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Flow coefficients (v2 and v3) are measured in high-multiplicity p+Au, d+Au, and 3He+Au colli-
sions at a center-of-mass energy of

√
sNN = 200 GeV using the STAR detector. The measurements

are conducted using two-particle correlations with a pseudorapidity requirement of ∣η∣ < 0.9 and a
pair gap of ∣∆η∣ > 1.0. The primary focus of this paper is on the analysis procedures and meth-
ods employed, especially the subtraction of non-flow contributions. Four well-established non-flow
subtraction methods are applied to determine vn, and their validity is verified using the HIJING
event generator. The vn values are compared across the three collision systems at similar multi-
plicities, which allows for cancellation of final state effects and isolation of the impact of the initial
geometry. While the v2 values display differences among these collision systems, the v3 values are
largely similar, consistent with the expectations of subnucleon fluctuations in the initial geometry.
The ordering of vn differs quantitatively from previous measurements obtained using two-particle
correlations with a larger rapidity gap; this difference could be partially attributed to the effects of
flow decorrelations in the rapidity direction.

I. INTRODUCTION

High-energy collisions of heavy nuclei, such as gold
at RHIC and lead at the LHC, give rise to a hot and
dense state of matter composed of strongly interact-
ing quarks and gluons, referred to as the Quark-Gluon
Plasma (QGP) [1]. This QGP experiences rapid expan-
sion in the transverse direction, converting initial spatial
nonuniformities into significant anisotropic particle flow
within the transverse momentum (pT) space. This flow,
spanning a wide range of pseudorapidity η, can be ac-
curately described by viscous relativistic hydrodynamic
equations with extremely low viscosity [2, 3]. There-
fore, the QGP is often likened to a nearly inviscid liquid,
known as the “perfect fluid”.

Experimentally, the anisotropic flow is manifested as a
harmonic modulation of particle distribution in the az-
imuthal angle ϕ for each event, given by the equation:

dN

dϕ
∝ 1 + 2

∞
∑
n=1

vn(pT) cos(n(ϕ −Ψn)) . (1)

Here, the magnitude vn and orientation Ψn of the nth-
order harmonic flow are commonly represented by the
flow vector Vn ≡ vne

inΨn . The flow coefficients with the
most significant magnitudes are the elliptic flow v2 and
the triangular flow v3. However, the direct measurement
of the event-wise distribution described by Eq. 1 is lim-
ited by the finite number of particles produced in each
event, and the flow coefficients are obtained via a two-
particle azimuthal correlation method:

dNpairs

d∆ϕ
∝ 1 + 2

∞
∑
n=1

cn(p
t
T, p

a
T) cos(n∆ϕ) , (2)

where it is anticipated that cn(p
t
T, p

a
T) = vn(p

t
T)vn(p

a
T),

assuming a factorization behavior for vn extracted from
two distinct pT ranges [4]. To mitigate short-range “non-
flow” correlations stemming from sources such as jet frag-
mentation and resonance decays, a pseudorapidity gap is

typically employed between particles labeled as “t” (trig-
ger) and “a” (associated).

Naturally, questions arise regarding the minimum sys-
tem size at which the “perfect fluid” behavior can be
observed, as well as whether QGPs created with various
sizes exhibit consistent properties. To address these ques-
tions, a series of measurements have been conducted in
several small systems, ranging from p+p [5–7] to p+A [8–
14], and γ+A collisions [15]. These measurements un-
veiled notable anisotropic flow in all of these systems.
A decade-long debate ensued regarding whether the ob-
served flow originates from final-state effects (FS), re-
sulting from the collective response to the initial geo-
metrical fluctuations in each event, or if it stems from
initial-state effects (IS), such as intrinsic momentum cor-
relations within the nuclear wavefunction at high en-
ergies. The latter can persist even in the absence of
final-state interactions [16, 17]. Recent theoretical efforts
have demonstrated that IS models, primarily rooted in
gluon saturation physics, exhibit relatively short-range
features in η [18], and fail to reproduce detailed pT depen-
dence [19, 20] and multi-particle correlations [21]. Conse-
quently, the current consensus within the scientific com-
munity leans toward the FS interpretation of collective
flow in small systems.

It is crucial to recognize that the final-state perspec-
tive does not necessarily imply the applicability of hy-
drodynamics and the presence of a perfect fluid. A con-
tinuing discussion revolves around whether the medium
formed in these systems can be characterized as a per-
fect fluid with well-defined transport properties or if it
constitutes a collection of partons undergoing only a few
average scatterings without achieving hydrodynamic or
thermal equilibrium [22–25]. Even within the hydrody-
namics framework, certain calculations introduce a “pre-
flow” phase, where partons undergo free streaming be-
fore enabling the hydrodynamic evolution [26]. How-
ever, a common thread across these models is the no-
tion that harmonic flow originates from the initial spatial
anisotropies, characterized by eccentricity vectors with
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magnitude εn and direction Φn, denoted as En = εne
inΦn .

In large collision systems, model calculations have
established an approximate linear relationship between
flow and eccentricity for both elliptic and triangular
flow [27, 28]:

vn = knεn, n = 2,3 . (3)

In this context, response coefficients kn, encompassing all
final state effects remain constant for events with similar
particle multiplicities. However, the validity of Eq. 3 and
its hydrodynamic interpretation is not as firmly estab-
lished in small collision systems. The non-hydrodynamic
approaches mentioned earlier can significantly alter the
response coefficients kn and their pT dependencies. A sig-
nificant challenge persists in experimentally distinguish-
ing between non-equilibrium transport and hydrodynam-
ics. Unambiguous confirmation of perfect fluid behavior
in these small systems requires making this distinction
with certainty.

TABLE I. The values of ε2 and ε3 in central collisions (requir-
ing either impact parameter b < 2 fm or 0–5% centrality), ob-
tained from Glauber models [29] including nucleon [14, 30, 31]
or subnucleon fluctuations [32]. They are defined either as
simple average, ⟨εn⟩ [30, 31], or the root-mean-square values,√
⟨ε2n⟩, which take into account event-by-event fluctuations.

The values have negligible statistical uncertainties. The val-
ues in 0–2% or 0–10% centralities are not shown, but they are
nearly identical to those quoted for 0–5%.

Nucleon Nucleon Subnucleon
Glauber [30, 31] Glauber [14, 29] Glauber [32]

b < 2 fm 0–5% centrality 0–5% centrality

⟨ε2⟩ ⟨ε3⟩
√
⟨ε22⟩

√
⟨ε23⟩

√
⟨ε22⟩

√
⟨ε23⟩

3He+Au 0.50 0.28 0.53 0.33 0.54 0.38
d+Au 0.54 0.18 0.59 0.28 0.55 0.35
p+Au 0.23 0.16 0.28 0.23 0.41 0.34

One reason for encountering this challenge lies in the
absence of quantitative control over the initial conditions
and the associated εn in small systems. An important
consideration pertains to whether each projectile nucleon
should be regarded as a single smooth blob or as multi-
ple blobs comprising gluon fields (as illustrated in the
top panels of Fig. 1). Notably, the flow data observed
in p+p collisions at the LHC cannot be explained with-
out invoking significant spatial fluctuations at the subnu-
cleon level, which necessitates considering multiple dis-
tinct “hot spots” within each colliding proton [33]. Such
subnucleonic fluctuations are anticipated to be impor-
tant in extremely-asymmetric collision systems like p+A
or d+A collisions (although their dependence on

√
sNN

remains unknown).
In the case of p+Au, d+Au, and 3He+Au collisions

within the RHIC small system scan, the εn values natu-
rally depend on the assumed structure of the projectile
p, d, and 3He, respectively. Table I shows that the dif-
ferences of ε3 among the three systems, in particular, are

sensitive to whether the nucleons in the projectiles are
treated as one smooth distribution without fluctuation
from nucleon to nucleon, or fluctuating distribution with
varying pattern from nucleon to nucleon. When modeling
nucleons as single smooth blobs, the resulting ε3 values in
p+Au and d+Au collisions are reduced, and they become
significantly smaller than the ε3 in

3He+Au collisions [30].
Conversely, considering each nucleon as three spatially-
separated blobs around valence quarks yields larger, yet
much closer, ε3 values for the three collision systems [32].
The impact of considering subnucleon-level fluctuations
on ε3 in d+Au collisions is depicted by comparing the two
top panels of Fig. 1.

middlebackward

deuteron deuteron

FIG. 1. Cartoon illustrating the interplay of three potential
sources contributing to the triangular eccentricity ε3 in asym-
metric collisions like d+Au: fluctuations in nucleon position
(top-left), fluctuations in nucleon position along with their
quark and gluon constituents (top-right), and fluctuations of
the initial geometry defined by the overlap between deuteron
and Gold nuclei along the beam direction, commonly referred
to as longitudinal decorrelations (bottom).

Another crucial aspect of the initial condition that in-
troduces significant uncertainty is its longitudinal struc-
ture (as depicted in the bottom panel of Fig. 1). Experi-
mental measurements in Pb+Pb, Xe+Xe, and p+Pb col-
lisions at the LHC [34–36], along with supporting model
studies [37–43], have revealed significant fluctuations in
the shape of the initial geometry along the η direction
within the same individual events. These fluctuations
lead to significant decorrelation of the eccentricity vector
as a function of η. Consequently, the extracted vn values
from the two-particle correlation method depend on the
chosen η range for selecting the particle pairs. A larger η
gap results in a smaller extracted v2 signal. The decorre-
lation effect is more pronounced for v3 and is particularly
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notable in smaller collision systems [34, 44].
Distinguishing the effects of fluctuations at the nucleon

and subnucleon levels, as well as those arising from longi-
tudinal decorrelations in collision geometry, is imperative
to convincingly establish the creation of QGP in these
small systems and to extract its properties.

To comprehend the origin of collectivity in small sys-
tems, particularly the role of collision geometry, RHIC
has undertaken a scan of p+Au, d+Au, and 3He+Au col-
lisions. The PHENIX Collaboration measured v2 and
v3 through correlations between particles in the central
rapidity region and the backward (Au-going) rapidity re-
gion [31, 45]. The pseudorapidity gap ∆η ranges from
three units to one unit depending on the method used.

The results reveal a hierarchy vp+Au
3 ≈ vd+Au

3 ≈ 1
3
v

3He+Au
3 ,

consistent with model calculations employing a version
of nucleon Glauber initial conditions [30] [46]. Recently,
STAR also measured v2 and v3 using correlations of par-
ticles closer to mid-rapidity while requiring a ∆η gap of
one unit [14]. The findings suggest similar values of v3
at comparable particle multiplicities in the three colli-
sion systems. The v3 values in 3He+Au are comparable
between the two experiments, yet they differ notably in
p+Au and d+Au. This discrepancy could potentially be
attributed to a weaker longitudinal decorrelation in the
STAR measurement, although recent model estimates ac-
count for only about half of the observed differences [44].

Another operational difference between the two exper-
iments is that PHENIX did not perform an explicit non-
flow subtraction. The rationale behind this decision is
that the non-flow component is reduced due to the large
pseudorapidity gap between the middle and backward de-
tectors, and any residual non-flow contributions are then
covered by systematic uncertainties [31]. Conversely, in
the STAR analysis, larger non-flow contamination is ex-
pected owing to its smaller pseudorapidity gap, necessi-
tating a careful estimation and subsequent subtraction of
non-flow contributions [14].

The primary objective of this paper is to provide a de-
tailed description of the methods and non-flow subtrac-
tion procedure that culminated in the results published
in Ref. [14]. Furthermore, we conduct an extensive com-
parison with hydrodynamic model calculations.

II. DATA AND EVENT ACTIVITY SELECTION

A. Event Selection

The datasets employed for this analysis include p+p,
p+Au, d+Au, and 3He+Au collisions at a center-of-mass
energy of

√
s
NN
= 200 GeV, collected by the STAR ex-

periment during the years 2014, 2015, and 2016. Mini-
mum Bias (MB) triggers are used for data collection in
both p+p and 3He+Au collisions, while p+Au and d+Au
collisions utilize both MB and High Multiplicity (HM)
triggers.

The MB triggers in p+p, p+Au, and d+Au collisions

require a coincidence between the east and west Vertex
Position Detectors (VPD) [47], which cover a rapidity
range of 4.4 < ∣η∣ < 4.9. For 3He+Au collisions, the MB
triggers require coincidences among the east and west
VPD and the Beam-Beam Counters (BBC) [48]. Addi-
tionally, at least one spectator neutron in the Zero Degree
Calorimeter (ZDC) [49] on the Au-going side is required.
The rapidity coverage of these detectors is 3.3 < ∣η∣ < 5.1
and η < −6.5, respectively. The MB trigger efficiency
ranges from 60% to 70% for p+Au, d+Au, and 3He+Au
collisions systems. For MB p+p collisions, this efficiency
was estimated to be around 36% [50].
In p+Au and d+Au collisions, the HM triggers require

a minimum number of hits in the Time Of Flight (TOF)
detector [51], in conjunction with the MB trigger criteria.
For offline analysis, events are selected based on their

collision vertex position zvtx relative to the Time Projec-
tion Chamber (TPC) center along the beam line. The
chosen position falls within 2 cm of the beam spot in
the transverse plane. The specific zvtx ranges are opti-
mized for each dataset, guided by distinct beam tuning
conditions: 20 cm, 30 cm, 15 cm, and 30 cm for p+p,
p+Au, d+Au, and 3He+Au data, respectively. Moreover,
to suppress pileup and beam background events in the
TPC, a selection based on the correlation between the
number of tracks in the TPC and those matched to the
TOF detector is applied.

B. Track Reconstruction and Selection

Charged particle tracks are reconstructed within ∣η∣ < 1
and pT > 0.2 GeV/c by the TPC. Track quality adheres
to established STAR analysis standards: tracks are re-
quired to have at least 16 fit points in the TPC (out of a
maximum of 45), with a fit-point-to-possible-hit ratio ex-
ceeding 0.52. To minimize contributions from secondary
decays, tracks are subject to a requirement that their
distance of closest approach (DCA) to the primary colli-
sion vertex is less than 2 cm. Additionally, a valid track
must be associated with a hit in the TOF detector or
a signal in at least one strip layer in the Heavy Flavor
Tracker (HFT) detector [52]. The TOF and HFT detec-
tors offer faster response times compared to the TPC,
effectively mitigating the effects of pileup tracks associ-
ated with multiple collisions that accumulate during TPC
drift time. To ensure high track reconstruction efficiency,
only tracks within ∣η∣ < 0.9 are utilized in the correlation
analysis.
The track reconstruction and matching efficiency are

evaluated using the established STAR embedding tech-
nique [53]. This technique involves generating charged
particles within a Monte Carlo generator, and subse-
quently subjecting them to a GEANT model represen-
tation of the STAR detector. The simulated detector
signals are then merged with real data to capture the
effects of the actual detector occupancy conditions. Sub-
sequently, these merged events are reconstructed using
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FIG. 2. Top row: Plot depicting N raw
ch vs. ΣQBBCE in minimum bias (MB) 3He+Au, d+Au, and p+Au collisions at

√
sNN =

200 GeV. Bottom row: Distribution of N raw
ch in each system. The black circles, red circles, and blue dashed lines correspond

to MB, top 0–10% event activity selected from BBCE and TPC, respectively. The pink solid curves indicate the generated
multiplicity distribution derived from a Monte Carlo Glauber model fit (see text).

the same offline reconstruction software utilized for real
data production.

The tracking efficiency is assessed by comparing the
reconstructed tracks with the simulated input tracks.
Specifically, tracking efficiency within the TPC exhibits
minimal dependence on pT for values exceeding 0.5
GeV/c, reaching a plateau at approximately 0.9 across
all collision systems. Applying a requirement for match-
ing to the TOF detector reduces this plateau value to
approximately 0.74.

C. Event Activity Selection

Our objective is to measure harmonic flow in
p/d/3He+Au collision events with large charged parti-
cle multiplicity or event activity. To achieve this, events
are categorized into percentile ranges known as centrality
classes, based on their apparent multiplicity as detected
by a specific instrument. The most central events, situ-
ated within the top 0–10% or the top 0–2% of the mul-
tiplicity distribution, are chosen for subsequent analysis
and comparison.

The default centrality classes are defined by employing
the observed charged track multiplicity, N raw

ch , within the
pseudorapidity region ∣η∣ < 0.9 and transverse momentum
range of 0.2 < pT < 3.0 GeV/c in the TPC [54]. These
charged particle tracks are required to have a matched
hit in the TOF detector. A Monte Carlo Glauber model,

along with one of two distinct assumptions about particle
production, is used to simulate the multiplicity distribu-
tion, which is then fitted to the N raw

ch to determine the
centrality percentiles.
The first approach is based on the two-component

model for particle production [55], where the number of
sources for particle production is assumed to be

Ns = [(1 − x)
Npart

2
+ xNcoll] , (4)

where x is the fraction of the second component. The
number of participants, Npart, and number of collisions,
Ncoll, are extracted from the PHOBOS Glauber Monte
Carlo simulation [29]. In the second approach, the Ns
is assumed to follow a power law dependence on Npart,
Ns = Npart

α.
The multiplicity fluctuation is incorporated via the

Negative Binomial Distributions (NBD) for each source,

PNBD(µ, k;n) =
Γ(n + k)

Γ(n + 1)Γ(k)
⋅
(µ/k)n

(µ/k + 1)n+k
, (5)

where n is the generated multiplicity, and µ and k are free
parameters. The inefficiency for triggering events with a
single source is assumed to be ε.
The multiplicity of an event at the generator level Nmc

ch
is obtained by summing n for all Ns sources. The corre-
sponding multiplicity after accounting for trigger ineffi-
ciency, denoted by Nobs

ch , is also obtained.
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The distribution of Nobs
ch is then fitted to measured

N raw
ch distributions for each specific collision system. The

trigger inefficiency ε and NBD parameters µ and k are
adjusted to achieve an optimal global fit. This procedure
also yields a multiplicity distribution at the generated
level, Nmc

ch , from which we can determine the centrality
percentiles.

Examples of Nmc
ch from the first approach are displayed

in the lower panels of Fig. 2 in the three collision sys-
tems. The apparent deviations of data at low N raw

ch val-
ues are attributable to the inefficiency of the MB triggers,
while the simulated distribution agrees with the data at
large N raw

ch values. The values of ⟨N raw
ch ⟩ are found to

be slightly different between the two approaches. For
the top 0–10% centrality interval, they amount to a 4%
difference in p+Au collisions and 3% in d/3He+Au colli-
sions.

In order to examine the potential auto-correlation be-
tween event selection and flow signal, an alternative event
activity selection is introduced as a cross-check. This se-
lection relies on the signal from the BBC on the Au-going
side (denoted as BBCE) within a pseudorapidity range
of −5.0 < η < −3.3. For instance, the 0–10% event classes
are characterized as the top 10% of the total charge regis-
tered by the BBCE, denoted as ΣQBBCE. The correlation
between N raw

ch and ΣQBBCE is illustrated in the upper
panels of Fig. 2 for Minimum Bias (MB) p+Au, d+Au,
and 3He+Au collisions. A broad correlation is observed
in all three systems, implying that events in a narrow
range of N raw

ch can have a large spread in ΣQBBCE and
vice versa. CorrespondingN raw

ch distributions for MB and
0–10% events, selected via TPC and BBC, are displayed
in the lower panels.

Table II provides the efficiency-corrected multiplici-
ties, ⟨Nch⟩, for MB p+p and the 0–10% most central
p/d/3He+Au collisions, selected using both N raw

ch and
ΣQBBCE. Additionally, the table presents values for the
0–2% most central p/d+Au collisions, selected with TPC-
based centrality. The systematic uncertainties on ⟨Nch⟩

arise mainly from uncertainties in charged pion recon-
struction efficiency, evaluated through the earlier men-
tioned embedding procedure. The additional PID depen-
dence of the reconstruction efficiency associated with K±
and (anti-)protons are estimated from embedding and
the known particle ratios [56]. The total uncertainty as-
sociated with the efficiency correction is estimated to be
around 5%.

Note that the ⟨Nch⟩ value quoted for MB p+p collisions
are not corrected for the trigger inefficiency, and therefore
should be treated as the value for selected events.

MB p+p p+Au d+Au 3He+Au

⟨Nch⟩ 4.7±0.3

0–10% from TPC
21.9±1.1 35.6±1.8 47.7±2.4

0–2% from TPC
34.1±1.7 46.4±2.3 -

0–10% from BBC
15.7±0.8 27.6±1.4 41.6±2.1

TABLE II. The efficiency-corrected average multiplicity,
⟨Nch⟩, for MB p+p, 0–10% most central p/d/3He+Au colli-
sions, as well as 0–2% most central p+Au and d+Au collisions
using TPC-based centrality. The values obtained for 0–10%
BBC-based centrality are also shown.

III. METHODOLOGY FOR vn EXTRACTION

A. Two-particle correlation function and
per-trigger yield

The analysis measures two-particle correlations as
functions of the relative pseudorapidity, ∆η, and relative
azimuthal angle, ∆ϕ [57]. Trigger particles are defined
as charged particle tracks within ∣η∣ < 0.9 and within the
specific ptT range of 0.2 < paT < 2.0 GeV/c. Pairs of par-
ticles are then formed by pairing each trigger particle
with the remaining charged particle tracks that satisfy
∣η∣ < 0.9, and 0.2 < paT < 2.0 GeV/c. This leads to a
maximum gap of ∣∆η∣ < 1.8 between the pairs. The track
reconstruction efficiency is applied to individual particles.
The two-dimensional two-particle correlation function,

C(∆η,∆ϕ), is calculated using the formula:

C(∆η,∆ϕ) = ∫
B(∆η′,∆ϕ′)d∆ϕ′d∆η′

∫ S(∆η′,∆ϕ′)d∆ϕ′d∆η′
S(∆η,∆ϕ)

B(∆η,∆ϕ)
,

(6)

where S(∆η,∆ϕ) and B(∆η,∆ϕ) represent the pair dis-
tributions from same-event and mixed-event samples, re-
spectively. Mixed-event pairs are formed by combining
tracks from two different events with similar centrality
and similar zvtx, as detailed in Ref. [57]. The correlation
functions C(∆η,∆ϕ) are obtained for different collision
systems with centrality selection based on the TPC mul-
tiplicity. The resulting correlation functions from MB
events are displayed in Fig. 3 for ptT in the range of
0.2 < ptT < 2.0 GeV/c (examples for other ptT ranges are
shown in Appendix VIII). Notably, a ridge-like structure
around ∆ϕ = 0 and along the ∆η direction is clearly ob-
served in central d+Au and 3He+Au collisions, and pos-
sibly in p+Au collisions, whereas it is absent in MB p+p
collisions.
To obtain one-dimensional correlation functions,

C(∆ϕ), the two-dimensional correlation functions are
projected by integrating over ∆η:

C(∆ϕ) = ∫
B(∆ϕ′)d∆ϕ′

∫ S(∆ϕ′)d∆ϕ′
S(∆ϕ)

B(∆ϕ)
, (7)
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where S(∆ϕ) and B(∆ϕ) are obtained by integrating
S(∆η,∆ϕ) and B(∆η,∆ϕ) using four distinct ranges of
∣∆η∣: ∣∆η∣ > 0.8, 1.0, 1.2, and 1.4. The per-trigger yield,
denoted as Y (∆ϕ), is then defined as:

Y (∆ϕ) ≡
1

Nt

dN

d∆ϕ
=
C(∆ϕ) ∫ S(∆ϕ)d∆ϕ

Nt ∫ d∆ϕ
, (8)

whereNt is the number of trigger particles after efficiency
correction.

Figure 4 illustrates Y (∆ϕ) obtained for MB p+p and
the 0–10% most central p+Au, d+Au, and 3He+Au colli-
sions in the four ∣∆η∣ ranges, with pT of trigger particles
in the range of 0.2 < ptT < 2.0 GeV/c. One-dimensional
correlation functions for other ptT ranges can be found in
Figs. 21–24 in Appendix VIII.

After a gap cut of ∆ηmin < ∣∆η∣ < 1.8 to suppress non-
flow, with ∆ηmin = 0.8, 1.0, 1.2, or 1.4 as shown in Fig. 4,
prominent near-side peaks are observed in central d+Au
and 3He+Au collisions. These near-side peaks may be at-
tributed to contributions from long-range collective flow.
Meanwhile, the large away-side peaks are predominately
attributed to the non-flow correlations from dijet frag-
mentations. In contrast, MB p+p correlation functions
exhibit very weak near-side peaks but much stronger
away-side peaks, suggesting that non-flow contributions
dominate the entire correlation structure. Hence, the
p+p data provide a baseline for assessing the remaining
non-flow contributions in p/d/3He+Au collisions.

The main goal of the gap cut is to suppress the signif-
icant near-side jet peaks observed in Fig. 3. In p+p colli-
sions, however, the near-side of the correlation function
still exhibits a low-amplitude, broad peak for ∆ηmin =

0.8, which decreases for larger gap cuts. For this anal-
ysis, a default ∆ηmin = 1.0 gap cut is chosen in all four
systems, which achieves a reasonable suppression of the
near-side jet peak while still maintaining decent statisti-
cal precision. More details can be found in Sec.IIID.

B. Non-flow subtraction and vn extraction

This section introduces four non-flow subtraction
methods. We will give the basics of these methods, high-
lighting their similarities, their differences, and their per-
formance in the different collision systems.

All methods start from the Fourier decomposition
of the one-dimensional per-trigger yield distribution,
Y (∆ϕ)

Y (∆ϕ) = c0(1 +
4

∑
n=1

2cn cos(n∆ϕ)) , (9)

where c0 represents the average pair yield (also referred to
as the pedestal), and cn (for n = 1 to 4) are the Fourier co-
efficients. The corresponding harmonic components are
depicted by the colored dashed lines in Fig. 4.

The cn values in p/d/3He+Au collisions are influenced
by non-flow correlations, especially on the away side,

which need to be estimated and subtracted. There are
four established methods for estimating non-flow:

1. the c0 method.

2. the near-side subtraction method.

3. the c1 method.

4. the template-fit method.

In the c0 method, non-flow effects in p/d/3He+Au col-
lisions are assumed to arise from a convolution of several
independent p+p collisions. Consequently, they are ex-
pected to be proportional to cppn , which is further divided
by the c0. The Fourier coefficients after subtracting non-
flow contributions are calculated as follows:

csubn = cn −
cpp0
c0
× cppn . (10)

This method is analogous to the “scalar-product
method” mentioned in Refs. [58] and [59].
However, the c0 method can underestimate non-flow

contributions in central p/d/3He+Au collisions due to
the selection of high-multiplicity events potentially bias-
ing jet fragmentation to produce more correlated particle
pairs. The near-side subtraction method from Refs. [59–
61] addresses this bias.
In the near-side subtraction method, the differences

in non-flow contributions between p+p and p/d/3He+Au
collisions are estimated using the near-side per-trigger
yield, Y N(∆ϕ), defined as the difference between the
short-range yield integrated over 0.2 < ∣∆η∣ < 0.5, de-
noted as Y S(∆ϕ), and the long-range yield integrated
over 1.0 < ∣∆η∣ < 1.8, denoted as Y L(∆ϕ). This method
is illustrated by the equation,

Yint ≡ ∫ Y Nd∆ϕ =∫ (Y S − fY L)d∆ϕ , (11)

where f =
Y S(∆ϕ=π)
Y L(∆ϕ=π) . The Fourier coefficients after sub-

tracting non-flow contributions are obtained as,

csubn = cn −
Yint
Yint,pp

cpp0
c0
× cppn , (12)

The Y N(∆ϕ) distributions for various trigger particle
pT ranges are depicted in Fig. 5, and the ratio Yint/Yint,pp
is shown in the right panel of the same figure. This ratio
starts around 2.4 at low pT and decreases rapidly with pT
while staying above unity. This indicates that the near-
side subtraction method, compared to the c0 method,
removes a much larger portion of p+p-scaled correlations
attributed to non-flow.
In the so-called c1 method, non-flow contributions are

directly estimated from the away-side jet-like correla-
tions. In this method, the away-side jet contribution is
assumed to scale with the c1 component from the Fourier
decomposition of Y (∆ϕ). This assumption holds at low
pT, where the away-side jet shape is well described by a
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1+2c1 cos(∆ϕ) function. However, we find that it is also
a valid assumption over the entire pT range considered
in this analysis. In this context, the ratio of the non-flow
component between p+p and p/d/3He+Au is expected to
be captured by the ratio of their respective c1 values [61].
The non-flow subtracted Fourier coefficients are then cal-
culated as,

csubn = cn −
c1
cpp1
× cppn . (13)

The last non-flow subtraction method implemented in
this paper is the so-called “template-fit” method, de-
veloped by the ATLAS Collaboration and detailed in
Ref. [6]. This method assumes that the Y (∆ϕ) in
p/d/3He+Au collisions is a linear combination of a scaled
Y (∆ϕ) distribution from MB p+p collisions, represent-
ing all non-flow contributions, and a Y (∆ϕ) distribu-
tion containing only genuine collective flow, denoted as

Y (∆ϕ)ridge ,

Y (∆ϕ)templ
= FY (∆ϕ)pp + Y (∆ϕ)ridge , (14)

where

Y (∆ϕ)ridge = G(1 + 2
4

∑
n=2

csubn cos (n∆ϕ)) . (15)

The parameters F and csubn are determined through fit-
ting the data to Y (∆ϕ)templ. The coefficient G, deter-
mining the magnitude of the pedestal of Y (∆ϕ)ridge, is
fixed by ensuring that the integral of Y (∆ϕ)templ to equal
to the integral of Y (∆ϕ) .
The performance of the template-fit method is shown

in Fig. 6. The narrowing of the away-side peak in
p/d/3He+Au collisions compared to that in p+p collisions
is a unique feature indicating the presence of a significant
cos(2∆ϕ) component [6].
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Since both the c1 method and the template-fit method
rely on the away-side jet correlation to constrain non-
flow contributions, the scale factors in Eqs. 13 and 14
are expected to be similar, i.e., F ≈ c1/c

pp
1 . The pri-

mary distinction between these methods lies in how they
handle flow modulation. The c1 method assumes that
flow modulation affects all particle pairs, as captured by

the c0 term in Eq. 9, whereas the template-fit method
assumes that flow modulation applies only to the sub-
tracted pedestal, as represented by the parameter G in
Eq. 15. This implies that in central p/d/3He+Au colli-
sions, where the particle multiplicity is much larger than
that in p+p collisions, the template-fit method is almost
identical to the c1 subtraction method.
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The scale factors obtained from the four non-flow sub-
traction methods, as given by Eqs. 10, 12, 13, and 14,

follow a consistent ordering:
cpp0
c0
< F ≈ c1

cpp1
< Yint

Yint,pp

cpp0
c0

.

This indicates that the results obtained from the c1
method and the template-fit method lie between those
obtained from the c0 method and the near-side subtrac-
tion method.

The difference in scale factors arises from the biases
associated with jet fragmentation on the near side and
the away side, which varies across the four subtraction
methods. In two-particle correlations, pairs within the
near-side jet peak require two particles originating from
the same jet, while pairs within the away-side jet peak
only need one particle each from the near-side and away-
side jets. As a result, the near-side subtraction method
tends to overestimate the non-flow contribution due to a
larger jet fragmentation bias on the near-side jet. Con-
versely, the c0 method tends to underestimate the non-
flow contribution. Based on this analysis, the c1 method
is chosen as the default method in this study.

Note that the MB p+p events used for non-flow esti-
mation is biased by the trigger efficiency towards events
with somewhat higher multiplicity. However, assuming
that the shape of non-flow contribution in the correla-
tion function is not modified, the trigger inefficiency in
p+p collisions is expected to not influence the subtraction
procedure.

Finally, the flow coefficients vn are calculated using the
two-particle harmonics cn(p

t
T, p

a
T) with or without non-

flow subtractions,

vn(p
t
T) =

cn(p
t
T, p

a
T)√

cn(paT, p
a
T)

, (16)

By default, particle pairs are required to have a pseudo-
rapidity gap of ∣∆η∣ > 1, and the associated particles are
chosen to have 0.2 < paT < 2 GeV/c.
The left part of Fig. 7 illustrates the extracted v2(pT)

in 0–10% central p+Au, d+Au, and 3He+Au collisions
using different non-flow subtraction methods. The re-
sults agree with those before non-flow subtraction in the
low pT region (< 0.6 GeV/c), but they are systematically
smaller at higher pT. This behavior is consistent with
the non-flow correlation from the away-side jet, which is
expected to contribute more in smaller collision systems
and at higher pT.
Among the four non-flow subtraction methods, the

v2(pT) values are in agreement within 20% in d+Au and
3He+Au collisions. In contrast, in p+Au collisions, the
v2(pT) values are similar at pT < 0.6 GeV/c, but they
exhibit a noticeable spread at higher pT. This observa-
tion suggests that v2(pT) values can be extracted up to 2
GeV/c in d+Au and 3He+Au, but only up to 0.6 GeV/c
in p+Au collisions.

The right part of Fig. 7 presents the same compari-
son for v3(pT). The results after non-flow subtraction
closely resemble those obtained without non-flow sub-
traction up to 1 GeV/c, but they are slightly larger at

higher pT. The overall impact of non-flow correlations
on v3(pT) is significantly smaller than that on v2(pT),
resulting in a much weaker dependence of the extracted
v3(pT) values on the non-flow subtraction methods. This
is because the away-side jet correlation centered around
∆ϕ ∼ π is very broad within the considered paT, p

t
T range.

Its Fourier decomposition gives rise to large negative c1,
a smaller positive c2, and a much smaller negative c3.
The negative non-flow contribution to c3 naturally im-
plies that the non-flow subtraction procedure can only
increase v3, which is observed in Fig. 7. The spreads of
v3(pT) from different non-flow subtraction methods are
approximately 10% in d+Au and 3He+Au, increasing to
20–30% in p+Au collisions.
The same analysis was also conducted for the 0–2% ul-

tracentral p/d+Au collisions, and the results are depicted
in Fig. 8. The dependence on the non-flow subtraction
methods is qualitatively similar for both v2 and v3, al-
though quantitatively, the variations in p+Au collisions
are significantly reduced compared to Fig. 7. This reduc-
tion can be attributed to the higher ⟨Nch⟩ values in the
0–2% centrality range, as listed in Table II, compared to
the 0–10% centrality range in p+Au collisions. A larger
⟨Nch⟩ implies a significant decrease in the scale factors in
all the non-flow subtraction methods, such as cpp0 /c0 in
the c0 and near-side subtraction methods, c1/c

pp
1 in the

c1 method, and the F in the template-fit method. This
reduction in the scale factors diminishes the sensitivity
to non-flow correlations and leads to smaller variations
among different non-flow subtraction methods. This ef-
fect is most significant in p+Au collisions, but is less pro-
nounced in d+Au collisions.

C. Closure test of the non-flow subtraction with
HIJING

In this section, a closure test of the non-flow subtrac-
tion method with the HIJING model is presented. This
test aims to assess the validity of the non-flow subtraction
procedures by comparing the results obtained from data
with those from the HIJING model, which only includes
non-flow correlations.

As discussed in the previous section, various non-flow
subtraction methods differ mainly in estimating the scale
factor K to be multiplied to the p+p Fourier harmonics,

csubn = cn −K × c
pp
n , (17)

where K is equal to cpp0 /c0 for the c0 method and c1/c
pp
1

for the c1 method. However, for the following discussion,
we will focus on the default c1 method.

One may estimate the residual non-flow as the csubn

calculated directly using models such as HIJING [5, 62].
However, this approach relies on the model to reproduce
the main features of jet-like correlations in pp collisions,
such as its ∆ϕ, ∆η, and pT dependence, which is not
the case. Here, we take a different approach. In our
approach, the features of non-flow are taken directly from
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pp data, but only the difference of the factor K in Eq. 17
between HIJING model and data is used to perform the
closure test. The advantage is that we only rely on the
HIJING model to estimate the scaling behavior of non-
flow as a function of ⟨Nch⟩ and between different collision
systems, not its absolute yield.

The factor K in Eq. 17 could potentially be overesti-
mated or underestimated by a factor hn that depends on
the harmonic number n. However, hn cannot be directly
determined from experimental data but can be explored
using the HIJING model, where hn can be calculated by
scaling the Fourier harmonics in p+p collisions to match
those in p/d/3He+Au collisions:

csub,hijn = chijn −
K

hn
× cpp,hijn = 0→ hn =K

cpp,hijn

chijn
. (18)

Here, cpp,hijn and chijn represent the corresponding Fourier
harmonics in HIJING simulations. It’s noted that hn is
always positive, as both cppn and cn are positive quantities
in the HIJING model.

We need to consider two scenarios for hn, with respect
to its harmonic number,

• For n = 2, since cpp2 in Eq. 17 is positive, h2 > 1
(h2 < 1) would indicate overestimation (underesti-
mation) of non-flow contributions for elliptic flow
measurements.

• For n = 3, since cpp3 < 0, h3 < 1 (h3 > 1) would
imply overestimation (underestimation) of non-flow
contributions for triangular flow measurements.

These scenarios lead to different impacts of non-flow sub-
tractions on v2 and v3 in the context of the HIJING
model.

In the framework of the closure test, the degree to
which the c1 method accurately characterizes non-flow
correlations can be assessed using the following equation,

cest.n

csubn

=
cn − (K/hn) × c

pp
n

cn −K × c
pp
n

=
1 − dn/hn
1 − dn

, (19)

where cest.n represents the two-particle flow coefficients
calculated using the scale factor obtained from the HI-
JING simulation. This value deviates from csubn if and
only if hn ≠ 1. In addition, we also define a new quantity
dn based on real data,

dn =K
cppn
cn

, (20)

whose form is similar to hn in Eq. 18, although with
different behavior in terms of its sign. Specifically, we
expect that

• d2 is always positive since both cpp2 and c2 in the
data are positive.

• d3 is always negative due to the fact that cpp3 < 0
and c3 > 0 in the data.

This distinction leads to a redefinition of Eq. 19 for
the two harmonics, yielding an estimate of the potential
change in vn due to non-flow subtraction uncertainties,

vest.2

vsub2

≈
cest.2

csub2

=
1 − ∣d2∣/h2
1 − ∣d2∣

, (21)

vest.3

vsub3

≈
cest.3

csub3

=
1 + ∣d3∣/h3
1 + ∣d3∣

, (22)

where we have used the factorization assumption and the

observation that vest.a2 /vsub,a2 ≈ 1, i.e. flow at low pT,
covered by associated particles, is insensitive to the non-
flow subtraction procedure,

cest.n

csubn

=
vest.tn

vsub,tn

vest.an

vsub,an

≈
vest.tn

vsub,tn

(23)

Considering the differing signs between Eq. 21 and
Eq. 22, it is expected that, for the same hn and ∣dn∣

values,
vest.3

vsubl3

would be closer to unity than
vest.2

vsub2

. Con-

sequently, we anticipate that v3 would be more robust,
compared to v2, against uncertainties associated with
non-flow subtraction.
In Fig. 9, the outcomes of d2 from data, h2 from HI-

JING, and the resulting vest.2 /vsub2 are displayed as func-
tions of pT for the three small collision systems. The top
row presents the calculated d2 using ∣∆η∣ > 1. The up-
ward trend with increasing pT in d2 reflects the larger
non-flow contribution from the away-side jet. Notably,
in p+Au collisions, d2 reaches a value of 0.6–0.8 at high
pT, indicating a significant reduction in the denominator
of Eq. 21 and an enhanced sensitivity to the systematic
uncertainties of non-flow subtraction.
In the middle row, h2 from HIJING is plotted as a

function of pT for the three systems. The simulation in-
dicates that the correlation functions in HIJING tend to
exhibit broader near-side peaks compared to the data (as
seen in Fig. 25 in Appendix VIII). Consequently, even af-
ter applying the ∣∆η∣ > 1 cut, the residual near-side jet in
the HIJING model may still bias the estimated h2 value
more than in the data. When applying a stricter cut
of ∣∆η∣ > 1.4, the shape of the correlation functions in
Fig. 25 looks much more similar to the data. Neverthe-
less, we calculate h2 from both ∣∆η∣ > 1 and ∣∆η∣ > 1.4
cuts, whose values are fortuitously similar. The values
of h2 are always above unity: they increase with pT, but
are quite similar in the three systems.
The bottom row of Fig. 9 presents the results of

vest.2 /v
sub
2 . Given that h2 > 0, the nonflow scale factors

obtained from HIJING are smaller than those derived
from the data, resulting in larger v2 values. If the HI-
JING model indeed provides accurate scale factors, these
results would suggest that the c1 method tends to over-
correct the v2 values in the data. The degree of over-
correction amounts to approximately 0–8% in 3He+Au,
0–15% in d+Au, and 0–50% in p+Au collisions, across the
measured pT range.
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In Fig. 10, the results of d3 from data and h3
from HIJING are displayed, alongside the corresponding
vest.3 /vsub3 as functions of pT for the three collision sys-
tems. The top row shows the calculated d3 values, which
are consistently negative as anticipated. Moreover, the
magnitude of d3 increases with increasing pT.

The middle row of the figure presents h3 from HI-
JING as a function of pT for the three systems. No-
tably, h3 values in all three systems are above unity, rang-
ing from around 1.5–2.0, and exhibit only weak depen-
dence on pT. This finding implies that the numerator in
Eq. 22 is smaller than the denominator, indicating that
vest.3 < vsub3 . This observation is consistent with the
results shown in the bottom row, where the estimated
flow signal after accounting for non-flow from HIJING is
consistently smaller than the measurement. Specifically,
vest.3 is smaller than vsub3 by approximately 5–10 % in
3He+Au, 10–15% in d+Au, and 15–20 % in p+Au colli-
sions. This indicates that the c1 method could overesti-
mate the v3 signal in the data by these magnitudes in a
pT-independent manner, assuming that the non-flow cor-
relations are correctly described by the HIJING model.

To sum up, the scaling behavior of non-flow in the HI-
JING model shows some differences from the real data.
If the scale factors from HIJING are utilized to adjust
the non-flow subtraction procedure, the v2 values remain
largely consistent, except for p+Au collisions at high pT.
On the other hand, the v3 values would be slightly re-
duced by less than 4–25 % across all collision systems
and pT ranges.
A previous study in Ref. [62] explored the performance

of the nonflow subtraction procedure using the HIJING
model. The study identified residual non-closure of the
subtraction, although it was conducted within a some-
what different pT range. The findings indicated that the
non-closure effect is significant in p+Au collisions at high
pT (> 1 GeV/c), which aligns with the observations made
in this analysis.

It is important to note that, however, based on the
analysis method and kinematic selection employed by
STAR, the impact of this non-closure has only a modest
effect on the v3 results, and is well within the experimen-
tal systematic uncertainties (see Table III).

D. The dependence on the ∆η selection

In this section, we delve into the effect of varying the
pseudorapidity gap (∣∆η∣) between particle pairs, aim-
ing to further assess the resilience of the non-flow sub-
traction methods. The default criterion for this gap is
∣∆η∣ > 1.0, which effectively mitigates the impact of near-
side non-flow correlations and reduces the influence of
away-side non-flow. The chosen default non-flow sub-
traction method is the c1 approach, and our focus is on
scrutinizing the stability of the resulting vn values when
applying different ∣∆η∣ cuts.
We systematically adjust the ∣∆η∣ cut for particle pairs

and investigate the v2 and v3 values both with and with-
out non-flow subtraction. The obtained results are pre-
sented in Fig. 11 for v2 and Fig. 12 for v3. Through this
analysis, we uncover insightful observations regarding the
impact of non-flow correlations.
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FIG. 11. The values of v2 obtained from distinct ∆η selections
such as ∣∆η∣ > 0.8, 1.0, 1.2 and 1.4 in top 0–10% p+Au, d+Au
and 3He+Au collisions at

√
sNN = 200 GeV. The left column

illustrates the results before non-flow subtraction, while the
right column displays the results after applying the c1 sub-
traction method. Only statistical uncertainties are shown.

Regarding v2, the primary source of non-flow originates
from the away-side jet-like correlations. By augmenting
the ∣∆η∣ cut from ∣∆η∣ > 0.8 to ∣∆η∣ > 1.4, the near-
side residual non-flow is further suppressed; the overall
non-flow contribution, however, experiences only a slight
reduction with increasing ∣∆η∣. This phenomenon clari-
fies the modest decline in v2 seen in the left column of
Fig. 11 before non-flow subtraction. This reduction be-
comes particularly conspicuous at ≈ 1.6 GeV/c. Never-
theless, the c1 subtraction methodology effectively elim-
inates most non-flow correlations, as shown in the right
column of Fig. 11, yielding v2 values that are smaller yet
remain nearly independent of the ∣∆η∣ cut.
The behavior of v3 is more intricate. As mentioned pre-

viously, the away-side jet-like correlation tends to reduce
the v3. In contrast, any residual near-side jet correlations
inherently lead to a positive c3 value, thereby increasing
the v3 value. Consequently, the non-flow contributions
stemming from both the near-side and away-side jets are
in competition and can partly offset each other. This in-
terplay is precisely what is observed in the left column
of Fig. 12: increasing the ∣∆η∣ cut curtails the positive
contribution tied to the near-side jet, resulting in a reduc-
tion of the extracted v3. This trend is evident across all
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FIG. 12. The values of v3 obtained from distinct ∆η selections
such as ∣∆η∣ > 0.8, 1.0, 1.2 and 1.4 in top 0–10% p+Au, d+Au
and 3He+Au collisions at

√
sNN = 200 GeV. The left column

illustrates the results before non-flow subtraction, while the
right column displays the results after applying the c1 sub-
traction method. Only statistical uncertainties are shown.

three collision systems, with the most marked impact wit-
nessed in p+Au collisions at high pT (bottom-left panel
of Fig. 12). Nevertheless, upon applying the non-flow
subtraction, the v3 values originating from very diverse
∣∆η∣ cuts agree nicely with each other, as demonstrated
in the right column of Fig. 12. This alignment implies
that both the non-flow contributions affiliated with the
near-side and away-side have been effectively eliminated.

It is pertinent to observe that the v3 results for ∣∆η∣ >
0.8 are nearly the same before and after non-flow subtrac-
tion. This suggests that the positive contribution linked
to near-side jets and the negative contribution arising
from away-side jets fortuitously offset each other.

In conclusion, this investigation suggests that adopting
∣∆η∣ > 1.0 constitutes an optimal choice for the STAR
TPC acceptance, as it strikes a balance between non-
flow effects and statistical precision in the assessment of
v2 and v3.

E. Non-flow bias in selecting high-multiplicity
events

By default, the selection of centrality is based on the
N raw

ch measured in the TPC (see Sec. II B). This approach
allows us to reach high values of N raw

ch for the flow mea-
surement. However, this approach may cause potential
bias on jet fragmentation, which in turn may bias the
non-flow contributions. To explore the potential biases

arising from the choice of high-multiplicity events on non-
flow correlations, we carry out an analysis using two dis-
tinct centrality definitions, one relying on the TPC and
the other on the multiplicity measured in the forward ra-
pidity using ΣQBBCE. A comparison between the vn val-
ues obtained from these two centrality definitions, using
the c0 and c1 non-flow subtraction methods, is depicted
in Figure 13.
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FIG. 13. The v2 values (left) and v3 values (right) in central
collisions based on TPC selection (filled symbols) and BBC
selection (open symbols), obtained using the c1 method (cir-
cles) and c0 method (diamond) in 0–10% 3He+Au (top row),
0–10% d+Au (middle row) and 0–10% p+Au (bottom row)
collisions. These results are obtained with a requirement of
∣∆η∣ > 1.0. Only statistical uncertainties are displayed.

Firstly, we observe a high level of consistency between
the two non-flow subtraction methods when adopting
the BBC-based centrality selection. However, when em-
ploying the TPC-based centrality approach, the v2 val-
ues exhibit notable differences between the two non-flow
subtraction methods, particularly evident in p+Au col-
lisions at high pT. These differences can be attributed
to biases induced by the away-side non-flow on the per-
trigger yield, which is underestimated by the scaling fac-
tor cpp0 /c0 employed in the c0 method (Eq. 10). Con-
versely, the scale factor c1/c

pp
1 utilized in the c1 method

(Eq. 12) accurately encapsulates the magnitude of the
away-side non-flow, independent of the chosen centrality
definition. This comparison strongly implies that the c1
method is more reliable than the c0 method in gauging
the non-flow contribution.
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Regarding v3, the results are considerably less sensitive
to the chosen centrality approach. This outcome is not
surprising, given our demonstrations in previous sections
that v3 values are less susceptible to non-flow correlations
under the kinematic criteria employed in this analysis.

IV. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties affecting vn measure-
ments stem from various origins, encompassing track
selection criteria, background tracks, residual pileup
events, and non-flow subtraction procedures. For each
variation, the entire analysis pipeline, including non-flow
subtraction, is repeated, and the discrepancies from the
default results are reported as uncertainties.

The influence of track selection is evaluated by mod-
ifying the TPC hit selection from 16 to 25 hits and by
varying the DCA cut. The resultant changes remain be-
low 5% for v2 and below 10% for v3 across all three col-
lision systems. The criteria for matching tracks to fast
detectors, crucial for background track elimination, are
adjusted by requiring only TOF or either TOF or HFT
in track matching. This adjustment induces deviations of
less than 2% for v2 and under 5% for v3 in 3He+Au and
d+Au collisions. In p+Au collisions, the variation spans
2% to 7% over pT for v2 and is under 5% for v3.
The luminosity conditions differ notably among the

p+p and p/d/3He+Au collisions. High luminosity running
conditions can slightly diminish track reconstruction effi-
ciency, which we counteract by implementing luminosity-
dependent scaling factors integrated into the two-particle
correlation analysis. However, varying luminosity may
lead to fluctuations in track quality and background con-
tamination. To address this, the data for each collision
system is divided into subsets, each corresponding to dis-
tinct average luminosities measured by the STAR BBC.
Subsequent correlation analyses are performed for each
subset and compared. This analysis shows only minimal
dependence on luminosity condition, resulting in a 2%
uncertainty for v2 and a 5% uncertainty for v3 for all
three systems.

Undoubtedly, the largest source of systematic uncer-
tainty stems from our limited knowledge of non-flow con-
tributions. Comprehensive discussions of non-flow sub-
traction methods and their efficacy have been provided
in Section III. Here, we outline how uncertainty is quan-
tified. The vn values are compared among four dif-
ferent subtraction methods and four distinct ∆η gaps
(∣∆η∣ >0.8, 1.0, 1.2, and 1.4). Further comparisons are
made between correlations involving same-charge pairs
and opposite-charge pairs. The differences between these
two correlation functions allow us to assess the impact of
residual contributions from near-side jet fragmentation.

Default results are obtained using the c1 method with
∣∆η∣ >1.0, and the largest deviation from the other
three subtraction methods is designated as the system-
atic uncertainty associated with the non-flow subtraction

method. These uncertainties are then combined with
variations among different ∆η gaps and those between
same-charge and opposite-charge correlations. The un-
certainty is under 15% (21%) for v2(v3) in 3He+Au and
d+Au collisions. For p+Au, the uncertainty is notably
higher, reaching 65% for v2 and 35% for v3 at high pT.
Notably, the uncertainties linked to non-flow subtraction
methods are considerably smaller for the most central
0–2% p+Au collisions, compared to those for the 0–10%
p+Au collisions.

The uncertainties originating from the aforementioned
four different sources are combined in quadrature. Non-
flow subtraction predominantly governs these uncertain-
ties. The detailed breakdown of systematic uncertainties
can be located in Table III.

V. RESULTS AND DISCUSSIONS

A. Comparison with previous results and model
predictions

The flow results from the STAR and PHENIX exper-
iments in small collision systems exhibit differences that
can be attributed to various factors, including variations
in kinematic selection, analysis techniques, residual non-
flow correlations, and longitudinal dynamics. It is valu-
able to review these discrepancies for a comprehensive
understanding.

The PHENIX measurements are obtained through
multiple pairs of correlations involving different com-
binations of particles at midrapidity and in the back-
ward Au-going direction: ∣ηa∣ < 0.35, -3.0 < ηb < -1.0, and
-3.9 < ηc < -3.1. Using the notation of flow vectors in a
subevent as Qn ≡ qne

inψn , the vn(pT) at midrapidity
(∣ηa∣ < 0.35) is computed using an event-plane method
that assumes factorization among the pairs from any two
subevents,

van(pT) ≈
⟨qan(pT) cosn(ψ

a
n(pT) − ψ

c
n)⟩
√
⟨cosn(ψan − ψ

b
n)⟩

√
⟨cosn(ψan − ψ

c
n)⟩ ⟨cosn(ψ

c
n − ψ

b
n)⟩

,

(24)

where qan(pT) and ψ
a
n(pT) denote the magnitude and di-

rection (or event plane) of the flow vector Qn(pT) at
midrapidity. The ψcn and ψbn are event planes calculated
using all particles (without pT selection) within the ac-
ceptance of a specific subevent.

In the low event plane resolution limit, this equation
simplifies to the scalar product method result, which also
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Sources pT range(GeV/c) 0–10% 3He+Au 0–10% d+Au 0–10% p+Au 0–2% d+Au 0–2% p+Au

Track selection

v2

0.2< pT <0.6 < 2% < 2% < 5% < 2% < 2%
0.6< pT <1.1 < 2% < 2% < 5% < 2% < 2%
1.1< pT <2.0 < 2% < 2% < 5% < 2% < 2%

v3

0.2< pT <0.6 < 2% < 6% < 4% < 6% < 10%
0.6< pT <1.1 < 2% < 5% < 9% < 5% < 9%
1.1< pT <2.0 < 2% < 4% < 3% < 4% < 3%

Matching to TOF/HFT

v2

0.2< pT <0.6 < 2% < 2% < 2% < 2% < 2%
0.6< pT <1.1 < 2% < 2% < 3% < 2% < 2%
1.1< pT <2.0 < 2% < 2% < 3% < 2% < 2%

v3

0.2< pT <0.6 < 3% < 5% < 3% < 8% < 3%
0.6< pT <1.1 < 3% < 3% < 3% < 2% < 3%
1.1< pT <2.0 < 3% < 8% < 12% < 7% < 5%

Luminosity dependence
v2 0.2< pT <2.0 < 2% < 2% < 2% < 2% < 2%
v3 0.2< pT <2.0 < 5% < 5% < 5% < 5% < 5%

Non-flow subtraction

v2

0.2< pT <0.6 < 13% < 15% < 28% < 15% < 29%
0.6< pT <1.1 < 8% < 11% < 34% < 9% < 16%
1.1< pT <2.0 < 9% < 12% < 64% < 10% < 24%

v3

0.2< pT <0.6 <18% < 21% < 29% <6% < 27%
0.6< pT <1.1 < 17% < 21% < 34% < 12% < 26%
1.1< pT <2.0 < 8% < 12% < 24% < 17% < 13%

Total

v2

0.2< pT <0.6 < 13% < 16% < 29% < 16% < 25%
0.6< pT <1.1 < 9% < 12% < 34% < 9% < 16%
1.1< pT <2.0 < 9% < 13% < 65% < 10% < 24%

v3

0.2< pT <0.6 < 19% < 21% < 30% < 13% < 29%
0.6< pT <1.1 < 19% < 22% < 34% < 14% < 28%
1.1< pT <2.0 < 11% < 13% < 28% < 19% < 15%

TABLE III. Main sources of systematic uncertainties for v2 and v3 measurements in 0–10% central 3He+Au, d+Au and p+Au
collisions and 0–2% ultracentral d+Au and p+Au collisions.

incorporates qn as weights,

van(pT) =
⟨qan(pT)qcncosn(ψa

n(pT)−ψc
n)⟩
√
⟨qanqbn cosn(ψa

n−ψb
n)⟩√

⟨qanqcn cosn(ψa
n − ψc

n)⟩ ⟨qcnqbn cosn(ψc
n − ψb

n)⟩

=
⟨Qa

n(pT)Qc∗
n ⟩
√
⟨Qa

nQb∗
n ⟩

√
⟨Qa

nQc∗
n ⟩ ⟨Qc

nQb∗
n ⟩

(25)

≡
cn(a(pT), c)

√
cn(a, b)√

cn(a, c)cn(c, b)
. (26)

where, for instance, cn(c, b) represents the two-particle
correlation for all particles accepted in subevents “c” and
“b”. The a(pT) denotes that particles in subevent “a” are
chosen from a certain pT range.
In addition to Eq. 26, two independent combinations

can also be used to calculate van(pT),

van(pT) =

¿
Á
ÁÀcn(a(pT), c)cn(a(pT), b)

cn(c, b)

van(pT) =
cn(a(pT), b)

√
cn(a, c)

√
cn(a, b)cn(c, b)

. (27)

Assuming factorization relations such as
cn(a(pT), c) = v

a
n(pT)v

c
n and cn(c, b) = vcnv

b
n, as of-

ten done in experimental measurements, it is evident
that all three different combination reduces to the
same van(pT). However, such factorization relations
are explicitly broken by residual non-flow effects [63]
and longitudinal decorrelations [39]. Therefore, if these
contributions are negligible, all three approaches are
expected to yield equivalent results.
In contrast, the STAR measurements are derived from

correlations between particles in the same mid-rapidity
interval ∣ηa,b∣ < 0.9 but with a definite pseudorapidity gap
∣∆η∣ > 1.0 between the pairs, as defined in Eq. 16. This
small pseudorapidity gap reduces the impact of longitu-
dinal flow decorrelations, which could be prominent in
smaller p+Au collisions [34].
In the PHENIX measurement, non-flow contributions

are not subtracted from each of the cn terms in Eq. 26.
Instead, these non-flow contributions are estimated us-
ing an approach similar to the c0 subtraction method
and are incorporated as asymmetric systematic uncer-
tainties. On the other hand, we have demonstrated that
the c0 method, at least within the STAR acceptance,
could underestimate non-flow and is also influenced by
auto-correlation effects (Fig. 7 and Fig. 13). Therefore,
the c1 method is considered to be closer to the true flow
value in this analysis.
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FIG. 14. Comparison of the v2(pT) (top row) and v3(pT) (bottom row) between measurements obtained by PHENIX (open
blue circles), STAR results without non-flow subtraction (solid red circles), as well as STAR results with non-flow subtraction
based on c1 method (pink open circles) and c0 method (black lines). The boxes indicate the systematic uncertainties. The
PHENIC results are obtained for 0–5% centrality. The STAR results are obtained for 0–10% centrality, whose systematic
uncertainties are shown for without subtraction and with the c1 subtraction method.

Figure 14 provides a comparison of v2 and v3 results
between the two experiments for similar pT and central-
ity ranges. The STAR results, based on the c1 and c0
methods, are presented. The v2 results without non-flow
subtraction in 3He+Au and d+Au collisions are slightly
higher than those of PHENIX, but they are 60% larger
in p+Au collisions. This discrepancy reflects a greater
non-flow contribution in the STAR measurements due to
its smaller ∆η gap and larger away-side non-flow contri-
butions. After non-flow subtraction, aside from minor
pT-dependent differences for pT > 1 GeV/c, where STAR
results are systematically lower, the v2 results are consis-
tent between the two experiments within uncertainties.

As the asymmetric systematic uncertainties in
PHENIX results account for non-flow estimates based
on the c0 method, it is insightful to compare them with
STAR results obtained using the same method. Figure 14
reveals that the STAR v2 values acquired from the c0
method lie just below the lower limit of the uncertainty
bands of the PHENIX results. In contrast, the STAR
v3 values computed using the c0 method are noticeably
outside the uncertainty region of corresponding PHENIX
results. This discrepancy might partially stem from the
effects of longitudinal decorrelations.

The recent calculations utilizing a 3D-Glauber model
and discussed in the study by Zhao et al. [44] suggest
that there is a more pronounced decorrelation effect in
the flow measurement method adopted by PHENIX. As
depicted in Fig. 15, this decorrelation could contribute

about half of the difference in v3 between the two experi-
ments. On the other hand, this model underestimates v3
measurements from both experiments in p+Au collisions.

In addition to residual non-flow correlations and lon-
gitudinal decorrelations affecting the two results differ-
ently, the measurements are also influenced by variations
in modeling the initial collision geometry and early-time
transverse dynamics, which are common to both experi-
ments. These aspects are elaborated below.

Figure 16 contrasts the v2 and v3 results from the
three systems with three hydrodynamic model calcu-
lations that make distinct assumptions about the ini-
tial collision geometry and early dynamics. The sonic
model [64] incorporates viscous hydrodynamics with a
nucleon Glauber initial geometry. The supersonic
model from the same Ref. [64] introduces an additional
pre-equilibrium flow phase, enhancing initial velocity
fields during system evolution. The third model [65, 66]
combines IP-Glasma initial conditions with subnucleon
fluctuations and pre-flow effects, MUSIC for hydrody-
namic evolution, and UrQMD for hadronic phase inter-
actions. All three models’ initial conditions are boost
invariant, meaning that both non-flow and longitudinal
dynamics are absent. The transport coefficients in these
models, such as shear viscosity and freeze-out conditions,
have been tuned to describe flow data in large Au+Au
collision systems.

The comparison of these models with the experimental
data yields interesting insights. The sonic model under-
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FIG. 15. Comparison between the STAR results based on the c1 method and PHENIX measurements, along with the 3D-
Glauber calculations using middle-middle (STAR) or middle-backward (PHENIX) correlations. This comparison reveals a
significant difference in v3(pT) between the two experiments, which can be attributed to flow decorrelations, partially captured
by the 3D-Glauber calculations [44]. The boxes indicate the systematic uncertainties. Note that for p+Au collisions, the STAR
results are shown for 0–2% centrality instead of the 0–10% in Fig. 14.

estimates the v3 values observed across all three collision
systems. On the other hand, the supersonic model,
which includes the pre-flow effect, achieves a better agree-
ment with the experimental data. The IP-Glasma+hydro
model manages to describe the v3 results well in all three
systems, but it tends to overestimate the v2 results. This
comparison underscores the complexity of interpreting
small system flow data. To truly comprehend the roles
played by pre-equilibrium flow, nucleon fluctuations, and
subnucleon fluctuations in the initial conditions, com-
prehensive investigations are necessary. These studies
should encompass further model refinements, the acqui-
sition of additional small system collision data, and more
differential measurements.

In this regard, STAR has collected new d+Au and
16O+16O data in 2021 using the updated detector sys-
tems. These upgrades include the inner TPC, which
extends tracking to ∣η∣ < 1.5 [67], and the Event Plane
Detector, capable of measuring charged particles in 2.1
< ∣η∣ < 5.3 [68]. The utilization of this dataset will en-
able STAR to directly contrast correlations obtained at
midrapidity with those between the middle and backward
regions. This comparison holds the promise of shedding
light on the roles of longitudinal decorrelation and non-
flow correlations in small systems.

The symmetric 16O+16O system, which possesses a

size, in terms of number of collided nucleons, similar to
d+Au but markedly distinct geometry, is anticipated to
be less influenced by subnucleon fluctuations and biases
stemming from centrality selection. A comparison in-
volving existing small system data at RHIC has the po-
tential to untangle various competing effects related to
initial geometry and hydrodynamic evolution. Further-
more, a comparison with future 16O+16O data at the
LHC, scheduled for collection in 2024, will offer direct
insights into the energy dependence of pre-flow and lon-
gitudinal dynamics. These future endeavors hold the key
to a more comprehensive understanding of the intricate
interplay between small system dynamics and the under-
lying physics mechanisms.

B. Comparison of vn between different systems at
similar multiplicity and constraining the initial

geometry

An intriguing observation at the LHC is the similarity
in magnitude and pT dependencies of triangular flow in
p+Pb and Pb+Pb collisions at the same overall multi-
plicity [7, 60]. This has given rise to the concept of con-
formal scaling [69], which suggests that the ratios vn/εn
should primarily depend on the charged particle multi-
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FIG. 16. Comparison of v2(pT) (top row) and v3(pT) (bottom row) values based on the c1 method in 0–10% most central
3He+Au (left column), d+Au (middle column), and p+Au (right column) collisions with calculations from three hydrodynamical
models: the sonicmodel [64] (pink bands with dotted lines), the supersonicmodel (blue bands with dash-dotted lines) [64] and
IP-Glasma+Hydro model (red bands with dashed lines) [65, 66]. The boxes and shaded bands are the systematic uncertainties.

plicity density (dNch/dη). The underlying rationale is
that the hydrodynamic response is controlled by the ratio
of the mean free path to system size, which is essentially a
power-law function of dNch/dη [69]. The validity of con-
formal scaling for vn is well-established in large collision
systems, as evidenced by comparisons such as Au+Au
and U+U [70]. Moreover, this scaling has proven effec-
tive for v2 when considering average collision geometry
in the comparison between p+Pb and Pb+Pb [69], as
well as for v3 when accounting for possible oversubtrac-
tion of v3 in p+p collisions [71]. Assuming that vn is
predominantly governed by final state effects, this line of
reasoning motivates a similar universal scaling behavior
in small systems at RHIC energy.

Considering two systems, A and B, with comparable
charged particle multiplicities, we expect the following
relation to hold,

vAn
vBn
≈
εAn
εBn

. (28)

This relation implies that the ratio of vn between two
systems largely cancels out most of the final state effects,
thereby providing a means to constrain the ratio of their
eccentricities.

Such comparative analysis can be carried out using

the centrality selections outlined in Table II. Notably, we
find similar average charged particle multiplicities, ⟨Nch⟩,
between the 0–2% p+Au and 0–10% d+Au systems, as
well as between the 0–2% d+Au and 0–10% 3He+Au sys-
tems. The comparison between the 0–2% p+Au and 0–
10% d+Au systems is presented in Fig. 17, while the com-
parison between the 0–2% d+Au and 0–10% 3He+Au sys-
tems is shown in Fig. 18.
The v2 and v3 results before and after non-flow sub-

traction exhibit remarkably similar behaviors for the 0–
2% d+Au collisions and 0–10% centrality 3He+Au col-
lisions. For the comparison between 0–2% p+Au and
0–10% d+Au collisions, v3 values are similar, but there
exists approximately a 20% difference in v2.
To make the comparison more quantitative, we cal-

culate the ratios of vn between 0–2% p+Au and 0–
10% d+Au, as well as between 0–2% d+Au and 0–10%
3He+Au. These ratios are depicted in Fig. 19. The sys-
tematic uncertainties are largely correlated across dif-
ferent systems, including those arising from non-flow
subtraction methods. The total uncertainties are ap-

proximately 5% for v
3He+Au
2 /vd+Au

2 and 10% to 20% for

vp+Au
2 /vd+Au

2 . The uncertainties for the v3 ratios are
larger, particularly at the lowest pT bin, but decrease to

below 20% in the high pT region. The ratio vp+Au
2 /vd+Au

2
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FIG. 18. Comparison of v2(pT) (top row) and v3(pT) (bot-
tom row) based on the c1 method in the 0–2% most central
d+Au and 0–10% most central 3He+Au collisions before (left
column) and after (right column) non-flow subtractions. The
boxes are the systematic uncertainties.

is approximately 20% below unity, indicating that εp+Au
2

is smaller than εd+Au
2 by a similar magnitude. In con-

trast, the v3 ratios are close to unity, although the value

of v
3He+Au
3 is systematically larger than vd+Au

3 by about
10%, albeit within sizable uncertainties. This observation
suggests that ε3 in the three systems at similar multiplic-
ities are roughly comparable.

A natural next step is to compare the ratios of
vn to those of εn from three Glauber model calcula-
tions. These calculations include fluctuations at nucleon
level [14, 30] or fluctuations at both nucleon and sub-
nucleon level [32]. Furthermore, the value of eccentricity
depends on whether it is defined as simple mean ⟨εn⟩ [30]

or root-mean-square εn{2} ≡
√
⟨ε2n⟩ [14]. The latter defi-

nition naturally yields larger values due to the inclusion
of event-by-event fluctuations. This definition also shows
smaller hierarchical differences between the three systems
(see Table I). However, since vn measured by the two-

particle correlation method is effectively
√
⟨v2n⟩, it seems

that the εn{2} is a more natural choice.
Figure 19 contrasts the ratios of εn from these three

Glauber models, calculated for the same centrality range.
The two models without subnucleon fluctuations fail to
reproduce the hierarchy of vn ratios indicated by the
data. These models predict substantially smaller ε2 val-
ues for p+Au than for d+Au collisions, as well as a greater
ε3 for 3He+Au than for d+Au collisions, a prediction at
odds with the data. However, the model that defines ec-
centricity as its RMS value predicts a smaller difference
between 3He+Au and d+Au.
On the other hand, the Glauber model that accounts

for subnucleon fluctuations yields ε2 and ε3 ratios that
align with the data. Notably, it validates the hypothesis

of ε
3He+Au
3 /εd+Au

3 > εd+Au
3 /εp+Au

3 ≈ 1, where ε
3He+Au
3 is

found to be larger than εd+Au
3 by approximately 10%.

In summary, the Glauber model incorporating subnu-
cleonic fluctuations exhibits an approximate hierarchy
among the three systems,

ε
3He+Au
2 ≈ εd+Au

2 > εp+Au
2 , (29)

ε
3He+Au
3 ≈ εd+Au

3 ≈ εp+Au
3 . (30)

consistent with those of the vn.

VI. SUMMARY

We presented measurements of elliptic flow (v2) and
triangular flow (v3) in high-multiplicity p/d/3He+Au col-
lisions at

√
sNN = 200 GeV. The measurements are per-

formed using two-particle azimuthal angular correlations
at mid-rapidity as a function of pT.
To correct for non-flow contributions, which arise from

correlations not associated with collective flow, we esti-
mate these contributions using minimum-bias p+p col-
lisions at the same energy and subtract them from the
p/d/3He+Au collision results. We utilize four distinct
state-of-the-art non-flow subtraction methods to quantify
the uncertainties associated with the subtraction proce-
dure. While we observe a notable impact of non-flow con-
tributions on v3 prior to subtraction, the v3 values after
subtraction exhibit consistency across different pseudo-
rapidity gap selections. We also investigate the poten-
tial bias introduced by the selection of high-multiplicity
events using alternative criteria. The result demonstrates
overall agreement, except for v2 in p+Au collisions for
the c0 subtraction methods. Furthermore, we perform
a closure test of the non-flow subtraction procedure us-
ing simulations generated by the HIJING model. The
level of closure is generally within the quoted systematic
uncertainties, except for a few cases: v2 results might
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Glauber model from Ref. [32] calculated with
√
⟨ε2n⟩ (right column). The boxes are the systematic uncertainties.

be underestimated (oversubtracted) at high pT, particu-
larly in p+Au collisions, while v3 results could be slightly
overestimated (undersubtracted) by approximately 10%
across all systems and pT ranges.

Notably, the systematic uncertainties of vn largely can-
cel out when forming ratios of vn in the three colli-
sion systems with comparable charged particle multiplic-
ities. This observation supports a clear ordering of their

magnitudes: v
3He+Au
2 ≈ vd+Au

2 > vp+Au
2 , and similarly,

v
3He+Au
3 ≈ vd+Au

3 ≈ vp+Au
3 . These orderings are in line

with the ordering of eccentricities predicted by consider-

ing subnucleon fluctuations in the initial geometry.

However, the observed orderings are different from
those observed by the PHENIX experiment, which mea-
sures correlations between particles at mid-rapidity and
particles in the backward rapidity direction of the Au-
going side. The observed orderings are more in line with
the initial geometry that includes only nucleon fluctu-
ations. A state-of-the-art hydrodynamic model analy-
sis [44] suggests that this discrepancy could, in part, be
attributed to longitudinal decorrelations of v3 between
mid-rapidity and backward rapidity. Additionally, mod-
els incorporating pre-equilibrium flow but lacking sub-
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nucleon fluctuations can also reproduce the measured v3
values.
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VIII. APPENDIX: ADDITIONAL PLOTS

In this appendix, we present the original correlations
that underlie the derivation of the vn results. Figure 20
displays the two-dimensional correlation functions across
four pT ranges from various collision systems. By analyz-
ing these correlation functions, one can extract the one-
dimensional correlation function within different ∆η in-
tervals and subsequently convert it into per-trigger yields.
These per-trigger yields are showcased in Figs. 21-24.
For further context, Fig. 25 depicts a comparison of per-
trigger yields in minimum-bias p+p collisions between the
collected data and the HIJING model.
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FIG. 20. The normalized two-particle correlation function as a function of ∆η and ∆ϕ for the trigger particles within different
pT ranges (from left to right) in the MB p+p and the top 0–10% p+Au, d+Au and 3He+Au collisions at

√
sNN = 200 GeV(from

bottom to top).
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√
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in each panel represent the Fourier components obtained from the Fourier expansion of the per-trigger yield.



26

1.70

1.72

1.74

1.76

φ∆
 d

N
/d

× t
1/

N
 < 0.6 GeV/ct

T
a) 0.2 < p

| < 1.8η∆0.8 < |

+Au@200GeVd0-10% 1.08

1.10

1.12
 < 0.6 GeV/ct

T
b) 0.2 < p

| < 1.8η∆1.0 < |

0.60

0.61

0.62  < 0.6 GeV/ct

T
c) 0.2 < p

| < 1.8η∆1.2 < |

0.255

0.260

0.265
 < 0.6 GeV/ct

T
d) 0.2 < p

| < 1.8η∆1.4 < |

1.70

1.75

1.80φ∆
 d

N
/d

× t
1/

N

 < 1.1 GeV/ct

T
e) 0.6 < p

| < 1.8η∆0.8 < |

1.10

1.12

1.14

1.16  < 1.1 GeV/ct

T
f) 0.6 < p

| < 1.8η∆1.0 < |

0.60

0.61

0.62

0.63

0.64  < 1.1 GeV/ct

T
g) 0.6 < p

| < 1.8η∆1.2 < |

0.260

0.265

0.270

0.275
 < 1.1 GeV/ct

T
h) 0.6 < p

| < 1.8η∆1.4 < |

1.70

1.75

1.80

φ∆
 d

N
/d

× t
1/

N

 < 2.0 GeV/ct

T
i) 1.1 < p

| < 1.8η∆0.8 < |

1.10

1.15

 < 2.0 GeV/ct

T
j) 1.1 < p

| < 1.8η∆1.0 < |

0.60

0.62

0.64  < 2.0 GeV/ct

T
k) 1.1 < p

| < 1.8η∆1.2 < |

0.26

0.27

 < 2.0 GeV/ct

T
l) 1.1 < p

| < 1.8η∆1.4 < |

1− 0 1 2 3 4
(rad)φ∆

1.70

1.72

1.74

1.76

1.78φ∆
 d

N
/d

× 
tr

ig
1/

N

1c

 < 2.0 GeV/ct

T
m) 0.2 < p

| < 1.8η∆0.8 < |

1− 0 1 2 3 4
(rad)φ∆

1.08

1.10

1.12

1.14

2c

 < 2.0 GeV/ct

T
n) 0.2 < p

| < 1.8η∆1.0 < |

1− 0 1 2 3 4
(rad)φ∆

0.60

0.61

0.62

0.63

3c

 < 2.0 GeV/ct

T
o) 0.2 < p

| < 1.8η∆1.2 < |

1− 0 1 2 3 4
(rad)φ∆

0.255

0.260

0.265

4c

 < 2.0 GeV/ct

T
p) 0.2 < p

| < 1.8η∆1.4 < |

FIG. 22. The per-trigger yield, Y (∆ϕ), as a function of ∆ϕ for the trigger particles with different pT (from top to bottom) and
different ∆η (from left to right) selections in the 0–10% most central d+Au collisions at

√
sNN = 200 GeV. The color curves in

each panel represent the Fourier components obtained from the Fourier expansion of the per-trigger yield.
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FIG. 23. The per-trigger yield, Y (∆ϕ), as a function of ∆ϕ for the trigger particles with different pT (from top to bottom) and
different ∆η (from left to right) selections in the 0–10% most central p+Au collisions at

√
sNN = 200 GeV. The color curves in

each panel represent the Fourier components obtained from the Fourier expansion of the per-trigger yield.
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FIG. 24. The per-trigger yield, Y (∆ϕ), as a function of ∆ϕ for the trigger particles with different pT (from top to bottom)
and different ∆η (from left to right) selections in the MB p+p collisions at

√
sNN = 200 GeV. The color curves in each panel

represent the Fourier components obtained from the Fourier expansion of the per-trigger yield.
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FIG. 25. The per-trigger yield, Y (∆ϕ), as a function of ∆ϕ for the trigger particles with different pT (from left to right) and
different ∆η (from top to bottom) selections in the p+p collisions at

√
sNN = 200 GeV from both the STAR data (top row) and

HIJING event generator (middle and bottom rows). The red lines through the data point indicate a fit including the first four
Fourier harmonics.
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