentum transfer
in the quadratic diagrams, is always a reciprocal lattice vector G. Given that all vertices
in k-space have the periodicity of the reciprocal lattice, one concludes that the effective
momentum transfer is always zero. Thus one obtains the same flow equations for the
ferro- and antiferromagnet. In fact, for systems where the exchange coupling fulfills J(q+
Q) = −J(q), i.e. next-neighbor models on bipartite cubic lattices, one arrives at the
same temperature dependence of the order parameter susceptibility, regardless of the global
sign of J(k). This is an exact property for classical models, satisfying the aforementioned
conditions. In the static approximation it is also retained for finite S. One already observed
this in the Level-1 truncation. Such behavior for S <∞ is not correct anymore, given that
the symmetry with respect to J ↔ −J is destroyed by quantum fluctuations. The latter can
be inferred for instance from the fact that staggered degrees of freedom are time-dependent
in contrast to the conserved total spin.

The Level-2 flow equations (4.34) and (4.35) are analogous to the ones derived by Krieg
[2] in the context of the spin-S Ising model. They only differ by the prefactors in front
of each loop integration, since we have n = 3 instead of only one direction. In fact these
factors are consistent with the coefficients in the one-loop momentum shell RG equations for
the n-component ϕ4-model [3]. These RG equations host the non-Gaussian Wilson-Fisher
(WF) fixed point (u∗ ̸= 0) in d < 4, that describes the critical properties of models in the
O(n)-universality class. Note, however, the additional presence of the six-point vertex in
our case, which, in a RG sense, turns out to be marginal in d = 3 and irrelevant for d > 3,
consistent with its canonical dimension 6 − 2d [3]. In principle this can lead to additional
fixed points in d = 3 besides the Wilson-Fisher fixed point [183]. In appendix C.1 we show
by employing the Litim-cutoff that one indeed recovers equations equivalent to the one-loop
RG equations for the O(3)-model which feature the WF fixed point.

Solving the flow equations numerically in both cutoff schemes for the J1 − J3 model
on the simple cubic lattice we obtain, as anticipated, a true phase transition, indicated by
G−1(Q) = 0 at a temperature T = Tc. Results for G−1(Q) and the effective four-spin
interaction U calculated within the interaction-switch scheme (4.4) are shown in Fig. 4.3.
The four-vertex vanishes ’square-root’-like, i.e. with an exponent smaller than unity, for
T → Tc, which is expected, given that it has to regularize the divergence of

R
q ĠΛ(Q) ∝

GΛ(Q)(4−d)/2 in ∂ΛΣΛ. In fact, assuming

G−1
Λ (Q) ∼ (1− Λ)γ , (4.36)

and
UΛ ∼ (1− Λ)α, (4.37)
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Figure 4.3: T -dependence of the a) inverse order parameter susceptibility G−1(Q) and
b) dimensionless effective four-spin interaction U/U0 of the S = 1/2 and classical nearest
neighbor Heisenberg magnet on a simple cubic lattice in a Level 2-truncation, using the
interaction deformation scheme (4.4) for the numeric integration of the respective flow
equations, (4.34) and (4.35).
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at T = Tc we obtain by enforcing ∂ΛG
−1
Λ (Q) = 0 (γ > 1) or ∂ΛG

−1
Λ (Q) = const. (γ = 1)

the following relation

α =
4− d

2
γ, (4.38)

i.e α = γ/2 for d = 3. An analysis of the corresponding one-loop RG flow, which as sketched
in appendix C.1, can be recovered within the bandwidth scheme, yields in d = 3 + ϵ′

dimensions γ ≈ 1.12, which is too small [26], given that the one-loop approximation is
only accurate in the vicinity of d = 4 [3]. Inserting the Λ-dependence of G−1

Λ (Q) and UΛ

into the flow equation of UΛ (4.35) we find that for d ≥ 3 they are fully consistent with
∂ΛUΛ ∝ (1− Λ)α−1 with α given by Eq. (4.38), where we made use ofZ

q
ĠΛ(q)GΛ(q) ∝ G−1

Λ (Q)(d−6)/2. (4.39)

Note that above three dimensions and in the vicinity of Tc the contribution from the six-
point vertex becomes negligible compared to the term ∝ U2

Λ, in accordance with its irrele-
vance, while in d = 3 it is marginal and thus contributes equally to ∂ΛUΛ. Above d = 4 the
integral in ∂ΛΣΛ is non-singular. Furthermore UΛ approaches a finite value for Tc, given
that its Λ-derivative is not sufficiently singular due to the exponent in the quadratic term
fulfilling (d− 6)/2 > −1. This is consistent with the irrelevance of the four-vertex with re-
spect to the Gaussian fixed point. Thus one obtains ∂ΛG

−1
Λ (Q) = const., i.e. the mean-field

exponent γ = 1, as expected above the critical dimension.
The extracted critical temperatures for the J1 − J3 model on a simple cubic lattice

are given in Table 4.2 and are in relatively good agreement with the benchmark values,
in particular for the interaction-switch cutoff at larger spin values. Larger deviations for
S = 1/2 are not surprising, given that the purely classical approach completely ignores the
feedback of quantum dynamics. The accuracy of a classical approximation is thus inferior
to an application to the Ising model [2]. The Ising Hamiltonian does not contain non-
commuting operators so that taking only static fluctuations into account does not amount
to an additional approximation. Even for S = ∞ the deviation is still larger [2], but this
also does not surprise us, since the stronger effect of fluctuations due to a larger n may
be underestimated in the same type of truncation. Integrating the Level-2 flow with the
Litim-cutoff yields lower Tc in all listed cases, performing worse than the interaction-switch
deformation.

Let us briefly discuss reduced dimensions, in which the effect of the six-spin vertex
is more pronounced than in d = 3. In fact its inclusion leads to a vanishing Tc, i.e. the
fulfillment of the Mermin-Wagner-Theorem [24]. This is a consequence of

R
q ĠΛ(q) being too

singular, which prevents UΛ and thus G−1
Λ (Q) from flowing to zero at any finite temperature.

One can estimate the leading T -dependence of ΣΛ like in the Level-1 truncation by enforcing
a vanishing flow of G−1

Λ (Q) and UΛ for Λ → ∞, i.e. the T = 0-limit in the linear deformation
scheme (4.4). First we find

G−1
Λ (Q) ∝ (TUΛ)

2/(4−d). (4.40)

From ∂ΛUΛ = 0 we read off

TU2
ΛG

−1
Λ (q)(d−6)/2 ∼ T 2G−1

Λ (Q)(d−4)/2 → UΛ ∼ (TG−1
Λ (Q))1/2, (4.41)

which is solved by
G−1

Λ (Q) ∝ T 3/(3−d) ∼ T 2ν , (4.42)
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Tc/T
MF
c rel. error / %

S J1 J3/J1 switch Litim benchmark switch Litim

1/2 < 0 0 0.578 0.525 0.559 3.4 6.1
1/2 > 0 0 0.578 0.525 0.629 8.1 16.5
1 < 0 0 0.672 0.625 0.650 3.4 3.8
1 > 0 0 0.672 0.625 0.684 1.8 8.6

3/2 < 0 0 0.701 0.658 0.685 2.3 3.9
3/2 > 0 0 0.701 0.658 0.702 0.1 6.3
1/2 > 0 0.2 0.712 0.676 0.722 1.4 6.4
1/2 > 0 0.4 0.768 0.740 0.768 0.0 3.7
1/2 > 0 0.6 0.795 0.771 0.794 0.1 2.9
1/2 > 0 0.8 0.808 0.787 0.808 0.0 2.6
∞ ≠ 0 0 0.736 0.700 0.722 1.9 3.0

Table 4.2: Critical temperatures of the same Heisenberg models, as in Table 4.1, obtained
within a Level 2-Truncation, given by the flow equations (4.34) and (4.35).

UΛ ∝ T
(6−d)
2(3−d) . (4.43)

This yields ν = 3
2(3−d) for the correlation length exponent, i.e. ξ ∼ T−3/4 and ξ ∼ T−3/2 in

d = 1 and d = 2. That is still a too weak singularity for T → 0, compared to the correct
behavior in ferromagnets [165, 174]. Note that the latter can already be estimated from the
spin length constraint ⟨Sα

i S
α
i ⟩ = S(S + 1)/3 in the symmetric phase

b′0 = T

Z
q

X
ν

G(Q) ≈ T

Z
q
G(q), (4.44)

where the latter ≈ holds exactly in the classical S → ∞ limit. One seees than that it
is violated by our low-temperature expressions, leading to a vanishing right-hand side for
T → 0. The effective interaction UΛ approaches zero in our case as T 5/4 in one dimension
and T 2 in two dimensions. We have corroborated this limiting behavior by a numerical
integration of the flow. As for the Level-1 truncation the same asymptotics are predicted
when a bandwidth cutoff is used. Results for the temperature dependence of G−1(Q) and
the four-point vertex, using the Litim-deformation scheme (4.9), are shown in Fig. 4.4 for
Heisenberg models on the linear chain and the square lattice with nearest neighbor coupling
(1.18).

Note that the fulfillment of the sum rule (4.44), can, in principle, be realized by the
introduction of a suitable counterterm CΛ or higher order vertex correction. One can add
for instance an on-site coupling CΛ = JΛ

ii , that is generated during the flow, in order to
enforce ∂Λ

R
K GΛ(K) = 0. The absence of long-range order for T > 0 is in some sense a

’lucky’ coincidence in the Heisenberg case. For the Ising model, where the flow equations
have the same structure, it does not hold, i.e Tc ̸= 0, since there is no continuous rotational
symmetry to be broken, whereas the Level-2 truncation still predicts Tc = 0 [2]. The
general inadequacy of this truncation in low dimensions, can be readily explained by the
fact, that arguments regarding the relevance of vertices, that are justified in d > 2, where
Tc ̸= 0, cannot be applied here, e.g. arbitrary n-point vertices turn out to be all relevant
in d ≤ 2 according to the simple classification scheme [3]. Note that with reasonable
expressions for the k-dependence of ΣΛ(k) the sum rule (4.44) should always ensure the
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Figure 4.4: T -dependence of the inverse order parameter susceptibility G−1(Q) (blue) and
the four-point vertex U (green) of the S = 1/2 and S = ∞ nearest neighbor Heisenberg
magnet on a) a linear chain and b) a square lattice, using the Level 2-truncation, (4.34)
and (4.35), for the flow equations and a bandwidth cutoff (4.9). Note that U vanishes with
a larger-than-linear power in T − Tc, in contrast to d > 2.

Mermin-Wagner-Theorem for the Heisenberg model in d ≤ 2. Otherwise the integral over
the static component in the frequency sum will simply diverge, leading to a violation of
(4.44). Its implementation should be therefore crucial in reduced dimensions.

4.2 Inclusion of dynamic fluctuations

Up to now the feedback of fluctuations at finite frequency onto the flow of ΣΛ, Γ̃
(4)
Λ was

utterly neglected. As a consequence some features are not captured, like the different critical
temperatures for quantum ferro- and antiferromagnets. Taking dynamic terms into account
introduces frequency sums in the flow of purely static quantities, which contain higher order
vertices, including odd ones, with legs at finite frequency. It turns out that for our purpose
these partially dynamic vertices may be safely approximated by their initial values. Using
the same simplifications for the momentum dependence of the four-vertex, Eq. (4.32), and

140



CHAPTER 4. ZERO-FIELD THERMODYNAMICS OF ISOTROPIC HEISENBERG
MAGNETS ABOVE T = TC

self-energy, Eq. (4.33), one arrives at the flow equations

∂ΛΣΛ =
5T

6
UΛ

Z
q
ĠΛ(q) + T

X
ω ̸=0

Z
q

2

ω2
˙̃FΛ(q, iω)F̃Λ(q +Q, iω), (4.45)

and

∂ΛUΛ = T

Z
q
ĠΛ(q)

7

10
V0 −

11

3
U2
ΛGΛ(q)

+
3T

2

X
ω ̸=0

Z
q

˙̃FΛ(q, iω) 2Γ̃xxxxzz
0 (ω,−ω, 0, 0, 0, 0) + Γ̃xxyyzz

0 (ω,−ω, 0, 0, 0, 0)

− 24T
X
ω ̸=0

Z
q

˙̃FΛ(q, iω)F̃Λ(q, iω)F̃
2
Λ(q +Q, iω)

h
Γ̃xyz
0 (−ω, ω, 0)

i4
. (4.46)

Here we have already inserted the expression for the mixed three-point vertex ∝ ω−1 and
also used that the four-point vertex with two dynamic legs vanishes at the initial scale as
seen in Sec. 2.3.2. Furthermore diagrams with the mixed five-point vertices featuring two
quantum legs are also absent in (4.46) due to

Γ̃xyzzz
0 (ω, 0,−ω, 0, 0, 0) = 0. (4.47)

On the other hand the mixed six-point vertices needed for Eq. (4.46) are finite

Γ̃xxxxzz
0 (ω,−ω, 0, 0, 0, 0) = 2b′′′0

3(βb′0)
4ω2

, Γ̃xxyyzz
Λ0

(ν,−ν, 0, 0, 0, 0) = 4b′′′0
3β(b′0)

4ω2
, (4.48)

so that their diagrams still contribute at this level of approximation. The full flow equation
for the static 4-point vertex is given in appendix C.2.

One still has to deal with finding an appropriate treatment for the dynamic polarization
Π̃Λ(k, iω), which is contained in the effective interaction F̃Λ(k, iω). Setting it to ≈ 0 works
only for very large temperatures |JΛ| ≪ T , whereas for |JΛ| ∼ O(T ), i.e. the region where
one anticipates a phase transition, one runs into problems. These issues are caused by
an insufficient inhibition of the associated diagrams. At least for an antiferromagnet, one
can show that the contribution in ∂ΛΣΛ(k) will grow exponentially for low temperatures
without being mitigated by a finite Π̃Λ(k, iω). As an example the quantum contribution to
the flow of ΣΛ(k) becomes

T
X
ω ̸=0

Z
q

2

ω2
ḞΛ(q, iω)FΛ(q + k, iω) =

1

6T

Z
q
∂ΛJΛ(q) G

−1
Λ (q + k)

=
1

12T
∂Λ

Z
q
JΛ(q)JΛ(q + k) +

1

6T

Z
q
ΣΛ(q)∂ΛJΛ(q + k).

(4.49)

Assuming a linear deformation (4.4) one can separate the momentum-dependent contribu-
tion to ΣΛ(k), i.e. for a nearest neighbor interaction J(k) = cJγ(k)

(b′0/T )ΣΛ(k) = Σg(k) = Σg +Σ(1)
g γ(k), (4.50)

with Σ
(1)
g satisfying

∂gΣ
(1)
g =

1

6b′0

Z
q
γ(q)2

h
g +Σ(1)

g

i
, Σ

(1)
0 = 0, (4.51)
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where we introduced the new variable g = (cΛJb′0)/T . The solution is then given by

Σ(1)
g = [C]−1 1− (1 + Cg) exp − Cg exp Cg , (4.52)

where

C =
1

6b′0

Z
q
γ(q)2 > 0. (4.53)

For |g| ≪ 1 it reduces to the leading high-temperature expression, obtained by dropping

the momentum dependence of ΣΛ(k) in the integral, i.e. Σ
(1)
g ≈ Cg2

2 . In the limit |g| ≫ 1
its asymptotics depend on the sign of J . For a ferromagnet, g < 0, it is ∝ |g|, which is
not too problematic. On the other hand for antiferromagnets with g > 0, the aforemen-
tioned exponential explosion occurs, so that the flow will break down. Note that in the
approximation ΣΛ(k) ≈ ΣΛ(Q) one would simply obtain the high-T limit of this diagram,
which grows as J2

Λ/T , is negative for Q = QN and therefore still causes similar issues for
the antiferromagnet.

Fortunately, in the case of systems which have a finite Tc = O(c|J |b′0), one is able to
obtain reasonable results with a fairly simple ansatz for the dynamics. It is explicitly given
by the leading order for Π̃Λ(k, iω) in a high-frequency and high-temperature expansion, see
Eq. (2.123), i.e Π̃Λ(k, iω) ∝ J2

Λ/(ω
2T ). Note that at large temperatures, its contribution

to ∂ΛΣΛ, Eq. (4.45) is of the order J4/T 3, due to the Matsubara frequencies behaving
as ωn = 2πnT in (4.45). This approximation still loses its validity for T ≲ |JΛ|, as Π̃Λ

grows with increasing |JΛ|/T , but in contrast to Π̃Λ = 0, it does not cause any severe
issues, since its mitigating effect on that diagram is actually enhanced with decreasing T .
A generalization of Eq. (2.123) for arbitrary temperatures, keeping only the leading 1/ω2-
dependence in the high-frequency limit, is given by replacing the k-dependent coefficient
with an exact expression for the second moment [98, 100], i.e.

Π̃Λ(k, iω) =
2

ω2

Z
q
[JΛ(q + k)− JΛ(q)] ⟨Sz(q)Sz(−q)⟩Λ. (4.54)

This would also introduce a self-consistent coupling to Π̃Λ(q, iν) via the static structure
factor

⟨Sz(q)Sz(−q)⟩Λ = T
X
ν

GΛ(q, iν), (4.55)

on the right-hand side, while still exhibiting the same simple momentum dependence for
finite-ranged exchange couplings. Note that negligence of finite frequencies in Eq. (4.55) is
incompatible with a non-singular susceptibility. Π̃Λ(k, iω) would then vanish for T → 0,
potentially causing an explosion of the quantum diagrams in (4.45) and (4.46), as discussed
above. Even if Π̃Λ(k, iω) has a finite limit for T → 0, a 1/ω2-ansatz appears to be inadequate
for mimicking the influence of quantum fluctuations at low temperatures. The reason for
this is that a successively growing number of Matsubara frequencies ∼ 2πT contained in
frequency sums becomes for T ≪ |J | much smaller than |J |, so that one crosses into
the low-frequency sector for the dynamics. Interestingly, in the context of a second order
Green’s function theory, the damping of spin waves, or any kind of relaxational processes,
are entirely ignored. However, this did not prevent the authors of Ref. [66] from finding
disordered phases in the spin-1/2 J1-J2 model on the square lattice, in fact considerably
overestimating the extent of the disordered phase [66]. We have corroborated this tendency
by solving for a k-independent ΣΛ fixed via the sum rule (4.44) and the above choice (4.54)
for the dynamics of the same model.
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As an alternative to the self-consistent second moment (4.54), one could solve a flow
equation, e.g. Eq. (2.122), whose right-hand side is ∝ 1/ω2 too, but does not contain any
frequency sums, while still being free of outright non-physical properties down to T = 0. One
may also try to improve upon the 1/ω2 -ansatz, by retaining the ω−4-term in Π̃Λ(k, iω), i.e.
the fourth moment ⟨ω4⟩k, which is a three-loop expression involving four-spin correlations
[31, 98]. The additional term can then be used for an extrapolation to a diffusive |ω|−1-low
frequency shape, e.g. in the sense of the previously discussed three-pole approximation
(3.90) [98, 100]. The last and most sophisticated path one can pursue is to work with an
a priori unknown frequency dependence for Π(k, iω). Note that this requires a finite cutoff
ωmax for the number of frequencies used in numeric calculations. For too low temperatures
T ≲ O(J) this will not suffice, because the largest frequency becomes of the same order as
J , with ωmax/JΛ eventually scaling to 0, if the frequency cutoff remains fixed. Note that we
have provided results for such a case, using the self-consistency equation (3.44) for Π̃Λ(K),
which exhibits a non-trivial ω-dependence, in appendix C.3.

However, as already stated, for our purpose of investigating non-frustrated magnets in
d ≥ 3 the high-T/ω-limit (2.123) is a sufficient approximation, with the proposed refine-
ments presumably having only a modest impact. In fact, the more sophisticated ansatz
based on (3.44) and discussed in appendix C.3 does not perform better than (2.123). Hav-
ing a fixed, analytic dependence on 1/ω2 allows us to evaluate the Matsubara sums in the
flow equations analytically by using the theorem of residues [18, 29]. Writing

G−1
Λ (k)Π̃Λ(k, iω) =

Ω̃Λ(k)

(βω)2
, (4.56)

one arrives at the following set of equations

∂ΛΣΛ =
5T

6
UΛ

Z
q
ĠΛ(q) +

2

T

Z
q

∂ΛJΛ(q)

GΛ(q +Q)
S1 Ω̃Λ(q), Ω̃Λ(q +Q) , (4.57a)

∂ΛUΛ = T

Z
q
ĠΛ(q)

7

10
V0 −

11

3
U2
ΛGΛ(q) − 4

Z
q
[∂ΛJΛ(q)]

b′′′0
(b′0)

4
S2 Ω̃Λ(q)

− 24

T 3(b′0)
4

Z
q

∂ΛJΛ(q)

GΛ(q)G2
Λ(q +Q)

S4 Ω̃Λ(q), Ω̃Λ(q +Q) . (4.57b)

Three distinct Matsubara sums appear in the above equations. Together with the auxiliary
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quantity S3(x, y) used for calculating S4(x, y) these sums are for x, y ≥ 0 given by

S1(x, y) =
X
ω ̸=0

(βω)4

(βω)2 + x
2
(βω)2 + y

=
1

8 (x− y)2

h
2
√
x (x− 3y) coth

√
x/2

− x (x− y) csch2
√
x/2 + 4y3/2 coth (

√
y/2)

i
, (4.58a)

S2(x) =
X
ω ̸=0

(βω)2

(βω)2 + x
2 =

√
x− sinh (

√
x)

4
√
x [1− cosh (

√
x)]

, (4.58b)

S3(x, y) =
X
ω ̸=0

(βω)2

(βω)2 + x
2
(βω)2 + y

=
1

8
√
x (x− y)2

h
2 (x+ y) coth

√
x/2 +

√
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, (4.58c)

S4(x, y) =
X
ω ̸=0

(βω)6

(βω)2 + x
3
(βω)2 + y

2

= S3(x, y) +
x

2
∂xS3(x, y) + y∂yS3(x, y) +

xy

2
∂x∂yS3(x, y). (4.58d)

In the following we will solely consider the interaction-switch cutoff (4.4) for the integration
of the flow equations (4.57). As in the purely static case one can then map the flow
onto an integration with respect to inverse temperature, i.e. g = ±TMF

c /T . For that
one simply works with the dimensionless quantities Ω̃Λ(k) and βω = 2πn. The reason
for restricting ourselves to a linear deformation is that Π̃Λ(k, iω), given by (2.123), can
be straightforwardly evaluated with JΛ = ΛJ . For the aforementioned J1 − J3-model one
obtains

Ω̃Λ(k) =
G−1

Λ (k)(6Λb′0J1)
2

3T 3
1− γ(1)(k) +

4

3

J3
J1

2
1− γ(3)(k) , (4.59)

which is consistent with its initial condition Ω̃Λ0(k) = 0. On the other hand for the Litim-
cutoff (4.9) the deformed coupling JΛ(k) exhibits a complicated k-dependence at intermedi-
ate values of Λ. Hence a factorization of exponentials which works for an intact momentum
dependence of JΛ(k) does not occur, so that one cannot decompose Ω̃Λ(k) into a finite
Fourier series. As a consequence one can calculate the momentum and cutoff dependence
of Ω̃Λ(k) only numerically. An alternative would be to consider Π̃(k, iω) at the final scale,
where JΛ(k) = J(k). However, this artifical procedure is inconsistent with the initial con-
dition Π̃Λ0(k, iω) = 0. Note, that in general one cannot write the quantum diagrams in
terms of an energy integration, involving the density of states, due to both the momentum
dependence of Π̃Λ(k, iω) and the finite momentum transfer for antiferromagnets. Only in
the case of a nearest-neighbor coupling on a bipartite lattice, it is possible to write the
high-temperature approximation for Π̃Λ(k, iω) and J(k+Q) in terms of J(k).

Numerical results for G−1(Q) as a function of T/TMF
c for nearest-neighbor Heisenberg

models on a simple cubic lattice with S = 1/2, 1 and different signs of the exchange in-
teraction are shown in Fig. 4.5. As anticipated the degeneracy of the curves for opposing
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Figure 4.5: T -dependence of the inverse order parameter susceptibility G−1(Q) including
dynamic spin fluctuations from the numerical solution of (4.57) using the interaction-switch
deformation scheme (4.4) for quantum Heisenberg Models with nearest neighbor interaction
J1 and S = 1/2, 1.

signs of J1 is lifted by the presence of finite-frequency diagrams, with different momentum
transfers k = Q. For the ferromagnet (J1 < 0) with Q = 0 quantum fluctuations enhance
the static self-energy and therefore Tc is decreased, compared to the purely static approxi-
mation. The opposite effect occurs for the antiferromagnet, J1 > 0, with Q = QN , where
the spin self energy is reduced by these terms, leading in turn to an increase of Tc relative to
the classical truncation. Note that this effect is primarily driven by the diagram in the flow

of ΣΛ (4.57a), containing the square of the mixed three-point vertex Γ̃
(3)
Λ (ν,−ν, 0), whose

sign can already be read off from its high temperature limit. The frequency sums in the
flow equation of UΛ (4.57b) have, compared to that, only a minor impact on ΣΛ.

Results for the transition temperatures in the J1-J3 model are given in Table 4.3. The
agreement with the benchmark values is quite satisfactory as our results deviate by five
percent at most. Our accuracy is thus similar or even better than in typical truncations
of the pseudofermion FRG (PF-FRG), where usually the deviation from benchmark values
lies above that threshold [181, 184, 185, 186, 188, 190]. Furthermore our approximation has
the advantage of being numerically much less expensive, requiring only the solution of two
differential equations, opposed to computing complicated functions of one momentum and
three frequency variables [68, 181]. Residual differences may be traced back to neglecting
the momentum dependence of the self-energy and four-point vertex, together with dropping
higher order diagrams. Results for the critical temperatures of magnets on other cubic
lattices, are given in appendix C.4.

Note that in the first implementations of the PF-FRG by Reuther et al., which extracted
the T -dependence directly from the dependence on an ultraviolet frequency cutoff in a flow
at zero temperature [181], the four-spin interaction, an eight-point pseudofermion vertex
in their formalism, was not generated. The Katanin substitution [75], which is a relatively
successful weak coupling approximation for fermionic systems applied by them to the flow
of the four-fermion vertex, accounted only for corrections generated by three-spin corre-
lations. These corrections were found to be crucial in order to obtain disorder at T = 0
though [68]. Hence a (non-Gaussian) critical fixed point was, technically speaking, inac-
cessible in their approximation. Note that this PF-FRG truncation reduces in the classical
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Tc/T
MF
c rel. error / %

S J1 J3/J1 switch benchmark switch

1/2 < 0 0 0.545 0.559 2.5
1/2 > 0 0 0.640 0.629 1.7
1 < 0 0 0.651 0.650 0.2
1 > 0 0 0.697 0.684 1.9

3/2 < 0 0 0.688 0.685 0.4
3/2 > 0 0 0.715 0.702 1.9
1/2 > 0 0.2 0.752 0.722 4.2
1/2 > 0 0.4 0.799 0.768 4.0
1/2 > 0 0.6 0.823 0.794 3.7
1/2 > 0 0.8 0.834 0.808 3.2

Table 4.3: Same as Tables 4.1 and 4.2, but now including the feedback of quantum dynamics
onto static properties via a high-temperature ansatz (2.123) for Π̃Λ(k, iω), i.e. the solution
of (4.57). Note that the limit S → ∞ is not shown here, because the corresponding flow
reduces to the static Level-2 truncation. Furthermore we only used the interaction-switch
cutoff (4.4) as discussed in the main text.

limit S → ∞ [187] to the tree approximation for the static spin susceptibility (4.3), which
is clearly inferior to our Level-2 truncation, which is relatively insensitive to the value of S.
Indeed, the different Hilbert space sizes, determined by S, are fully accounted for via our
initial condition, whereas the PF-FRG requires a less trivial construction to deal with this
[187]. Furthermore, the Mermin-Wagner theorem is violated in low dimensions within these
PF-FRG truncations [68, 184], again in contrast to our, admittedly coincidental, fulfill-
ment. Additional loop corrections then only alleviate the issue by lowering the breakdown
scales but do not eliminate it entirely [184]. In a more recent FRG formalism, based on
a Majorana fermion representation of S = 1/2 operators, one was able to account for the
four-point vertex, by making use of exact operator identities. One therefore obtained a
real, non-Gaussian, fixed point with the correct critical exponents in d = 3 [188, 189, 190].
Note also that this new implementation does not, in contrast to the initial pseudofermion
method, introduce non-physical states and is therefore more suitable for calculations at
finite temperature. However, it trades this deficiency for a redundancy which is of high rel-
evance for low temperatures. As a consequence typical truncations of the Majorana fermion
flow cannot reach down all the way to T = 0 [188, 189, 190].
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have investigated the thermodynamic properties and the spin dynamics of
quantum Heisenberg paramagnets in a vanishing magnetic field by means of a new iteration
of the non-perturbative SFRG. In contrast to the first formulations of the SFRG as laid
out in Ref. [1], we managed to treat dynamic and static degrees of freedom, using the same
framework without resorting to perturbative expansions in some small parameter. The
major results will be recapitulated in the following paragaphs.

The original version of the SFRG, a pure one-particle irreducible approach, suffered
from a major flaw, which prevented its application to quantum systems. We presented and
discussed the pure ’VLP’-FRG, which was developed by Krieg and Kopietz to eliminate
that issue and relied on an amputation of correlation functions with respect to the flowing
coupling JΛ [1, 2]. Here we explained, based on previous observations, why working with the

corresponding irreducible vertices Φ
(n)
Λ is not recommended for calculations, which are non-

perturbative with respect to loop integrations or J/T . Hence we introduced in Chapter 2 a
hybrid 1-PI / amputated formalism, where static (ω = 0) and dynamic (ω ̸= 0) fluctuations
are treated differently, which is the only natural division in the symmetric phase. A first
naive formulation, using JΛ for the amputation at ω ̸= 0, was shown to be inconvenient
for implementing crucial properties of the solution, in particular concerning the dynamic
susceptibility G(k, iω ̸= 0). Some of these properties are

❼ continuity at vanishing frequency G(k, iω → 0) = G(k), often connected to assuming
ergodicity [28, 72],

❼ a sensible high-temperature limit of G(k, iω) for arbitrary ω, e.g. that it is

– symmetric under J → −J ,

– and ∝ 1/T for T ≫ |J |,

❼ and the positivity of denominators in the dynamic two-point function F (K) in order
to avoid non-physical singularities in the flow.

From this we inferred that a reasonable modification is given by replacing JΛ(k) → G−1
Λ (k)

in the amputation on the dynamic sector [10]. The Legendre-transform of the new hybrid
functional Γ̃Λ[m

c,ηq] was shown to satisfy a modified Wetterich equation (2.88).
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Subsequently, in Chapter 3, we truncated the infinite hierarchy of flow equations for
the 1-line irreducible vertex functions to obtain several closed flow equations, given in
Eq. (3.15) and Eq. (3.22), as well as an integral equation (3.44) for the dynamic two-point
vertex Π̃Λ(k, iω). All these equations were local-in-ω, thus also allowing for a direct solution
in the real frequency-domain. Properly chosen higher order vertex corrections ensured that
these approximations are compatible with the properties listed above, as well as additional
ones like total spin conservation, see Eq. (2.71). For convenience we introduced in Eq. (3.47)
the so-called dissipation energy ∆(k, iω), which was shown to fulfill the same role as the
memory kernel in mode-coupling theory, a non-perturbative method for calculating spin
dynamics [33, 74]. In the following we focused on the integral equation (3.44) and solved
it in different regimes, under basic assumptions for static quantities, namely the static
susceptibility G(k).

We began with the high-temperature limit T ≫ |J | where we obtained

❼ spin diffusion in d > 2, i.e. ∆(k, 0) ∼ k2 for ka ≪ 1, implying a finite diffusion
coefficient D ∝ |J |

p
b′0,

❼ non-analytic corrections to spin diffusion, which can be only dropped in specific scaling
limits and otherwise alter the asymptotic long-time dynamics,

❼ anomalous diffusion in d ≤ 2, so that D = D(ω) either diverges or goes to zero for
ω → 0, depending on the version of our integral equation.

Most of these features were also found in one form or the other in previous theoretical
calculations [74, 80, 85, 95, 109], with diffusion being argued for on the grounds of a hydro-
dynamic picture [35, 41, 77]. The order of magnitude of our estimates for quantities like D
also agreed with the literature and experiments [74, 95, 123]. Some deviations still occured,
like non-analytic terms for small but finite ω which were insufficiently screened for k ̸= 0.
These downsides were attributed to the simple shape of our approximate self-consistency
equation (3.44).

Afterwards we proceeded to the critical region of ferro- and antiferromagnets. Here we
obtained in all physical dimensions results that are consistent with the dynamic scaling
hypothesis, especially above d = 2 [54, 58]. These include

❼ scaling forms for ∆(k, iω) and thus the dynamic structure factor S(k, ω) at small k
and ω,

❼ with the same predicted dynamic index z, connected to the scaling of a critical char-
acteristic frequency ωk ∼ kz and a diverging hydrodynamic relaxation time τ ∼ ξz,

❼ and anomalous temperature-dependences of decay rates near Tc, implied by z devi-
ating from the predictions of van Hove theory [32], for instance D ∼ ξ−1/2 in the 3D
ferromagnet.

The actual line-shapes for S(k, ω), which we have computed for ferromagnets, showed in
d = 3 at T = Tc good agreement with neutron scattering experiments [144, 145] and other
theoretical calculations for ω ≳ ωk [127, 134]. In the opposite low-frequency limit, we ob-
tained a suppression of spectral weight, such that S(k, 0) = 0, which is not exhibited by
other theoretical predictions. A comparison with experimental data [144] suggested that
this is likely an artifact of our approximation, which probably shares its origin with the
deviations found for T = ∞. An analysis for the antiferromagnet, where high-precision spin
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dynamics simulations are available [155], corroborated such a conclusion. In reduced dimen-
sions, where Tc = 0, our results fulfilled, like in the modified spin-wave theory developed by
Takahashi [166], dynamic scaling relations. The low-frequency behavior of S(k, ω) still dif-
fered, although for d ≤ 2 there is no consensus on the actual low-temperature results in the
hydrodynamic regime. A more conspicuous deviation was the absence of sharp excitation
peaks in the T = 0-limit of S(k, ω), similar to the solution of the standard mode-coupling
equations [167].

All in all our approach produced results for the spin dynamics, especially in d = 3, which
included many salient aspects, that were predicted by a plethora of other methods and were
also found in experiments. Note that the pseudofermion method, which is the other recent
FRG approach to quantum spin systems, did not attempt an explicit calculation of spin
dynamics in thermodynamic systems and up to this point limited itself to static quantities
[68, 181, 188].

Finally, in Chapter 4 we took a look at thermodynamic properties, using the same
hybrid formalism. We calculated the static susceptibilityG(k) for non-frustrated Heisenberg
models, by means of several non-perturbative truncations of the flow equations. Running
along similar lines to the work by Krieg and Kopietz [1] we first considered a purely static 1-
PI approach, which is formally exact in the limit S → ∞. We then employed two truncations
of the classical flow equations:

❼ A level-one truncation, where only the static self-energy ΣΛ(k) ≈ ΣΛ is renormalized,

❼ and a level-two truncation, where the flow of the static 4-vertex Γ
(4)
Λ (k1,k2,k3,k4) ≈

Γ
(4)
Λ (0,0,0,0) = UΛ is also taken into account.

The first approximation did not produce a phase transition in d ≤ 4, but we were still
able to obtain estimates for critical temperatures by determining the location of kinks
in the T -dependence of G−1(Q). The accuracy of our estimates was found to be quite
good, in particular for sufficiently large S and for a bandwidth-cutoff for the deformed
coupling (4.9). A true critical point, characterized by G−1(Q) = 0 at T = Tc, emerged
in the next-level approximation for d > 2. In this context a ΛJ-cutoff for integrating the
flow equations produced Tc, that were closest to established benchmark values [179, 182].
However, these classical truncations neglected any quantum effects like different Tc for ferro-
and antiferromagnets. Thus we took the spin dynamics via the leading high-temperature
and frequency approximation for Π̃Λ(k, iω) into account, see Eq. (2.123). The effect of the
quantum diagrams in the flow equations of ΣΛ(Q) and UΛ turned out to be as expected.
Our results for Tc showed a similar, or even superior accuracy compared to the auxiliary
fermion FRG, with the latter method having significantly higher numerical costs [181, 190].

Altogether we have demonstrated in this work that our new SFRG approach is capable
of yielding meaningful results for the static and dynamic properties of quantum spin systems
in the absence of symmetry breaking. Hence we gained confidence in extending our method
to more complicated models, beyond the thoroughly studied cases discussed in this thesis.

5.2 Outlook on applying our approach to frustrated systems

For more complex systems, i.e. those featuring frustrating interactions, the employed ap-
proximations in Chapter 3 and Chapter 4, both for the static and dynamic sector, are
probably insufficient to give sensible results. As already mentioned, results from a second
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order Green’s function theory [66] and our own investigation, with a similar approximation
based on Eq. (4.44) and (4.54) both suggest that a 1/ω2-ansatz may overestimate the effect
of finite frequency terms, leading to a much larger disordered phase in the phase space of
couplings Ji. One can probably trace back these failures to the emerging low frequency
sector 2πnT ≪ |J | on the Matsubara axis. It is unclear whether generic approximations
like an extrapolated high-frequency series are able to accurately represent the effect of quan-
tum fluctuations on the phase diagram. Moreover it is quite doubtful that they produce
satisfying results for the dynamic structure factor S(k, ω) at low temperatures. As an ex-
ample, even for a non-frustrated square-lattice antiferromagnet, the system is believed to
host high-frequency continua above sharp single magnon peaks in its scattering spectrum
[191, 192]. Such structures can not be generated by the more sophisticated three-pole ansatz
(3.90), which interpolates between a purely relaxational, diffusive regime, as found in para-
magnets at high temperatures and weakly interacting quasiparticles at low temperatures
[99, 98]. Note that the self-consistency equation (3.44) derived by us for Π̃Λ(k, iω), and
solved with known thermodynamics, is, besides overestimating the damping in ordered,
low-dimensionsal systems [117, 167, 170], inconsistent with a non-singular G(k) for T → 0
due to the absence of frequency sums. This is also an issue within the usual mode-coupling
equations that make use of the classical fluctuation-dissipation theorem (3.150) [128]. In
our framework this amounts to neglecting dynamic contributions in the relation between
the Matsubara function G(q, iν) and the static structure factor ⟨S(q)S(−q)⟩ in Eq. (4.55).

For the static quantities, i.e. the spin self-energy ΣΛ(k) and the effective interaction Γ̃
(4)
Λ ,

the neglect of a momentum dependence is certainly a rough approximation, that is hard to
justify in the presence of a strong competition between different near-degenerate ordering
instabilities Q1, Q2, ... in the Brillouin zone. Thus one should take at least the momentum
dependence of the frequency sums in the flow equation (2.111) of ΣΛ(k) into account. Note

that the diagram ∼ (Γ̃
(3)
Λ )2 in (2.111) has to change its sign at low temperatures, if one

assumes it to be responsible for the destruction of magnetic order via a finite gap ∼ O(|J |).
As observed in Sec. 4.2 for sufficiently high temperatures this diagram generates a negative
contribution to the flow of ΣΛ(Q), i.e. at typical antiferromagnetic ordering vectors.

Turning to the four-spin vertex, a dependence on momentum may already be necessary
on the classical level, albeit it should not contain more than one independent momentum,
as otherwise computational costs increase rapidly. That may be achieved by neglecting
the mixing of three different channels, i.e. the dependence of the quadratic diagrams ∼
(Γ

(4)
Λ )2 on the transfer momenta qi + qj . However it is difficult to assess the reliability of

such an approximation. Note that the total neglect of any but one channel, in contrast
to the symmetry-broken phase [8], cannot be justified, i.e. all these contributions have
to be treated on an equal footing. Furthermore, some properties in the classical limit
S → ∞ may be harder to conserve with an explicit k-dependence. These are for instance
equal thermodynamics on bipartite lattices for different signs of J and the topology of the
phase diagram for frustrated systems, which may be altered, and thus contradict the result
of minimizing the total energy. The fulfillment of sum rules, like in Eq. (4.44), is also
highly relevant for systems which do not order at finite temperature. This was was already
discussed in the purely classical case, and may probably help in preserving some of the

known features in the S → ∞-limit. The presence of quantum diagrams in the flow of Γ̃
(4)
Λ

is an additional complication, since the loop integrations acquire themselves more intricate
dependences on transfer momentum. One example is the diagram with four powers of the
effective interaction FΛ, which is a function of two single and one combined momentum. In
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such a situation it may be prudent to ignore these terms even for finite S.
Note that studying the four-point vertex and thus the corresponding four-spin correla-

tion functions would be helpful in identifying weak order, that is for instance induced by
a pattern of dimerized spins, which is encoded in an enhanced response function of the
respective, composite operators [68]. Otherwise one can only extract information about the
two-spin correlation function, because the four-point vertex will not have a meaningful limit
for T → 0. This also includes (partially) dynamic three and four-point vertices, which were
left at their initial values in Chapter 4 and are all required for computation of four-point
correlation functions. In this context one should also note that one cannot conclusively
determine, even in the case of a singular order parameter susceptibility G(Q), whether the
system exhibits true long range order at T = 0. In fact a spin liquid state can still be
gapless [193, 194, 195], implying an infinite correlation length ξ = ∞. As a consequence
spatial spin-spin correlations ⟨SrS0⟩ decay as a power-law and one expects that G(k) di-
verges somewhere in the Brillouin zone, i.e. at one or several of the ordering vectors Qi

[194, 195]. A more thoroughly studied example of such systems are half-integer antifer-
romagnetic chains, which are also gapless, but do not not exhibit true long-range order,
leading to the same behavior of G(k) and ⟨SrS0⟩ [164, 196, 197]. A method relying solely
on the behavior of the susceptibility in the paramagnetic phase is thus insufficient. At that
level one can only make definite statements about the absence of order for a truly gapped
system with a finite zero-temperature correlation range and static susceptibility G(k), as is
the case for the aforementioned dimerized order [193, 194, 195].

All in all, it would certainly be a great accomplishment if one were able to predict
the ground states of frustrated spin models with relatively modest computational efforts,
compared to e.g. the PF-FRG method [68] or its more recent Majorana implementation
[190]. In general our SFRG approach seems to be physically more transparent, since it
works directly with the physical spin operators. It therefore avoids unphysical, i.e. spinless
(pseudofermion), or redundant (Majorana) sectors in the Hilbert space. The latter redun-
dancy was for instance shown to lead to complications in flows at too low temperatures
[188, 189], complementary to the thermal problems in the original PF-FRG [69]. Higher
order vertices and the corresponding correlations, necessary for identifying different disor-
dered ground states, are also more accessible in our approach. Furthermore different S are
easily incorporated via the initial values for the vertices, whereas methods working with
auxiliary operators require more effort for implementing S > 1/2. However, our initial
condition is also more complex than for these methods, because the hybrid functional for
an isolated spin Γ̃Λ0 [m

c,ηq] contains infinitely many terms in its series expansion. One
can contrast this with the bare auxiliary fermion actions, which do not go beyond fourth
order in the fermion field [68, 189]. Furthermore, we employ an interaction cutoff, where in
particular the ΛJ-scheme does not have an interpretation as an UV cutoff for coarse-grained
degrees of freedom in the RG sense. On the other hand, the auxiliary fermion methods work
with a frequency cutoff in the Gaussian propagator of the fermion field [68, 189]. Finding
a suitable approximation for lower temperatures and/or frustrated systems may thus prove
to be more challenging in our context. In the pseudofermion or Majorana framework one
applies for instance fairly generic truncation schemes for fermionic systems with a two-body
interaction, regardless of the actual configuration of exchange interactions [68, 75, 76].

Note that there is conflicting evidence on the question, whether the results from PF-
FRG for thermodynamics, obtained within a Katanin truncation, are always converged.
For the J1 − J2 model on a square lattice this seems to be the case [68, 184], in agreement
with other methods [193, 194]. On the other hand, for the J1 − J2 − J3 model in d = 3
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multi-loop corrections reduce significantly the extent of an intermediate paramagnetic phase
in parameter space [185, 188] predicted within the standard truncation in Ref. [181]. The
multi-loop result shows then better agreement with an independent high temperature series
analysis [198]. It remains to be seen, whether our method leads to outcomes that are
sufficiently robust with respect to higher order corrections, whatever the latter may entail.
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Appendix A

Derivation of initial conditions and
relations between vertices

The following appendix is mostly concerned with the formally exact hierarchy of equations
of motion for correlation functions and vertices, that is employed for various purposes in
this thesis. For instance we can use it to determine the initial condition of the correlation
functions G(n) and corresponding irreducible vertices Γ̃(n), which is needed before solving
explicitly the flow equations. As already stated, at the beginning of our flow, the model
is given by a set of N decoupled, localized spins, with an optional external field, coupling
to them via a Zeeman term (1.14). Given that our investigations are primarily concerned
with paramagnets we will focus on the zero-field limit H = 0, in order to exclude any
explicit symmetry breaking in advance. For the case of H ̸= 0 we have already calcu-

lated the non-interacting correlation functions G
(n)
Λ0

[7], also known as generalized blocks
[2, 5]. The quantities for H = 0 may thus be obtained by taking the appropriate zero-
field limits. While this is a legitimate procedure, we will not take this path. Firstly, the
finite field correlations, are most conveniently formulated in the spherical basis, which in
the zero-field limit introduces somewhat artificial separations between degrees of freedom,
compared to the Cartesian basis where all three directions are equivalent. One example
is the four-point vertex, which in the Cartesian basis has a mixed and purely longitudinal
component, while in the spherical basis, one seemingly has to deal with three different ver-
tices Γ̃++−−

Λ , Γ̃+−zz
Λ , Γ̃zzzz

Λ . Secondly, by taking the H → 0 limit, one has to account for
a plethora of frequency combinations, that lead to different outcomes via δωi,..., compared
to continuous expressions, induced by a finite H. Instead, we will, as hinted, solve the
equations of motion for the n-point correlation functions in the free limit of an isolated spin
without external field, i.e. H = 0, using static spin correlations as a boundary condition.

A.1 Equations of Motion

Equations of motions for connected correlation functions, as outlined in [7], can be derived
with the help of generating equations. One starts with the imaginary time-evolution of a
spin operator in the Heisenberg picture which is given by

∂τSα(τ) = [H(h; τ), Sα](τ). (A.1)

Here H = HHeisenberg − (h, S) is the isotropic Heisenberg Hamiltonian in presence of finite
space-time dependent source fields h. The commutator with the source-term (h, S), defined
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BETWEEN VERTICES

in Eq. (2.10), yields a coupling to fields and operators perpendicular to the α-direction,

[(h, S), Sα
i (τ)] = −iϵαβγhβi (τ)S

γ
i (τ), (A.2)

and the coupling to the isotropic Heisenberg Hamiltonian generates a quadratic, non-local
term

[HHeisenberg, S
α
i (τ)] = i

X
j

JijϵαβγS
β
i (τ)S

γ
j (τ). (A.3)

Taking the time-ordered expectation value on both sides of (A.1), one can express those
through functional derivatives of G[h] and thus arrives at the following generating equation

∂τ
δG

δhαi (τ)
= −iϵαβγ

δG
δhβi (τ)

hγi (τ) + i
X
j

Jijϵαβγ

h δG
δhβi (τ)

δG
δhγj (τ)

+
δ2G

δhβi (τ)δh
γ
j (τ)

i
.

(A.4)

By functionally differentiating (A.4) with respect to the source fields one can therefore
generate first order differential equations for arbitrary connected correlation functions. In
K-representation the generating equation (A.4) becomes purely algebraic

ω
δG

δhα(K)
= −T

Z
q

X
ν

ϵαβγ
δG

δhβ(Q)
hγ(Q−K) +

Tϵαβγ
2

Z
q

X
ν

[J(q)− J(q − k)]

×
h δG
δhβ(K −Q)

δG
δhγ(Q)

+
δ2G

δhβ(K −Q)δhγ(Q)

i
.

(A.5)

Note that the interacting terms vanish for k → 0, which is a consequence of the total spin
being a constant of motion, i.e. [HHeisenberg, S(0)] = 0. Differentiating (A.5) once and
setting h = 0 one obtains for instance the equation of motion for the two-point function

ωG(K) =

Z
Q
[J(q)− J(q + k)]Gxyz(K,−K −Q,Q), (A.6)

which implies its vanishing for k = 0 (2.71). Taking another functional derivative of (A.5)
one extracts one of the equations of motion (3.33) for the three-point function Gxyz. For
correlations between three and more spin operators the terms in the upper line of (A.5),
remain finite even for a vanishing h and J , i.e. a completely free model. Their origin lies
in the non-trivial time-ordering, which creates different arrangements of non-commuting
operators. Only lower order correlations contribute to these terms, allowing thus for a
recursive solution of the free problem, once the boundary conditions at vanishing frequencies
are fixed. The contribution in (A.5), which is proportional to two powers of the first
derivative δhG, generates in the physical limit a purely local term, without frequency and
momentum sum, due to conservation of total energy and momentum. It contains then two
correlation functions, which have, either less or the same amount of legs as the correlation
function on the left-hand side. This implies that solely in its presence the hierarchy of
equations of motion is exactly soluble, which is also known as the tree approximation [7]. It is
equivalent to the 0th order result by Vaks, Larkin and Pikin in their perturbation theory [5,
6], where one expands interaction-irreducible vertices Φ(n) in loop integrals. In fact we will
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demonstrate that by switching to their parametrization these terms are entirely eliminated
in the dynamic equations of the vertices, consistent with the infinite resummation in the tree
approximation that is performed by taking the non-interacting VLP-vertices. Accordingly,
the term with the second functional derivative in (A.5) is the loop contribution, because
it contains an explicit integration and furthermore couples to a higher order-correlation
function, thus making the solution of this hierarchy highly non-trivial. Note that a full
determination of an n-point function with n − 1 independent time arguments requires the
same amount of first order equations or more general time derivatives, together with a
boundary condition for itself or its partial derivatives on appropriate manifolds at fixed
τi. The multitude of equations gives rise to consistency conditions, because by virtue of
singling out a particular time or frequency τi, ωi, one obtains a right-hand side, which is not
symmetric with respect to permutations Ki ↔ Kj . Hence one is obliged to reconcile both
right-hand sides after division with ωi, implying therefore additional constraints concerning
the correlations which appear in this equation of motion.

A.2 Initial condition

For a connected correlation function G(m+n+l) = G(m,n,l), containing m×Sx, n×Sy, l×Sz,
one equation of motion reads at vanishing source field

ω1G
x1...xmy1...ynz1...zl(K1...Km;K ′

1...K
′
n;K

′′
1 ...K

′′
l ) =

nX
ν=1

G(m−1,n−1,l+1)(K2...Km;K ′
1...K

′
n;

K ′′
1 ...K

′′
l ,K1 +K ′

ν)−
lX

ν=1

G(m−1,n+1,l−1)(K2...Km;K ′
1...K

′
n,K1 +K ′′

ν ;K
′′
1 ...K

′′
l )

+O(J). (A.7)

Note that we did not explicitly write out the contribution, containing the exchange coupling,
as it is irrelevant for the present purpose of calculating the initial condition. The free
equations of motion feature only a frequency dependence and can be solved recursively for all
correlation functions, which contain at least two non-vanishing frequencies in its arguments.
It resembles a Wick-Theorem, with the major difference, that a single contraction of two
operators, producing a commutator, generates again an operator and not a number [5].

The static components have to be obtained by other means. They can be all related to
odd derivatives of the spin-S Brillouin function b(βH) at vanishing external field H. For
the purely longitudinal components G(0,0,2l) = G(0,2l,0) = G(2l,0,0) one simply has, due to
the absence of non-commuting operators,

G
(0,0,2l)
0 (ω1, ...ω2l) = β2l−1

2lY
j=1

δωj ,0b
(2l−1)
0 , (A.8)

e.g.
Gzz

0 (0, 0) = βb′0 = G0, (A.9)

Gzzzz
0 (0, 0, 0, 0) = β3b

′′′
0 , (A.10)

Gzzzzzz
0 (0, 0, 0, 0, 0, 0) = β5b

(5)
0 . (A.11)

For static correlations, involving different spin operators, for instance Gxxyy, one also finds
that they are proportional to these derivatives, albeit with prefactors that are smaller than
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unity. One way to extract these prefactors, is given by taking a magnetic field in an arbitrary

direction, thus replacing H → |H| =
q
H2

x +H2
y +H2

z in the Brillouin function. One

can then generate mixed connected correlations by differentiating with respect to different
components of H, since one can interpret the Zeeman-term as a coupling to static source
fields. One obtains

Gxxyy
0 (0, 0, 0, 0) =

β3b′′′0
3

, (A.12)

Gxxyyzz
0 (0, 0, 0, 0) =

β5b
(5)
0

15
, Gxxxxyy

0 (0, 0, 0, 0) =
β5b

(5)
0

5
, (A.13)

while static correlations with an odd number of legs are zero, as expected with an intact
symmetry. The corresponding static vertices are therefore given by

Σ0 = G−1
0 = (βb′0)

−1, (A.14)

Γ̃ααγγ
Λ0

(0, 0, 0, 0) = −[A
(2)
0 (0)]−4Aααγγ

0 (0, 0, 0, 0) =
|b′′′0 |

3β(b′0)
4
, (A.15)

Γ̃ααγγ
Λ0

(0, 0, 0, 0) = −[A
(2)
0 (0)]−4Aαααα

0 (0, 0, 0, 0) =
|b′′′0 |
β(b′0)

4
, (A.16)

Γ̃ααγγσσ
Λ0

(0, 0, 0, 0, 0, 0) = − β

15(b′0)
6
b(5) − 10

(b
′′′
0 )

2

b′0
=

Γ̃ααααγγ
Λ0

(0, 0, 0, 0, 0, 0)

3
. (A.17)

The equations for the three-point functions are

ωGxyz
0 (ω,−ω − ν, ν) = Gzz

0 (ν)−Gyy
0 (ω + ν), (A.18)

νGxyz
0 (ω,−ω − ν, ν) = Gyy

0 (ω + ν)−Gxx
0 (ν), (A.19)

from which we read off

Gxyz
0 (ω,−ω − ν, ν) =

βb′0
ω

(δν,0 − δν,−ω)−
βb′0
ν
δω,0, (A.20)

i.e. a totally antisymmetric form Gαβγ
0 (ω,−ω − ν, ν) = ϵαβγG

xyz
0 (ω,−ω − ν, ν). Note that

there are no free and non-zero correlation functions without any constraints regarding the
combinations of frequencies, which is a consequence of the absent time-evolution. The initial
3-point vertex in our hybrid formalism is thus

Γ̃αβγ
Λ0

(ω,−ω, 0) = −[Ã
(2)
0 (iω)]−2[Ã

(2)
0 (0)]−1Ãxyz

0 (ω,−ω, 0) = −G−1
0 (0)Gxyz

0 (ω,−ω, 0)

= −
ϵαβγ
ω

, (A.21)

where we used that
Ã

(2)
0 (0) = G0 = −[Ã

(2)
0 (iω ̸= 0)]−1. (A.22)

For the four-point correlation functions we first check that

ω1G
xxyy
0 (ω1, ω2, ω3,−ω1−ω2−ω3) = Gxyz

0 (ω2,−ω1−ω2−ω3, ω1+ω3)+G
xyz
0 (ω2, ω3,−ω2−ω3),

(A.23)
which can be non-zero, only if one of the frequencies in the three-point correlation functions
on the right-hand side is zero. This means that we either have two pairs of frequencies
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ω,−ω and ν,−ν, or that one of the frequencies is zero with arbitary, energy-conserving
combinations for the three remaining ones. The respective configurations are

ωGxxyy
0 (ω,−ω, 0, 0) = 2Gxyz

0 (−ω, 0, ω)

→ Gxxyy
0 (ω,−ω, 0, 0) = 2βb′0

ω2
, (A.24)

ωGxxyy
0 (ω, 0,−ω, 0) = Gxyz

0 (0,−ω, ω) +Gxyz
0 (0, 0, 0)

→ Gxxyy
0 (ω, 0,−ω, 0) = −βb

′
0

ω2
, (A.25)

ωGxxyy
0 (ω,−ω, ω,−ω) = Gxyz

0 (−ω,−ω, 2ω) +Gxyz
0 (−ω, ω, 0)

→ Gxxyy
0 (ω, 0,−ω, 0) = −βb

′
0

ω2
, (A.26)

ωGxxyy
0 (ω,−ω, ν,−ν) = Gxyz

0 (−ω, ω + ν,−ν) + (ν ↔ −ν), |ν| ≠ |ω|, 0
→ Gxxyy

0 (ω,−ω, ν,−ν) = 0, (A.27)

ωGxxyy
0 (ω, ν,−ω,−ν) = Gxyz

0 (ν,−ν, 0) +Gxyz
0 (ν,−ω, ω − ν), |ν| ≠ |ω|, 0

→ Gxxyy
0 (ω, ν, ω,−ν) = βb′0

νω
, (A.28)

ωGxxyy
0 (ω, ν,−ν − ω, 0) = Gxyz

0 (ν,−ν, 0) +Gxyz
0 (ν,−ω − ν, ω), ν ̸= 0, −ω

→ Gxxyy
0 (ω, ν,−ν − ω, 0) =

βb′0
ων

. (A.29)

All other 4-point correlation functions are zero. Note also that Gααγγ(ω1, ω2, ω3, ω4) does
not depend on the flavors α ̸= γ, meaning that we have only one mixed 4-vertex. Other 4-
vertices, featuring unpaired spin operators, are inconsistent with spin-rotational invariance
and thus also zero. The corresponding dynamic 4-point vertices are

Γ̃ααγγ
Λ0

(ω,−ω, 0, 0) = −[Ã
(2)
Λ0

(iω)]−2[Ã
(2)
Λ0

(0)]−2Ãααγγ
Λ0

(ω,−ω, 0, 0)

+2Γxyz
Λ0

(ω, 0,−ω)Γxyz
Λ0

(−ω, 0, ω)Ã(2)
Λ0

(iω) = 0

= Γααγγ
Λ0

(ω, 0,−ω, 0), (A.30)

Γ̃ααγγ
Λ0

(ω, 0,−ω, 0) = −[Ã
(2)
Λ0

(iω)]−2[Ã
(2)
Λ0

(0)]−2Ãααγγ
Λ0

(ω, 0,−ω, 0) + F
(2)
Λ0

(iω)[Γxyz
Λ0

(ω,−ω, 0)]2

= 0, (A.31)

Γ̃ααγγ
Λ0

(ω,−ω, ω,−ω) = −[Ã
(2)
Λ0

(iω)]−2[Ã
(2)
Λ0

(0)]−2F xxyy
Λ0

(ω,−ω,−ω, ω)

+Γxyz
Λ0

(ω,−ω, 0)Γxyz
Λ0

(−ω, ω, 0)Ã(2)
Λ0

(0) = 0

= Γααγγ
Λ0

(ω, ω,−ω,−ω), (A.32)

Γααγγ
Λ0

(ω,−ω, ν,−ν) = 0, |ν| ≠ |ω|, (A.33)

157



APPENDIX A. DERIVATION OF INITIAL CONDITIONS AND RELATIONS
BETWEEN VERTICES

Γ̃ααγγ
Λ0

(ω, ν,−ω,−ν) = −[A
(2)
Λ0

(iω)]−2[A
(2)
Λ0

(iν)]−2Aααγγ
Λ0

(ω, ν,−ω,−ν)

+Γxyz
Λ0

(ν,−ν, 0)Γxyz
Λ0

(ω,−ω, 0)A(2)
Λ0

(0) = 0, (A.34)

Γ̃ααγγ
Λ0

(ω, ν,−ν − ω, 0) = −[A
(2)
Λ0

(iω)A
(2)
Λ0

(iν)A
(2)
Λ0

(iω + iν)A
(2)
Λ0

(0)]−1Aααγγ
Λ0

(ω, ν,−ν − ω, 0)

=
1

νω
, ω, ν, ω + ν ̸= 0. (A.35)

The five-point and six-point correlation functions will be only considered in the purely
static configuration or the combination, where two frequencies are finite, since all other do
not appear in the flow equations of interest. For the mixed five-point vertex we have

ωGxyzzz
0 (ω,−ω, 0, 0, 0) = Gzzzz(0, 0, 0, 0)− 3Gyyzz(ω,−ω, 0, 0)

→ Gxyzzz
0 (ω,−ω, 0, 0, 0) = b′′′0

ω
− 6b′0
ω3

, (A.36)

ωGxyzzz
0 (ω, 0,−ω, 0, 0) = Gzzzz(ω,−ω, 0, 0)− 2Gyyzz(ω, 0,−ω, 0)−Gyyzz(0, 0, 0, 0)

→ Gxyzzz
0 (ω, 0,−ω, 0, 0) = − b

′′′
0

3ω
− 2b′0
ω3

, (A.37)

where we we made use of Gαγσσσ = ϵαγσG
xyzzz, see also the next section. Combinations

involving an even number of spin operators of a given component are thus zero. After
inverting the tree expansion one obtains for the corresponding vertices

Γxyzzz
0 (ω,−ω, 0, 0, 0) = −G−3

0 Gxyzzz
0 (ω,−ω, 0, 0, 0) + Γzzzz

0 (0, 0, 0, 0)G0Γ
xyz
0 (0,−ω, ω)

− 6(−G0)
−2[Γxyz

0 (ω,−ω, 0)]3

= 0, (A.38)

Γzzzyx
0 (0, 0,−ω, 0, ω) = −G−3

0 Gxyzzz
0 (ω, 0,−ω, 0, 0) + Γyyzz

0 (0, 0, 0, 0)G0Γ
xyz
0 (ω, 0,−ω)

− 2(−G0)
−2[Γxyz

0 (ω,−ω, 0)]3

= 0. (A.39)

The six-point functions of relevance are

ωGxxzzzz
0 (ω,−ω, 0, 0, 0, 0) = −4Gxyzzz

0 (−ω, ω, 0, 0, 0, 0)

=
4b′′′0
ω

− 6b′0
ω3

, (A.40)

ωGxxxxzz
0 (ω,−ω, 0, 0, 0, 0) = −2Gxxxyz

0 (−ω, 0, 0, ω, 0)

=
2b′′′0
3ω

− 4b′0
ω3

, (A.41)

Gxxyyzz
0 (ω,−ω, 0, 0, 0, 0) = 2Gxyzzz

0 (−ω, 0, ω, 0, 0)− 2Gxyyyz
0 (−ω, 0, ω, 0, 0)

=
4b′′′0
3ω

− 8b′0
ω3

. (A.42)
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The respective vertices are given by

Γ̃xxzzzz
0 (ω,−ω, 0, 0, 0, 0) =−G−4

0 Gzzzzxx
0 (0, 0, 0, 0, ω,−ω)

+ 8Γzzzz
0 (0, 0, 0, 0)[Γxyz

0 (ω,−ω, 0)]2

+ 24[Γxyz
0 (0,−ω, ω)]4(−G0)

−3,

= − 4|b′′′0 |
β(b′0)

4ω2
, (A.43)

Γ̃xxxxzz
0 (ω,−ω, 0, 0, 0, 0) = −G−4

0 Gxxxxzz
0 (ω,−ω, 0, 0, 0, 0)

+ 4Γxxzz
0 (0, 0, 0, 0)[Γxyz

0 (ω,−ω, 0)]2

+ 4(−G0)
−3[Γxyz

0 (ω,−ω, 0)]4

= − 2|b′′′0 |
3β(b′0)

4ω2
, (A.44)

Γ̃xxyyzz
0 (ω,−ω, 0, 0, 0, 0) =−G−4

0 Gxxyyzz
0 (ω,−ω, 0, 0, 0, 0)

+ 8Γxxyy
0 (0, 0, 0, 0)[Γxyz

0 (ω,−ω, 0)]2

+ 8(−G0)
−3[Γxyz

0 (ω,−ω, 0)]4

= − 4|b′′′0 |
3β(b′0)

4ω2
. (A.45)

Note the frequent cancellations of terms after applying the tree expansion, such that most
irreducible vertices are zero, in contrast to the corresponding n-point functions. These can
be attributed to the fact that a Wick-contraction is equivalent to multiplying a lower order
vertex with a non-interacting mixed 3-vertex ∼ 1

ω . Such terms occur in the tree expansion
too and have a sign opposite to the contributions in the free correlation functions, thus often
cancelling them, due to the same combinatorics. For the six-point vertices this does not
work out entirely, because there are more tree-terms than Wick-contractions, which produce
a finite residue. Conversely for some vertices one cannot write down additional trees, due
to the absence of a purely quantum three-point vertex, for example the four-point vertex
Γ̃ααγγ
Λ0

(ω, ν,−ν − ω, 0).
Recently Halbinger et al. presented a new method for calculating time-ordered cor-

relation functions [199, 200]. It is based on the spectral representation of G
(n)
Λ and was

applied to the atomic limit of the Hubbard model and the case of an isolated spin as well.
A potential advantage compared to our method is the fact, that it does not rely on a suffi-
ciently simple structure of the equations of motion as made use of in this section but only
on knowledge of the eigenspectrum [199, 200].

A.3 Relations arising from symmetries

We can use the equations of motion to read off symmetry relations between the vertex
functions, that are a consequence of spin-rotational invariance, some of which were already
observed in the initial condition. Quite generally, setting both the momentum and frequency
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to zero in the generalized equation of motion (A.5) to zero and taking appropriate functional
derivatives one finds

nX
ν=1

G(m−1,n−1,l+1)(K2...Km;K ′
1...K

′
n;K

′′
1 ...K

′′
l ,K

′
ν)

=
lX

ν=1

G(m−1,n+1,l−1)(K2...Km;K ′
1...K

′
n,K

′′
ν ;K

′′
1 ...K

′′
l ).

(A.46)

This is a relation between lower order correlations, that appeared in the equation of a
correlation function with one more leg, see Eq. (A.7). Here we also used that the O(J)-
contributions vanish for k → 0 due to total spin conservation. Using an appropriate initial
correlation function, for which the equation of motion is formulated, we can therefore obtain
such relations. From the dynamics of the 3-point function Gxyz we read off

Gαα(K) = Gγγ(K). (A.47)

Similarly we obtain from the equation of motion for the mixed 4-point function

ω4G
yyxx(K1,K2,K3, ω4) = Gyzx(K1,K2 + ω4,K3) +Gzyx(K1 + ω4,K2,K3), (A.48)

i.e.
Gyzx(K1,K2,K3) = −Gzyx(K1,K2,K3). (A.49)

From that one can infer, by considering all possible combinations,

Gαγσ(K1,K2,K3) = ϵαγσG
xyz(K1,K2,K3), (A.50)

which leads to the only possible rotationally invariant product of three fields ∼ h1 ·(h2×h3)
in the functional series expansion of G[h]. For the 4-point function one first considers the
equation for νGxyzzz(K1,K2, ν,K3,K4), which implies

Gxxyy(K1,K2,K3,K4) = Gxxzz(K1,K2,K3,K4), (A.51)

i.e. that Gααγγ(K1,K2,K3,K4) does not depend on the explicit values of α, γ, in accordance
with isotropy. Furthermore the EoM of Gxyzzz(ν,K1,K2,K3,K4) with respect to ν, yields
the following relation

Gαααα(K1,K2,K3,K4) = SK2;K3,K4G
ααγγ(K1,K2,K3,K4), (A.52)

where S is the symmetrization operator introduced in Eq. (2.105). Thus one only has to
deal with one mixed 4-point function. The above relations imply fourth order contributions
of the type (h1 · h2)(h3 · h4) in the expansion of G[h], again fully conforming with spin-
rotational invariance. Progressing with the 5-point function, we find, based on equations of
the type νGxxyyzz(ν,K1,K2,K3,K4,K5) = ..., i.e. by placing ν in each spin operator, that

Gαγσσσ(K1,K2,K3,K4,K5) = ϵαγσG
xyzzz(K1,K2,K3,K4,K5), (A.53)

thus corresponding to rotationally invariant combinations of the form h1 ·(h2×h3)(h4 ·h5).
In complete analogy to the longitudinal 4-point function one obtains for the longitudinal
six-point function, by taking a look at the equation for νGxyzzzzz(ν,K1,K2,K3,K4,K5,K6)

Gαααααα(K1,K2,K3,K4,K5,K6) = SK2;K3,K4,K5,K6G
γγαααα(K1,K2,K3,K4,K5,K6),

(A.54)
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where we already used that Gγγαααα does not depend on the actual values of γ ̸= α. By
considering νGxxxyzzz(K1,K2,K3,K4,K5,K6, ν) we also find

Gααααγγ(K1,K2,K3,K4,K5,K6) = SK2;K3,K4G
xxyyzz(K1,K2,K3,K4,K5,K6), (A.55)

implying that one only needs Gxxyyzz. The purely longitudinal correlation function can
then be written as

Gαααααα(K1,K2,K3,K4,K5,K6) = SK2;K3,K4,K5,K6SK4;K5,K6G
xxyyzz(K1,K2,K3,K4,K5,K6).

(A.56)
Note that as relations, which simply arise from spin-rotational invariance, the above equa-
tions can be directly transferred to irreducible vertices Γ̃(n). One can check their validity
explicitly by inserting the tree expansion of the correlation function on both sides.

A.4 Hierarchy for interaction-irreducible vertices

We want to present an alternative way of writing the hierarchy of dynamic equations, by

expressing the connected correlation functions G
(n)
Λ via the interaction-irreducible vertices

Φ
(n)
Λ , that are generated by the VLP-functional ΦΛ[η]. For this purpose, we have to write

the expectation values of the spin operators and the magnetic sources in terms of the new
degrees of freedom η, i.e.

⟨T S ⟩ = −J−1
Λ η − s = −J−1

Λ η − δΦΛ

δη
−RΛη, (A.57)

⟨T (SβSγ)⟩ = [J−1
Λ F

(2)
Λ J−1

Λ ]βγ + [J−1
Λ ]βγ + ⟨T (Sβ)⟩⟨T (Sγ)⟩, (A.58)

h = −JΛs = −JΛ
δΦΛ

δη
+RΛη , (A.59)

F
(2)
Λ = [Φ

(2)
Λ +RΛ]

−1 = R−1
Λ [1+Φ

(2)
Λ R−1

Λ ]−1, (A.60)

where RΛ = −J−1
Λ . The linear relation between ⟨T (S)⟩ and δΦΛ

δη in Eq. (A.57) allows
to use (A.4) directly as a generating equation after plugging in the above expressions.
Thus by differentiating both sides with respect to η or applying a vertex expansion with
a subsequent comparison of properly symmetrized coefficients, one can obtain equations of

motion for all Φ
(n)
Λ . Explicit insertion yields that some contributions from the magnetic

source term compensate the finite interaction tree level part in (A.4), which is consistent
with the irreducible nature of the VLP-vertices. One obtains from (A.4) in space-time

i∂τ
δΦΛ

δηαi (τ)
= −ϵαβγηβi (τ)

δΦΛ

δηγi (τ)
− ϵαβγ [J

−1
Λ F

(2)
Λ ]βγ,ii(τ, τ)

(A.61)

and thus in K-representation

ω
δΦΛ

δϕαK
= −ϵαβγ

Z
Q
ηβK−Q

δΦΛ

δηγQ
+ ϵαβγ

Z
Q
[1−Φ

(2)
Λ JΛ]

−1
βγ (Q,K −Q).

(A.62)
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As already stated we have eliminated the tree-contributions, implied by J , in these new

equations of motion, consistent with Φ
(n)
Λ being one-interaction line irreducible. This leaves

us with the Spin-Wick-theorem contributions, also present in the free case, and terms which
contain one explicit loop integration. Setting J = 0 one therefore obtains free correlation

functions, i.e. generalized blocks, for the Φ
(n)
Λ . The diagrammatic structure of the one-

loop term is somewhat similar to the one in the Wetterich equation, but the diagonal
two-point vertex ∂ΛRΛ is replaced by a chiral three-point vertex, with a marked frequency
and momentum, due to the applied derivative. Moreover the functional derivative on the
left-hand side implies that one will only encounter vertices with at most one more leg in
the loops. Taking another functional derivative we obtain the equation of motion of the
dynamic polarization ΠΛ(K)

ωΠΛ(K) =

Z
Q
[JΛ(k+ q)− JΛ(q)]LΛ(Q)LΛ(K +Q)Φxyz

Λ (Q,−Q−K,K), (A.63)

which vanishes for k → 0, as expected from the conserivation of the total spin. Here we
have introduced

LΛ(K) =
1

1 + ΠΛ(K)JΛ(k)
= Π−1

Λ (K)GΛ(K) = −J−1
Λ (k)FΛ(K). (A.64)

Note that the subtracted polarization Π̃Λ(K) = [Π−1
Λ (K)− ΣΛ(k)]

−1, that is generated by
the hybrid functional Γ̃Λ[m

c,ηq], satisfies an analogous equation

ωΠ̃Λ(K) =

Z
Q
[JΛ(k+ q)− JΛ(q)]L̃Λ(Q)L̃Λ(K +Q)Γ̃xyz

Λ (Q,−Q−K,K), (A.65)

where

L̃Λ(k, iω) = δω,0GΛ(k) +
1− δω,0

1 + Π̃Λ(K)G−1
Λ (k)

= δω,0Σ
−1
Λ (k)LΛ(k) +

(1− δω,0)LΛ(K)

1 + Π̃Λ(K)ΣΛ(k)
.

(A.66)
Furthermore we used for the hybrid three-point vertex

Γ̃xyz
Λ (Q,−Q−K,K) = XΛ(Q)XΛ(K)XΛ(Q+K)Φxyz

Λ (Q,−Q−K,K), (A.67)

where we defined XΛ(K) = δω,0ΣΛ(k)+(1−δω,0)[1+Π̃Λ(K)ΣΛ(k)]. However, the structural
similarity observed here is a coincidence. For vertices with more than two legs, additional
factors ∝ [1 + ΣΛ(k)Π̃Λ(K)], ΣΛ(k) are generated in their equations of motion, compared
to the pure interaction-irreducible parametrization. The one-J-irreducible three-vertex sat-
isfies for instance

ω′′Φxyz
Λ (K ′′, P,Q) = ΠΛ(P )−ΠΛ(Q) +

Z
K
[JΛ(k)− JΛ(k

′′ − k)]LΛ(K)LΛ(K
′′ −K)

×Φzzyy
Λ (K,Q,K ′′ −K,P ) +

Z
K
[JΛ(k)− JΛ(k

′′ − k)]LΛ(K)

×LΛ(K
′′ −K)LΛ(P +K)JΛ(p+ k)Φxyz

Λ (P +K,K ′′ −K,Q)

×Φxyz
Λ (−P −K,P,K).

(A.68)

In contrast to Π̃Λ the equations for Γ̃xyz
Λ will contain the aforementioned factors. Nev-

ertheless one can for instance infer that Γ̃xyz at all momenta vanishing is equivalent to
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its non-interacting expression. Taking a look at Eq. (A.65) for the subtracted polariza-
tion, we obtain from approximating Γ̃xyz

Λ by its non-interacting value ∝ ω−1 and L̃Λ(K) ≈
δω,0GΛ(k) + (1− δω,0), the following expression

Π̃Λ(K) =
2T

ω2

Z
q
JΛ(q + k)− JΛ(q) GΛ(q), (A.69)

which to leading order in JΛ/T yields the exact result for the second moment given in
Eq. (2.123) [31, 100]. At lower temperatures it amounts to neglecting frequency sums, that
contribute to the static structure factor ⟨Sz(q)Sz(−q)⟩ contained in the exact expression
Eq. (4.54), which is equivalent to using the classical form of the fluctuation-dissipation
theorem [98, 136]. As discussed in Sec. 4.2, this approximation only makes sense, as long
as the static susceptibility is clearly known to be gapless for sufficiently low temperatures.
Note that retaining the self-consistency in LΛ(q+ k, iω) already leads to problems at T ≫
|JΛ|, since beyond leading order in ω−2 it is not clear how to treat the terms arising from
GΛ(q) ≈ b′0/T . The proper way to go beyond ω−2 would thus require the renormalization

of Γ̃
(3)
Λ , including a finite pure quantum 3-vertex.
Returning to the pure VLP three-point vertex and setting ω′′ = 0 in its equation of

motion (A.68) we obtain the following relation for the polarization

ΠΛ(Q+ k′′) = ΠΛ(Q) +

Z
K
[JΛ(k)− JΛ(k

′′ − k)]LΛ(K)LΛ(k
′′ −K)Φzzyy

Λ (k′′ −K,Q,K, P )

+

Z
K
[JΛ(k)− JΛ(k

′′ − k)]LΛ(K)LΛ(k
′′ −K)LΛ(P +K)JΛ(p+ k)

×Φxyz
Λ (P +K,k′′ −K,Q)Φxyz

Λ (−P −K,P,K). (A.70)

Expanding to linear order in the momentum k′′ we then arrive at

∇qΠΛ(q, iν) =

Z
K
∇k′JΛ(k

′)|k′=kLΛ(K)2Φzzyy
Λ (K,Q,−K,−Q)

+

Z
K
∇k′JΛ(k

′)|k′=kLΛ(K)2LΛ(Q−K)J(q − k)

×Φxyz
Λ (K −Q,−K,Q)Φxyz

Λ (Q−K,−Q,K)

=

Z
K
∇k′JΛ(k

′)|k′=kLΛ(K)2Φzzyy
Λ (K,Q,−K,−Q) (A.71)

+

Z
K
∇k′JΛ(k

′)|k′=kLΛ(K)2FΛ(Q−K)[Φxyz
Λ (K −Q,−K,Q)]2,

which includes the static component ν = 0 too. This has a similar shape to the correspond-
ing flow equation for ΠΛ(q, iν) [2], if one replaces the single-scale propagator ḞΛ(K)δαγ
by the non-diagonal object ∇kJΛ(k)L

2
Λ(k)ϵ

+
ασγ , i.e. ∂ΛJΛ by the gradient of the ex-

change interaction, which connects to different components of the spin in the respec-
tive vertex. The origin of these relations lies again in the conservation laws, implied
by spin-rotational invariance. Analogous relations can be written down for higher or-
der vertices, involving one gradient for each independent momentum. From the relation
ΠΛ(k, iω) = Π̃Λ(k, iω)[1 + Π̃Λ(k, iω)ΣΛ(k)]

−1 one sees that the corresponding equation for
the subtracted polarization Π̃Λ(k, iω) contains additional terms, e.g. the gradient of ΣΛ(k).
Note that the approximate fullfillment of similar identities was invoked in order to justify
the Katanin truncation [75, 76] for fermionic systems with two-body interaction in the weak
coupling limit.
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Appendix B

Additional calculations regarding
spin dynamics

B.1 High temperature spin dynamics on lattices with cubic
symmetry

In this section we present additional results for the T = ∞-dynamics of spin-S Heisenberg
models with neareast and next-nearest neighbor coupling J1 and J2 on several lattices with
hypercubic symmetry in d ≤ 3. In all cases we will use that the leading J2/T -correction to
the static self-energy Σ(k) is for finite-ranged exchange couplings given by

Σ2(q)− Σ2(q + k) =
X
i

ci(Ji)
2

12

h
γ(i)(q)− γ(i)(q + k)

i
. (B.1)

Here Ji is the coupling to i-th nearest neighbors with corresponding form factors γ(i)(k)
that are orthogonal to each other,

R
k γ

(i)(k)γ(j)(k) = c−1
i δij , and ci is the number of sites

on the i-th shell. All quantities with units of energy will be rescaled with |J1|
p
b′0.

B.1.1 J1 − J2 model on a hypercubic lattice

Linear chain

For a linear J1 − J2-chain the exchange coupling in k-space is given by

J(k) = 2J1[γ(k) + µγ(2k)], (B.2)

where µ = J2/J1 and γ(k) = cos(kxa). ∆(k, iω) can then be written in terms of four
independent amplitudes

∆̃(kx, iω) =
4X

j=1

[1− cos(jkxa)]∆̃j(iω), (B.3)

which in turn satisfy

∆̃1(iω) =
1

3b′0

Z
qx

cos(qxa)

|ω̃|+ ∆̃(qx, iω)
+ 2

Z
qx

1 + cos(2qxa)

|ω̃|+ ∆̃(qx, iω)
− ∆̃3(iω), (B.4a)
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Figure B.1: Momentum dependence ∆̃(kx) of the dimensionless dissipation energy in the
low-frequency limit at T = ∞, defined by Eq. (B.6), for a S = 1/2 J1-J2 Heisenberg Model
in d = 1 as a function of µ = J2/J1 ∈ [−1, 1] . Reprinted with permission from Ref. [10]➞
[2021] American Physical Society.

∆̃2(iω) =
µ2

3b′0
− 1

Z
qx

cos(2qxa)

|ω̃|+ ∆̃(qx, iω)
+ 2µ

Z
qx

cos(qxa) + µ

|ω̃|+ ∆̃(qx, iω)

−∆̃3(iω)− 2∆̃4(iω), (B.4b)

∆̃3(iω) = −2µ

Z
qx

cos(3qxa)

|ω̃|+ ∆̃(qx, iω)
, (B.4c)

∆̃4(iω) = −µ2
Z
qx

cos(4qxa)

|ω̃|+ ∆̃(qx, iω)
. (B.4d)

The anomalous diffusion coefficient can be expressed via these amplitudes as

D(iω) =
|J1|
p
b′0a

2

4

h
∆̃1(iω) + 4∆̃

∥
2(iω) + 2∆̃⊥

2 (iω)
i
. (B.5)

Note that the leading low-frequency behavior is driven by the self-energy term ∝ 1/b′0.
This term is an even function of µ, in contrast to contributions which are generated by
[J(q) − J(q + k)]2, and emerge only at O(k4). One therefore obtains D(iω) for J2 ̸= 0
by replacing |J1| → |J1|

p
1 + 4µ2 in the J2 = 0-expression. Moreover the solution for the

amplitudes in d ≤ 2 is simply determined by the ω → 0-divergence times the coefficients on
the right-hand side of their self-consistency equations, as implied by Eq. (3.108).

In Fig. B.1 the general momentum dependence of the low-frequency dissipation energy,
defined as

∆̃(kx) ≡
2√
3
|ω̃|

1
3Re∆̃(kx, ω + i0), (B.6)

is shown for µ ∈ [−1, 1]. Quite generally we just replicate the momentum dependence of
the kernel at vanishing loop momentum V (k, 0), see also Eq. (3.109). In Fig. B.2 a plot of
the inverse is displayed for large momenta ka ∼ O(1) , which yields in this case also the
k-dependence of the dynamic structure factor at sufficiently small frequencies |ω| ≪ |J1|

S̃(kx, ω) =

√
3b′0|ω̃|

1
3

2π∆̃(kx)
. (B.7)
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Figure B.2: ∆̃−1(kx), which is the inverse of the kx-dependent part of the rescaled dissipation
energy in the low-frequency limit for a linear S = 1/2 J1−J2 Heisenberg magnet at T = ∞,
shown for kxa > π/4 and J2/J1 = −1, 0, 1. We display this quantity, since for |ω| ≪ |J1|
it is proportional to the dynamic structure factor S(k, ω), see Eq. (B.7). Reprinted with
permission from Ref. [10] ➞ [2021] American Physical Society.

For µ = 0 the quantity ∆(kx) simply has a global maximum at kxa = π and exhibits no other
features of interest. There are some qualitative differences in the shape of ∆̃(kx) at short
wavelengths 1/kx ∼ a between negative and positive µ. For instance, below µ− ≈ −0.67
the dissipation energy has two maxima, one at kxa = and the other at kxa < π/2 with
an intermediate local minimum in [π/2, π]. The second maximum becomes global for some
value of µ smaller than −1 (not included in Fig. B.1). For µ > 0 no additional maximum is
generated. Instead we observe above µ+ ≈ 0.28 that the global maximum, initially located
at kxa = π, moves to a position ∈ [π/2, π], with a local minimum forming in its place at π.
The local minima which are generated in both cases, therefore imply a local peak in S(k, 0)
at the same position, which is either found at kxa = π (µ > µ+) or an intermediate value
(µ < µ−). In the latter case this maximum is surrounded by two minima, i.e. maxima of
∆̃(kx). In the interval µ− < µ < µ+ no additional local maximum is present.

Square lattice

The exchange interaction of a Heisenberg model with nearest-neighbor coupling J1 and
next-nearest neighbor coupling J2 = µJ1 on the square lattice reads in momentum space

J(k) = 4J1[γ(k) + µγ⊥(k)], (B.8)

with the normalized form factors of nearest

γ(k) =
1

2

h
cos(kx) + cos(ky)

i
, (B.9)

and next-nearest neighbors
γ⊥(k) = cos(kx) cos(ky). (B.10)

The solution for ∆(k, iω) can then be expressed in terms of five independent form factors,

∆̃(k, iω) = (1− γ(k))∆̃1(iω) + (1− γ(2k))∆̃
∥
2(iω)

+(1− γ⊥(k))∆̃⊥
2 (iω) + (1− γ⊥(2k))∆̃

∥
2,2(iω)

+(1− γ(2,1)(k))∆̃2,1(iω), (B.11)
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where the mixed form factor

γ(2,1)(k) =
1

2

h
cos(2kxa) cos(kya) + cos(kxa) cos(2kya)

i
, (B.12)

was introduced. The corresponding self-consistency equations for the amplitudes are given
by

∆̃1(iω) =
2

3b′0

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)
+ 4

Z
q

1 + γ(2q) + 2γ⊥(q)

|ω̃|+ ∆̃(q, iω)
− ∆̃2,1(iω), (B.13a)

∆̃
∥
2(iω) = −2(1 + 2µ2)

Z
q

γ(2q)

|ω̃|+ ∆̃(q, iω)
, (B.13b)

∆̃⊥
2 (iω) =

2µ2

3b′0
− 4

Z
q

γ⊥(q)

|ω̃|+ ∆̃(q, iω)
+ 8µ

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)

+4µ2
Z
q

1

|ω̃|+ ∆̃(q, iω)
+ 8µ2

Z
q

γ(2q)

|ω̃|+ ∆̃(q, iω)

−∆̃2,1(iω)− 2∆̃
∥
2,2(iω), (B.13c)

∆̃
∥
2,2(iω) = −2µ2

Z
q

γ⊥(2q)

|ω̃|+ ∆̃(q, iω)
, (B.13d)

∆̃2,1(iω) = −8µ

Z
q

γ(2,1)(q)

|ω̃|+ ∆̃(q, iω)
. (B.13e)

The k2-coefficient is therefore

D(iω) =
|J1|
p
b′0a

2

4

h
∆̃1(iω) + 4∆̃

∥
2(iω) + 2∆̃⊥

2 (iω) + 8∆̃
∥
2,2(iω) + 5∆̃2,1(iω)

i
.(B.14)

As in d = 1 one obtains the leading low-frequency limit for J2 ̸= 0 by replacing |J1| →
|J1|
p

1 + (a′/a)2µ2, where a′ is the distance to next-nearest neighbors on the lattice, with
a′/a =

√
2 for the square lattice and a′ = 2a for a chain. Note that in the limit µ→ ∞ the

equations in one and two dimensions map again onto a square lattice and linear chain with
spacing a′.

In Fig. B.3 we show the momentum-dependent part of the dimensionless dissipation
energy in the low-frequency limit, defined here as

∆̃(k) ≡ Re∆̃(k, ω + i0)r
ln

√
J2
1+2J2

2√
24π|ω|

, (B.15)

in the quadrant kx,y ≥ 0 of the first Brillouin zone for select µ ∈ [−1, 1]. Again, the
dependence of ∆̃(k) on momentum is just proportional to V (k,0). Complementary, the
inverse of ∆̃(k) is shown in Fig. B.4 along a path k(p)a = π(1, p) at the edge of the
zone, focusing on the illustrative cases µ = −1, 0, 1. The dynamic structure factor for
non-hydrodynamic momenta is then directly proportional to that inverse, i.e.

S̃(k, ω) =

vuutln

 p
J2
1 + 2J2

2√
24π|ω|

!
b′0

π∆̃(k)
. (B.16)
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Figure B.3: Momentum dependence ∆̃(k) in the relevant quadrant of the Brillouin zone
kx/y > 0 of the low-frequency dissipation energy, defined by Eq. (B.15), of a S = 1/2 J1-J2
Heisenberg magnet on the square lattice at T = ∞. The ratios of couplings used above
are J2/J1 = −1,−0.5, 0, 0.5, 1 (counterclockwise, starting from top left). Reprinted with
permission from Ref. [10] ➞ [2021] American Physical Society.

Concerning the dependence of the shape on µ we observe features similar to one dimension.
For sufficiently negative µ < µ− ≈ −0.52 the dissipation energy exhibits two maxima at both
ka = (π, 0) and ka = (π, π) with a local minimum on the connecting path. This translates
into a local maximum along that path in S(k, 0), surrounded by two local minima at the
aforementioned corners. On the other hand, for µ > µ+ ≈ 0.52 the position of the global
maximum switches from ka = (π, π) to ka = (π, 0). The former peak at (π, π) becomes
then a local minimum, therefore implying a maximum at the same position in S(k, 0). For
µ− < µ < µ+ we observe only a saddle point at (π, 0). The position of the global maximum
of ∆̃(k) at (π, π) is again more stable for negative µ, with degeneracy occurring only below
a µ < −1.

Simple cubic lattice

The Fourier transform of the exchange interaction for an Heisenberg Model on a sc lattice
with nearest neighbor coupling J1 and next-nearest neighbor coupling J2 = µJ1 reads

J(k) = 6J1[γ(k) + 2µγ⊥(k)], (B.17)
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Figure B.4: Inverse of the k-dependent part ∆̃ k of ∆(k, iω) for a S = 1/2 J1-J2 Heisenberg
magnet on the square lattice at T = ∞. Its k-dependence is explicitly depicted along the
path k(p) = π

a 1, p at the edge of the Brillouin zone for J2/J1 = −1, 0, 1. These curves
are then proportional to S(k, ω) for |ω| ≪ |J1|, as implied by Eq. (B.16). Reprinted with
permission from Ref. [10] ➞ [2021] American Physical Society.

with the nearest neighbor simple cubic form factor

γ(k) =
1

3

h
cos(kxa) + cos(kya) + cos(kz)

i
, (B.18)

and its pendant for next-nearest neighbors

γ⊥(k) =
1

3

h
cos(kxa) cos(kya) + (x↔ z) + (y ↔ z)

i
. (B.19)

The Fourier decomposition of ∆̃(k, iω) involves then seven different form factors

∆̃(k, iω) = (1− γ(k))∆̃1(iω) + (1− γ(2k))∆̃
∥
2(iω) + (1− γ⊥(k))∆̃⊥

2 (iω)

+ (1− γ⊥(2k))∆̃
∥
2,2(iω) + (1− γ(2,1,0)(k))∆̃2,1,0(iω)

+ (1− γ(2,1,1)(k))∆̃2,1,1(iω) + (1− γ(1,1,1)(k))∆̃1,1,1(iω), (B.20)

where we have introduced three additional form factors

γ(2,1,0)(k) =
1

6

h
cos(2kxa) cos(kya) + cos(kxa) cos(2kya) + (x↔ z) + (y ↔ z)

i
, (B.21a)

γ(2,1,1)(k) =
1

3

h
cos(2kxa) cos(kya) cos(kza) + (x↔ z) + (y ↔ z)

i
, (B.21b)

γ(1,1,1)(k) = cos(kxa) cos(kya) cos(kza). (B.21c)
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Figure B.5: D/(|J1|a2) as a function of µ = J2/J1 for the S = 1/2 J1−J2 Heisenberg Model
on a sc lattice at infinite temperature. The location of the minimum at µ ̸= 0 clearly shows
the asymmetry with respect to sign(µ). Reprinted with permission from [10] ➞ [2021]
American Physical Society.

The amplitudes obey then the following set of coupled self-consistency equations

∆̃1(iω) =
1

b′0

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)
+ 6

Z
q

1 + γ(2q) + 4γ⊥(q)

|ω̃|+ ∆̃(q, iω)

−∆̃2,1,0(iω)− ∆̃1,1,1(iω), (B.22a)

∆̃
∥
2(iω) = −3(1 + 4µ2)

Z
q

γ(2q)

|ω̃|+ ∆̃(q, iω)
,

(B.22b)

∆̃⊥
2 (iω) =

2µ2

b′0
+ 24µ2 − 12

Z
q

γ⊥(q)

|ω̃|+ ∆̃(q, iω)

+24µ

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)
+ 12µ2

Z
q

1 + 2γ(2q)

|ω̃|+ ∆̃(q, iω)

−∆̃2,1,0(iω)− ∆̃1,1,1(iω)− 2∆̃
∥
2,2(iω)− 2∆̃2,1,1(iω),

(B.22c)

∆̃
∥
2,2(iω) = −6µ2

Z
q

γ⊥(2q)

|ω̃|+ ∆̃(q, iω)
, (B.22d)

∆̃2,1,0(iω) = −24µ

Z
q

γ(2,1,0)(q)

|ω̃|+ ∆̃(q, iω)
, (B.22e)

∆̃2,1,1(iω) = −24µ2
Z
q

γ(2,1,1)(q)

|ω̃|+ ∆̃(q, iω)
, (B.22f)

∆̃1,1,1(iω) = −24µ

Z
q

γ(1,1,1)(q)

|ω̃|+ ∆̃(q, iω)
. (B.22g)

The spin-diffusion coefficient at infinite temperature is therefore given by

D =
|J1|
p
b′0a

2

6

h
∆̃1(0) + 4∆̃

∥
2(0) + 2∆̃⊥

2 (0) + 8∆̃
∥
2,2(0)

+5∆̃2,1,0(0) + 6∆̃2,1,1(0) + 3∆̃1,1,1(0)
i
. (B.23)
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Figure B.6: Static limit of the dimensionless dissipation energy in the plane kza = π of a
S = 1/2 J1-J2 Heisenberg magnet on a sc lattice at T ≫ |J1/2|. In the upper row it is shown
for the ratios J2/J1 = −1.0,−0.75,−0.5, in the central row for J2/J1 = 0.25, 0.0,−0.25 and
in the lowest for J2/J1 = 0.5, 0.75, 1.0. Reprinted with permission from Ref. [10] ➞ [2021]
American Physical Society.

In contrast to d ≤ 2 the low-frequency solution cannot be reduced to V (k,0), because all
momenta yield non-negligible contributions to the integrals in the self-consistency equations.
The spin diffusion coefficient which is thus a non-symmetric function of J2/J1 is shown in
B.5. Experiments in an effective T = ∞-regime are unavailable for systems, that can be
modeled by an isotropic Heisenberg model on this lattice. However, for the simple cubic
nearest-neighbor Heisenberg antiferromagnet RbMnF3 measurements were performed at
room temperature, which is ≈ 3.5Tc and already accessible by a high-temperature expansion
[120]. Including corrections up to linear order in J1/T to the mode-coupling [128] and
extrapolation results [97] at T = ∞ one finds deviations smaller than 10 percent between
the experimentally measured value and these theoretical estimates. This supports the notion
that our value for D is simply too small, as was inferred from the second moment (3.96).

Going beyond the hydrodynamic regime, we display in Fig. B.6 the k-dependence of the
dissipation energy in the plane kx,y ≥ 0, kza = π for different ratios J2/J1 ∈ [−1, 1]. We
have designated in these plots the characteristic points at the corners of the first Brillouin
zone, namely X = π

a (0, 0, 1), M = π
a (0, 1, 1) and R = π

a (1, 1, 1). For further elucidation
we present in Fig. B.7 the k-dependence of 1

∆(k,0) along the closed path X −M −R−X
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Figure B.7: Zero-frequency limit of the dimensionless dynamic structure factor S̃(k, 0), see
Eq. (B.24), for a S = 1/2 J1−J2 Heisenberg magnet on a sc lattice at T ≫ |J1/2|. Depicted
is its momentum-dependence along the closed path X −M −R−X for J2/J1 = −1, 0, 1,
see also Fig. B.6. Reprinted with permission from Ref. [10] ➞ [2021] American Physical
Society.

for µ = −1, 0,+1. As previously discussed, the dimensionless dynamic structure factor for
ω → 0 and ka ∼ 1 is simply given by

S̃(k, 0) =
b′0

π∆̃(k, 0)
. (B.24)

The main qualitative features are similar to those observed in reduced dimensions. Around
J2 = 0 we find saddle points at X and M while R is the sole global maximum of ∆(k, 0).
Note that the maximum at R is again more persistent for negative J2/J1 compared to
J2/J1 > 0. A two-peak structure formed by R and X with an intermediate saddle point
remaining at M , arises for sufficiently negative J2/J1. Degeneracy of these maxima occurs
for J2/J1 = µ− ≈ −0.97 which is larger than −1 compared to low dimensions. In the
case of positive J2/J1 we observe that M assumes the role of the global maximum for
J2/J1 = µ+ ≈ 0.32, whereas R becomes a local minimum. Taking a look at S(k, 0) along
the path X − M − R − X in the Brillouin zone, as shown in Fig. B.7 we see that for
µ > µ+ it has a local peak at R. Conversely for µ < µ− maxima appear at intermediate
positions on the connecting paths M−R and X−R. We close this discussion by remarking
that in our approximation ∆(k, iω) is a finite number of lattice harmonics (3.64), whereas
the expressions for its low-frequency form, extracted by extrapolation schemes [95, 98] or
mode-coupling theory [74] are capable of exhibiting more complex k-dependences.

B.1.2 J1 − J2 model on a body-centered cubic lattice

The body-centered cubic (bcc) lattice is of particular interest, since experiments that are
performed at large enough temperatures, such that corrections at O(J/T ) were negligible,
are available for magnetic systems on this lattice [123], in contrast to the other cubic lattices
[120, 121]. The exchange interaction of the J1−J2 model on the bcc lattice is in momentum
space given by

J(k) = 8J1

h
γbcc(k) +

3

4
µγ(k)

i
, (B.25a)
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where µ = J2/J1 and we defined the normalized nearest neighbor form factor of the bcc
lattice as

γbcc(k) ≡ cos
kxa

2
cos

kya

2
cos

kza

2
, (B.26)

while γ(k) is the nearest neighbor form factor of the sc lattice. Note that a is the lattice
spacing of the conventional unit cell, a cube containing two sites. The dissipation energy
can then be written in terms of six normalized form factors

∆̃(k, iω) = (1− γbcck )∆̃bcc
1 (iω) + (1− γk)∆̃

sc
1 (iω)

+ (1− γbcc2k )∆̃
bcc,∥
2 (iω) + (1− γ⊥k )∆̃

sc,⊥
2 (iω)

+ (1− γbcc,sck )∆̃bcc,sc
2 (iω) + (1− γ2k)∆̃

sc,∥
2 (iω), (B.27)

with γ⊥(k) being the off-diagonal form factor on the sc lattice, while the ’mixed’ form factor
is defined as

γbcc,sck ≡ 1

3

h
cos

3kxa

2
cos

kya

2
cos

kza

2
+ (x↔ z) + (x↔ y)

i
. (B.28)

The corresponding amplitudes satisfy the following self-consistency equations

∆̃bcc
1 (iω) =

4

3b′0

Z
q

γbcc(q)

|ω̃|+ ∆̃(q, iω)
+ 8

Z
q

1 + 3γ(q) + 3γ⊥(q)

|ω̃|+ ∆̃(q, iω)

−∆̃bcc,sc
2 (iω)− 2∆̃

bcc,∥
2 (iω), (B.29a)

∆̃
bcc,∥
2 (iω) = −4

Z
q

γbcc(2q)

|ω̃|+ ∆̃(q, iω)
, (B.29b)

∆̃bcc,sc
2 (iω) = −24µ

Z
q

γbcc,sc(q)

|ω̃|+ ∆̃(q, iω)
, (B.29c)

∆̃sc
1 (iω) = −12

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)
+ 24µ

Z
q

γbcc(q)

|ω̃|+ ∆̃(q, iω)
− ∆̃bcc,sc

2 (iω)

+
µ2

b′0

Z
q

γ(q)

|ω̃|+ ∆̃(q, iω)
+ 6µ2

Z
q

1 + γ(2q) + 4γ⊥(q)

|ω̃|+ ∆̃(q, iω)
, (B.29d)

∆̃sc,⊥
2 (iω) = −12(1 + µ2)

Z
q

γ⊥(q)

|ω̃|+ ∆̃(q, iω)
, (B.29e)

∆̃
sc,∥
2 (iω) = −3µ2

Z
q

γ(2q)

|ω̃|+ ∆̃(q, iω)
. (B.29f)

Note that all integrals run over the Brillouin zone corresponding to the primitive unit cell.
For µ→ ∞ one obtains the equations for a nearest-neighbor model on a simple cubic lattice
with spacing a. The diffusion coefficient of the bcc lattice at T = ∞ can then be written as

D =
|J1|
p
b′0a

2

6

h3
4
∆̃bcc

1 (0) + 3∆̃
bcc,∥
2 (0) +

11

4
∆̃bcc,sc

2 (0) + ∆̃sc
1 (0)

+4∆̃
sc,∥
2 (0) + 2∆̃sc,⊥

2 (0)
i
. (B.30)
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Figure B.8: D/(|J1|a2) as a function of µ = J2/J1 for the S = 1/2 J1−J2 Heisenberg Model
on a bcc lattice. The cross with error bars marks the experimental value for µ = 0.6 from
Ref. [123]. Like the bars the shaded area indicates the experimental error for D given in
Ref. [123], reflecting a potential uncertainty in the values of the exchange couplings J1, J2
[201]. Reprinted with permission from [10] ➞ [2021] American Physical Society.

S 1
2 1 3

2 2 5
2 3 7

2 ∞
D

|J |a2
√

4b′0
0.180 0.160 0.153 0.15 0.149 0.148 0.147 0.145

Table B.1: Diffusion coefficient D for the nearest-neighbor spin-S Heisenberg Model on a
bcc lattice.

The spin diffusion coefficient of a J1 − J2-model on the bcc lattice with S = 1/2 is
shown in Fig. B.8 as a function of J2/J1. In Table B.1 results are given for the normalized
quantity D/(

p
4b′0) for S ≥ 1/2 and J2 = 0. Our S = 1/2-value at J2/J1 = 0.6

Dtheor = 0.23|J1|a2, (B.31)

is about 35 percent larger than the experimental result

Dexp = (0.16± 0.02)|J1|a2, (B.32)

determined by Labrujere et al. [123] for the spin-1/2 Heisenberg ferromagnet Rb2CuBr4 ·
2H2O at temperatures T = 20 K and 77 K, which are both ≫ than J1 = 0.49 K, J2 =

Method J2/J1 = 0.0 J2/J1 = 0.6

Experiment [123] 0.16± 0.02

our result 0.18 0.23

Mori et al. 0.295 0.32

Resibois et al. 0.22 0.27

Tahir-Kheli et al. 0.295 0.275

Table B.2: Comparison with some other estimates forD/|J1a2| on the bcc lattice for S = 1/2
and J2/J1 = 0.0, 0.6 [123]. The deviation of our D from other theoretical approaches is ∼
30-40 percent and therefore consistent with the result for the sc lattice.
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0.29 K. Other theoretical results, listed in Table B.2, show even larger deviations. However,
the difference between our results and older predictions may be, to a significant portion,
attributed to a lacking factor of two in the second moment, see Eq. (3.96). In turn this
implies a D which is smaller by a factor

√
2, and the better performance of our solution

might be therefore accidental. Note that for solid bcc 3He, the experimental value for the
spin diffusion coefficient [122] was found to be within the range of a few percent of estimates
from extrapolation schemes [94, 96] under the assumption of an isotropic nearest-neighbor
Heisenberg model for its spin degrees of freedom. One can argue that the values of the
exchange couplings in Rb2CuBr4 · 2H2O and especially their ratio may, as parameters of
the model, actually depend on temperature. Such a behavior was indeed observed for the
related compound K2CuCl4 · 2H2O [201]. In that system the nearest neighbor-coupling
decreased by a factor of five between T = 77 K and T = 300 K, with its cause ascribed
to an optical phonon with a small gap. However, the good agreement of the short-time
behavior exhibited by other theoretical solutions, which is heavily sensitive to the values
of J1/2, with the experimental results, raises doubts about this attempt at explaining the
discrepancy. The authors of Ref. [123] noted that all of the theoretical results failed to
reproduce the experimentally measured frequency/time-dependence of the autocorrelation
function at intermediate scales, so that the deviations at low frequencies/large times are
probably connected to that deficiency.

Moreover we should be cautious in comparing our result with the long-time asymptotics
of the autocorrelation function S(0, t), which in the case of Rb2CuBr4 ·2H2O were employed
[123] to extract D, see Eq. (3.82). This is due to the discussed non-analytic corrections in
∆(k, iω) for ω ̸= 0, which modify for instance the long-time coefficient in S(r, t) by non-
hydrodynamic terms that depend on short-range properties. In principle this can even lead
to a fully incompatible result on our side, like negative autocorrelations. Our comparison
of the coefficients should therefore be restricted to the strict hydrodynamic limit, where the
experimental result for D, extracted from the long-time behavior of S(0, t), is also valid.
In fact, Labrujere et al. compared their result for D to the calculation of Resibois and
De Leener, whose solution for S(0, t) does not exhibit a t−3/2-decay for t → ∞ with their
notion of D being only valid in the aforementioned scaling limit [90].

B.2 Time-dependent correlations

In the following sections time-dependent correlations are calculated from our low-frequency
solution for S(k, ω) in one and three spatial dimensions at infinite temperature.

B.2.1 Non-analytic corrections in d = 3

We have already discussed in some lengths the presumed effects of the branch point on
S(k, t) in d = 3, see Sec. 3.2.2. Here we want to quantify it a little further. For this
purpose, consider first

S(k, t) =

Z ∞

0

dω

π
S(k, ω) cos(ωt) ≈ b′0

2π

Z ∞

0

dω

π

2 cos(ωt)[∆(k) + ∆′(k)|ω/2|1/2]
ω2 +∆(k)2 + 2∆(k)∆′(k)|ω/2|1/2

, (B.33)

where we inserted the ’distorted’ Lorentzian (3.102) on the right-hand side and ∆(k) =
∆(k, 0). Moreover we neglected contributions ∼ |ω|, |ω|3/2 in the denominator because
these terms will produce contributions in the time-domain that decay with larger exponents
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than 3/2. In fact, we can isolate the branch-cut contribution for arbitrary momentum k,
by expanding (3.102) to leading order in ∆′(k)|ω|1/2 around the Lorentzian, which yields

2πS(k, t) ≈ 2b′0

Z ∞

0

dω

π

cos(ωt)[∆(k) + ∆′(k)|ω̃/2|1/2]
ω2 +∆(k)2

−4b′0

Z ∞

0

dω

π

cos(ωt)∆(k)2∆′(k)|ω̃/2|1/2

(ω2 +∆(k)2)2
. (B.34)

The term containing no square-roots is the contribution from the diffusion pole, which
evaluates to

2πSD(k, t) = b′0 exp(−∆(k)t). (B.35)

The other two contributions will be ∼ t−3/2. To see this we first substitute u = ωt, so thatZ ∞

0

dω

π

cos(ωt)∆′(k)|ω̃/2|1/2

ω2 +∆(k)2
=

∆′(k)

∆(k)2t̃3/2

Z ∞

0

du

π

cos(u)|u/2|1/2

( u
∆(k)t)

2 + 1
, (B.36)

Z ∞

0

dω

π

cos(ωt)∆(k)2∆′(k)|ω̃/2|1/2

(ω2 +∆(k)2)2
=

∆′(k)

∆(k)2t̃3/2

Z ∞

0

du

π

cos(u)|u/2|1/2

( u
∆(k)t)

2 + 1
2 . (B.37)

For t→ ∞ we can use then that

lim
b→∞

Z ∞

0
du

f(u)b2n

(u2 + b2)n
= lim

b→∞
F (u)

b2n

(u2 + b2)n
|∞0 +

Z ∞

0
du

F (u)2nb2nu

(u2 + b2)n+1
= −F (0),

(B.38)

where n ≥ 1, b = ∆(k)t and it was used that the indefinite integral of the oscillatory
function f(u), denoted by F (u), exhibits a weaker growth than u2 for u ≫ 1. For f(x) =
cos(x)

√
x, we find F (0) =

p
π/8. Adding up all terms we obtain

S(k, t) =
b′0
2π

exp(−∆(k)t) +
1

2
√
π

∆′(k)

∆(k)2t3/2
. (B.39)

As shown in Fig. 3.3 of Sec. 3.2.2 ∆′(k) is < 0 for ka ∼ 1, which reflects the tendency of
S(k, t) to oscillate at short wavelengths. For small k the non-hydrodynamic term in (B.39)
behaves as 1/k2. In d > 2 dimensions this singularity is fully neutralized by a k-integration,
so that it suffices to consider the t→ ∞-limit of S(k, t). This applies to the omitted terms
∼ O(t−2) as well, which justifies their exclusion from S(r, t→ ∞). Hence one can calculate
the long-time limit of S(r, t) by taking the Fourier-transform of (B.39). Our estimate for
the correlation function in real space at long times becomes

2πS(r, t)

b′0
≈ 1

2π2

Z ∞

0
dkk2e−Dk2t+ik·r +

1

2
√
πt3/2

Z
k

∆′(k)

∆(k)2
eik·r, (B.40)

where we used that for the diffusion pole the integral is dominated by momenta k ∼ t−1/2.
The first term yields a Gaussian with variance (∆r)2 ∼ Dt and a long-time tail ∼ t−3/2, as
already encountered in the solution of the diffusion equation for a sharply localized initial
condition [35]

1

2π2

Z ∞

0
dkk2e−Dk2t+ik·r =

1

8(πDt)3/2
e−

r2

4Dt . (B.41)
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r 1
2 1 3

2 ∞
(0, 0, 0) -0.52 -0.24 -0.12 0.08
π
a (1, 0, 0) 0.56 0.92 1.08 1.32

Table B.3: Ratio between non-hydrodynamic and Gaussian contribution in the t−3/2-long
time tail for the auto- and nearest neighbor pair-correlation functions S(r, t) on a sc lattice
with different S.

As expected the coefficient in front of the hydrodynamic result for the correlation function
is modified. Moreover the value of the coefficient depends explicitly on r, due to the Fourier
transform of the non-hydrodynamic term. The latter is influenced by microscopic details,
e.g. the type of exchange interaction and lattice on which the spins are placed. We have
quantitatively checked the influence of these contributions for nearest-neighbor couplings on
a simple cubic lattice by solving (3.101) for ∆′(k) and subsequently evaluating the second
integral in (B.40). We found that the contribution to the autocorrelation function S(0, t)
is negative for S = 1/2, and has a smaller magnitude than the Gaussian term, so that in
total the t−3/2-coefficient remains > 0. For correlations between nearest neighbors, the non-
hydrodynamic contribution is > 0 and has a larger amplitude than for r = 0. Furthermore
both quantities become more positive with increasing S, with the r = 0-contribution being
even > 0 for S → ∞.

B.2.2 Superdiffusion in d = 1

In this section we will use the Laplace-transform R̃L(k, s) on the imaginary axis to calculate
S(k, t) in d = 1 at elevated temperatures, i.e. [109]

2πS(k, t) =
b′0
2πi

Z c+i∞

c−i∞
dsR̃L(k, s)e

st, (B.42)

where Re(c) > Re(z∗) with z∗ being the pole with the largest real part and

R̃L(k, s) =

Z ∞

0
dte−stR̃(k, t). (B.43)

The contour along the shifted imaginary axis is then closed by an infinite half-circle with
a keyhole detour around the branch axis and branch point. Then one can directly use the
residue theorem as long as the poles do not lie on the same axis as the branch cut

1

2πi

Z
C
R̃L(k, s)e

st =
X
a

Ress=aR̃L(k, s)e
st. (B.44)

In the case of poles lying on the branch axis, C should include additional detours around
these poles. In contrast to d > 2 the branch cut is already part of the scaling form and is
therefore not suppressed relative to contributions from ordinary poles in a strict hydrody-
namic limit of the form kzt = const. The Laplace-transform for the superdiffusive form in
d = 1 is given by

R̃L(k, s) =
1

∆(k, s) + s
=

s1/3

∆′(k) + s4/3
, (B.45)
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where we used that ∆(k, s) = ∆′(k)s−1/3. This expression has two simple poles in the

complex plane, given by the solution of s4/3 = −∆′(k), namely s/∆′(k)3/4 = e±i 3π
4 =

cos(3π4 )± i sin(3π4 ). By virtue of the theorem of residues we thus findZ c+i∞

c−i∞
ds
es∆

′(k)3/4ts1/3

s4/3 + 1
+

Z −ϵ

−∞

duu1/3eu∆
′(k)3/4t

u4/3 + 1
+

Z −∞

−ϵ

duu1/3eu∆
′(k)3/4t

u4/3 + 1

+iϵ

Z −π

π
dϕeiϕ

eϵe
iϕ∆′(k)3/4t(ϵeiϕ)1/3

1 + (ϵeiϕ)4/3
= 2πires

es∆
′(k)3/4ts1/3

s4/3 + 1
. (B.46)

Here we have already neglected the arcs in the limit R → ∞, as the integrand decays
exponentially for Re(s) < 0. Furthermore the fourth integral over the branch point at s = 0
vanishes for ϵ → 0. The two integrals parallel to the branch cut along the real negative
half-axis are Z −ϵ

−∞

duu1/3eu∆
′(k)3/4t

u4/3 + 1
=

Z ∞

ϵ

duu1/3e
iπ
3 e−u∆′(k)3/4t

u4/3e
4iπ
3 + 1

, (B.47)

Z −∞

−ϵ

duu1/3eu∆
′(k)3/4t

u4/3 + 1
= −

Z ∞

ϵ

duu1/3e−
iπ
3 e−u∆′(k)3/4t

u4/3e−
4iπ
3 + 1

, (B.48)

and thereforeZ −ϵ

−∞

duu1/3eu∆
′(k)3/4t

u4/3 + 1
+

Z −∞

−ϵ

duu1/3e−u∆′(k)3/4t

u4/3 + 1
= 2iIm

Z ∞

0
du
u1/3e−u∆′(k)3/4te−iπ

u4/3 + e
−4iπ

3

,

(B.49)
so thatZ c+i∞

c−i∞

dz

2πi

ez∆
′(k)3/4tz1/3

z4/3 + 1
= res

es∆
′(k)3/4ts1/3

s4/3 + 1
+
sin(4π3 )

π

Z ∞

0

duu1/3e−u∆′(k)3/4t

u4/3 + cos(4π/3)
2
+ sin2(4π/3)

.

(B.50)
The contribution from the poles is simply an exponentially damped oscillation

res
es∆

′(k)3/4ts1/3

s4/3 + 1
=

3

2
e
−∆′(k)3/4t√

2 cos
∆′(k)3/4t√

2
. (B.51)

The term generated by the branch cut is negative, due to sin(4π/3) = −
√
3/2 and is either

of the same order or much larger than the pole contribution. Furthermore its magnitude
decreases monotonously as a function of ∆′(k)3/4t. One can straightforwardly evaluate it
for ∆′(k)3/4t → ∞, by neglecting the u-dependence in the denominator. The contribution
behaves then as (∆′(k))−1t−4/3, which for ka ≪ 1 is ∼ k−2t−4/3 and is therefore the
leading term in S(k, t) for large times. However, in an integral over k to determine S(r, t)
the dependence on k−2 also implies a singular behavior ∼ 1/k for k ≪ O(t−2/3). Hence
the contribution from the branch cut to S(r, t) is actually ∼ t−2/3, same as the tail of
the Fourier-transformed pole terms. Moreover this means that the contribution from the
branch cut to real-space correlations is actually dominated by the small momentum regime
k ≲ O(t−2/3) like the superdiffusion poles, instead of the aforementiond long-time limit in
S(k, t), as is the case in d = 3. Hence we evaluate the contribution of the branch cut to the
autocorrelation function S(0, t) by calculating

2π

b′0

Z
k
SB(k, t) =

−3
√
3

8π2(D′t)−2/3

Z ∞

0
dy

Z ∞

0
dk

e−y3/4k3/2

(y − 1
2)

2 + 3
4

, (B.52)
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where the integral over k and y is, as anticipated, finite, e.g.Z ∞

0
dy

Z ∞

0
dk

e−y3/4k3/2

(y − 1
2)

2 + 3
4

= Γ(5/3)

Z ∞

0

dyy−1/2

(y − 1
2)

2 + 3
4

≈ 2.84 (B.53)

so that

2π

Z
k
SB(k, t) = − 0.19b′0

(D′t)−2/3
, (B.54)

while the contribution from poles evaluates to

2π

Z
k
SD(k, t) =

3× 21/3b′0
2π(D′t)2/3

Z ∞

0
dke−k3/2 cos(k3/2) =

0.37b′0
(D′t)−2/3

. (B.55)

The autocorrelation function for t → ∞ is therefore positive with a, in contrast to d = 3,
universal renormalization of the coefficient caused by the branch cut.

One can also estimate the effect of the ∆′′(k)ω1/3-correction to ∆(k, iω). For t→ ∞ its
contribution to S(k, t) is ∼ ∆′′(k)(∆(k)t)−2, which for ka≪ 1 behaves as ∼ k−2t−2. Even
with the singular behavior ∼ 1/k at the lower boundary k ∼ t−2/3 this implies only a t−4/3-
term in S(r, t) and is therefore of subleading order. This is consistent with the suppression
of this term as ∆′′(k)(∆(k))−1/2 ∼ k → 0 in the scaling regime, which translates into
an additional power t−2/3. In contrast to d = 3 the long-time solution is therefore solely
determined by small momenta k ≲ O(t−1/z), i.e. the scaling regime, which also applies to
correlations between different sites, that will all exhibit the same asymptotics to leading
order in t−2/3.

Note that the above results may be applied to any superdiffusive power-law singularity
∆(k, s) ∼ ∆′(k)s−α, α < 1. One finds the following superposition of poles and branch cut

R(k, t) =
2

1 + α
ecos(

π
1+α

)∆′(k)3/4t cos cos
π

1 + α
∆′(k)

1
1+α t

+
sin(π(1 + α))

π

Z ∞

0

duuαe−u∆′(k)
1

1+α t

u1+α + cos(π(1 + α))
2
+ sin2(π(1 + α))

. (B.56)

Calculating the right-hand side in general as a function of ∆′(k)t, we obtain for the pre-
viously discussed case α = 1/3 an exponentially damped oscillation, a feature shared with
the KPZ scaling function [113], although for the latter quantity it is much less pronounced.
For α = 3/5, which is exhibited by the critical scaling function in d = 3 for ω ≪ ωk and
≫ ωk (with different numeric factors) one obtains a similar time-dependence. in qualitative
agreement with a mode-coupling solution [129]. Both functions are shown in Fig. B.9. For
t → ∞ we extract R(k, t) ∼ t−1−α from (B.56). Note that one should obtain the same
asymptotic t-dependence for the full scaling functions near Tc by employing an argument
similar to the one used in Eq. (B.38) for the branch cut-correction in d = 3.

B.3 Spin dynamics at intermediate temperature in d = 3

In order to connect our results at high temperatures and in the critical region, we com-
pute several zero-frequency amplitudes, including the spin diffusion coefficient D by solving
the integral equation (3.50) for ∆(k, 0) of a three-dimensional paramagnet on a grid. We
will focus on a nearest-neighbor antiferromagnet on a simple / body-centered cubic lattice,
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Figure B.9: R(k, t) = R(tk = ∆′(k)
1

1+α t) from Eq. (B.56) for α = 1/3 and α = 3/5.

Figure B.10: Dimensionless spin diffusion coefficient as a function of TMF
c /T for a near-

est neighbor Heisenberg antiferromagnet on the sc (left) and bcc (right) lattice from the
numerical solution of (3.50), using a mean-field ansatz for the static susceptibility G(q).

since up to this point we did not perform any explicit calculation with J > 0 at T < ∞.
For simplicity we have chosen to approximate the static susceptibility G(q) by the tree-
approximation (4.3) where Tc = TMF

c . This ansatz does not yield quantitatively correct
thermodynamics, but it suffices for a qualitative description of how D depends on tempera-
ture. Note that approximations like a static sum rule b′0/T =

R
q G(q) [64, 128], which also

neglect the momentum dependence of Σ(k), yield more accurate critical temperatures. On
the other hand, the critical exponents still deviate substantially from the benchmark values,
e.g. ν = 1 [64, 128] instead of ν ≈ 0.7 [26].

Plots of D(T )/(|J |
p
b′0a

2) as a function of g = Tc/T for both lattices are shown in
Fig. B.10. We see that, in qualitative agreement with neutron scattering experiments on
antiferromagnets [120] and theoretical calculations [92], D grows when T is lowered. In
particular, one sees the divergence of the diffusion coefficient in the vicinity of the critical
point. This is consistent with the prediction of dynamic scaling D ∼ (T − Tc)

−ν/2, where
ν = 1/2 in the mean-field approximation. For large temperatures the leading deviation
from the T → ∞-limit is linear in βJ , i.e. [92, 97]

D(T ) = D(∞) 1 +D(1)βJ , (B.57)

180



APPENDIX B. ADDITIONAL CALCULATIONS REGARDING SPIN DYNAMICS

Figure B.11: Dimensionless staggered relaxation rate ∆(Q, 0) (left) and zero-frequency

autocorrelation function S(r = 0, 0) ∝
R
q

G(q)
∆(q,0) (right) as a function of TMF

c /T for a
nearest neighbor Heisenberg antiferromagnet on the simple cubic lattice from the numerical
solution of (3.50), using again a mean-field ansatz for the static susceptibility G(q).

with D(1) > 0. Its numerical value depends on the lattice and ansatz for G(q). Note that
D(1) can be also calculated by expanding the right-hand side of (3.77) to next-leading-order
in βJ . This yields a set of linear equations for the corrections to the Fourier amplitudes in
∆(k, iω), with additional harmonics, i.e. form factors, generated at this order. In Fig. B.11
we show the temperature dependence of two other quantities, the relaxation rate of the
staggered magnetization ∆(k = Q, 0) and the autocorrelation function at vanishing fre-
quency. Both functions are consistent with the scaling behavior found in the vicinity of Tc.
Interestingly S(0, 0) is a non-monotonous function of T , first decreasing down to a global
minimum, before it diverges for T → Tc. This may be explained by two competing pro-
cesses, first the increase of the diffusion coefficient, which drives the diminishing of S(0, 0)
for high to intermediate temperatures, before this trend is reversed by the singularities of
G(Q) and ∆−1(Q, 0) contained in the product G(Q+δq)

∆(Q+δq,0) . The described T -dependence is

in qualitative agreement with a moment-based calculation [202]. Such a non-monotonous
behavior does not occur for the ferromagnet, where ∆(k)−1 and G(k) are peaked in the
same region, implying thus a monotonous growth of S(r = 0, 0) as T is lowered.

B.4 Spin dynamics in the critical region

B.4.1 Dynamic scaling in low-dimensional antiferromagnets

Analogous to ferromagnets we want to briefly discuss the low-temperature spin dynamics
of antiferromagnets below three dimensions. Like in d = 3 one has to consider two different
dissipation energies for fluctuations around q = 0 and q = QN. On the square lattice the
order parameter susceptibility χN and correlation length ξ exhibit the same leading expo-
nential divergence [164, 175, 203, 204, 205] as for the ferromagnet. For the antiferromagnetic
chain, one should keep in mind that only systems with half-integer spin are gapless with
ξ−1 ∼ T → 0, while for integer spin the correlation length and thus the Neél susceptibility
remain finite [164, 196, 197]. However, even half-integer chains do not exhibit true magnetic
order with a finite order parameter, as can be inferred from a simple spin wave analysis
[16]. Ignoring these subtleties in d = 1 for the moment, as was done by Takahashi in his
modified spin-wave theory [205], and working with naive expressions for χN , ξ, we write in
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reduced dimensions
∆(k, iω) = τ−1A0(kξ, iωτ), (B.58)

∆(k+Q, iω) = τ−1AN (kξ, iωτ). (B.59)

The characteristic hydrodynamic times are given by

τ =

r
2χξ

aT
, d = 1 (B.60)

τ =

r
2χξ2

a2T
, d = 2, (B.61)

where χ is the non-singular uniform susceptibility and we used that [χ−1 − χ−1
N ]−1 ≈ χ

leading to the same τ for fluctuations near 0 and Q. In one dimension, where ξ ∼ T−1

[197], the dynamic exponent z = 1 agrees with the result of modified spin-wave theory [205],
in line with the naive expression for the magnon dispersion. On the other hand, in d = 2,
we have that τ ∼ T−1/2ξ ∼ ξ ln1/2(ξ/a), which coincides with the Ornstein-Zernicke result
for the ferromagnet and is at odds with modified spin-wave theory [205]. One concludes
that it is impossible to obtain simultaneously dynamic scaling for the two-dimensional ferro-
and antiferromagnets with a plain integer z from our equations. Note that the shape of τ
in d = 2 agrees with an RG analysis by Chakravarty et al. [203]. The integral equations
determining the above scaling functions are explicitly given by

A0(x, iy) =

Z
ddr

(2π)d
g(r)g(|x+ r|)

g−1(r)− g−1(|x+ r|) 2

AN (r, iy) + |y|
, (B.62)

AN (x, iy) = g−1(x)

Z
ddr

(2π)d
g(|x+ r|) 1

A0(r, iy) + |y|
+ g(r)

1

AN (r, iy) + |y|
, (B.63)

where the static scaling functions in the vicinity of QN are assumed to be [205, 206]

g(x) = [1 + x2]−1, d = 1 (B.64)

g(x) =
ln(x+

√
x2 + 1)

x
√
x2 + 1

, d = 2. (B.65)

From the analytic continuation of their solution one obtains then the scaling functions

Φ0(x, y) =
1

y
Im

A0(x, y + i0)

A0(x, y + i0)− iy
, (B.66)

ΦN (x, y) =
1

y
Im

AN (x, y + i0)

AN (x, y + i0)− iy
. (B.67)

We did not explicitly evaluate the self-consistency equations, but it is clear that the low-
frequency (ωτ → 0) asymptotics are characterized by diverging static dissipation energies,
in complete analogy to the ferromagnet. For large kξ one expects that the scaling func-
tions Φ0, ΦN in d = 1 feature broad peaks dispersing as y∗ ∝ x. In two dimensions the
x-dependence of this peak position will be due to the logarithmic correction in τ more
complicated, i.e. y∗ ∼ x ln1/2(x), in order to obtain ω∗(k) ∼ k at T = 0, see also appendix
B.4.2. In d = 2 the damping is probably overestimated, similar to mode-coupling theory
[117]. A vanishing damping is predicted by modified spin-wave theory (d = 1, 2) [205]
and Schwinger-Boson mean-field theory (d = 2) [67], where the ratio of width to excitation
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energy scales as (kξ)−1 [206], similar to ferromagnets. The mean-field theory was shown
to be equivalent to Takahashi’s spin-wave approach [205]. In contrast to the ferromagnet,
neither the exact ground state nor the low-lying excited eigenstates are exactly known,
which makes arguing in favor of a vanishing width much harder. More recent calculations
indeed show, that the zero-temperature dynamic structure factor of a square-lattice an-
tiferromagnet hosts high-energy continua besides a sharp one-magnon peak with reduced
spectral weight [191, 192, 207]. These continua are associated with multimagnon processes
and more recently are also interpreted in terms of deconfined fractionalized quasiparticles,
known as spinons [191]. For d = 1 the naive assumptions of spin wave theory are inherently
invalid [16]. In fact, expansions of S(k, ω) at T = 0 in terms of spinon-continua are available
for the integrable S = 1/2-chain, thus definitely ruling out sharp peaks [208].

B.4.2 Zero-temperature solution for low-dimensional Heisenberg mag-
nets

We briefly discuss the solution implied by (3.46) for S(k, ω) in the limit T → 0. First we
note that for ξ → ∞ the static susceptibility in d ≤ 2 dimensions satisfies a sum rule

T

Z
q
G(q) = const. ≡ (S̃)2. (B.68)

Furthermore the inverse correlation length acts in this limit as an cutoff for all momentum
integrations around the peaks of the static susceptibility. For any function in the integrand
f(q, k) that is slowly varying for |q −Q| ≲ ξ−1, one can therefore approximate

T

Z
q
G(q)f(q, k) ≈ f(Q,k)(S̃)2. (B.69)

On the other hand by rewriting the modified kernel in (3.46) as

V (k, q) =
TG−1(k)

2
[G−1(q)−G−1(q + k)][G(q + k)−G(q)], (B.70)

and using (B.69) one obtains

∆(k, iω) = −G
−1(k)

2

[G−1(Q)−G−1(Q+ k)]

|ω|+∆(k+Q, iω)
+

[G−1(Q)−G−1(Q+ k)]

|ω|+∆(Q, iω)
(S̃)2

=
G−1(k)G−1(k+Q)(S̃)2

2

1

|ω|
+

1

|ω|+∆(k+Q, iω)
, (B.71)

where we used that ∆(Q, iω) = 0. Furthermore, by considering the equation for k+Q we
see that, due to 2Q being a reciprocal lattice vector, the solution obeys

∆(k+Q, iω) = ∆(k, iω). (B.72)

By defining the ’dispersion’

ϵ(k) =

q
G−1(k)G−1(k+Q)(S̃)2, (B.73)

and the dimensionless frequency ω̃ = ω/ϵ(k) we thus find that

∆(k, iω) = ϵ(k)∆̃(iω̃). (B.74)
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Note that for |k − Q|a ≪ 1 or ka ≪ 1, we infer from ϵ(k) the already obtained scaling
of the characteristic energies with either z = 2 (FM) or z = 1 (AF). The scaling function
satisfies thus

∆̃(iω̃) =
1

2

1

|ω̃|
+

1

|ω̃|+ ∆̃(iω̃)
↔ ∆(iω̃)2 + |ω̃| − 1

2|ω̃|
∆(iω̃)− 1 = 0. (B.75)

Hence

∆(iω̃) =
1

2

1

2|ω̃|
− |ω̃| +

s
1

4

1

2|ω̃|
− |ω̃|

2
+ 1. (B.76)

Taking the analytic continuation one therefore finds

∆(ω̃) =
i

2

1

2ω̃
+ ω̃ +

r
−1

4

1

2ω̃
+ ω̃

2
+ 1. (B.77)

The only way to obtain a finite real part ∆R(ω̃) > 0, is by ensuring that the square-root
on the right-hand side of (B.77) is real and positive. For large and small ω̃ one finds that
its discriminant is always negative, implying thus a purely imaginary solution. Hence the
window where it is positive is determined by

1

4

1

2ω̃
+ ω̃

2
= 1 ↔ ω̃4 − 3ω̃2 +

1

4
= 0, (B.78)

so that
3

2
−

√
2 ≤ ω̃2 ≤ 3

2
+
√
2, (B.79)

i.e. 1− 1/
√
2 ≲ ω̃ ≤ 1 + 1/

√
2. In this region of frequencies S(k, ω) is non-zero and forms

a broad continuum. Note that outside this window, there is no δ-distribution implied by
∆I(ω̃)− ω̃ = 0, since

ω̃ − 1

2

1

2ω̃
+ ω̃ ∓

r
1

4

1

2ω̃
+ ω̃

2
− 1 ̸= 0, (B.80)

where ∓ depends on the choice of branch for the square-root in order to reproduce the
correct small or large-ω̃ behavior of ∆I(ω̃). In Fig. B.12 we show our result for the frequency
dependence of S(k, ω), namely the shape-function

Ψ(ω̃) =
∆̃R(ω̃)

(ω̃ −∆I(ω̃))2 + ∆̃R(ω̃)2
. (B.81)

Note that at T = 0 the detailed-balance factor [1− exp(−βω)]−1 is simply a step function
Θ(ω), in contrast to the classical expression, which is valid only for ω/T ≪ 1.
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Figure B.12: Our T = 0-solution for the frequency dependence of the line-shape, given by
(B.81). It does not contain sharp peaks that are implied by well-defined magnon excitations
which are at least anticipated in two dimensions and for the linear ferromagnet.
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Appendix C

Additional calculations concerning
thermodynamics

C.1 Fixed point in d ≥ 3

We want to give a short discussion of the flow equations in the Level 2-truncation (4.34)
and (4.35), using rescaled variables in order to relate them to an ordinary RG flow for
the relevant couplings in the corresponding classical field theory. For simplicity, let us
assume a non-frustrated model, Jmin = −Jmax, e.g. with nearest-neighbor coupling on a
d-dimensional hypercubic lattice, J(k) = 2dJγ(k), Jmin = −2d|J |. Dimensionless vertices
are defined as follows

rΛ =
ΣΛ

2d|J |
− 1, uΛ =

5UΛT

6(2d|J |)2
, v0 =

7V0T
2

6(2d|J |)3
. (C.1)

Using a Litim-cutoff (4.9), the Level-2 flow equations (4.34) and (4.35) thus become

∂ΛrΛ = −uΛIΛ
h 1

[1 + Λ + rΛ]2
− 1

[1− Λ + rΛ]2

i
, (C.2)

∂ΛuΛ = −v0IΛ
2

h 1

[1 + Λ + rΛ]2
− 1

[1− Λ + rΛ]2

i
+

22u2ΛIΛ
5

h 1

[1 + Λ + rΛ]2
− 1

[1− Λ + rΛ]3

i
,

(C.3)
where

IΛ =

Z 1

Λ
dϵρ(ϵ), (C.4)

yields the number of states with energies between the lower / upper band edge and the cutoff
Λ. For the further analysis of fixed points we are interested in the flow for Λ → 1, such
that the interval at the boundaries is very slim. In that case, one can use for the behavior
of the density of states in the vicinity of the edges ρ(ϵ) ≈ (1− ϵ)(d−2)/2 and therefore

IΛ ≈ Id(1− Λ)d/2, (C.5)

with Id = Kd(2d)
d/2

d and Kd = 1
2d−1πd/2Γ(d/2)

. Introducing now the logarithmic RG time l

via Λ = 1− e−2l and rescaled variables according to the usual procedure [3]

rl = e2lrΛ, ul = e(4−d)lIduΛ, vl = e(6−2d)lI2dv0 (C.6)
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Figure C.1: Flow of the rescaled couplings for l → ∞ in d = 3 dimensions, for S = 1/2 and
the temperature T = 0.2TMF

c .

we obtain in the asymptotic limit e−2l ≪ 1 the following RG equations

∂lrl = 2rl +
2ul

[1 + rl]2
, (C.7)

∂lul = (4− d)ul +
vl

[1 + rl]2
−

44u2l
5[1 + rl]3

, (C.8)

∂lvl = (6− 2d)v0. (C.9)

Here we have already dropped the high-energy modes at the upper band edge, whose con-
tribution is negligibly small in the l → ∞-limit, in contrast to low energy fluctuations near
the ordering vector. The resulting differential equations are thus autonomous in l, as ex-
pected after the rescaling. Fixed points (r∗, u∗, v∗) of these equations are determined by a
simultaneously vanishing flow of all couplings, ∂l(rl, ul, vl) = 0. One sees that above three
dimensions the six-point vertex is always irrelevant and thus negligible, whereas for d = 3
it is marginal. Thus one obtains the same RG flow equation as for the three-component
ϕ4-model in d > 3. Besides the trivial Gaussian fixed point at r̃∗ = ũ∗ = 0, which describes
the critical properties for d > 4 but is unstable in d < 4, one finds for d < 4 the Wilson-
Fisher fixed point with r̃∗ < 0, ũ∗ > 0 and one attractive scaling variable, characterizing
the true critical behavior below the upper critical dimension [3]. In d = 3, we have a non-
flowing six-point coupling vl = v0, thus introducing a third direction, perpendicular to the
(rl, ul)-plane. Indeed we find for T < Tc, i.e. sufficiently small v0, the Wilson-Fisher fixed
point with r̃∗ < 0 and ũ∗ > 0 and a relevant scaling variable with positive RG eigenvalue
yt. The repulsive Gaussian fixed point is shifted to slightly positive values of r̃∗. Slightly
above 3 dimensions, where vl is irrelevant, one finds r̃∗ ≈ −0.102 and ũ∗ = 0.197 with the
RG matrix

R =

 2− 4ũ∗
l

[1+r̃∗l ]
3

2
[1+r̃∗l ]

2

132(ũ∗
l )

2

5[1+r̃∗l ]
4 1− 88u∗

5[1+r∗]3

 ≈ 1.55 2.48
0.27 −0.99

. (C.10)
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The positive eigenvalue is then given by yt ≈ 1.79, implying a critical susceptibility exponent
γ = 2/yt ≈ 1.12 and therefore ν ≈ 0.56 for ξ. This is simply the result of the one-loop
RG approximation [3] evaluated at ϵ = 1, and hence it is not surprising, that it deviates
significantly from the established value γ ≈ 1.4 in three dimensions [26]. The RG flow of
the rescaled couplings in the (rl, ul)-plane is depicted in Fig. C.1 for T = 0.2TMF

c .

C.2 Flow equation of static four-point vertex at finite S

For the sake of completeness we provide the additional quantum diagrams in the flow of
the classical four-point vertex Γααγγ

Λ (k1,k2,k3,k4). The respective diagrams are depicted
in Fig. C.2.

C.3 Integration of flow using self-consistent high-temperature
spin dynamics

Besides the high temperature/frequency expansion for Π̃Λ(k, iω) we have also tried a dif-
ferent, more elaborate ansatz, namely the solution of the self-consistency equation (3.50),
derived by us for arbitrary frequencies. In this process we make however another approxi-
mation, by considering solely the T = ∞-solution for the dissipation energy ∆Λ(k, iω), i.e.
neglecting its temperature dependence. This is mostly done out of convenience, because in
this case ∆Λ(k, iω) can be written as a superposition of a finite number of lattice harmon-
ics, whereas solving for ∆Λ(k, iω) at arbitrary temperatures requires the calculation of an a
priori unknown k-dependence. Such a simplification has, compared to the high-temperature
ansatz for Π̃Λ(k, iω) in (2.123), the advantage that ∆Λ(k, iω) is always proportional to JΛ,
so that the magnitude of this quantity cannot explode for too low temperatures. Moreover
it contains information about dynamics at all timescales, not only the short-time window.
Conversely a non-trivial dependence on ω also implies that the frequency sums appearing
in the flow equations cannot be evaluated analytically. Hence one has to rely on numerics
in this regard too, increasing the computational effort by the number of Matsubara fre-
quencies below a chosen frequency cutoff. Another shortcoming, shared with the high-T
and ω-approximation is the absence of any features in the dynamics that can be attributed
to a different global sign of J , since all states are equally probable at T = ∞. Under this
{Ji} ↔ {−Ji} symmetry, one cannot for instance distinguish between a frustrated antiferro-
magnet or a plain ferromagnet with additional couplings to neighbors of higher order. The
difference in the response of finite frequency diagrams onto ΣΛ, UΛ is then solely determined
by purely static numerators in F̃Λ(Q), whereas the denominators containing ∆Λ(k, iω) do
not depend on the global sign of the exchange coupling.

We have integrated the flow equations numerically, using a linear interaction cutoff
(4.4), for nearest neighbor Heisenberg magnets on a simple cubic lattice. As before we
do not use the Litim-cutoff, because for intermediate scales, it necessitates solving for a
complicated momentum dependence of the dissipation energy, even at T = ∞. For the
largest frequency we have chosen ωm = 50πT or ωm = 100πT and found the difference in
outcomes to be negligible, thus confirming convergence. Results for transition temperatures
of S = 1/2, 1-Heisenberg models are given in Table C.1. The outcomes are quite similar
to the previous approximation, except for the S = 1/2-ferromagnet, where this ansatz for
the dynamics performs significantly worse. From this we conclude that a simple expression
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Tc/T
MF
c rel. error / %

S J1 J3/J1 switch benchmark switch

1/2 < 0 0 0.521 0.559 6.8
1/2 > 0 0 0.641 0.629 1.9
1 < 0 0 0.649 0.650 0.2
1 > 0 0 0.698 0.684 2.0

Table C.1: Results for Tc as in Table 4.3, but now the self-consistent ansatz for Π̃Λ(K)
from the integral equation (3.44) at T = ∞ is employed for the numeric integration of
Eq. (4.45) and Eq. (4.46).

Tc/T
MF
c rel. error / %

S J switch benchmark switch

1/2 < 0 0.624 0.630 1.0
1/2 > 0 0.708 0.688 2.9
1 < 0 0.723 0.710 1.8
1 > 0 0.759 0.738 2.8
3/2 < 0 0.755 0.739 2.2
3/2 > 0 0.773 0.754 2.5
∞ 0.793 0.770 3.0

Table C.2: Critical temperatures for the nearest neighbor spin-S Heisenberg model on a
body-centered cubic lattice. Benchmark values are taken from an Padé-approximated high
temperature series expansion [182].

for the spin dynamics in Matsubara representation like (2.123) is quite sufficient to obtain
sensible results for the thermodynamics of non-frustrated systems in d = 3.

C.4 Tc on other cubic lattices

In these section results for Tc of isotropic magnets on other cubic Bravais lattices in three
dimensions, namely the bcc and fcc lattice, are presented. They are obtained from a nu-
merical integration of the flow equations (4.57), using the interaction-switch cutoff (4.4)
and approximating the dynamic polarization Π̃Λ(K) by its high-frequency and temperature
limit (2.123).

C.4.1 Magnets with nearest-neighbor interaction on a bcc lattice

The exchange coupling on a body-centered cubic lattice is given by

J(k) = 8Jγbcc(k), (C.11)

where the next-neighbor coupling J can be positive or negative, since the lattice is bipartite,
thus being compatible with Néel order for J > 0. Note that in momentum space the
Néel state is characterized by an instability at the ordering vector Q = 2π

a (1, 1, 1). The
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Tc/T
MF
c rel. error / %

S J switch benchmark switch

1/2 < 0 0.666 0.669 0.5
∞ < 0 0.815 0.795 2.5

Table C.3: Critical temperatures for the nearest neighbor Heisenberg ferromagnet on a
face-centered cubic lattice with S = 1/2 and S = ∞. Benchmark values are taken from
an extrapolated high temperature series expansion for S = 1/2 [210] and a Monte Carlo
simulation for the classical model [211].

momentum dependence of the corresponding polarization function is

Ω̃Λ(k) =
4G−1

Λ (k)(6ΛJb′0)
2

9T 3
1− γbcc(k) . (C.12)

Critical temperatures for both signs of J and different values of S are shown in Table C.4.1.
One achieves an accuracy that is comparable to the results for the sc lattice. The case
S = 1/2 with J < 0, > 0 was also investigated by means of the PF-FRG in Ref. [209]. The
deviations from the benchmark values were found to be larger than in our method, even
within a more sophisticated two-loop truncation [209].

C.4.2 Ferromagnet with next-neighbor interaction on a fcc lattice

The exchange interaction on the face-centered cubic lattice is given by

J(k) = 12Jγfcc(k), (C.13)

with the nearest-neighbor form factor

γfcc(k) =
1

3

h
cos(kxa) cos(kya) + (x↔ z) + (y ↔ z)

i
. (C.14)

We consider only a ferromagnetic coupling J < 0, because the lattice is not bipartite. As
a consequence one cannot construct a Néel state with a finite staggered magnetization.
Instead the exchange coupling assumes for J > 0 its global minimum on a continuous
manifold in k-space, namely Q(x)a = (2π, x, 0), x ∈ [0, π] [156]. In the light of this
degeneracy our employed approximations seem hardly appropriate for the antiferromagnet.
The dynamic polarization is proportional to

Ω̃Λ(k) =
2G−1

Λ (k)(6ΛJb′0)
2

3T 3
1− γfcc(k) . (C.15)

Results for the critical temperature of the S = 1/2 and classical ferromagnet are displayed
in Table C.4.2. The accuracy is again quite similar to the outcomes for the bcc and sc
lattices.
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Figure C.2: Quantum diagrams in the flow equation of the mixed static 4-legged vertex
Γxxzz
Λ (k1,k2,k3,k4). SK1...; Q1... denotes here again the action of a symmetrization operator

for two different tupels.
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Appendix D

Deutsche Zusammenfassung

D.1 Funktionale Spin-Renormierungsgruppe

In dieser Arbeit befassen wir uns mit der Berechnung der statischen und dynamischen
Eigenschaften isotroper Heisenberg-Paramagneten mithilfe einer neuen Implementierung
der Funktionalen Renormierungsgruppe (FRG) für Quantenspinsysteme. Das untersuchte
Modell ist explizit gegeben durch

H =
1

2

X
i,j

JijSi · Sj , (D.1)

wobei Si = (Sx
i , S

y
i , S

z
i ) Vektoroperatoren auf einem Bravais-Gitter mit Plätzen i = 1...N

sind, die die Drehimpulsvertauschungsrelationen erfüllen

[Sα
i , S

γ
j ] = iδijϵαγσS

σ
i , (D.2)

welche ursächlich für eine nichttriviale Quantendynamik sind. Jij ist die Austauschkop-
plung, dessen Ursprung rein quantenmechanischer Natur ist, eine Folge des Pauli-Prinzips
für ununterscheidbare Fermionen. Dieses effektive Modell ist in der Lage viele Eigenschaften
realer magnetischer Systeme, insbesondere Isolatoren, zu erklären.

Unser Zugang zur nicht-perturbativen Untersuchung dieses Modells basiert auf der funk-
tionalen Spin-Renormierungsgruppe (SFRG), die zuerst von Krieg und Kopietz formuliert
und verwendet wurde [1, 2]. Man beachte, dass die SFRG komplett ohne die sonst üblichen
Pfadintegrale auskommt. Die Hauptidee besteht darin Jij in H durch eine deformierte
Kopplung JΛ

ij zu ersetzen und dann die Evolution der verbundenen zeitgeordneten Spin-

Korrelationsfunktionen G
(n)
Λ in Imaginärzeit mit dem Flussparameter Λ, ausgehend von

einer exakt oder kontrolliert lösbaren Anfangsbedingung wie JΛ0
ij = 0, zu berechnen. Die

fließenden Korrelationsfunktionen G
(n)
Λ können dabei durch Ableitungen eines erzeugenden

Funktionals
GΛ[h] = lnTr T e(h,S)−

R β
0 dτJΛ(τ) , (D.3)

nach passend eingeführten Quellenfelder h ausgedrückt werden. Von besonderem Interesse
ist die Zweipunktfunktion oder Propagator, aus dem bei ω = 0 Ordnungstendenzen, z.B.
Temperaturen für Phasenübergange, als auch für ω ̸= 0 die Spindynamik extrahiert werden
können. Das Funktional GΛ[h] erfüllt eine komplizierte Integro-Differentialgleichung, welche
dessen zweiten Ableitung beinhaltet [1, 2]. Unter der Annahme, dass GΛ[h] in Potenzen
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der Quellen h um den physikalischen Punkt h = 0 entwickelt werden kann, ist dessen
Flussgleichung equivalent zu einer unendlichen Hierarchie gekoppelter Gleichungen für die

G
(n)
Λ , die man mittels Trunkierung näherungsweise lösen kann. Es stellt sich jedoch heraus,

dass gewisse Teile der Hierarchie, nämlich solche ohne explizite Schleifenintegration, exakt
resummiert werden können. Üblicherweise geschieht dies über eine Reparametrisierung

mittels 1-Teilchen (Propagator) irreduzibler (1-PI) Vertizes Γ
(n)
Λ [2, 3]. Diese werden von

der subtrahierten Legende-Transformierten, auch bekannt als effektive mittlere Wirkung,
erzeugt. Explizit ist dieses neue Funktional gegeben durch

ΓΛ[m] = (m,h) + GΛ[h]−
1

2
(m,JΛm). (D.4)

Die neue unabhängige Variable m steht hierbei für die Magnetisierung oder Einpunktfunk-
tion. Die effektive 1-PI Wirkung erfüllt die wohlbekannte Wetterich-Gleichung [1, 4]

∂ΛΓΛ[m] =
1

2
Tr ∂ΛRΛ[Γ

(2)
Λ [m] +RΛ]

−1 , (D.5)

die eine Einschleifen-Form besitzt, ebenso die Flussgleichungen der Vertizes. Allerdings hat
ΓΛ[m] eine pathologische Anfangsbedingung falls die Kopplung verschwindet, was an einer
fehlenden Zweipunkt-Dynamik isolierter Spins liegt.

Um dieses Problem zu umgehen führten Krieg und Kopietz ein Funktional FΛ[s] ein, das

amputierte Korrelationen F
(n)
Λ erzeugt und betrachteten die Flussgleichung der Legendre-

transformierte ΦΛ[η], die wieder eine Wetterich-Form besitzt, wobei die neuen Vertizes

Φ
(n)
Λ irreduzibel bezüglich einer (effektiven) Wechselwirkungslinie sind [1, 2]. Diese Vertizes

haben eine wohldefinierte Anfangsbedingung und es lässt sich zeigen, dass die Iteration der
Hierarchie an Flussgleichungen eine Entwicklung nach Schleifenintegralen, die von Vaks,
Larkin und Pikin [5, 6] mittels einer komplizierten diagrammatischen Methode berechnet
wurden, reproduziert. Allerdings hat sich ebenso gezeigt, dass für Näherungen, die nicht
auf perturbativen Entwicklungen basieren, 1-PI-Zugänge immer bessere Ergebnisse pro-
duzieren, sofern die Vergleichsmöglichkeit zwischen beiden Fällen bestand, zum Beispiel bei
der Thermodynamik klassischer Spinsysteme [2].

Wir konstruieren, basierend auf diesen Erfahrungen, ein statisch-dynamisches Hybrid-
Funktional ÃΛ[h

c, sq], welches statische Fluktuationen durch verbundene Korrelationen und
damit korrespondierende 1-PI Vertexfunktionen ausdrückt, während der dynamische Sek-
tor weiterhin mittels Amputation behandelt wird. Jedoch wird letztere nicht mittels der
fließenden Kopplung wie bei Krieg und Kopietz durchgeführt, sondern mit der inversen
statischen Suszeptibilität. Diese Wahl ist motiviert durch die Annahme, dass dynamische
Korrelationen G(k, iω) zwischen nicht-erhaltenen Operatoren für ω → 0 kontinuerlich in die
statische Suszeptibilität G(k) übergehen, was oft als Folge einer postulierten Ergodizität
des Systems verstanden wird [28, 36, 72]. Die dazu korrespondierende effektive Wirkung
Γ̃Λ[m,η] erfüllt eine modifizierte Wetterich-Gleichung,

∂ΛΓ̃Λ[m
c,ηq] =

1

2
Tr(ṘΛ[Γ̃

(2)
Λ [mc,ηq] +RΛ]

−1) +
1

2
Trω ̸=0(J̃Λ∂ΛJΛ)

− 1

2

δΓ̃Λ

δηq
, [∂ΛΣΛ]

δΓ̃Λ

δηq ω ̸=0
, (D.6)

die einen zusätzlichen Term mit der Ableitung des statischen 2-Punkt-Vertex ΣΛ enthält,
als Folge der modifizierten Amputation. Die daraus folgende Hierarchie, die im klassis-
chen Limes S → ∞ in die 1-PI Gleichungen übergeht, dient als Basis für unsere weiteren
Rechnungen.
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D.2 Spin-Dynamik im Heisenberg-Paramagneten

Auf Basis des Konzepts der Hydrodynamik wird in der Literatur regelmäßig argumen-
tiert, dass bei hohen Temperaturen und verschwindendem Magnetfeld die Langzeitdynamik
der Korrelationsfunktionen zwischen Spin-Fluktuationen bei langen Wellenlängen, durch
langsam ablaufende, dissipative Prozesse, in der Regel Diffusion des magnetischen Mo-
ments, dominiert wird [41]. Hierbei wird lang im Vergleich zu mikroskopischen Skalen, die
mit Parametern des Hamiltonians wie der Gitterkonstante und Austauschwechselwirkung
zusammenhängen, oder emergenten Größen wie der Korrelationslänge ξ, bestimmt. Eine
Magnetisierung, die durch eine Störung des thermodynamischen Gleichgewichts erzeugt
wird, gehorcht dann der Diffusionsgleichung [35, 41]

∂tM(k, t) = −Dk2M(k, t) (D.7)

wobei D der Spin-Diffusionskoeffizient ist und die Lösung dieser Gleichung exponentiell
abklingt. Ein analoges Resultat wird für die Korrelationsfunktionen ⟨Sz(k, t)Sz(k, 0)⟩ pos-
tuliert [35]. Der dynamische Strukturfaktor [32]

S(k, ω) =

Z ∞

−∞

dt

2π
⟨Sz(k, t)Sz(k, 0)⟩eiωt, (D.8)

welcher in Experimenten als Wirkungsquerschnitt inelatischer Neutronenstreuung gemessen
werden kann [31, 32], ist dann durch eine bei ω = 0 zentrierte Lorentzkurve gegeben [35, 41]

S(k, ω) ∝ Dk2

(Dk2)2 + ω2
. (D.9)

In der Nähe des kritischen Punktes schrumpft das hydrodynamische Regime aufgrund einer
stark anwachsenden Korrelationslänge. Es ist dann durch die Bedingungen kξ ≪ 1 und
ω ≪ τ−1(ξ) eingegrenzt, mit einer charakteristischen Zeitaskala τ(ξ) die für T → Tc di-
vergiert. Die hydrodynamische Zerfallsrate von Fluktuation um k = 0 ist dann Dk2 ∼
(kξ)2/τ . Im Ferromagneten verschwindet als Folge der Singularität in τ(ξ) zum Beispiel
der Diffusionskoeffizient D für T = Tc. Dies kann als Manifestation des critical slowing
downs aufgefasst werden, ein Phänomen, welches auch erklärt wieso das statische kritische
Verhalten für Tc ̸= 0 unabhängig von dynamischen Eigenschaften ist [3]. Einfachere Theo-
rien [32] postulieren D ∼ χ−1 ∼ ξ−2, wobei in drei Dimensionen tatsächlich ein schwächeres
Verschwinden eintritt, D ∼ ξ−1/2. Letzteres ist eine Vorhersage der Dynamic scaling hypoth-
esis (DSH) für Phasenübergänge bei endlicher Temperatur in mehr als zwei Dimensionen
[58], und ist ein Effekt singulärer Fluktuationen des Ordnungsparameters auf die Dynamik
[54, 55]. Allgemeiner postuliertDynamic scaling, dass für makroskopisch lange Wellenlängen
und Zeiten der dynamische Strukturfaktor proportional zu einer Skalenfunktion ist, in der
Frequenz, Impuls sowie die Korrelationslänge nicht unabhängig voneinander, sondern in
kombinierten Argumenten auftreten, zum Beispiel kξ und ω/ω(k), wobei ω(k) ∼ kz eine
charakteristische Frequenz mit dynamischen Exponenten z ist [58]. Der Exponent z bes-
timmt auch die Singularität der hydrodynamischen Skala τ(ξ) ∼ ξz, aus der entsprechend
das modifizierte Verhalten des Diffusionskoeffizienten für T → Tc folgt.

Im Rahmen unserer Implementierung der SFRG wurden Näherungen für den Fluss des
dynamischen Zwei-Punkt Vertex Π̃Λ(K), auch Polarisation genannt, hergeleitet. Dabei
mussten zahlreiche Bedingungen für eine physikalische Lösung beachtet werden, wie die
bereits erwähnte Stetigkeit des Propagators bei verschwindender Frequenz und endlichem
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Figure D.1: Fit unseres Ergebnisses für S(k, ω) an inelastische Neutronenstreudaten [144]

bei konstantem Impuls k = 0.15 Å
−1

und hinreichend hohen Frequenzen für das ferro-
magnetische Material EuO bei der kritischen Temperatur T = Tc. Mit Genehmigung aus
Ref. [11] übernommen ➞ [2022] American Physical Society.

Impuls, als auch die Erhaltung des Gesamtspins, sowie weitere Eigenschaften, wie Positivität
der Polarisation oder korrekte Hochtemperatur-Asymptotiken. Anstatt der Polarisation ist
es zweckmäßiger eine Dissipationsenergie definiert als

∆(k, iω) = |ω|G−1(k)Π̃(k, iω), (D.10)

zu betrachten, die als charakteristische Zerfallsrate der skizzierten Prozesse im Paramag-
neten aufgefasst werden kann und mit dem Gedächtniskern in mode-coupling-Zugängen eng
verwandt ist [74]. Die am intensivsten diskutierte der betrachteten Näherungen ist die
Integralgleichung

∆(k, iω) =

Z
q

V (k, q)

∆(q, iω) + |ω|
, (D.11)

wobei der Integralkern V (k, q) durch anderweitig bekannte Größen wie J(q) und G(q) bes-
timmt wird. Man beachte die lokale Struktur dieser Gleichung bezüglich ω, die es zum Beip-
iel erlaubt die analytische Fortsetzung ∆(k, ω) = ∆R(k, ω) + i∆I(k, ω) direkt auszuführen.
Der dynamische Strukturfaktor ergibt sich dann als

S(k, ω) =
1

π

ωG(k)

1− e−βω

∆R(k, ω)

∆2
R(k, ω) + (ω −∆I(k, ω))2

, (D.12)

und Diffusion liegt vor falls
D = lim

ω→0
lim
k→0

∆(k, ω)/k2, (D.13)

nicht-singulär und endlich ist. Anomale Diffusionsprozesse werden durch verschwindende
oder divergierende Grenzwerte in der obigen Relation charakterisiert. Diffusion erhal-
ten wir tatsächlich in d > 2, in Einklang mit dem hydrodynamischen Postulat [41, 77].
Die Größenordnung des Diffusionkoeffizienten bei T = ∞ stimmt dabei mit anderen the-
oretischen Methoden, wie mode-coupling theory [74] oder extrapolierten Hochfrequenz-
Entwicklungen [95] sowie experimentellen Studien [122, 123] überein. In reduzierten Di-
mensionen finden wir anomale Diffusion, sodass D für ω → 0 divergiert. Zumindest in
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integrablen Spinketten konvergieren die Ergebnisse verschiedener Methoden Richtung su-
perdiffusives Verhalten [50, 85]. In der kritischen Region ist die Lösung konsistent mit
dem postulierten Skalenverhalten der DSH inklusive der selben dynamischen Exponenten
für Ferro- und Antiferromagnete in d > 2. Dies ist auch das Result anderer theoretis-
cher Methoden [128, 157] und wurde in Streuexperimenten bestätigt [62, 144]. Bei den
expliziten Formen der Skalenfunktionen für ∆(k, iω) und S(k, ω) finden wir, für nicht zu
kleine Frequenzen oder große Impulse, gute Übereinstimmung mit Approximationen wie
einer extrapolierten ϵ-Entwicklung in drei Dimensionen [134]. Im entgegengesetzten Fall
treten Abweichungen auf, wie das Verschwinden von S(k, 0) oder Deformation der Kurven
durch nicht-analytische Terme um ω = 0. Diese Beobachtungen bestätigen sich beim Vergle-
ich mit experimentell gemessenen Streuintensitäten [144] und numerischen Spindynamik-
Simulationen [155]. Wir identifizieren die Diskrepanzen bei sehr kleinen Frequenzen als
Folge der verhältnismäßig einfachen Form der Integralgleichung.

D.3 Thermodynamik oberhalb der kritischen Temperatur

Die thermodynamischen Eigenschaften des Heisenberg-Modells wurden bereits angeschnit-
ten. Wir konzentrieren uns im Folgenden auf die paramagnetische Phase. Für T ≫ |J | ist
das statische Verhalten des Modells durch exakt bekannte Hochtemperatur-Entwicklungen
gegeben, mit dem isolierten magnetischen Moment als führenden Limes. Ein Beispiel ist
das Curie-Gesetz für die Suszeptibilität [14, 15]

G(k) =
S(S + 1)

3T
. (D.14)

Von tieferen Temperaturen kommend, sollen alle hier diskutierten Modelle einen geord-
neten Grundzustand haben. Beispiele sind ein Ferromagnet (Q = 0) oder Antiferromagnet
(Q = QN ) mit Neel-Ordnung auf bipartiten Bravais-Gittern. Die Zustände werden durch
einen eindeutigen Ordnungsvektor Q in der ersten Brillouin-Zone charakterisiert, an dem
die Austauschkopplung ihr globales Minimum annimmt. In drei oder mehr Dimension tritt
ein Phasenübergang bereits bei einer endlichen Temperatur Tc ∼ |J(Q)|S(S + 1) auf. In
reduzierten Dimensionen, kann es, nach dem Mermin-Wagner Theorem langreichweitige
Ordnung nur bei T = 0 geben [24]. Das ergibt je nach Art des Modells unterschiedliche
Ausdehnungen der symmetrischen Phase. Signalisiert werden kritischen Punkte durch eine
Divergenz der statischen Suszeptibilität G(k) beim Ordnungsvektor Q. Das singuläre Ver-
halten der Suszeptibilität in der kritischen Region ist durch einen charakteristischen Expo-
nenten γ gekennzeichnet,

G(Q) ∝ |T − Tc|−γ , (D.15)

der nicht nur dem Heisenberg-Modell, sondern allen Modellen gleicher Symmetrieklasse
inhärent, also universell ist. Letzeres ist eine Konsequenz langreichweitiger Korrelationen
nahe Tc, sodass mikroskopische Details keine Rolle spielen. Für endliche Impulse gilt in
guter Näherung [3]

G(k+Q) ∝ 1

k2 + ξ−2
, (D.16)

wobei ξ ≫ a die bereits erwähnte Korrelationslänge ist, die hier ξ ∼ G(Q)1/2 erfüllt und
damit mit dem Exponenten ν = γ/2 divergiert. Ergebnisse für Tc und den Exponenten
γ sind bereits durch die einfache Molekularfeld-Näherung zu erhalten, bei der H durch
einen Zeeman-Operator mit effektivem selbstkonsistenten Austauschfeld

P
j J0j⟨Sz⟩ ersetzt
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[15]. Unser Ziel ist es über diese Näherung hinauszugehen, die in physikalisch zugänglichen
Dimensionen und/oder der diskutierten kritischen Region nur sehr grobe Ergebnisse liefert
und für quantitative Vorhersagen damit ungeeignet ist [3, 15].

Wie schon für die Berechnung der Dynamik verwenden wir auch hier das Hybrid-
Funktional Γ̃Λ[m

c,ηq]. Dabei starten wir zunächst mit einer rein klassischen Näherung,
in der Quantenfluktuationen komplett vernachlässigt werden. Dies ist äquivalent zu einem
reinen 1-PI Zugang, in dem nur statische Vertexfunktionen mit gerader Zahl an Beinen
auftreten. Flussgleichungen für die statische Selbstenergie ΣΛ(k) werden gelöst, aus der die
statische Suszeptibilität berechnet werden kann

GΛ(k) =
1

ΣΛ(k) + JΛ(k)
, (D.17)

wobei am kritischen Punkt ΣΛ(Q) + JΛ(Q) = 0 gilt. In der simpelsten Näherung wird der

4-Vertex Γ
(4)
Λ nicht renormiert, und wir erhalten keine magnetische Ordnung bei endlichen

Temperaturen in d ≤ 4. Jedoch lassen sich aus dem Kurvenverlauf der inversen Suszepti-
bilität Ordnungstemperaturen abschätzen, die insbesondere mit einem Bandweiten-Cutoff
für die deformierte Kopplung [176, 177]

JΛ(k) = Jk −Θ(J(k)) (J(k)− JmaxΛ)Θ (J(k)− JmaxΛ)

+ Θ (−J(k)) (−J(k) + JminΛ)Θ (−J(k) + JminΛ) , (D.18)

nur um wenige Prozent von etablierten Ergebnissen auf dem kubischen Gitter abweichen.

Unter Berücksichtigung des 4-Vertex in einfacher impulsunabhängiger Form Γ
(4)
Λ ≈ UΛ und

der Näherung Γ
(6)
Λ ≈ V0 für den 6-Vertex, erhalten wir zwei gekoppelte Flussgleichungen

∂ΛΣΛ = −5TUΛ

6

Z
q

∂ΛJΛ(q)

[JΛ(q) + ΣΛ]
2 , (D.19)

∂ΛUΛ = T

Z
q
ĠΛ(q)

7

10
V0 −

11

3
U2
ΛGΛ(q) . (D.20)

Die Lösung dieser Gleichungen ergibt wieder ein endliches Tc in drei Dimensionen. Wir
finden unter Verwendung eines linearen Deformationsschemas JΛ(k) = ΛJ(k) die beste
Übereinstimmung mit Benchmarkwerten für Tc auf dem einfach kubischen Gitter [181,
182]. Mithilfe eines Bandweiten-Cutoffs lassen sich aus den obigen Gleichungen zudem die
Einschleifengleichungen der Renormierungsgruppe für die O(3)-Universalitätsklasse, zu der
das Heisenberg-Modell gehört, extrahieren. Diese besitzen mit dem Wilson-Fisher Fixpunkt
einen nicht-Gausschen Fixpunkt, der die kritischen Eigenschaften des Heisenberg-Modells
beschreibt [3].

Zum Abschluss wird die Quantendynamik des Systems durch einen einfachen Ansatz
für die Polarisationsfunktion Π̃Λ(K) berücksichtigt,

Π̃Λ(k, iω) =
2(b′0)

2

Tω2

Z
q
JΛ(q)[JΛ(q)− JΛ(q + k)], (D.21)

was einer Hochtemperatur- und Hochfrequenz-Näherung entspricht, die für unsere Zwecke
in drei Dimensionen ausreicht. Über das Feedback der Dynamik ist es dann möglich Ef-
fekte wie unterschiedliche Übergangstemperaturen für Ferro- oder Antiferromagneten bei
endlichem Spin abzubilden, die in einem rein statischen Zugang nicht auftreten konnten
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Figure D.2: Temperaturabhängigkeit der inversen Suszeptibilität G−1(Q) unter
Berücksichtigung von Quantenkorrekturen nach Integration der Flussgleichungen. Ein Null-
durchgang G−1(Q) = 0 impliziert hierbei einen Phasenübergang.

[182]. Wie im statischen Fall wird die Impulsabhängigkeit der Vertizes ignoriert, was für
nicht-frustrierte Systeme ohne konkurrierende Wechselwirkungen keine zu grobe Näherung
darstellt. Unter Verwendung einer linearen Deformation finden wir Abweichungen < 5%
von den etablierten Werten für Tc [179, 182]. Dies wird mit der in jüngerer Zeit populären
und vielfach angewandten Pseudofermion-FRG kontrastiert, welche mit signifikant höherem
numerischen Aufwand eine ähnliche oder schlechtere Genauigkeit erzielt [181, 184, 190].
Zukünftige Anwendungen auf frustrierte Systeme, die bessere Ansätze für die Quantendy-
namik und Impulsabhängigkeit der Vertizes benötigen, werden diskutiert.
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