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Introduction 1 

1 Introduction  

1.1 The Drug Development Process 

The development of an innovative drug is a long-lasting process with many stages being 

involved (Figure 1.1-a) [Ng, 2004]. It often starts with the identification of a target (receptor, 

enzyme, etc.) that has to be modulated to treat a particular disease. Under physiological 

conditions, the target itself is modulated by endogenous ligands mostly in a relatively 

unselective manner, that is, a particular ligand interacts with more than one receptor or 

enzyme. Exogenous ligands which subtype-specifically affect a given target can be detected 

by high throughput screening (HTS) or computational methods (Section 1.5). They are 

referred to as “hits” and have to be further refined to a “lead candidate” in a lead optimization 

process according to their potency, metabolic stability and ADME (absorption – distribution – 

metabolism – excretion) -properties. The development work has to follow Good Laboratory 

Practice (GLP) to ensure that proper quality systems are established. Animal models serve as 

inevitable tools to experimentally test whether or not a given lead candidate evokes the 

desired effects in a living individual. The drug designated for clinical trials and large-scale 

production has to be manufactured according to Good Manufacturing Practice (GMP). Here 

the leading compound is brought into an optimal drug delivery system (e.g., tablet, parenteral 

solution, etc.), which denotes the final stage of the preclinical phase. 
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Figure 1.1-a. Schematic representation of the different stages involved in the development of 
a modern drug [Druquest, 2005]. 
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The following clinical development encompasses three phases of clinical trials in which a 

drug is tested at humans according to three important parameters: harmlessness, effectiveness 

and quality. Clinical trials are conducted in accordance with Good Clinical Practice (GCP) 

and they follow regulations and guidelines from the FDA and other approval agencies. Once a 

drug has successfully passed these stages the manufacturer can apply for a product license 

followed by a product license approval provided by an approval agency. Phase 4 describes 

clinical trials that aim at evaluating new indications for the drug.  

Today, roughly half of all drugs receiving product license approval are targeted against 

GPCRs and a considerable number of the best selling prescription drugs act at GPCRs 

[Klabunde & Hessler, 2002] making them to a promising class of targets for pharmaceutical 

industries.  

 

1.2 G-protein Coupled Receptors 

G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors 

involved in signal transmission. They have been successful during evolution in recognizing a 

wide range of stimuli from photons to large glycoproteins [Bockaert & Pin, 1999]. These 

receptors transduce extracellular signals in cellular responses via heterotrimeric G proteins. 

Several different signal transduction pathways as well as second messengers are involved in 

GPCRs function, which are even different among the subtypes of a given receptor. This is a 

reason for the broad therapeutic potential of GPCRs. Numerous diseases have been linked to 

specific mutations within the genes encoding GPCRs, marking these receptors as targets for 

specific therapeutic interventions [Schoneberg et al., 2002; Rattner et al., 1999]. Today 50% 

of all recently launched drugs are targeted against GPCRs with annual worldwide sales 

exceeding $50 billion annually [Med. Ad News Staff, 2004].  

All GPCRs share a common central domain composed of seven transmembrane helices, the 

heptahelical domain (HD), which is also referred to as the transmembrane region [Baldwin, 

1993]. On the basis of sequence similarity, mammalian GPCRs have been classified into three 

major categories, namely the rhodopsin/ β-adrenergic receptors (family 1) which contain 

many receptors for classical neurotransmitters, the secretin receptor family (family 2) 

comprising receptors for distinct hormones and peptides and family 3 comprising 

metabotropic glutamate receptors [Wess, 1998].  
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1.3 Family 3 G-protein Coupled Receptors  

Apart from metabotropic glutamate receptors (mGluRs), family 3 G-protein-coupled 

receptors (3-GPCRs) comprise the γ-aminobutyric acid type B receptors, (GABABR1 and -2) 

[Jones et al., 1998; Kaupmann et al., 1998], the parathyroid calcium sensing receptors (CaSR) 

[Brown et al., 1993] and the vomeronasal receptors [Bargmann, 1997], e.g., some taste and 

putative pheromone receptors [Hoon et al., 1999]. A detailed description about mGluRs will 

be given in Section 1.4. The calcium-sensing receptor (CaSR) is an ion-sensing GPCR that is 

allosterically regulated by extracellular calcium and different aromatic amino acids, e.g., L-

phenylalanine and L-tyrosine [Conigrave et al., 2000; Kobilka, 2000]. GABAB is involved in 

the presynaptic inhibition of transmitter release and mediates the slow synaptic inhibition by 

increasing the potassium conductance responsible for long-lasting inhibitory postsynaptic 

potentials [Jones et al., 1998; Kaupmann et al., 1998]. 
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Figure 1.3-a. Schematic representation of a family 3 GPCR according to W. Spooren 
[Spooren et al., 2001]. 

 

3-GPCRs are characterized by an extracelluar domain (ECD), a HD consisting of seven 

transmembrane helices, which are linked by six alternating extracellular and intracellular 

loops and an intracellular domain (ICD), which contains the C-terminus and the G-protein 
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interaction sites (Figure 1.3-a). They possess a typical but unique feature: A large 

extracellular ligand-binding domain (ECD) that shares some sequence similarities with 

bacterial periplasmic amino acid-binding proteins (PBPs) [O'Hara et al., 1993]. The ECD is 

characterized by a bilobate structure and adopts a closed conformation on agonist binding in 

the cleft that separates both lobes and is often called “Venus flytrap module” [Pin et al., 2003; 

Acher & Bertrand, 2005]. This stands in contrast to most other GPCRs, where natural ligand 

binding occurs in the HD [Wess, 1993]. The orthosteric binding sites of 3-GPCRs are well 

understood today, which is mainly due to the success in crystallizing the ECD of mGluR1 

with and without glutamate associated [Kunishima et al., 2000] as well as due to detailed 

mutation studies of both mGluRs [Pin et al., 1999], GABAB [Galvez et al., 2000] and CaSR 

[Petrel et al., 2003]. In contrast, little is known about the 3D-structure and dynamics of the 

HD as well as the binding mode of allosteric modulators. However, in the past, there have 

been a lot of efforts in the identification of new allosteric modulators, especially in the mGluR 

area [Eastman et al., 2004; Wang et al., 2004; Poon et al., 2004; Zheng et al., 2005; Kohara et 

al., 2005; Bonnefous et al., 2005], just to name some. This is mainly due to the fact that 

ligands binding in the HD possess more drug-likeness than their analogues interacting with 

the orthosteric site. In particular the application of HTS technologies in pharmaceutical 

industry facilitated the discovery of agonists and antagonists binding exclusively in the HD of 

the receptor.  

 

1.3.1 The Transmembrane Region 

The precise knowledge of the 3D structure of a given target is a key concern in drug 

discovery since it facilitates a better understanding of ligand binding, which could be used for 

a rational design of novel ligands as prospective drug compounds [Cavasotto et al., 2003]. To 

gain an insight into the 3D-structure and binding sites of proteins the application of X-ray 

crystallography, electron microscopy and NMR are state of the art. However, the expression, 

purification and crystallization of membrane proteins remains a challenging process which 

impedes their structure elucidation [Becker et al., 2003; Stenkamp et al., 2002; Burley & 

Bonanno, 2002]. Therefore, only a high-resolution X-ray structure of an inactive state of 

bovine rhodopsin (bRho) and bacteriorhodopsin (BR) is available so far [Okada et al., 2000; 

Pebay-Peyroula et al., 1997]. In the past, particularly the X-ray structure of bRho has been 

applied as a template for building homology models of a given GPCR.  
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Figure 1.3.1-a. Homology model of the HD of CaSR according to A. Gutcaits [Noeske et al., 
2006]. Backbone residues potentially contributing to the ligand binding are depicted. 

 

All GPCRs bear a similar membrane topology. Seven transmembrane segments (H1–H7), 

predominantly helical, are linked together sequentially by extracellular (EC1, EC2 and EC3) 

and cytoplasmic loops (C1, C2 and C3) [Baldwin, 1993]. The transmembrane helices are 

tilted to varying degrees with respect to the putative plane of the membrane bilayer. Despite 

the common heptahelical architecture of their transmembrane regions, GPCRs are 

characterized by a relatively low sequence identity (less than 20%), especially when amino 

acid sequences of two GPCRs from different families are compared such as family 1 and 3. 

However, it has been demonstrated recently that the backbone of the bRho (family 1) appears 

to be a reasonable template for building a model of the HD of group I mGluRs and the CaSR 

(family 3) [Pin et al., 2003; Malherbe et al., 2003a; Miedlich et al., 2004; Hammerland et al., 

1999; Hawrot et al., 1998]. In case of GABAB-receptors their extraxcellular domain has been 

investigated in detail [Pin et al., 2003; Hawrot et al., 1998; Galvez et al., 1999; Bernard et al., 

2001] as well as the roles of receptor dimers in G-protein signaling and coupling efficacy 

[Galvez et al., 2001]. Still, no homology model of the transmembrane region of GABAB-

receptors has been published to date.  
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Using the bRho template despite low sequence similarities is supported by the fact that the 

HD of mGluRs behaves like any other family 1 GPCR in terms of G protein coupling and 

regulation by various types of ligands [Goudet et al., 2004]. Like bRho, the HD of mGluRs 

constitutively couples to G-proteins and is negatively and positively regulated by ligands 

[Goudet et al., 2004]. Site-directed mutagenesis and molecular modeling performed a detailed 

analysis of the antagonist binding sites of mGluRs and the binding pocket was found to be 

equivalent to that of retinal in bRho [Malherbe et al., 2003a; Malherbe et al., 2003b; Pagano 

et al., 2000]. 

It has been shown recently that the application of homology models with the aim of 

performing a virtual screening for new allosteric binders requires special knowledge of the 

functional activity of the ligand which was used during the construction of the homology 

model [Bissantz 2003; Bissantz et al., 2003]. Since the X-ray structure of bRho corresponds 

to the ground state in which retinal is covalently bound [Palczewski et al., 2000] and since 

GPCRs are known to adopt different conformational states [Gether & Kobilka, 1998] the 

inactive state of the receptor resembles the “antagonist-bound” instead of the “agonist-bound” 

state  [Bissantz et al., 2003]. 

 

Table 1.3.1-a. Definitions of prominent ligand types according to the International Union of 
Pure and Applied Chemistry (IUPAC) [Wermuth et al., 1998]. 

Type Action 

Agonist Endogenous substance / drug that can interact with a receptor and 
initiate a physiological or a pharmacological response characteristic of 
that receptor. 

Antagonist Chemical entity that opposes the receptor-associated responses 
normally induced by another bioactive agent. 

Inverse Agonist Drug which acts at the same receptor as that of an agonist, yet 
produces an opposite effect. Also called negative antagonists. 

Partial Agonist Agonist, which is unable to induce full activation of a receptor 
population, regardless of the amount of drug applied. 

 
 

1.4 Metabotropic Glutamate Receptors  

The mGluR family comprises eight subtypes and several splice variants, which have been 

cloned and named mGluR1-8 according to the succession of the molecular cloning [Pin et al., 

2003; Conn & Pin, 1997]. These eight receptors can be further subdivided into three groups 

based on sequence homology, pharmacology and transduction mechanism: Group I (mGluR1 
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und mGluR5), Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 

and mGluR8).  

Glutamate neurotransmission is primarily mediated by postsynaptic ligand-gated cation 

channels termed ionotropic glutamate receptors, which regulate membrane potential by 

opening sodium and calcium channels but it can also be mediated by metabotropic glutamate 

receptors. Glutamate receptors mediate excitatory transmission on the cellular surface through 

initial binding of glutamate [Nakanishi & Masu, 1994; Hollmann & Heinemann, 1994]. 

mGluRs are involved in the generation of excitatory and inhibitory synaptic potentials and 

synaptic and neuronal plasticity [Nakanishi et al., 1998]. In addition to glutamate, mGluRs are 

activated by ibotenate and quisqualate.  

Group I receptors (mGluR1 and mGluR5) for instance, are localized postsynaptically in the 

somatodendric membrane and coupled to the activation of phospholipase C (PLC) [Nakamura 

et al., 1994] and, thus, are considered to be stimulatory. In contrast, group II and group III 

receptors are often localized presynaptically. They are negatively coupled to cAMP (Gi/Go-

coupled receptors) and inhibit forskolin-induced increases of cAMP in brain slices and 

neuronal cultures [Prezéau et al., 1994; Bruno et al., 1995].  

Group I metabotropic glutamate receptors are positively coupled to PLC. PLC in turn 

enables the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol 

(DAG) and inositol trisphosphate (IP3). IP3 has several intracellular effects, e.g., stimulation 

of Ca2+ release from intracellular stores. DAG remains in the membrane activating 

membrane-bound protein kinase (PKC), which phosphorylates ionotropic glutamate receptors. 

In contrast to mGlu5 receptors, which can be found in the cortex, mGlu1 receptors are 

localized in Purkinje cells in the cerebellum targeted to perisynaptic regions [Mateos et al., 

2000].  

Group I mGluRs have been proven to play an important role in numerous 

neurodegenerative, cognitive and psychiatric disorders [Spooren et al., 2003] (Section 1.4.1). 

This thesis is focused on the identification of non-competitive antagonists of this group 

especially of mGluR1. 

 

1.4.1 Implications of Group I mGluRs in CNS Diseases 

mGlu1 and -5 receptor activation influences NMDA responses and consequently cell 

excitability [Fitzjohn et al., 1996; Awad et al., 2001]. NMDA receptors (activated via the 

neurotransmitter glutamate) are associated with ischemic brain damage, thus mGluRs are 

assumed to affect the treatment of neurodegenerative disorders like stroke, Alzheimer and 
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Parkinson disease (AD/PD) and epilepsy. To evaluate the influence of mGluR1 to stroke, the 

mGluR1 antagonists BAY36-7620 and EMQMCM, an analogue of R214127 (Figure 1.4.2-a), 

were tested in animal mid cerebral artery occlusion (MCAO) models. Both displayed 

neuroprotection and the latter also reduced total infarct volume [De Vry et al., 2001; Lesage 

et al., 2002]. In this context, the mGluR5 antagonist MPEP showed neuroprotective effects in 

a NMDA-induced toxicity model [Bruno et al., 2000]. 

Likewise, the pathogenesis of AD and PD is connected with excitotoxicity. It has been 

reported that stimulation of mGluR1 causes significant increase in β–amyloid formation 

[Nitsch et al., 1998] and plays a pivotal role in regulating locomotor activity via dopaminergic 

neurotransmission [Rouse et al., 2000], which in turn is disordered in PD. Moreover, 

excitation in neurons of the sub thalamic nucleus, induced by the stimulation of mGluR1 and 

mGluR5 can be completely inhibited by MPEP [Awad et al., 2001]. 

Glutamate is involved in epileptogenesis [Meldrum & Chapman, 1999]. Orthosteric group I 

mGluR agonists like ACPD, DHPG and CHPG induce limbic seizures in rats and mice 

[Tizzano et al., 1993; Camon et al., 1998; Chapman et al., 2000] due to increased glutamate 

release whereas allosteric antagonists like LY367385 showed anticonvulsant activity 

[Chapman et al., 1999]. 

Hypofunction of the glutamatergic system was postulated to be involved in schizophrenia. 

Thus, receptors modulating the glutamate activity have, at least theoretically, antipsychotic 

potential. Prepulse inhibition (PPI) of acoustic startle response is an experimental model to 

assess symptoms connected to schizophrenia (e.g., sensorimotor gating deficits). mGlu1 

agonists like DHPG and ACPD are known to disrupt PPI whereas the mGlu1 antagonist 

MCPG reversed these effects [Grauer & Marquis, 1999]. MTEP, but not EMQMCM, 

enhanced disruption of PPI induced by the NMDA antagonist (+)MK-801, demonstrating that 

blockade of mGluR1 and mGluR5 evokes different effects on behavior induced by NMDA 

receptor antagonists [Pietraszek et al., 2005]. The mGlu5 receptor antagonist MPEP exhibited 

no effect on the acoustic startle response at anxiolytic doses or above [Spooren et al., 2000].  

mGlu1 receptor ligands modulate synaptic plasticity [Manahan-Vaughan et al., 1999] in 

terms of disruption of long-term potentiation. Antagonists like BAY36-7620 and LY367385 

have proven to disrupt learning and memory formation [Manahan-Vaughan & Schuetz, 2002] 

whereas agonists like ACPD enhanced memory formation in the passive avoidance test 

[Riedel et al., 1996]. In mice, selective mGlu1 receptor blockade with a R214127 analogue 

impaired spatial acquisition processes, irrespective of spatial load, as well as spatial 

reacquisition performed in water maze [Steckler et al., 2004]. 
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Finally, mGlu1 receptor ligands have shown considerable impact on pain, which is 

reviewed by Lesage [Lesage, 2004]. Agonists like DHPG induced nociceptive behavior in rats 

[Fisher & Coderre, 1998]. In contrast, antagonists like BAY36-7620 reduced thermal 

hyperalgesia in a rat model of neuropathic pain [De Vry, 2002]. 

Summarized, ligands mediating the effects of group I mGlu receptors have considerable 

impact on the treatment of CNS disorders. Especially modulators binding to the allosteric site 

seem to be promising since they do not directly affect endogenous ligands binding to the 

orthosteric site. 

 

1.4.2 Allosteric Modulators of Group I Metabotropic Glutamate Receptors 

Within the past years, a substantial number of potent allosteric inhibitors and potentiators of 

mGluRs has been identified (Figure 1.4.2-a and 1.4.2-b). Their binding sites have been 

determined to reside exclusively within the HD, far away from the othosteric site in the ECDs 

of the receptor [Litschig et al., 1999; Carroll et al., 2001; Knoflach et al., 2001; Schaffhauser 

et al., 2003; Lavreysen et al., 2003]. In contrast to the orthosteric binding site of mGluRs 

which is well conserved during evolution, there was no selective pressure to maintain 

allosteric binding sites. Therefore, most allosteric modulators appear as structurally diverse 

ligands and several of them bear a high selectivity for a given receptor subtype. Via site-

directed mutagenesis, specific residues responsible for the subtype selectivities of several 

ligands have been identified which also enables a characterization of their binding site in the 

HD [Litschig et al., 1999; Knoflach et al., 2001; Schaffhauser et al., 2003]. 

Several structurally diverse and highly potent mGluR1 antagonists have been reported 

[Knoflach et al., 2001; Lavreysen et al., 2003]. Among those, CPCCOEt (Figure 1.4.2-a) was 

one of the first subtype selective non-competitive mGluR1 antagonists with low micro molar 

affinity (hmGluR1b) [Litschig et al., 1999; Hermans et al., 1998]. Further mGluR1 

antagonists such as R214127, EM-TBPC, LY456066, DCTT and YM-298198 have detected 

novel scaffolds and shown highest affinities down to the sub-nano molar level (Figure 1.4.2-a) 

[Mabire et al., 2005, Li et al., 2002; Malherbe et al., 2003a; Zheng et al., 2005; Kohara et al., 

2005]. Binding of EM-TBPC to mGluR1 was reported to involve Val-757 and Thr-815. The 

latter residue is also involved in CPCCOEt binding whereas conversion of Ala-818 did not 

affect EM-TBPC binding [Malherbe et al., 2003a; Litschig et al., 1999; Knoflach et al., 

2001]. Based on a homology model, Malherbe et al. suggested that the aromatic ring of EM-

TBPC interacts with the cluster of aromatic residues formed from Trp-798, Phe-801 and Tyr-

805, thereby blocking the movement of the TM6 helix, which is crucial for receptor activation 
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[Malherbe et al., 2003a]. Interestingly, they found that radio labeled EM-TBPC showed high 

affinity for rat mGluR1 (rmGluR1) but only low affinity for human mGluR1 (hmGluR1) and 

none for mGluR5. Val-757 was identified as the critical residue for the binding selectivity of 

EM-TBPC at the rat versus human mGlu1 receptor since all other mGlu receptors bear 

leucine at this position. It is worthy of note that the absence of one additional methyl group 

(valine versus leucine) already leads to a considerable decrease in affinity of EM-TBPC for 

hmGluR1 and the observed selectivity of this ligand for rmGluR1. Since CPCCOEt and 

BAY36-7620 were shown to displace binding of radio-labeled R214127 to mGluR1a it was 

suggested that most of the mGluR1 antagonists share the same binding pocket involving TM 

5-7. 
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Figure 1.4.2-a. Chemical structures of known negative allosteric modulators of the mGlu1 
and mGlu5 receptor. 

 

The first compounds that selectively bind to the allosteric site of mGluR5 were SIB-1757 

and SIB-1893 [Varney et al., 1999]. However, both of which revealed only moderate potency. 

Briefly thereafter, a novel class of mGlu5 receptor antagonists emerged: The pyridine 

derivative MPEP was the first mGluR5 antagonist that was found to bind to mGluR5 with 

nano molar affinity [Gasparini et al., 1999] followed by the structural analogue MTEP, a 

thiazole derivative [Cosford et al., 2003a]. At the beginning, most of the allosteric mGluR5 
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antagonists revealed an MPEP-like structure and only recently, new antagonists with different 

scaffolds (e.g., compounds Merck1 and Merck2) have been reported [Bonnefous et al., 2005; 

Eastman et al., 2004; Wang et al., 2004; Poon et al., 2004]. In the past, mainly MPEP was 

investigated for the characterization of mGluR5 and crucial determinants of the subtype 

selectivities of MPEP have been identified in TM3 and TM7 [Goudet et al., 2004; Pagano et 

al., 2000; Litschig et al., 1999]. In two recent studies, several additional residues in TM5 and 

TM6 of mGluR5 have been demonstrated to contribute to the binding of MPEP. It has been 

shown that MPEP and the mGluR1 antagonist CPCCOEt bind to overlapping binding pockets 

in the TM region of mGluR1 and mGluR5, respectively, but interact with different non-

conserved residues [Pagano et al., 2000]. Their models suggest that the pyridine ring of 

MPEP occupies the same space between TM7 and TM3 as the benzene ring of CPCCOEt. 

However, other parts of these antagonists do not overlap and imply interactions with different 

TM helices. Recently, a similarity between the critical residues in the TM6 region involved in 

MPEP-binding site with those of EM-TBPC was described pointing to a common mechanism 

of inhibition shared by both antagonists [Malherbe et al., 2003b].  

A considerable number of positive modulators of group I mGluRs exists based on different 

structural motives (Figure 1.4.2-b). It was suggested that these enhancers bind to and stabilize 

the activated receptor states [Malherbe et al., 2003a; Knoflach et al., 2001; Gasparini et al., 

2002]. Knoflach et al. have described a novel class of ligands Ro 67-7476, Ro 01-6128, and 

Ro 67-4853 acting as positive allosteric modulators of the mGlu1 receptor. A detailed 

mutational analysis revealed that in particular Val-757 in the TM5 of the receptor is 

responsible for the enhancing effect of both Ro 01-6128 and Ro 67-7476 [Knoflach et al., 

2001]. Interestingly, Ro 01-6128 and the structurally different Ro 67-7476 bear only high 

affinity for rat mGluR1 whereas Ro 67-4853, structurally similar to Ro 01-6128, exhibits 

activity at both h/rmGluR1 and rmGluR5 suggesting a different binding mode for this 

compound. Moreover, Ro 01-6128 closely resembles a recently found selective, non-

competitive agonist of the mGlu7 receptor [Mitsukawa et al., 2005]. Further critical amino 

acids are located in TM3 and TM5 of mGluR1, at homologous residues where MPEP interacts 

with the mGluR5 receptor, e.g., close to the inverse agonist binding site [Knoflach et al., 

2001; Pagano et al., 2000]. It has been shown that the position of valine (Val-757) is critical 

not only for the enhancing effect of positive allosteric modulation of rat mGlu1 [Knoflach et 

al., 2001] but also for negative modulation (MPEP, EM-TBPC) [Malherbe et al., 2003a; 

Malherbe et al., 2003b]. Therefore, even though Ro 67-7476, EM-TBPC, and MPEP belong 

to different chemical series, this result indicated that this amino acid occupies a strategic 
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position to gate the effect of positive and negative allosteric modulation [Malherbe et al., 

2003b; Cosford et al., 2003a]. 
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Figure 1.4.2-b. Chemical structures of known positive and neutral allosteric modulators of 
the mGlu1 and mGlu5 receptor. 

 

Furthermore, allosteric inhibitors of mGluR1 or mGluR5 signaling, such as PHCCC, SIB-

1893 and MPEP, have shown to be weak allosteric potentiators of mGluR4 signaling [Maj et 

al., 2003; Marino et al., 2003; Mathiesen et al., 2003] and a series of benzaldazine analogues 

(Figure 1.4.1-b) has exhibited everything from allosteric potentiation to allosteric inhibition to 

neutral cooperativity on mGluR5 signaling [O´Brien et al., 2003]. Recently, allosteric 

potentiators of the mGlu5 receptor have been described [Kinney et al., 2005]. Most 

interesting examples include DFB [O´Brien et al., 2003] and CPPHA. Although both 

potentiators increase the affinity for glutamate, only DFB partially displaces allosteric 

antagonists such as the radio labeled MPEP-derivative [3H]-3-methoxy-5-(pyridin-2-

ylethynyl)pyridine [O´Brien et al., 2003; Cosford et al., 2003b]. Therefore, it was proposed 

that CPPHA binds to a different binding site within the HD. Since DFB shares a similar 

binding pocket with mGluR5 antagonists, a series of DFB analogues was designed where a 

transition from positive (DFB) via silent to negative modulation was achieved [O´Brien et al., 

2003]. The crucial substituent that determines the mechanism of action were found to be the 

3-fluoro-phenyl-groups of DFB. Substitution of both groups by a chloro-substituents (DCB) 
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resulted in a “silent” or neutral agonist without functional activity whereas substitution with a 

dimethoxy-group (DMeOB) yielded the respective allosteric antagonist. All these ligands 

were found to compete with each other as well as with the radio labeled antagonist and 

MPEP-derivative [³H]methoxy-PEPy pointing to the same binding pocket [O´Brien et al., 

2003].  

 
The identification of novel ligands selectively interacting with a group I mGlu receptor 

subtype via the allosteric site was one goal of this thesis. In general two major strategies exist 

which are commonly pursued by pharmaceutical companies: High throughput screening 

(HTS) and virtual screening (Section 1.5).  

 

1.5 Virtual Screening 

Pharmaceutical research in chemical industry aims at discovering novel ligands that 

potently and selectively affect a given target of interest. This initial investigation can be 

assumed as a first step on a long way from a hit to a drug (Section 1.1). Two major strategies 

addressing this phase emerged within the second half of the last century: HTS and virtual 

screening. HTS and its technical extension ultra-HTS provide a common way to detect a first 

hit via a “blind-screening” and they allow for scanning hundreds of thousands of compounds 

using an appropriate assay system with highly sensitive detection devices in order to limit the 

occurrence of false positives and false negatives [Bajorath, 2002]. Large amounts of 

compounds are tested quickly within a relatively short period of time. However, this screening 

technique is combined with several inherent disadvantages. Although handling with small 

volume fluids lots of wasted laboratory material result from HTS. Noteworthy are the low hit 

rates significantly ranging below 1% and the relatively high costs of establishing and 

maintaining HTS assays. The common single point determination of a compound, regularly 

employed to speed up the throughput is inherently associated with an increase of false 

positives and, even worse, false negatives. High throughput automatically leads to high 

volumes of data being recorded during the screening process. Methods to efficiently retrieve, 

manipulate and analyze biological and chemical data (“data mining”) to determine the best 

series to follow up have been reviewed elsewhere [Böcker et al., 2004].  

The HTS-approach based upon manifold pharmacological experiments can be rationalized 

by means of computational methods [Agrafiotis et al., 2002; Bajorath, 2002]. Several 

techniques exist attempting to virtually retrieve potential hits from the synthetically feasible 
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chemical space and they are named virtual screening methods [Böhm & Schneider, 2000]. 

The idea of these “intelligent” approaches is to drastically reduce the amount of compounds 

prior to experiments, thus saving money, time and waste. This strategy is particularly pursued 

by small pharmaceutical companies in order to circumvent HTS campaigns, but also large 

companies trust on the advantages of virtual screening methods. Consequently, 

pharmaceutical companies rely on virtually screening commercial compound libraries, hence 

retrieving potential hits and assembling activity-enriched subsets to achieve higher hit rates 

than HTS approaches. It must be emphasized that virtual screening techniques require 

structural information about the receptor and/or its ligands. If no such knowledge is available 

HTS becomes essential. 

Some virtual screening techniques like pharmacophore (Section 1.5.1) and topological 

searches (Section 1.5.2) will be introduced here as well as other related methods of data 

reduction and data visualization (Section 1.5.3 and 1.5.4). Finally, methods that are not within 

the scope of this thesis will be presented (Section 1.5.5). Combined with subsequent screening 

assays of limited (i.e., medium to low) throughput virtual screening techniques avoid many of 

the issues (vide supra) connected with HTS.  

These techniques have in common that they describe approaches to prioritize molecules 

from (commercial) compound libraries, hence producing activity-enriched subsets of 

compounds that can then be tested for some desired properties [Xu & Agrafiotis, 2002]. Such 

databases may contain already synthesized compounds as well as synthetically accessible 

virtual molecules.  

Often hierarchical approaches are applied starting with filters, which step wise reduce the 

number of molecules to be tested. Starting from simple filters that remove molecules not 

obeying common criteria of drug-likeness, e.g., the “Rule of Five” [Lipinski et al., 1997] or 

molecules bearing reactive and/or toxic groups, the initial database becomes considerably 

reduced. Subsequent methods, e.g., based on several similarity searches (Section 1.5.2) 

[Willett et al., 1998] or 3D pharmacophore searches, for instance, (Section 1.5.1) further 

minimize the molecular subset of interest. Docking experiments which sample conformations 

of small molecules into a protein-binding site describe one of the last possible step. 

Automated docking is time consuming and requires detailed information about the structure 

of the protein. Thus, they are often disfavored as primary virtual screening tools [Bissantz et 

al., 2005, Evers et al., 2005]. Nevertheless, docking is frequently applied as far as sufficient 

computing capacity is available. 
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Complexity and target specificity increase from filter to filter in this hierarchy whereas the 

number of molecules (not necessarily) drastically decreases. Eventually, the remaining few 

molecules can be characterized in pharmacological experiments. Apart from docking methods 

which are named structure-based approaches, methods like pharmacophore or similartity 

searches belong to the ligand-based approaches since they are solely based on information 

derived from ligands affecting a particular target. In general, the latter approaches are 

applicable to prescreen databases and in particular, e.g., for investigations lacking information 

about the architecture of the target.  

Success or failure of ligand-based approaches depends on the availability of (ideally but not 

necessarily) potent and selective ligands serving as a starting point whereas structure-based 

approaches rely on precise receptor information as well as the choice of a docking method 

combined with an appropriate scoring function [Warren et al., 2005]. Nevertheless, the 

suitability of docking experiments based on homology models has also been discussed 

[Bissantz et al., 2003b, Hillisch et al., 2004].  

Even though HTS and virtual screening (here: mainly ligand-based virtual screening 

methods like clustering or similarity searches) pursue different approaches in finding novel 

ligands it should be stressed that the drug discovery process benefit from combining both 

[Stahura & Bajorath, 2004]. 

 

1.5.1 The Pharmacophore Hypothesis 

Many investigations and applications of 3D-SAR analyses are based on pharmacophore 

hypotheses. The term “Pharmakophor” was introduced by Paul Ehrlich in 1909, nearly a 

century ago, to describe the molecular structure or pattern, which “carries” (phoros) the 

biological activity of a drug (pharmacon) [Ehrlich, 1909]. According to Lemont Kier 

“pharmacophore” is derived from “chromophore”, which denotes the associated conjugation 

length that impart a particular color to a chromophoric molecule [Kier, 1971]; likewise, 

combination of structural features impart a certain bioactivity to a molecule. The International 

Union of Pure and Applied Chemistry (IUPAC) recently stated that a pharmacophore is the 

ensemble of steric and electronic features that is necessary to ensure the optimal 

supramolecular interactions with a specific biological target structure and to trigger (or to 

block) its biological response [Wermuth et al., 1998]. 

Pharmacophore hypotheses are generally applied to propose certain properties (features) of 

structurally diverse ligands that are required to affect a macromolecular target when the three-

dimensional architecture of this binding site is not known. Often, they display common 3D-
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patterns based upon distances (often also planes) and angles between particular features of the 

ligands and the complementary points of these features in the binding site of the 

macromolecule. Instead of this classical geometric definition a spherical coordinate system 

has been proposed recently where geometric parameters are put together and each 

pharmacophore point is, thus, described alone in spherical reference coordinates [Guérin et 

al., 2006].  

Ligands can interact with amino acids of a given target via hydrogen-bonding  (H-bond 

donor/acceptor), hydrophobic (dispersive) interactions, aromatic π-π stacking, cation-π 

interactions or electrostatic properties (partial charges). As different atoms may have similar 

properties (e.g., O and S in carbonyl or thiocarbonyl groups) different atoms of potential 

ligands can affect a particular target in the same way. Consequently, structurally diverse 

molecules may bind to a receptor in the same manner as long as they provide a similar 

ensemble of features. An ideal pharmacophore model should specify not only information 

about these interactions; accurate descriptions of hydrogen-bond vectors pointing from the H-

bond donor or acceptor centers towards the virtual receptor (spherical caps) complete a 

pharmacophore hypothesis [Guérin et al., 2006]. 

A careful selection of appropriate ligands considered in a pharmacophore model and a 

reasonable alignment of these molecules form a crucial step in setting up a hypothesis. 

Potential difficulties for this approach might arise from scaffolds showing different binding 

modes. Even a single ligand may adopt different binding modes. Occasionally, molecules 

bind to the target in a way distinct to the pharmacophore hypothesis´ prediction. 

Molecules, virtually retrieved from databases, can be tested for their activity or affinity 

towards a given target. They, in turn, may give a hint about the reliability of a pharmacophore 

hypothesis, i.e., they allow for refining an existing model. However, a hypothesis remains as 

long a model as the crystal structure of the receptor is unknown. This representation of the 

receptor helps to confirm or disprove the correctness of the model. It has, however, been 

evidenced that side chains or even backbone movements can occur when different ligands 

bind to a given target structure (“induced fit”), which impairs automated rigid docking [Birch 

et al., 2002]. Detailed informations about the advantages of automated docking in fast 

screening and molecular dynamics (MD) simulations suitable to explore the binding of a few 

selected hit candidates can be found elsewhere [Alonso et al., 2006]. 

Pharmacophore hypotheses, based on the alignment of ligands, have been adressed to 

several aspects in drug discovery, namely to search queries for virtual screening of databases 

[Sheridan et al., 1989; Kuntz, 1992], to target structures of de novo design [Tschinke & 
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Cohen, 1993; Waszkowycz et al., 1994; Lloyd et al., 2004] and molecular-graphics-aided 

molecular design [Glen et al., 1995] and, eventually, to many 3D-QSAR analyses [Cha et al., 

2003; Zhu et al., 2005] (Section 1.5.5). 

 

1.5.2 Similarity Searching 

Similarity searching denotes techniques to pair-wise compare a set of molecules. These 

methods enable scientists to virtually screen a database for compounds that resemble the 

query molecule. The underlying idea of this concept is the “similarity principle”, which was 

explicitly stated some years ago: Structurally similar molecules should exhibit similar 

physicochemical and biological properties [Johnson & Maggiora, 1990].  

Similar to molecular docking which comprises (i) suitable docking methods and (ii) scoring 

functions, similarity searches in general consist of (i) descriptors appropriately encoding the 

molecules and (ii) similarity functions. Substructure similarity can be defined based upon 

exact chemical fragments - e.g., MACCS keys [MDL Information System] – or pairs and 

triplets [Carhart et al., 1985; Good & Kuntz, 1995; Schneider et al., 1999;]. Since similarity 

searching is not restricted to a common core it allows for detecting molecules with a topology 

distinct from the structure of the compound the search is based on (“scaffold hopping”) 

[Schneider et al., 1999]. A general benefit of similarity searches in contrast, e.g., to 3D-

pharmacophore searches or automated docking is the high computation rate as it only 

compares descriptors. 

This approach has considerable influence on the drug discovery path medicinal chemists 

pursue. Once a substructure is known to be associated with certain desirable activities or 

affinities, other molecules bearing the same fragment can be detected and assayed for that 

profile [Barnard, 1993]. Manually searching for compounds with the same substructure was 

time-consuming and has become more and more ineffective due to the increasing number of 

experimentally determined hits. 

The characteristics of substructure searching have led to the development of similarity 

searching [Downs & Willett, 1995]. Similarity searching needs representations of the 

molecules that are effective (i.e., representations that can differentiate between different 

molecules) and efficient (quick to calculate) [Willett et al., 1998]. These representations or 

molecular descriptors in turn can be compared using suitable numerical measures or 

coefficients. Some coefficients are measures of the distance (e.g., Hamming distance, 

Euclidean distance), or dissimilarity between objects (0 value for identical objects), while 
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others directly measure similarity (most commonly 1 for identical objects) [Willett et al., 

1998]. 

One of the most prominent similarity indices is the Jaccard coefficient also known as the 

Tanimoto coefficient [Jaccard, 1901], which compares binary descriptors of molecules and 

can be formulated as follows: 
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where χA is the number of bits set to 1 in the bit string vector coding for compound A, and χB 

is the number of bits set to 1 in the bit string vector coding for compound B. Tanimoto 

coefficient values range from 0 to 1. In general, a similarity score larger than 0.85 is assumed 

to reveal molecules with similar biological activity [Matter, 1997]. Recent findings showed 

that biological similarity is not so strong: At ≥ 0.85 Tanimoto similarity in Daylight 

fingerprints [Daylight], only 30% of compounds similar to an active were themselves active 

[Martin et al., 2002]. The enrichment factor ef provides a simple way to quantitatively express 

the ability of a method to retrieve an activity-enriched subset from a library [Xu & Agrafiotis, 

2002]: 
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where Dsub is a virtually retrieved subset of molecules from the complete library Dall. This 

subset contains a certain amount Asub of bioactive molecules, whereas Aall denotes the total 

amount of bioactive compounds within the library. An ef of 1 describes an activity-enriched 

subset with a random distribution of active compounds. Values above 1 correspond to 

successful searches. 

 

Since similarity searching relies on the comparison of descriptor vectors rather than on the 

computationally more demanding alignment of two molecules, it allows for rapidly retrieving 

a set of candidates from a large library [Willett et al., 1998]. Therefore, two pivotal aspects 

need to be considered when performing a similarity search [Schneider & So, 2003]: 
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1. The chosen molecular descriptors must appropriately cover the structural features 

that are connected to the corresponding SAR. 

2. There must exist a strong correlation between varieties in molecular descriptions 

and varieties in biological function provided by the applied similarity measure. 

 

Molecular similarity is employed for many objectives in virtual screening: Design of 

diverse libraries, discovery of novel scaffolds and as support for establishing SAR [Glen & 

Adams, 2006]. Several techniques have been proposed and evaluated like fingerprint searches 

[Whittle et al., 2004], two-dimensional atom environment searches [Bender et al., 2004] 

topological pharmacophore searches [Schneider & Nettekoven, 2003], feature tree searches 

[Rarey & Dixon, 1998], simple, yet effective substructure analyses [Gillet et al., 1998] and, 

recently, 2D property descriptor value range-derived fingerprints (PDR-FP) [Eckert & 

Bajorath, 2006], just to name a few. 

 

1.5.3 Feature Extraction Methods 

Molecular compounds can be described by a large number of attributes or features like 

topological indices, molecular field parameters, etc. leading to multidimensional data 

representations. Feature extraction describes approaches to transform such a set of raw data 

into a new coordinate system, generally from a high-dimensional into a low-dimensional 

(most commonly 2D and 3D) space by removing irrelevant features. Several linear and non-

linear data reduction techniques have been proposed that might help to describe the shape of 

the original data distribution. Some information-theoretic functions have been compared and 

combined with classifiers to assess the effectiveness of the selection methods [Liu, 2004]. The 

probably most prominent statistical feature extraction method with widespread applications is 

the principal component analysis (PCA) [Lugger et al., 1998; Otto, 1999], which conducts a 

linear data projection from a multi-dimensional data matrix to a low-dimensional space by 

means of a projection matrix resulting in a score matrix. The score matrix in turn comprises 

rows (e.g., molecules) and columns (principal components). Figure 1.5.3-a gives an example 

how such a data distribution is visualized. Axes in the new coordinate system denote “factors” 

or “latent variables”. 
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Figure 1.5.3-a. Linear mapping of a set of two-dimensional data by two principal 
components. Abscissa (χ1) and ordinate (χ2) span the coordinate system. The perpendicular 
score vectors s1 and s2 were calculated according to the maximal convergence criterion. 

 

Since multidimensional data of SAR often do not follow a linear distribution [Agrafiotis & 

Lobanov, 2000], the linear reduction can produce misleading relationships between individual 

data points [Devillers, 1995]. Therefore, also non-linear data projection methods, namely 

SOMs [Zupan & Gasteiger, 1999] and non-linear PCA based upon NIPALS algorithms or 

encoder networks [Livingstone, 1996] found their way to applications like machine learning, 

artificial intelligence and parallel processing. These methods are unsupervised procedures 

(Section 1.5.4) and can be employed as a first step of data analysis. Encoder networks or 

ReNDeR (reversible non-linear dimension reduction) networks [Livingstone, 1996] reduce 

the input patterns to an arbitrary number of neurons, forming the parameter layer (i.e., the 

coordinates or “factors” of the low-dimensional map), followed by transferring the 

information to the output layer. Thus, the input layer is reproduced at the output layer via a 

simple internal representation. The number of input neurons and accordingly of output 

neurons depends on the amount of data vectors to be used. Assumed that there exist no hidden 

layers and hence the neurons have a linear transfer function the number of factors (output 

vectors) is identical to the amount of principal components. Here, non-linear mapping is 

facilitated by non-linear activities of the neurons forming the hidden layers. 
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Figure 1.5.3-b. Architecture of a typical encoder network. Empty circles denote input 
neurons (“fan out units”) and output neurons, respectively. Lines represent weights. Filled 
circles are hidden layers with sigmoidal or linear activity. Grey circles display the parameter 
layer. 

 

An integrating tool for data projection and 3D visualization termed ChemSpaceShuttle has 

been reported [Givehchi et al., 2003]. It performs non-linear data reduction based upon 

encoder networks and the NIPALS algorithm and served within this thesis as a method to 

manually select potential virtual hits from a large subset (Section 4.4). 

 

1.5.4 Kohonen-Maps 

Artificial neural networks (ANN) are straightforward statistical methods to construct linear 

or nonlinear correlations of features (e.g., descriptors) that classify molecule patterns [Katz et 

al., 1992; Schneider & Wrede, 1998]. They exhibit a relationship between features and 

observed data [Zupan & Gasteiger, 1999]. 

ANN can be divided into supervised neural networks (SNN) and unsupervised neural 

networks (UNN). In contrast to unsupervised neural networks supervised neural networks 

require not only a set of molecules but also the knowledge of target values or class-

membership (active/inactive). Nonlinear modeling of QSAR, classification, pattern 

recognition, data compression, etc. are the main applications for SNN (e.g., multilayer feed 

forward networks, encoder networks) whereas UNN (e.g., Kohonen- or Hopfield-networks) 

can be used for clustering, visualization and methods similar to those employed for SNN 

without the prior knowledge of pharmacological molecular activities [Schneider & Wrede, 

1998]. 

SOMs or Kohonen-networks constitute a special type of unsupervised neural networks and 

have been employed for a variety of tasks in chemistry and chemical biology ever since 

[Zupan & Gasteiger, 1999], predominantly for clustering, topology preserving projections and 
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feature extraction [Schneider & So, 2003]. Each neuron or “receptive field” denotes a cluster 

of molecules as a result of the nonlinear mapping procedure where the Kohonen algorithm is 

applied (Section 3.2.2) [Kohonen, 1982]. The molecules of a particular neuron have a similar 

distribution of features and they can be represented by the molecule, which is in closest 

vicinity to the centroid of the corresponding neuron. 

Kohonen has introduced the concept of self-organizing topological feature maps which can 

be arranged as a map, most often either in a one-dimensional array or a two-dimensional 

plane of neurons [Kohonen, 1982]. The toroidal wrapping of an array (to a circle) and a map 

(to a torus) circumvents potential boundary problems associated with a planar topology. 

Kohonen-maps are single layer networks and their neurons are located in a defined topology, 

meaning that each of them has a defined number of neighboring neurons. Maps are visualized 

by circles or by columns and rows forming squares (Figure 1.5.4-a). Each neuron has either 

four (squares) or six (hexagons) neighbors. 

 

 
Figure 1.5.4-a. Visualization of neurons in the Kohonen network according to Zupan and 
Gasteiger [Zupan & Gasteiger, 1999]. Neurons can either be drawn as small boxes of several 
layers forming columns and rows (A) or as circles (B). Black arrows coming from the left (A) 
or above (B) represent the arbitrary number of input, the other arrows denote the output 
vectors. 
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1.5.5 Other Classification Methods 

Until now only those virtual screening techniques applied within this thesis were presented. 

There exists a bunch of other methods that allow, e.g., for classifying molecule entries of 

large compound libraries into potentially active and inactive members. Some of the most 

prominent tools with widespread application in the field of computational chemistry and 

biology will be introduced here. 

The naïve Bayesian method is a straightforward classification technique, which is mainly 

used for HTS data analysis to distinguish between “active” and “inactive” compounds. It is 

based on the Bayes rule for conditional probability and imparts the assumptions that 

descriptors in the reference set are equally important and independent from each other. 

Multiplying individual probabilities results in combined probability. This classifier can be 

used for virtual screening [Bender et al., 2005] or to predict molecule properties like ADME 

[Klon et al., 2006]. 

Support vector machines (SVM) belong to the supervised learning methods [Vapnik, 1998]. 

They provide a machine-learning algorithm that basically projects input vectors to a very 

high-dimensional feature space and constructs an optimal hyper plane, which best separates 

data points into two classes. The mapping is described by a kernel function, which performs 

either linear or non-linear classifications [Boser et al., 1992]. In a retrospective study SVM 

have proven to yield comparable or better results than supervised ANN if employed for 

drug/nondrug classification [Byvatov et al., 2003]. Prospective virtual screening for ligands 

affecting dopamine D2/3-receptors benefits from the advantages of SVM [Byvatov et al., 

2005]. 

Decision tree learning describes a tree-shaped graph of decisions comprising nodes (or 

leaves) and branches where nodes represent decisions and branches denote conjunctions of 

these features [Breiman et al., 1984]. Starting from a root node an object or situation has to 

undergo an arbitrary number of decisions of attributed tests resulting regularly in yes or no. 

Decision trees provide attractive classifiers due to their high execution rate. However, they 

cannot expand to unlimited complexity as they will loose accuracy. Random forest classifiers, 

in turn, grow multiple trees in random subspaces and avoid a loss of accuracy caused by 

overwhelming decision patterns [Ho, 1995]. Decision trees and random forests are commonly 

employed for classifying and prioritizing compounds for testing [Muegge et al., 2001; Svetnik 

et al., 2003]. 
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In a recent study a set of seven classification methods was employed to divide databases 

into active and inactive compounds for five different targets [Plewczynski et al., 2005]. The 

applicability of each method for each target was assessed by means of enrichment factor, 

precision and recall of all positives that have been retrieved. It turned out that random forests, 

artificial neural networks and support vector machines lead to high enrichments of actives, 

whereas random forests are successful in reducing the number of false positives (precision). 

 

1.6 Quantitative Structure Activity Relationship 

The concept of the quantitative structure activity relationship (QSAR) model is a classical 

example of ligand-based approaches where the physicochemical together with 

pharmacological and structural properties of ligands play an important role in terms of 

predicting bioactivity data. This field has been explored more than forty years ago [Hansch & 

Fujita, 1964]. QSAR methods try to exhibit correlations between structural informations of a 

set of molecules and their bioactivity data in order to give predictions for new molecules 

regarding these data. Compounds to be included in QSAR studies most often display related 

structures differing only in the type of substituents being attached to the common core. Free-

Wilson analysis denotes an early 2D-QSAR method [Free & Wilson, 1964]. It is a regression 

technique using the presence or absence of substituents or groups as the only molecule 

descriptors in correlations with biological activity [Kubinyi, 1993]. This crude method has 

some pitfalls: (i) In contrast to Hansch analysis and more recent methods it lacks the influence 

of electrostatic properties and (ii) the properties of new substituents – even if they resemble 

already existing substituents (e.g., methyl vs. ethyl) – can not be predicted by this method. 

Setting up a QSAR model is a multi-stage process. The first step is to select appropriate 

descriptors, i.e., descriptors, which best describes a set of molecules for a given task. The 

variety of descriptors is manifold. 1D descriptors (e.g., MW) are normally constitutive 

descriptors giving no hint about the chemical structure. 2D descriptors comprise structure key 

descriptors, e.g., the UNITY fingerprints [Tripos], Daylight fingerprints [Daylight] and other 

fragment fingerprints, which are, however, preferably used for similarity searching than for 

QSAR. They can be calculated from the connection table representation and, therefore, they 

are not dependent on the conformation of a molecule and are most suitable for large database 

studies. 3D descriptors are derived from the three-dimensional conformation of a molecule; 

they characterize molecules according to their molecular volume, several surface areas and 

molecular interaction fields [Van Aalten et al., 1996; Lin et al., 2000]. More recent 3D-QSAR 
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descriptors used for CoMFA (alignment dependent) [Cramer et al., 1988] and CoMSIA 

studies [Klebe et al., 1994] account for encoded combinations of steric, electrostatic and 

hydrophobic properties (Section 3.2.4).  

The next step comprises feature selection, which describes the step where certain attributes 

are chosen that are assumed to be relevant to generate reasonable correlations between 

descriptors and biological data. The final step in constructing a QSAR model is to formulate a 

mathematical relationship and to determine the model parameters. Linear methods like 

multiple linear regression (MLR) and partial least squares (PLS) are commonly used methods 

[Fernandez et al., 2006; Sirois et al., 2005]. PLS, like PCA, uses latent variables for the 

molecule descriptors and the biological responses, from which a linear model is derived. 

Cross-validation is necessary to avoid overfitting of the data and to evaluate the quality of 

prediction. In contrast, self-organizing maps and encoder networks provide ways of non-linear 

correlation methods. Once a model is built it has to be validated, meaning the prediction 

accuracy has to be estimated. Leave-one-out (LOO), leave-group-out (LGO) and 

bootstrapping are the most common techniques [Topliss & Edwards, 1979; Diaconis & Efron, 

1983, Cramer et al., 1988b]. 

QSAR studies aim at investigating the binding modes of certain structural classes of 

molecules affecting a given target as this way was pursued within this thesis. They do not 

belong to the virtual screening techniques as neither databases will be searched nor will novel 

scaffolds be found. Predictions can be done only upon existing molecule patterns. In general, 

they are suitable for activity or affinity optimization projects for molecules representing the 

same scaffold. 

 

1.7 Scope of this Thesis 

One aim of this thesis was to identify new scaffolds for compounds that allosterically 

inhibit group I metabotropic glutamate receptors (mGluRs), in particular mGluR1. Computer 

assisted virtual screening can be applied either based on knowledge about the receptor’s 

architecture (structure-based) or a set of bioactive reference ligands (ligand-based) [Böhm & 

Schneider, 2000]. We planned to pursue the latter approach since the precise structure of the 

heptahelical domain of group I mGluRs is still unknown. The idea within the scope of this 

thesis was to employ various virtual screening methods for the given task and to evaluate their 

effectiveness. However, before initiating such ligand based searches, as much information as 

feasible about already existing agents has to be gathered and exploited to increase the 
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probability of success, which was another goal of this thesis. In this context we planned to 

compile a reference data collection comprising mGluR1 and mGluR5 allosteric inhibitors. 

The chemical structures including bioactivity data of the reference compounds should be 

obtained from literature and patents. Based upon a small selection of highly potent and 

selective mGluR1 antagonists a pharmacophore hypothesis for mGluR1 should be established 

thereafter providing an initial insight into common features and structural requirements for 

receptor inactivation by these ligands.  

The computer-assisted methods to be used within this thesis include similarity searching 

with the CATS atom-pair descriptor, 3D pharmacophore query searches as well as molecule 

clustering and mapping onto a plane by self-organizing maps (SOM) or into a 3D space by 

non-linear principal component analysis. These approaches denote ways to detect structurally 

new ligands, which is termed “scaffold hopping” [Schneider et al., 1999]. Virtual hits should 

be ordered from commercial vendors and screened in-house for the desired affinity and 

activity at the receptor.  

To realize this pharmacological screening, binding assays addressing allosteric sites of 

mGluR1 and mGluR5 must be developed, which was also a goal of this thesis. Comparable 

binding assays for non-competitive modulators of group I mGluRs have not been reported to 

the best of our knowledge. Compounds ordered from vendors have to be tested on these 

assays afterwards. Since it was our strategy to avoid HTS, binding assays to be developed 

herein should facilitate limited throughputs. Compounds to be found by virtual screening 

campaigns providing novel core structures with significant potency should help to 

continuously refine the existing pharmacophore hypothesis and, thus, to propose binding 

orientations for potentially new compounds as well as for representatives of an earlier 

published chemical series of quinolines [Mabire et al., 2005]. Another aim was to obtain 

information about structural features important for the inhibitory potential of these quinolines, 

which should be realized by 3D QSAR studies.  

If any virtual screening campaign turned out to detect a set of molecules with inhibitory 

activity at mGluR1, promising representatives shall be chemically modified to optimize their 

pharmacological properties (that is increase of affinity and inhibitory activity at mGluR1). 

Furthermore, we also planned to established selectivity profiles for representative mGluR1 

and mGluR5 antagonists. A virtual screening concept should allow to predict cross activities 

for these types of ligands. 
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1.8 Initial Hypotheses 

Initially, we hypothesized that binding assays for allosteric mGluR1 and mGluR5 

antagonists on a 96-well plate format could be established starting from an already running 

NMDAR binding assay on 24-well plates (Section 2.2, Section 2.3). 

Following, hypotheses for the identification of new scaffolds of negative allosteric mGluR1 

modulators were formulated. We postulated that a pharmacophore model based upon a 

selection of potent and selective non-competitive mGluR1 antagonists should be capable of 

retrieving an activity-enriched subset of a vendor compound library (Section 4.2). 

We further hypothesized that reference molecules employed for the pharmacophore model 

could also serve as reference compounds for similarity searching and that the CATS 

descriptor [Schneider et al., 1999] would best describe topological similarities (Section 4.3). 

The application of a tool performing non-linear principal component analyses 

(ChemSpaceShuttle) should narrow down a large set of compounds characterized by a 

multidimensional space so that a small subset of the initial database could be retrieved for 

further experimental testing (Section 4.4). 

According to our hypothesis the CATS descriptor should be applicable to adequately 

encode molecules for clustering by means of self-organizing maps (SOM). SOM should 

enable a discrimination between all available non-competitive mGluR1 and mGluR5 

antagonists. Moreover, the SOMs employed in this project should be capable of detecting 

hidden relationships between a large set of structural diverse reference (mGluR1) and test 

molecules (Section 4.5). 

Some hypotheses were proposed after first results of the scaffold identification were 

obtained. Since clustering of reference and test compounds according to the SOM algorithm 

led to promising results regarding molecule distribution and visualization (Section 4.5.1), we 

were tempted to speculate that this method should also facilitate the prediction of cross-

activities for reference compounds (Section 5.2). 

We also hypothesized that a meaningful CoMFA model could be derived from a recently 

published set of quinoline derivatives acting as non-competitive mGluR1 antagonists [Mabire 

et al., 2005] (Section 5.1). The conclusions drawn from this QSAR model in turn should 

improve our understanding about the orientation of quinolines in the mGluR1 binding site.  

A hit optimization project was launched for coumarines (Section 5.3). All side chains of this 

chemotype should systematically be modified. The idea was to generate a set of structural 

analogues large enough to derive comprehensive SAR data. We postulated that these data 
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might simplify considerations about the hypothetical ligand orientation at the recognition site 

of mGluR1 (Section 5.4). 
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2 Assay Development 

We wished to identify ligands binding to group I mGluRs. To this means, it was necessary 

to characterize not only whether they bind to the allosteric binding site of the given receptor 

but also what functional consequences this binding evokes. The question arises: Does ligand 

interaction with the receptor cause an activation or blockade of the intracellular signal cascade 

(here: Ca2+-mobilization from intracellular Ca2+-stores). Binding assays address the first issue 

whereas functional assays address the latter one. Summarized, together they are indispensable 

tools to pharmacologically characterize new ligands. We wished to avoid HTS due to 

disadvantages like high costs and low hit rates (Section 1.5), and rather developed binding 

and functional assays characterized by high data content and moderate throughput. Combined 

with the virtual screening campaigns that will be introduced in later this strategy proved to be 

suitable for our hit-finding process. Once established, the assays allowed us to verify or 

falsify predictions which were based upon the results of virtual screenings (Chapter 4). More 

precisely, the presumed potency of “virtual hits” found by virtual screening campaigns had to 

be supported by data from real experiments. 

Functional and binding assays for targeting mGlu1 and –5 receptors were already developed 

in-house. However, the existing binding assays were relatively cumbersome to handle and 

were associated with a low throughput of test compounds. Consequently, the first step of the 

practical work was to establish new binding assays for both receptor subtypes. More detailed, 

one goal was to convert the read out formats of mGluR1 and mGluR5 binding assays based 

on a 12-well millipore system to a state of the art 96-well plate format, hence facilitating the 

performance of binding experiments with an increased number of compounds whilst saving 

materials and time. 

 

Note: For the sake of clarity most experiments that failed were not mentioned within this 

chapter. Only a few of them have explicitly been included in case they could give helpful 

hints for further assay development processes. Furthermore, it must be stressed that affinity 

values were given as IC50-values and not as Ki-values. The Kd-value of the radioligand, which 

is necessary to calculate the Ki-value from the IC50-value (Section 3.1.11), is specific for a 

particular binding assay / radioligand and was indeed determined by binding saturation 

experiments [McKinney, 1998] during the assay development process (Section 2.5). 

However, the radioligand concentration chosen for displacement experiments was low enough 
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to have only a modest effect on the difference between Ki and IC50. Furthermore, for SAR, 

relative differences are more important, and these are the same for both IC50 and Ki.  

Eventually, it should also be emphasized that all results calculated from the luminescence 

reader MicroBeta®Trilux (e.g., IC50, percent of inhibition, etc.) were based on raw data given 

as counts per minute (CPM) and not as disintegrations per minute (DPM). We are well aware 

that DPMs denote the more precise values since they are bias corrected (i.e., they only 

consider flashlights caused by radioactive decays). However, the procedure for determining 

this ratio between flashlights triggered by decays or by any other influences (“quenching”) 

cannot be performed for the present assay conditions. 

 

2.1 Membrane Quality - Preliminary Tests 

Preliminary binding tests were necessary to evaluate several basic parameters like the 

choice of an appropriate membrane / protein concentration and suitable screening plates. They 

were performed with cortical rat membranes expressing NMDA-receptors using [³H]-(+)MK-

801 as a radioligand, since this assay is well characterized in house (using the millipore 

system), robust, exhibits low non-specific binding values and is easy to perform, e.g., long 

incubation times at room temperature.  

 

2.1.1 Characterization of NMDA receptors within the membrane 

In a pilot experiment only positive (“bound”) and negative (“non-specific”) controls were 

tested on various screening plates at different membrane concentrations. Positive control 

describes a status where the radiotracer can interact with the membrane without being 

displaced by any competitor. In contrast, the negative control denotes that status where the 

radioligand should be totally displaced from the binding site with a highly potent competitor. 

The competitor or “cold displacer” is generally the unlabeled compound or, where possible, a 

closely related, potent and specific analogue in roughly several thousand-fold higher 

concentrations. In general, a background negative control of less than 20% of the full signal is 

assumed to be adequate for screening purposes. 

The reaction volumes of positive and negative controls (containing a radioligand 

concentration of 5nM, a membrane-suspension of 0.2/0.4/0.6 mg/ml, glycine/glutamate at a 

concentration of 10µM to facilitate channel access of the radioligand and 10µM (+)MK-801 

as cold displacer) were either incubated on a regular 96-well plate (transparent plastic plate 
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with flat-bottom wells) [Greiner Bio-One GmbH] and afterwards transferred for filtration to 

an opaque 96-well plate with glass fiber filters at the bottom of each well (“multiscreen 

plate”) [Millipore GmbH] or directly incubated on a “multiscreen plate”. Incubation was 

terminated after two hours by rapid vacuum filtration of the reaction volume through the 

filters using a vacuum manifold. The filters were rinsed four times with 150 µl ice-cold Tris-

buffer (50mM, pH 7.5). After washing scintillation cocktail Ultima-GoldTM [Perkin Elmer 

Life Sciences] (40 µl / well) was added to the filter and the plates were incubated for another 

16 hours. Then radioactivity was measured in a MicroBeta®Trilux [Perkin Elmer Life 

Sciences]. 

For the first plate (incubated on an opaque 96-well plate) a good signal-to-background ratio 

was only obtained at 0.60 mg/ml membrane concentration (11.4% non-specific). For the 

second plate (incubated on a multiscreen plate) there was no signal over background for any 

protein concentration, leading to the assumption that the reaction volume should preferably be 

incubated on a regular 96-well plate prior to transferring to a multiscreen plate. 

 

NH2 NH2
NNH

HCl HCl

HCl

Memantine Neramexane MK-801 PCP
Figure 2.1.1-a. Chemical structures of known NMDA receptor antagonists. 

 

In a subsequent experiment, the influence of varying protein concentrations on the IC50-

value was evaluated by means of conducting full concentration response curves (CRC) for 

(+)MK-801 (Figure 2.1.1-a) at two different membrane concentrations. Since membrane 

concentrations of 0.20 mg/ml or 0.40 mg/ml were previously found to be too low for 

sufficiently high signals, membrane concentrations of 0.60 mg/ml and 0.80 mg/ml were used 

(Figure 2.1.1-b). A good signal-to-background ratio (12-13% background) was obtained for 

both whereas the absolute counts were dependent on membrane concentration (1715 CPM for 

0.60 mg/ml vs. 1914 CPM for 0.80 mg/ml, data not shown). 

 



Assay Development 33 

MK-801 concentration [µM]
0.00001 0.0001 0.001 0.01 0.1 1 10

%
 C

on
tr

ol
 [³

H
]-M

K
-8

01
 b

in
di

ng

0

20

40

60

80

100

MK-801 
(0.60 mg 
prot. / ml)

MK-801 
(0.80 mg 
prot. / ml)

 
Figure 2.1.1-b. Concentration response curves for (+)MK-801 displacing [³H]-(+)MK-801 at 
two different concentrations of membrane. The unlabeled ligand revealed a calculated IC50-
value of 9.9 nM (lower membrane concentration) and 18.0 nM (higher membrane 
concentration), respectively. 

 

The affinity values of (+)MK-801 obtained for this experiment correspond well with those 

given in literature (Kd-value of the radioligand 16.5nM) [Foster & Wong, 1987], which 

demonstrated that the binding assay was successfully performed giving reliable results. 

Moreover, the significantly increased CPM values for the higher membrane concentration 

(~12%) showed that no binding saturation was reached at least for the experiment with the 

lower membrane concentration since DPM values and also CPM values could linearly 

correlate with the radioactive emission of a sample. 

To confirm the robustness of the assay the experiment was repeated twice with a 

sufficiently high membrane concentration (0.80 mg protein per ml) by means of conducting 

CRCs for other NMDA antagonists namely Phencyclidine (PCP), Memantine and 

Neramexane (Figure 2.1.1-a, Figure 2.1.1-c). Other parameters like incubation time and 

temperature (2 hrs, room temperature), plate format and washing process remained 

unchanged. 
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Figure 2.1.1-c. Concentration response curves for Memantine (IC50-value: 2.82µM; SEM: 
0.33), Neramexane (3.68µM; 0.31) and PCP (0.229µM; 0.023) displacing [³H]-(+)MK-801 
from the NMDAR binding site. Results represent the mean values of two independent 
experiments performed in quadruplicate. 

 

Both experiments were successfully carried out and reliable results for all reference 

compounds were obtained when comparing the IC50-values to Ki-values published in literature 

(Memantine 0.69µM, Neramexane 0.68µM and PCP 0.04µM) [Bresink et al., 1995; Parsons 

et al., 2000]. Satisfying signal-to-background ratios were achieved for all ligands (9-12% 

background, data not shown). 

 

2.1.2 Conclusions 

The NMDAR binding assay is simple to perform and facilitated the transfer of general 

binding assay procedures to a new system. All parameters applied herein served as initial 

parameters for setting up binding experiments for mGluR1 and –5, respectively.  
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2.2 Development of a Binding Assay for mGluR1 

First, a binding assay with increased throughput to detect allosteric mGluR1 modulators 

was developed. 

 

2.2.1 Experiments 

The same conditions as for the NMDAR binding assay were applied for an initial mGluR1 

binding assay (membrane conc. 0.80 mg/ml, incubation time 2hrs at room temperature). 

Radio labeled (+)MK-801 was replaced with [³H]-EMQMCM, which is a high-affinity ligand 

at the allosteric site of the mGlu1 receptor [Mabire et al., 2005] and a structural analog to the 

quinoline R214127 [Lavreysen et al., 2003]. The concentration of radioligand was changed 

from 5nM to 1nM because of its potent binding affinity. R193845 (30µM), which is also an 

analog of R214127 served as cold displacer (Figure 2.2-a). To evaluate the validity of the 

assay the affinities of three already known non-competitive mGluR1 antagonists that served 

as reference compounds, R193845, NPS 2390 and the propenone AMMPP [Mabire et al., 

2005; Van Wagenen et al., 2000; Parsons et al., 2006], were determined by full CRCs (Figure 

2.2.1-a, Figure 2.2.1-b). EMQMCM served also as a reference compound in several mGluR1 

experiments and was frequently used within this thesis. 
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Figure 2.2.1-a. Chemical structures of known non-competitive mGluR1 antagonists that were 
used during assay development. 
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A surprisingly high signal-to-background ratio was achieved with a mean background of 

5% (data not shown). In this context, relatively high absolute values of above 2500 CPM were 

obtained giving a hint that either the protein concentration or the incubation time could be 

reduced. However, the obtained IC50-value of NPS 2390 was more than 100-fold weaker than 

reported in literature (Kd-value 1.4nM) [Lavreysen et al., 2003]. Here, an IC50-value of 

259nM for NPS 2390 [Van Wagenen et al., 2000] and 120nM for R193845 was obtained 

(Figure 2.2.1-b). The considerable deviation between experimentally obtained affinity for 

NPS 2390 and the affinity given in literature was probably caused by slight precipitation, 

which was observed while diluting the stock solution (compound dissolved in pure DMSO) 

with an excess of buffer. As demonstrated by the error bars, the raw data of AMMPP (IC50-

value: 497nM) also showed strong variation. This was probably also due to poor solubility. 
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Figure 2.2.1-b. Concentration response curves for R193845 (IC50-value: 0120µM; SEM: 
0.017), NPS 2390 (0.259µM; 0.038) and AMMPP (0.497µM; 0.116) displacing [³H]-
EMQMCM from the rmGluR1 binding site. Experiment was performed in quadruplicate. 
Error bars denote SEM. 

 

The less than optimal concentration response curves indicate that the assay was not yet 

suitable for screening. For the next experiment the settings were slightly changed in terms of 
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the incubation time, which was shortened to one hour. To avoid solubility problems connected 

with the compounds tested before, concentration response curves were conducted for two 

other allosteric mGlu1 receptor modulators namely LY456066 [Li et al., 2002] and the 

propenone AQP [Parsons et al., 2006] (Figure 2.2.1-c). However, AQP turned out to be 

poorly soluble when the stock solution was diluted with buffer to the desired concentrations. 

This is confirmed by the corresponding CRC where data points deviate considerably from the 

fitted curve. Moreover, LY456066 elicited more than ten-fold weaker binding compared with 

literature values (IC50-value 142nM vs. Kd-value 9.3nM). 
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Figure 2.2.1-c. Concentration response curves for LY456066 (IC50-value: 0.142µM; SEM: 
0.041) and AQP (0.159µM; 0.036) displacing [³H]-EMQMCM from the rmGluR1 binding 
site. Experiment was performed in quadruplicate. Error bars denote SEM. 

 

At this stage, the binding assay was still not optimized since it lacked reliable results for 

well-known mGluR1 antagonists, i.e., results that were consistent with those reported in 

literature. As the poor solubility of some test compounds seems to be a major pitfall of the 

incorrect affinity values it was decided to add DMSO as solvent with a final concentration of 

5%. The procedure is detailed in Section 2.4.  

In this context another binding experiment was performed (Figure 2.2.1-d) determining the 

potency of EMQMCM, a potent allosteric mGluR1 antagonist [Mabire et al., 2005]. The 
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previous assay parameters remained unchanged except for the addition of 5% DMSO (final 

concentration) to increase the solubility of the compounds to be tested. The experiment was 

repeated twice and the resulting affinity values were consistent with activity data published by 

Mabire et al. (binding 3.4nM vs. functional 3nM). This clearly demonstrates that reliable 

results can be produced allowing for screening test compounds thereafter. 

The final assay procedure is given in the experimental part (Section 3.1.3). 
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Figure 2.2.1-d. Concentration response curves for EMQMCM (IC50-value: 3.4nM; SEM: 0.6) 
displacing [³H]-EMQMCM from the rmGluR1-binding site. Results are mean values of three 
independent experiment conducted in quadruplicate. Error bars indicate SEM. 

 

Finally, to validate the robustness of the present binding assay for future screening an 

experiment was performed to define the Z´-factor [Zhang et al., 1999]. This simple statistical 

parameter can be calculated using only control data without the need for test compounds. It is 

normally employed to assess the overall assay quality of an HTS assay taking the data 

variation of the assay signal into account (i.e., the Z´-factor gives a hint whether a compound 

should preferably tested in singlet or duplicate, etc.). The following equation is applied: 
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where σc+ is the SD of the positive control, σc- the SD of the negative control and µc+ and µc- 

denote the mean values of positive and negative control, respectively. A Z´-value above 0.5 is 

assumed to give reliable results and a value of 1 would indicate an ideal assay. 

 

Positive (bound) and negative (non-specific) control values were measured on a 96-well 

plate according to the regular assay protocol (Section 3.1.3). Odd column numbers (1, 3, etc.) 

were used for positive control samples and even column numbers for negative control 

samples. The result was a Z´-factor of 0.61 for the total plate which is in accordance with a 

required value of ≥ 0.50. It was decided to keep the previously defined settings (each 

concentration or control assayed in quadruplicate). 

 

2.2.2 Conclusions 

Several experiments were carried out one after the other and the results of the previous 

experiment were taken into account in order to improve the performance of the next test. This 

allowed iterative improvements in the assay procedure to satisfy all criteria necessary for a 

mGluR1 binding assay with limited throughput. It has been demonstrated that the preliminary 

NMDA binding assay experiments (Section 2.1) served as a useful basis for the development 

of mGluR binding assays. However, the assay procedure had to be modified to fulfill mGluR1 

specific assay requirements. Finally, the optimized experimental procedure was successfully 

tested in terms of robustness of the system by means of determining the Z´-factor. 

 

2.3 Development of a Binding Assay for mGluR5 

A binding assay for mGluR1 was successfully established based upon the NMDAR binding 

assay. Likewise, a binding assay for allosteric mGluR5 antagonists was developed, which is 

described in the following section. 

 

2.3.1 Experiments 

The assay parameters for an initial mGluR5 binding assay were taken directly from the 

preliminary experiments of section 2.1. The first test was carried out on a regular 96-well 
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plate at room temperature and [³H]-MPEP (5nM) served as the radioligand for rat cortical 

membrane (0.80 mg/ml). The test ligand MTEP (Figure 2.3.1-a) was applied in various 

concentrations to give a full concentration response curve. Membrane suspension and test 

ligand as well as positive and negative controls were prepared on the 96-well plate and the 

reaction was initialized by the addition of radioligand. After two hours the regular process 

was continued (transfer to multiscreen plate, wash steps, scintillation-cocktail addition and 

second incubation). Since no discrimination between positive (bound) and negative (non-

specific) values could be made for this experiment (data not shown) it clearly failed. These 

results demonstrated that the experimental procedure of the NMDA binding assay could not 

directly be used for the mGluR5 binding assay. 

 

N N
O
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MPEP M-MPEP MTEP
 

Figure 2.3.1-a. Chemical structures of known non-competitive mGluR5 antagonists that were 
used during the assay development. 

 

Consequently, the experiment was repeated while slightly changing the settings. First, the 

reaction was started by addition of membrane and not by addition of the radiotracer, second, 

the incubation time was reduced to one hour and performed under cooled conditions (1°C, 

ice), as temperature was presumed to influence the reaction, and finally the rinse process was 

extended to four steps of ice cold buffer (150µl). CRCs were conducted for the potent 

allosteric mGlu5 receptor antagonists MPEP and MTEP (Figure 2.3.1-a, Figure 2.3.1-b). 
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Figure 2.3.1-b. Concentration response curves for the antagonists MPEP (IC50: 0.0074µM) 
and MTEP (0.0156µM) displacing [³H]-MPEP from the allosteric binding site of the mGlu5 
receptor. 

 

The experiment revealed somewhat too potent IC50-values for both compounds [Anderson 

et al., 2002] and the background in relation to the total signal was too high (40% and 47%, 

respectively). Therefore, the opaque 96-well plate was replaced by a transparent 96-well plate 

and the experiment was repeated for MPEP, MTEP and additionally M-MPEP (Figure 2.3.1-

a, Figure 2.3.1-c). 
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Figure 2.3.1-c. Concentration response curves for the antagonists MPEP (IC50: 0.0138µM), 
MTEP (0.0252µM) and M-MPEP (0.0072µM) displacing [³H]-MPEP from the allosteric 
binding site of mGluR5. 

 

The background signal was further reduced (MPEP / MTEP / M-MPEP: 30 / 45 / 31%) and 

the IC50-values calculated from the concentration response curves displayed much better 

accordance with the values given in the literature (MPEP: 15nM; MTEP: 30nM; M-MPEP: 

3.6nM) [Anderson et al., 2002; Gasparini et al., 2001]. 

Apart from the background signal, which is still somewhat too high, the mGluR5 binding 

assay with labeled MPEP as the radiotracer produced reliable results. For screening the 

cooling conditions were further optimized (blue ice was replaced with dry ice maintaining a 

mean temperature of 1-2°C in each well). Eventually, background values of roughly 15% 

from total signal were obtained when test compounds were screened (data not shown). 

 

2.3.2 Conclusions 

Like in Section 2.2 the NMDAR binding assay procedure served as a starting point for 

setting up the present assay in order to speed up the optimization process. “Trouble-shooting” 

was done by iterative changing of assay parameters. The fact that incubation of compounds 



Assay Development 43 

with membrane had to be conducted under cooled conditions considerably hampered the 

developmental process. This was attributed to an assumed rapid dissociation of bound ligand 

from the receptor (see also Section 2.6). Apart from the cooled conditions both, mGluR1 and 

mGluR5 binding assays were performed in the same way. 

The final assay procedure is given in the experimental part (Section 3.1.4). 

 

2.4 The Influence of DMSO 

The molecules that were retrieved from commercial compound libraries by virtual 

screening methods are assumed to bind to the allosteric site of group I mGluRs in particular of 

mGluR1. Since the allosteric binding site is embedded in the hydrophobic transmembrane 

region (Section 1.3.1) ligands interacting with the binding pocket elicit predominantly poor 

aqueous solubility.  

Hence, this led to a pitfall, which became especially apparent within the hit optimization 

procedure: higher affinity often correlated with higher lipophilicity. The binding assays 

initially used were solely conducted in aqueous solutions meaning that all constituents were 

dissolved in pure Tris-buffer. As some reference compounds (EMQMCM, NPS 2390 and 

AMMPP) used for CRCs during the assay development process were poorly soluble in buffer, 

their testing was hampered by precipitation problems especially at high concentrations 

(Section 2.2.1). Likewise, when test compounds were screened substance precipitations 

occurred for many molecules, in particular during the preparation of dilution series for CRCs. 

Consequently, a considerable percentage of all test structures was not suited for testing under 

the conditions used. It turned out that nearly all solids showed acceptable solubility in the 

organic solvent dimethyl sulfoxide (DMSO). The relatively polar solvent DMSO, in turn, can 

be diluted with buffer in any ratio. Tris-buffer containing up to 5% DMSO was capable of 

solving nearly all test compounds even at relatively high concentrations. 

 

2.4.1 Experiments 

First, the influence of two DMSO concentrations was investigated for the mGluR1 binding 

assay. Figure 2.4.1-a clearly demonstrates the significant signal reduction caused by DMSO: 

While 1% DMSO displayed little influence on control values 5% DMSO led to approx. 20% 

signal reduction. Higher DMSO concentrations were not tested. The ratio between positive 

and negative control remained unchanged for both DMSO concentrations (<10%). 
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Figure 2.4.1-a. Bar chart representing the influence of DMSO as solvent in the mGluR1 
binding assay on positive (bound) and negative (non-specific) control values. 

 

To further evaluate the influence of DMSO on ligand affinity concentration response curves 

were performed for some standards. A selection is given in Figure 2.4.1-b demonstrating that 

there is little (if any) influence of DMSO on the affinity towards the allosteric binding site. 

The IC50-value for EMQMCM, which is well soluble in both DMSO and water, was 

11nM/12nM (with 1% and 5% DMSO, respectively) and 6nM without DMSO; the affinity of 

R193845, an analogue of EMQMCM, did not change at all (233nM/235nM vs. 218nM 

without DMSO). Only the affinity of NPS 2390 was significantly reduced from 210nM to 

311nM at 5% DMSO (271nM without DMSO, data not shown). However, as the IC50-value 

calculated in aqueous solution lay between the values determined in the presence of DMSO 

one could assume that the values calculated in this experiment showed a typical error of 

measurement. 
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Figure 2.4.1-b. 3-concentration CRCs for three allosteric mGluR1 antagonists at two 
different DMSO concentrations performed in quadruplicate. Calculated IC50-values in the 
presence of 1% and 5% DMSO: EMQMCM 11nM (SEM: 0.6nM) vs. 12nM (0.3nM), 
R193845 233nM (24.3nM) vs. 235nM (7.7nM), NPS 2390 211nM (9.1nM) vs. 311nM 
(6.4nM). 

 

2.4.2 Conclusions 

Summarized, DMSO up to 5% final concentration had no influence on the interaction of 

ligands binding to the allosteric site of mGluRs. In contrast to living cells, which are sensitive 

even to low DMSO concentrations (< 0.5%) membranes are relatively insensitive to DMSO at 

the concentrations applied. 
 

2.5 Scatchard Analysis 

Binding saturation experiments (Scatchard analyses) describe a method to directly 

determine the true potency of a radioligand for its binding site under the conditions used 

[McKinney, 1998]. Here, a radio labeled ligand is tested in various concentrations but at a 

fixed protein level. Only positive (total binding) and negative controls (non-specific binding) 

are measured. Based upon the results of Scatchard analyses the Kd-value of a given 
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radioligand can be determined. This value in turn is indispensable to calculate Ki-values for 

test compounds according to the Cheng-Prussoff Equation (Section 3.1.11). It must be 

emphasized that Kd-values resulting from such saturation experiments are specific for a 

particular assay. Consequently, changing any fundamental parameters which probably 

influence the binding behavior of ligands towards receptors (e.g., protein concentration and 

temperature) necessarily means that the Kd-value becomes invalid and has to be 

experimentally determined again.  

Saturation experiments were performed for both types of tissue: the cerebellar and cortical 

rat membranes containing mGluR1 and mGluR5, respectively. Thus, the procedure of 

Scatchard analyses followed the assay protocols of the corresponding binding assays of 

mGluR1 and mGluR5 for later compound screening (Section 3.1.3 and 3.1.4). 

 

2.5.1 Saturation Experiments on Cerebellar Membranes 

For saturation experiment at the allosteric binding site of mGluR1 the binding behavior of 

the potent and highly selective non-competitive antagonist [³H]-EMQMCM was investigated. 

Experiments were carried out according to the established binding assay protocol (Table 

2.5.2-a). The practical work was performed by Sabine Denk, a technical assistant at Merz. 

 

Table 2.5.1-a. Assay protocol giving the parameters for mGluR1 binding saturation 
experiments. 

Parameter Setting 

Radiotracer [³H]-EMQMCM (0.36nM – 100nM) 

Cold displacer EMQMCM (10µM) 

Protein Rat cerebellum (0.80 mg/ml) 

Total volume 250µl/well 

Detection volume 150µl/well 

1st Incubation 60 min. (room temperature, shaker) 

2nd Incubation 16 hours (room temperature, dark) 

Buffer Tris-HCl 50mM, pH 7.5 

Detecting device Microbeta TriLux® 
 

Positive and negative controls were tested at twelve different concentrations of radioligand 

starting with 0.36nM up to a three hundred-fold higher concentration (Figure 2.5.1-a). 
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Specific binding was calculated by subtracting negative control from positive control at each 

concentration. 

The signal-to-background ratio was exceptionally good over a wide range of radiotracer 

concentrations with the best ratio at 15nM [³H]-EMQMCM. However, with increasing 

radioligand concentrations the ratio steadily degrades since the background values (non-

specific) linearly increase whereas the total signal asymptotically approaches a certain 

threshold (i.e., the binding saturation). 
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Figure 2.5.1-a. Saturation curve of [³H]-EMQMCM binding in rat cortical membranes. 
Results represent mean values of three independent experiments performed in quadruplicate. 
Error bars indicate SEM. 

 

Analysis of [³H]-EMQMCM binding to rat cortical membranes revealed a single binding 

site that was of high affinity and saturable (Figure 2.5.1-b). The Kd-value of [³H]-EMQMCM 

is equal to the slope of the regression line. Bmax in turn is the intercept of this line of best fit 

with the abscissa. However, to determine the receptor capacity (Bmax) of cerebellar 

membranes it was first necessary to calculate which amount of ligand is specifically bound to 

the membranes (i.e., ideally the receptors) per given protein concentration (abscissa in Figure 
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2.5.1-b) resulting in a certain signal. Therefore, the total signal of various amounts of 

radioligand has been measured (data not shown) to determine this amount. 
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Figure 2.5.1-b. Scatchard plot of [³H]-EMQMCM binding in rat cerebellar membranes. The 
binding site has a capacity of 0.59 pmol/mg protein with high affinity of the ligand (Kd-value: 
13.1nM). Results represent mean values (and SEM) of three independent experiments 
performed in quadruplicate. 

 

The assay specific Kd-values determined in this section for [³H]-EMQMCM and in the 

following section for [³H]-MPEP were implemented in Equation 3.1.11-e [Cheng & Prussoff, 

1973] to calculate Ki-values for further compound screening. 

 

2.5.2 Saturation Experiments on Cortical Membranes 

For saturation experiments at the allosteric binding site of mGluR5 the binding of [³H]-

MPEP was investigated. Experiments were carried out according to the established binding 

assay protocol (Table 2.5.2-a). 

 

Table 2.5.2-a. Assay protocol giving the parameters for mGluR5 binding saturation 
experiments. 

Parameter Setting 

Radiotracer [³H]-MPEP (0.4nM – 40nM) 

Cold displacer MPEP (10µM) 

Protein Rat cortex (0.80 mg/ml) 
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Total volume 250µl/well 

Detection volume 150µl/well 

1st Incubation 70 min. (cooled conditions, shaker) 

2nd Incubation 16 hours (room temperature, dark) 

Buffer Tris-HCl 50mM, pH 7.5 

Detecting device Microbeta TriLux® 
 

Positive and negative controls were tested at twelve different concentrations of radioligand 

starting with 0.4nM up to a hundred-fold higher concentration (Figure 2.5.2-a). Likewise, 

specific binding was calculated by subtracting negative control from positive control at each 

concentration. Here, the saturation curve displays a poor signal-to-background ratio exhibiting 

~30% of background only at radiotracer concentrations of up to 2nM. At higher 

concentrations the background increases dramatically. 

 

[3H]-MPEP Concentration (nM)

0 20 40

B
ou

nd
 - 

fm
ol

/m
g 

Pr
ot

ei
n

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Total 
Non-Specific
Specific 

 
Figure 2.5.2-a. Saturation curve of [³H]-MPEP binding in rat cortical membranes. Results 
represent mean values of three independent experiments performed in quadruplicate. Error 
bars indicate SEM. 

 

Likewise [³H]-EMQMCM binding (Figure 2.5.1-b), analysis of [³H]-MPEP binding in 

cortical rat brain membranes revealed a single binding site that was saturable and of high 
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affinity (Figure 2.5.2-b). The Kd-value of [³H]-EMQMCM is equal to the slope of the 

regression line. Bmax in turn is the intercept of this line of best fit with the abscissa. To 

determine the receptor capacity (Bmax) of cerebellar membranes it was first necessary to 

calculate which amount of ligand is specifically bound to the membranes (i.e., ideally the 

receptors) per given protein concentration (abscissa in Figure 2.5.2-b) resulting in a certain 

signal. Therefore, the total signal of various amounts of radioligand has been measured (data 

not shown) to determine this amount. 
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Figure 2.5.2-b. Scatchard plot of [³H]-MPEP binding in rat cortical membranes. The binding 
site has a capacity of 0.82 pmol/mg protein with high affinity of the ligand (Kd-value: 
12.9nM). Results represent mean values (and SEM) of three independent experiments 
performed in quadruplicate. 

 

2.5.3 Conclusions 

Both radioligands, [³H]-EMQMCM and [³H]-MPEP, showed properties that exhibit similar 

binding behaviors at their corresponding binding pockets. They bind with high affinity to their 

saturable binding sites (mGluR1 vs. mGluR5; Kd: 13.1nM vs. 12.9nM), which have similar 

binding capacities (Bmax: 0.59 vs. 0.82 pmol/mg protein). Regarding the scatchard plots, there 

seems to be only one site in the HD of each receptor to which the radioligand binds. 
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The ratio between total binding and specific binding significantly differs between the 

mGluR1 and mGluR5 scatchard experiments (Figures 2.5.1-a and 2.5.2-a). Regarding 

mGluR1 we observed a relatively good ratio for all [³H]-EMQMCM concentrations (Figure 

2.5.1-a) ranging between 49% and close to 100% for specific binding. Contrary to these 

results, the ratio between total and specific bound ligand for [³H]-MPEP concentrations was 

worse where specific bound ligand ranged between 25% and 70% of total binding (i.e., 30% – 

75% background). The reason for poor specific binding of the radioligand to the allosteric 

mGluR5 receptor site is probably the fast dissociation rate of MPEP-like ligands from the 

mGluR5 binding pocket, which occurs even at low temperature and is shown in the following 

chapter.  

 

2.6 Kinetic Experiments 

The kinetics of ligand (agonistic or antagonistic) actions observed in vitro can yield 

valuable information about ligand-receptor interactions [Kenakin, 1987]. Kinetic experiments 

allow for determining the actual association and dissociation constant for a given ligand. 

In contrast to the mGluR1 binding assay, the mGluR5 binding experiments revealed 

considerably higher background levels (~5% vs. >15% background from total bound). Several 

assay settings were changed until it became apparent that the assay had to be performed under 

optimized cooled conditions in order to minimize background bias to an acceptable level 

(Section 2.3). Hence, the conclusion drawn was that the unfavorable signal-to-background 

ratio was caused by the temperature (i.e., the fast dissociation kinetics from specific sites). 

Within this section the binding kinetic for [³H]-M-MPEP, an analogue of [³H]-MPEP, was 

investigated. It was hypothesized that association and dissociation kinetics of the radioligand 

were fast, even at a cold temperature close to the freezing point of water. Especially a rapid 

offset kinetic where the bound radioligand becomes rapidly displaced by another potent cold 

ligand could lead to the assumption that the radiotracer binds relatively weak to the binding 

site though it shows high equilibrium affinity towards the receptor. This in turn may give a 

hint that even the duration of the rinse step could have a large impact on the signal-to-

background ratio since even the buffer could probably wash out the bound radioligand to a 

certain degree. 
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2.6.1 On-set and Off-set Studies on Cortical Membranes 

Association and dissociation kinetic experiments were carried out according to the 

corresponding protocols given in the experimental part (Section 3.1.9 and 3.1.10). Two 

different concentrations of radiotracer were used in order to determine which amount of radio 

labeled ligand leads to sufficiently high signals.  
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Figure 2.6.1-a. Association time course curve for [³H]-M-MPEP binding to rat cortical 
membranes. Association kinetcs were measured at different incubation times and at room 
temperature. The experiment was performed in quadruplicate. Error bars represent SEM. 

 

Although the total binding values corresponding to the higher radioligand concentration 

(1nM) are roughly twice as high as those of the lower concentration, they cover an absolute 

range which is only slightly increased in relation to the values of 0.5nM [³H]-M-MPEP (~300 

CPM vs. ~200 CPM). Samples with higher radioligand concentration would considerably 

deviate from a fitted curve. For 1nM ligand concentration, around 70% of the maximal 

binding was achieved within one minute. This fast onset kinetic indicates a potent ligand. 
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In fact, the time course curve clearly demonstrates that association of [³H]-M-MPEP to 

membranes was extremely fast since maximal binding was reached within ten minutes of 

incubation, irrespective of the radioligand concentration. 

 

Also dissociation of [³H]-M-MPEP showed fast kinetics at room temperature (Figure 2.6.1-

b). The reaction seems to be finished after one minute of interaction between the proteins and 

the cold displacer, i.e., the radioligand that was bound to the membrane was displaced by an 

excessively high amount of unlabeled ligand within a few seconds.  
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Figure 2.6.1-b. Dissociation time course curve for [³H]-M-MPEP binding to rat cerebellar 
membranes. Dissociation kinetics were measured after different incubation times of cold 
displacer (M-MPEP, 10µM) and at room temperature. Experiment was performed in 
quadruplicate. Error bars represent SEM. 

 

It must be stressed that the dissociation experiment was also carried out at room 

temperature. The kinetics will be slower under cooled conditions. There were two reasons for 

performing kinetic experiments at room temperature: (i) To directly compare on-set and off-

set experiments both have to be performed under the same conditions and (ii) conduction at 
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cooled temperatures would have led to extensive technical problems for which we could find 

no solution with our laboratory conditions – one would need a cool room. 

 

2.6.2 Conclusions 

The observation that the mGluR5 radiotracer [³H]-M-MPEP follows a fast association and 

dissociation kinetic at room temperature has considerable impact on cold displacement in 

mGluR5 binding assays: Assuming that MPEP and its structural analogue M-MPEP behave in 

the same manner at their binding site, one may conclude that the fast dissociation kinetics are 

the reason for the failure of attempted cold displacement experiments when conducted at 

room temperature. If the radioligand is indeed only loosely bound to the membrane (at least at 

room temperature) then it might perhaps be easy to remove it from the receptor binding site 

during the rinse steps. This in turn can account for the poor signal to background ratio. To 

overcome this problem, the mGluR5 binding assay for compound screening must be 

performed under cooled conditions to obtain an acceptable signal-to-background ratio (15%).  
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3 Methods 

3.1 Experimental Details 

Note: Some of the following experimental procedures and methods (indicated by an asterisk 

in the headline) were not performed by the author of the thesis. They have been included for 

completeness of the scientific results. 

 

3.1.1 Preparation of Solutions  

Each compound was delivered as powder and was dissolved in pure DMSO and shaken for 

two hours on a shaker “RM5 Assistant” [Karl Hecht GmbH] to give a 10 mM stock-solution. 

Insoluble compounds were assumed to be inactive. The final concentration of DMSO in the 

assay was 5% (binding) and 0.5% (functional), respectively. The influence of DMSO on the 

membranes and cells was evaluated previously and turned out to be negligibly low at the 

concentrations used. Full concentration-response curves were performed using seven different 

concentrations (binding) or five different concentrations (functional), respectively with a log 3 

concentration progression. For these curves, serial dilutions of the stock solutions were made 

in pure DMSO before dilution in buffer to obtain the desired final concentration. This assured 

that, even for poorly soluble compounds, at least the lower concentrations tested really 

contained the required concentration of compound. 

 

3.1.2 Membrane Preparation 

Male Sprague Dawly Rats (approx. 200-250g) were anaesthetized and decapitated. 

Cerebelli (forebrains for cortex preparation) were removed and homogenized (Ultra Turrax, 8 

strokes, 600 rpm) in 0.32M Sucrose. The suspension was centrifuged at 1,500g for 4 min. 

using a Sorvall Discovery 90 SE ultracentrifuge [Kendro Laboratory Products]. Supernatant 

was removed and centrifuged at 20,800g for 20 min. The resulting pellet was resuspended in 

ice-cold distilled water and centrifuged at 7,600g for another 20 min. Supernatant and loosely 

associated flocculent membrane material (buffy coat) were removed by gentle trituration of 

the pellet and centrifuged at 75,000g for 20 min. Supernatant was discarded and the 

membrane pellet was resuspended by sonication in Tris-Buffer (5mM, pH 7.4) and afterwards 

centrifuged at 75,000g for 20 min. The last step was repeated twice and membranes were 

resuspended in Tris-Buffer (50mM, pH 7.5). 
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The concentration of protein was determined by the Lowry protein assay with bovine serum 

albumin as a standard [Lowry et al., 1951]. Membranes were stored frozen at –24°C, thawed 

on the day of the assay and washed once again at 75,000g for 20 min. All centrifugation steps 

were carried out at 4°C. 

 

3.1.3 [³H]-EMQMCM Binding Assay 

Binding assays were performed at room temperature in quadruplicate in a 96-well format 

using fixed concentrations of test compound (10µM). On a MS2 mini-shaker [IKA Werke 

GmbH] rotating with ~600 rpm the assay was incubated for 1h in the presence of 1nM [3H]-

EMQMCM (23.9 Ci/mmol) and membranes (0.8 mg/ml) and non-specific binding was 

estimated using 30µM (3-Ethyl-2-methyl-quinolin-6-yl)-(4-hydroxy-cyclohexyl)-methanone 

[Asinex Ltd.]. Directly after transferring the reaction volume onto a 96-well multiscreen plate 

with glass fiber filter 0.22µm [Millipore GmbH] binding was terminated by rapid filtration 

using a multiscreen vacuum manifold [Millipore GmbH]. Afterwards, filters were washed 

three times with ice-cold assay-buffer and Ultima-GoldTM MV Scintillation Cocktail [Perkin 

Elmer Life Sciences] was added. After 14h – 16h, radioactivity was counted in a 

MicroBeta®Trilux [Perkin Elmer Life Sciences]. 

 

3.1.4 [³H]-MPEP-Binding Assay 

Binding assays were performed under cooled conditions (4°C) in quadruplicate in a 96-well 

format using fixed concentrations of test compound (10µM). On a MS2 mini-shaker [IKA 

Werke GmbH] rotating with ~600 rpm the assay was incubated for 1h in the presence of 5nM 

[3H]-MPEP (50.2 Ci/mmol, Tocris) and membranes (0.8 mg/ml) and non-specific binding was 

estimated using 10µM MPEP. Directly after transferring the reaction volume onto a 96-well 

multiscreen plate with glass fiber filter 0.22µm [Millipore GmbH] binding was terminated by 

rapid filtration using a multiscreen vacuum manifold [Millipore GmbH]. Afterwards, filters 

were washed three times with ice-cold assay-buffer and Ultima-GoldTM MV Scintillation 

Cocktail [Perkin Elmer Life Sciences] was added. After 14h – 16h radioactivity was counted 

in a MicroBeta®Trilux [Perkin Elmer Life Sciences].  
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3.1.5 Preparation of Cerebellar Granule-cells* 

Cerebellar cortici were obtained from P8 postnatal Sprague Dawley rats, mechanically 

disrupted into small pieces with forceps and then transferred to Ca2+- and Mg2+-free Hank's 

buffered salt solution (HBSS-CMF) on ice. After three washes in HBSS-CMF, the tissue 

pieces were incubated at 37°C for 8 minutes in the presence of 0.25% trypsin / 0.05% DNase. 

The enzymatic reaction was stopped with 0.016% DNase / 0.1% ovomucoid before 

centrifugation at 800 rpm for 5 minutes. The supernatant was replaced twice with 

NaHCO3/HEPES-buffered basal Eagle medium (BEM) plus 20mM KCl. Cells were 

mechanically dissociated in 2 ml of BEM by trituration through three Pasteur pipettes of 

successively decreasing tip diameter and then filtered through a 48 µm gauge filter. Cells 

were plated at a density of 150,000 cells in 50 µl in each well of poly-L-Lysin pre-coated 96-

well plates [BD Biosciences]. The cells were nourished with BEM supplemented with 10% 

fetal calf serum, 2 mM glutamine [Biochrom AG], 20 mM KCl and gentamycin [Biochrom 

AG] and incubated at 36°C with 5% CO2 at 95% humidity. After 24 hours cytosine-ß-D-

arabinofuranoside (AraC, 10µM) was added to the medium. 

 

3.1.6 IP3-Assay with [³H]-myo-Inositol* 

After 6 DIV the culture medium was replaced completely with inositol free DMEM [MP 

Biomedicals] containing [³H]-myo-inositol [Perkin Elmer Life Sciences] at a final 

concentration of 0.5 µCi / 100 µl / well and incubated for a further 48 hours. The culture 

medium in each well was replaced with 100 µL Locke´s buffer (plus 20 mM LiCl, pH 7.4) 

and incubated for 15 min at 37°C. Locke´s buffer was replaced with agonists / antagonists / 

putative mGluR1 ligands in Locke´s buffer and incubated for 45 min. These solutions were 

then replaced with 100 µL 0.1 M HCl in each well and incubated for a further 10 mins on ice 

in order to lyse the cells. The 96-well plates can be frozen at -20°C at this stage until further 

analysis. 

Home made resin exchange columns were prepared as follows. Empty Bio-Spin 

Chromatography columns [Biorad Laboratories] were plugged with filter paper before filling 

with 1.1-1.3 ml of resin (AG1-X8 Biorad, 140-14444) suspended in 0.1M formic acid (24 g 

resin per 50 ml acid). The formic acid was allowed to run out before sealing the syringe tips 

and filling with 200-300 µL of 0.1M formic acid before storage at 4°C. 

On the day of assay, columns were washed with 1 ml of 0.1M formic acid followed by 1 ml 

of distilled water. Then the contents of each assay well were added to one column and washed 
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with 1 ml distilled water followed by 1 ml of 5mM Sodium tetra borate / 60mM sodium 

formate. Thereafter, the retained radioactive inositol phosphates were eluted with 2 x 1ml of 

1M ammonium formate / 0.1M formic acid into 24-well visiplates. Scintillation liquid (1.2 ml 

UltimaFlow AF [Perkin Elmer Life Sciences] was added to each well, the plate sealed and 

vortexed before radioactivity was determined by conventional liquid scintillation counting 

(MicroBeta®Trilux) [Perkin Elmer Life Sciences]. Unless otherwise stated, all reagents were 

obtained from Sigma-Aldrich [Sigma-Aldrich Chemie GmbH]. 

 

3.1.7 Preparation of and Cultivation of Rat Cortical Astrocytes* 

Astrocytes were prepared mechanically from cortices of newborn Sprague Dawley rats as 

described earlier [Booher & Sensenbrenner, 1972]. The tissue was disintegrated with a nylon 

filter (20x20 cm; pore size 80 µm) and carefully triturated. The cell suspension was seeded in 

a T 225 flask and cultivated in DMEM containing 10% fetal calf serum, 2mM glutamine and 

50 µg/ml gentamycin at 37°C in 5% CO2 and 95% humidity for 7 days with a medium change 

at day 2. After 7 days in culture, cells were shaken overnight [Miller et al., 1993] to remove 

oligodendrocytes. The next day astrocytes were washed, trypsinized and seeded into 96-well 

plates coated with Poly-L-Lysin at a density of 40.000 cells / well. One day after trypsination, 

the medium was switched to serum free chemical defined DMEM (ADM) containing 1x G5-

supplement, 50 µg/ml heparan sulfate, and 1.5 µg/ml fibronectin. 

 

3.1.8 Calcium FLIPR Studies* 

Cultured astrocytes expressed mGluR5 receptors as shown by immunostaining. The 

increase of intracellular calcium after stimulation with the mGluR5 agonist DHPG or L-

quisqualate was measured using the fluorometric imaging plate reader (FLIPR) and the Ca-

Kit. Prior to addition of agonist or antagonist the medium was aspirated and cells were loaded 

for 2 h at RT with 150 µL of loading buffer consisting of a calcium-sensitive dye 

reconstituted in NaCl (123mM), KCl (5.4mM), MgCl2 (0.8 mM), CaCl2 (1.8mM), D-glucose 

(15mM), and HEPES (20mM), pH 7.3. Subsequently, plates were transferred to FLIPR to 

detect calcium increase with the addition of DHPG (300µM) or L-quisqualate (100nM) 

measured as relative fluorescence units (RFU). If antagonists were tested, these compounds 

were pre-incubated for 10 min at room temperature before addition of the respective agonist. 

The fluorescence signal increase after addition of agonist reflects the increase of intracellular 

calcium. Inconsistencies in the amount of cells per well were normalized by using the spatial 
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uniformity correction of the FLIPR software. The mean of replicated temporal data (n=5) was 

calculated and used for graphical representation. For the evaluation of the pharmacology, the 

calcium changes in response to different concentrations of agonist or antagonist were 

determined using a maximum minus minimum (MaxMin) or an area under the curve (AUC) 

calculation. All responses (CPM- or RFU-values) were determined as percentage of control (= 

maximum response at 50 nM CBC). 

 

3.1.9 Association Kinetic Studies 

Solutions containing assay-buffer (Tris-HCl 50mM, pH 7.5), radioligand ([³H]-M-MPEP 

0.5nM and 1nM) and cold displacer (M-MPEP 10µM) for negative control values were 

prepared on a regular 96-well plate and transferred to a 96-well multiscreen plate with 

moistened glass fiber filter 0.22µm [Millipore GmbH]. Incubation was started by the non-

synchronous addition of a suspension containing rat cortical membranes (0.24 mg/ml) for 

incubations lasting 1, 2, 3, 4, 5, 7, 10, 15, 20 and 30 min., respectively, at room temperature. 

Then incubation was terminated by synchronous, rapid filtration using a multiscreen vacuum 

manifold [Millipore GmbH]. Afterwards, filters were washed three times with ice-cold assay-

buffer and Ultima-GoldTM MV Scintillation Cocktail [Perkin Elmer Life Sciences] was added. 

After 14h – 16h radioactivity was counted in a MicroBeta®Trilux [Perkin Elmer Life 

Sciences]. 

 

3.1.10 Dissociation Kinetic Studies 

Suspensions of rat cortical membranes were incubated on a regular 96-well plate for one 

hour in the presence of assay-buffer (Tris-HCl 50mM, pH 7.5) and different radioligand 

concentrations ([³H]-M-MPEP 0.5nM and 1nM). After addition of cold displacer (M-MPEP 

10µM) reaction volumes were incubated for 1, 2, 3, 4, 5, 7, 10, 15, 20 and 30 min., 

respectively. Reaction was stopped by transferring solutions to a 96-well multiscreen plate 

with moistened glass fiber filter 0.22µm [Millipore GmbH] and rapidly removing the 

solutions using a multiscreen vacuum manifold [Millipore GmbH]. Afterwards, filters were 

washed three times with ice-cold assay-buffer and Ultima-GoldTM MV Scintillation Cocktail 

[Perkin Elmer Life Sciences] was added. After 14h – 16h radioactivity was counted in a 

MicroBeta®Trilux [Perkin Elmer Life Sciences]. 
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3.1.11 Estimation of IC50-values  

To estimate the IC50-value of each compound without assaying the compound solution in a 

full dose-response-curve the result of the assay for each compound (% of Control) had to be 

inserted into a two-parameter equation. 
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where s is the slope factor (= 1), x is the final concentration of the compound to be tested 

(µM) in the assay and y denotes the result of the experiment for the compound to be tested (% 

of Control). This applies for both, functional and binding assays. If s is assumed to be 1 

Equation 3.1.11-a can be reformulated as follows: 
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Full concentration response curves (7-10 concentrations, depending on assay conditions) 

have been conducted for SAR studies to determine precise activity or affinity values whereas 

calculations based upon two-concentration CRCs (1µM and 10µM) were carried out for 

regular screens. 

 

 
Figure 3.1.11-a. Full concentration response curve of a test ligand in a radioactive binding 
assay.  
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Results of binding experiment are normally given as Ki, a value that depends on the 

radioligand´s properties. Ki-values were calculated from the IC50-values by the Cheng-

Prussoff Equation [Cheng & Prussoff, 1973]: 
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where L corresponds to the radioligand concentration and Kd to its dissociation constant in a 

particular assay. 

 

3.1.12 Muscarinic Acetylcholine Receptor Assay* 

The increase of intracellular calcium after stimulation with carbachol was measured using 

the fluorometric imaging plate reader (FLIPR) and the Ca-Kit [both Molecular Devices]. Cells 

were seeded in black 96 well plates with clear bottom [CoStar] at a density of 60,000 

cells/well and incubated in Ham’s F12 medium for one night. Prior to addition of agonist or 

antagonist the medium was aspirated and cells were loaded for 1h at 37°C with 150 µL of 

loading buffer consisting of Ca-sensitive dye [Molecular Devices] reconstituted in HBSS, 

MgCl2 (0.8 mM), CaCl2 (1.8 mM), probenecid (2.5 mM), and HEPES (20 mM), pH 7.3. 

Subsequently, plates were transferred to FLIPR to detect calcium increase with the addition of 

CBC (50 nM final concentration) measured as relative fluorescence units (RFU). If antagonists 

were tested, these compounds were pre-incubated for 20 min at RT before addition of CBC. 

The fluorescence signal increase after addition of agonist reflects the increase of 

intracellular calcium. Inconsistencies in the amount of cells per well were normalised by 

using the spatial uniformity correction of the FLIPR software. The mean of replicated 

temporal data (n=5) was calculated and used for graphical representation. For the evaluation 

of the pharmacology, the calcium changes in response to different concentrations of agonist or 

antagonist were determined using a maximum minus minimum (MaxMin) or an area under 

the curve (AUC) calculation. All responses (CPM- or RFU-values) were determined as 

percentage of control (= maximum response at 50 nM CBC). 
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3.1.13 Dopamine D2short- and D3-Receptor Binding Assay* 

Membrane preparations of CHO-cells stably expressing human D2short- and D3-receptors 

were used for displacement studies [Hayes et al., 1992; Sokoloff et al., 1992]. [³H]-Spiperone 

(0.2 nM) served as a radioligand and non-specific binding was determined in the presence of 

BP 897 (10 µM). Stock solutions (10 mM) of test compounds were prepared with pure 

DMSO. They were diluted to give final concentration ranges either from 1 µM to 1 mM or 

from 10 nM to 10 µM, depending on the test compound’s affinity. The assay was incubated 

for 2 h at RT and terminated by rapid filtration through PerkinElmer GF/B glass fibre filters 

[Perkin Elmer Life Sciences] coated with 0.3% polyethylenimine [Sigma-Aldrich Chemie 

GmbH] using an Inotech cell harvester (Inotech AG, Dottikon, Switzerland). Radioactivity 

was counted using a PerkinElmer MicroBeta®Trilux scintillation counter [Perkin Elmer Life 

Sciences]. For all compounds two independent experiments were performed in triplicates. 

Competition binding data were analyzed by GraphPad Prism 3.02 [GraphPad Software, Inc.], 

using non-linear least squares fit. Ki values were calculated from the IC50 values according to 

Cheng-Prussoff (Equation 3.1.11-c). 

 

3.1.14 Histamine H1-Receptor Binding Assay* 

Membrane preparations of CHO-cells stably expressing human H1-receptors were used for 

displacement studies [Smit et al., 1996]. [Pyridinyl-5-³H]-pyrilamine (1 nM) served as a 

radioligand and non-specific binding was determined in the presence of chlorphenamine 

hydrogenmaleate (10 µM). Stock solutions (10 mM) of test compounds were prepared with 

pure DMSO. They were diluted to give final concentration ranges from 1 µM to 1 mM. The 

assay was incubated for 2 h at RT and terminated by rapid filtration through PerkinElmer 

GF/B glass fiber filters [Perkin Elmer Life Sciences] coated with 0.3% polyethylenimine 

using an Inotech cell harvester. Radioactivity was counted using a PerkinElmer 

MicroBeta®Trilux scintillation counter [Perkin Elmer Life Sciences]. For all compounds two 

independent experiments were performed in triplicates. Competition binding data were 

analyzed by GraphPad Prism 3.02 [GraphPad Software, Inc.], using non-linear least squares 

fit. Ki values were calculated from the IC50 values according to Cheng-Prusoff (Equation 

3.1.11-c). 



Methods 63 

3.2 Computational Methods 

3.2.1 CATS 2D Similarity Search 

CATS (Chemically Advanced Template Search) enables a topological pharmacophore 

search applicable for virtual screening procedures. The CATS descriptor denotes a topological 

atom-pair descriptor and has been reported earlier [Schneider et al., 1999]. Since it is based 

on the two-dimensional structure of a molecule it circumvents problems derived from 

conformational flexibility. Topological information of a molecule is encoded with the CATS 

descriptor by the following procedure: Assigning each atom (i.e., a node of the molecular 

graph) to one of the following generalized atom types: hydrogen-bond donor (D), hydrogen-

bond acceptor (A), positively charged (P), negatively charged (N) or lipophilic (L) (Figure 

3.2.1-a). Atoms which do not belong to one of the five mentioned potential pharmacophore 

point groups are not taken into account. Atom pairs denote the shortest distance connecting 

two nodes. The frequency of all 15 possible atom pairs of CATS types (DD, DA, etc.) is 

determined and the resulting histogram is divided by the number of non-hydrogen atoms in 

the molecule to get a scaled vector [Fechner et al., 2003].  
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Figure 3.2.1-a. Schematic conversion of a two-dimensional molecular representation into a 
molecular graph with assigned generalized atom types. 

 

The CATS-similarity is defined by the degree as to which the topological pharmacophore 

descriptors of  two molecules A and B match and is expressed by the euclidian distance 

measure D (A,B) (Equation 3.2.1-a): 
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where vA and vB denote the correlation-vectors derived from molecules A and B. 
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To obtain a final ranked list the compounds were sorted by increasing order according to 

the CATS-dissimilarity - that is the distance given as Tanimoto coefficient - of the test 

compound towards the reference compound within the individual lists that resulted from the 

similarity searches.  

 

3.2.2 Self-Organizing Maps 

For the studies presented within this thesis two-dimensional Kohonen-maps with a toroidal 

topology were used and visualized as squares consisting of either 100 or 225 neurons. 

The SOM training process is comparable to vector quantization, where the network weight 

vectors move towards the centers of data distribution [Nasrabadi & King, 1988]. During the 

SOM training input patterns χ (here: descriptor vectors) are compared to all neurons w of the 

output layer (“fan-out” units). The neuron vector displaying the highest similarity to a 

particular input vector gets activated (“winner neuron”) while the other neurons remain 

inactive. For SOM training the Kohonen-algorithm was applied: 

 

1. Initialize a map M to contain N=N1*N2 neurons ci with the reference vectors 

wci ∈Rn randomly chosen according to p(χ) from the input patterns. Initialize 

the connections to form a rectangular N1*N2 grid and the time parameter t = 0. 

2. Generate randomly an input signal χ according to p(χ). 

3. Determine the “winner neuron” according to the vector distance between the 

training patterns χ and the neurons w. 

4. Adapt each neuron r to p(χ) according to 

 

)()( rrsr whtw −=∆ χε .      (Eq. 3.2.2-a) 

The Gaussian neighborhood function around the winner neuron s is 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 2

2
1

)(2
),(

exp
t

srd
hrs σ

.      (Eq. 3.2.2-b) 

 

where the Hamming distance d1 defines the distance between two neurons and 

σ is the standard deviation. The time dependent standard deviation can be 

calculated by: 

 



Methods 65 

max

)(
t

t

initial

final
initialt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

σ
σ

σ ,      (Eq. 3.2.2-c) 

 

and the time dependent learning rate by: 
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5. Increase time parameter t = t +1. 

6. If t<tmax continue with 2., otherwise abort. 

 

The training of SOMs was computed with som_create using 10x10 (100) and 15x15 (225) 

neurons, tmax = 60,000, σinitial = 1 and εinitial = 6. Visualization was performed with som-show 

(software by Schneider, unpublished). 

 

3.2.3 Principal Component Analysis 

For definitions of the matrices used for ChemSpaceShuttle (CSS) the reader is referred to 

the original literature [Givehchi et al., 2003]. Data projections for this particular study have 

been done by the NIPALS algorithm and encoder networks, implemented in CSS. The input 

vectors were projected to the space covered by the first three eigenvectors calculated with the 

NIPALS algorithm: 

 

1. Normalize the data set (unit variance scaling and mean entering). 

2. Set the array of the of the score matrix is  to the first column 
→

1x  of the input 

vector matrix X  (each row of this matrix denotes a different compound and 

each column a different matrix). 

3.  Calculate: 
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l 3 ,       (Eq. 3.2.3-a) 
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 where T means transpose. 

4.  Normalize the vector 
→

il  to the length 1: 

   

→

→
→

=

i

i
i

l

l
l .       (Eq. 3.2.3-b) 

 

5.  Calculate: 

 

2
5

→

→
→

⋅=

i

istep
i

l

l
Xs .      (Eq. 3.2.3-c) 

 

6.  Compare 
→

5step
is  from step 5 to 

→
3step

is  from step 3 ; if the sum of squared 

residual is smaller than 10-10 then go to step 7, else go to step 3 and calculate 
→

il  

again. 

7.  Calculate the residual R : R  = X - 
→→
T
ii ls  and set X  = R . If i = p or R<10-10 

then stop the calculation, else go to step 3. 

 

After i loops the composition of the X-matrix will be obtained, i.e., X  = Tls 11  + Tls 22  + …. 

+ T
iils . 

 

Data projection performed by encoder networks can be divided into two procedures. In the 

first step the input vectors are supplied to the input and output layer (Figure 3.2.3-a). The 

input data can reasonably be described by the values of the neurons forming the parameter 

(i.e., hidden) layer only if the network weights are optimized. Therefore, CSS applies a (1,λ) 

evolution strategy representing an adaptive stochastic search method [Bäck & Schwefel, 

1993; Schneider & Wrede, 1998]. Here, Kruskal´s STRESS serves as a goodness-of-fit 

measure [Kruskal, 1964]:  

 



Methods 67 

∑∑

∑∑ −
=

i j

o
ij

i j

o
ij

t
ij

d

dd
S 2

2)(
,      (Eq. 3.2.3-d) 

 

where dt
ij denotes the Euclidean distance between the 3D-vectors i and j, and do

ij is the 

Euclidean distance between the original descriptor vectors i and j.  

Input vectorsInput vectors

 
Figure 3.2.3-a. Architecture of an encoder network in the training mode implemented in CSS. 
Decriptor (input) vectors supply both, the input and output layers (empty circles) with original 
data. 

 

Once a previously defined STRESS value is reached, the training mode is completed. Now 

the optimized net enables the transformation of the high-dimensional to low-dimensional data 

(Figure 3.2.3-b) from the input layer to the parameter layer leaving out the output layer. The 

three neurons of the parameter layer represent the final vectors in the 3D-plot.  
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Figure 3.2.3-b. Architecture of an encoder network in the projection mode implemented in 
CSS. The output values of the three central neurons (grey circles) can be visualized by 
representing a 3D-plot. 

 

3.2.4 Comparative Molecular Field Analysis 

The CoMFA method has been detailed nearly two decades ago [Cramer et al., 1988]. A set 

of chemically similar molecules (optimal number of structures: 20-50) has to be flexibly 

aligned in a proper way according to structural pharmacophore features (e.g., H-bond 

donor/acceptor, etc.). These molecules should bear a consistent core structure differing only in 

type and position of substituents. Setting up a reasonable alignment is a pivotal step since the 

predictive capability of a CoMFA model strongly depends on the alignment. 

In the next step the aligned structures have to be embedded into a three-dimensional 

rectangular grid with sufficient space to encompass all molecules. Each lattice point 

represents a positively charged carbon atom with sp³ properties, which measures the steric 

interaction energy (Lennard-Jones potential) and the electrostatic energy (Coulomb potential) 

for all atoms of each molecule. To minimize domination by large steric and electrostatic 

energies, all energies that exceed a previously defined threshold value are set to this cutoff 

value. These energy calculations produce an extraordinary large amount of data resulting in 

by far more columns than rows. To extract a stable QSAR from such an unproportioned data 

table the partial least-squares (PLS) method was employed [Wold, 1966; Lindberg et al., 

1983]. The columns are not auto scaled since the units of all columns are the same (kcal/mol). 

Cross-validation evaluates a model by how well it predicts data points, not used for the 
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calculation. Noteworthy, activities of molecules that extend into regions not covered by the 

training set cannot be predicted, which pertains to all QSAR methods. 

CoMFA models have been established using the QSAR tool implemented in the Sybyl 7.1 

software package [Tripos Inc.]: 

Initially, the EMQMCM-data collection (Section 3.2.6) was loaded in Sybyl 7.1 as sd-file. 

Activity data have been added by means of pIC50-values. 3D structures of ligands were 

generated using CONCORD. The structure energy minimization was performed for CoMFA 

using the Tripos molecular force field [Clark et al., 1989] and Gasteiger-Hückel charges. 

Steric and electrostatic interactions were calculated with same force field using a distance 

dependent dielectric constant at all intersections in an evenly spaced 2.0Ǻ grid. The cutoff 

was set to 30 kcal/mol. To create an initial model, the dataset was divided into a training and a 

test set as follows: all molecules were sorted in ascending order with respect to their internal 

ID. The first nine entries constituted the test set and the remaining 30 entries the training set. 

Regression analysis was performed using the full cross-validated PLS method (leave one out). 

Based on the training set the final model was calculated using the optimum number of 

components to that yielding the highest q² (cross-validated). Optimum number does not 

necessarily mean the number of components yielding the highest q²(cv): According to the 

“parsimony-principle” an increase of q²(cv) values of less than 5% for the use of an additional 

component was used as a stop criterion [Thibaut et al., 1993]. For improved statistical 

significance of the results ten new models were established by randomly dividing the total 

dataset into two subsets of nearly equivalent size (20 molecules training set, 19 molecules test 

set). 

Several parameters reflect the quality of a given model and indicate how well it fits existing 

data. PRESS and q² have been proposed for cross-validation to give good estimates of the real 

prediction of a model : 
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where N is the number of objects and y denotes the target parameter in the activity data. Based 

upon this equation q² can be calculated as follows:  
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To validate the derived CoMFA models, activity data of the external test sets were 

predicted using the models derived from the training set. The predictive abilities of the 

training sets were expressed by q²(cv) whereas the predictive ability of the test sets were 

expressed by the analogous r²pred using the formula 

 

SD
PRESSSDrpred

−
=2 ,    (Equation 3.2.4-c) 

 

where SD denotes the sum of squared deviations between the activity of the test set 

compounds and the mean activity of the training set compounds, and PRESS is the sum of 

squared deviations between the observed and the predicted activity of the test set molecules.  

 

All-placement search (APS) and all-orientation search (AOS) describe techniques which 

optimize the field sampling routine in the CoMFA approach [Wang et al., 1998]. They allow 

for assessing the statistical relevance of a given model. Since steric and electrostatic 

interactions are distance dependent there exists a strong influence of the relative orientation of 

the alignment against the probe grid [Böhm et al., 1999]. Starting from an arbitrary 

orientation APS and AOS provide a way to stepwise translate the molecular aggregate within 

the lattice and to detect a specific orientation leading to the highest q² and consequently the 

most valid CoMFA model.  

The corresponding spl-scripts and shell scripts obtained from the authors were implemented 

in Sybyl 7.1. For APS the whole grid was systematically translated in 0.1Ǻ-steps against the 

molecular aggregate. This process was performed in all three dimensions of the coordinate 

system and finished after 2.0Ǻ since in this case the grid had overlapped the original one. 

Therefore, 20x20x20=8000 placements were obtained. In contrast, AOS allowed for rotating 

the molecular aggregate in the grid around the x-, y- and z-axis. The stepwise rotation was 

divided into increments of 20° resulting in 18x18x18=5832 orientations. 

 

3.2.5 Homology Modeling 

Note: The homology model of the transmembrane region of the mGlu1 receptor presented 

in this thesis has not been built by the author. It was solely developed by Steffen Renner, a 

former postdoctoral student at Merz. 
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The mGluR1 receptor was modeled based on the template of bovine rhodopsin (PDB code 

1l9h). An alignment of the transmembrane region of the rat mGluR1 sequence to the 

transmembrane region of bovine rhodopsin was adapted from previously published mutational 

studies on mGluR1 and other related class C GPCRs: 

Based on the effect of mutations in the transmembrane region on binding of the mGluR1 

negative allosteric modulator EM-TBPC an alignment for mGluR1 to bovine rhodopsin was 

proposed [Malherbe et al., 2003a]. Alignments for transmembrane helices for which 

mutations affected the binding of EM-TBPC (3, 5, 6, and 7) were adopted directly. These 

alignments were consistent with mutational data for mGluR5 for the binding of M-MPEP 

[Pagano et al., 2000] and MPEP [Malherbe et al., 2003b]. The only reported mutation in a 

family 3 GPCR for transmembrane helix 2 (TM2), that was found to influence the binding of 

an allosteric modulator, was found in the calcium sensing receptor [Miedlich et al., 2004]. 

Thus, the alignment of TM2 was overtaken from this study and converted into the mGluR1 

sequence. The alignment of TM1 was used from Malherbe et al. [Malherbe et al., 2003a]. For 

TM4 a more reasonable alignment was found for the model of the calcium sensing receptor 

[Miedlich et al., 2004], where two neighboring prolines at the C-terminal end of TM4 were 

aligned with two prolines in the C-terminus of the rhodopsin TM4. Since these two prolines 

were conserved in mGluR1 and in other family 3 GPCRs this alignment was used. The final 

alignment is given in the following Figure. 

 

 

TM1 
>bopsd       38 SMLAAYMFLLIMLGFPINFLTLYVTVQ 
>rmGluR1    590 DIESIIAIAFSCLGILVTLFVTLIFVL 
Consensus/80%   sbbthbhbhb.hLGb.lsbbshblhVb 
 

TM2 
>bopsd       71 PLNYILLNLAVADLFMVFGGFTTTLY 
>rmGluR1    625 SSSRELCYIILAGIFLGYVCPFTLIA 
Consensus/80%   s.sbbLh.lhlAslFbsass.hThlh 
 

TM3 
>bopsd      108 TGCNLEGFFATLGGEIALWSLVVLAIERYVVVC 
>rmGluR1    655 TSCYLQRLLVGLSSAMCYSALVTKTNRIARILA 
Consensus/80%   TtC.Lp.bbssLtt.bsb.tLVsbs.cbh.lls 
 

TM4 
>bopsd      150 ENHAIMGVAFTWVMALACAAPPLV 
>rmGluR1    709 IASILISVQLTLVVTLIIMEPPMP 
Consensus/80%   bsphlbtV.bTbVhsLhhh.PPbs 
 

EL2 
>bopsd      178 YIPE    185 CSCG 
>rmGluR1    736 YPSI    744 LICN 
Consensus/80%   Y.sb......h.Cs 
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TM5 
>bopsd      205 IYMFVVHFIIPLIVIFFCYGQLVFTV 
>rmGluR1    750 NLGVVAPVGYNGLLIMSCTYYAFKTR 
Consensus/80%   .bhhVs.hhbshllIb.ChhbhhbT. 
 

TM6 
>bopsd      249 EVTRMVIIMVIAFLICWLPYAGVAFY 
>rmGluR1    782 NEAKYIAFTMYTTCIIWLAFVPIYFG 
Consensus/80%   p.s+blhbhhbshhIhWLsasslhFh 
 

TM7 
>bopsd      288 MTIPAFFAKTSAVYNPVIYIMMN 
>rmGluR1    811 KIITTCFAVSLSVTVALGCMFTP 
Consensus/80%   bhIsshFA.*.tVhsslhhbbhs 

 
Figure 3.2.5-a: Alignment of transmembrane helices and EL2 of rat mGluR1 to the bovine 
rhodopsin structural template. Consensus symbols other than residue letters are: - = negative, 
* = ser/thr, | = aliphatic, + = positive, t = tiny, a = aromatic, c = charged, s = small, p = polar, 
b = big, h = hydrophobic. Identical residues are highlighted in grey. Similar amino acids are 
colored according to the following scheme: red = negative, cyan = S/T, grey highlighted 
yellow = aliphatic, dark blue = positive, light green = tiny, dark blue highlighted yellow = 
aromatic, pink = charged, dark green = small, light blue = polar, light blue highlighted yellow 
= big, black highlighted yellow = hydrophobic. 

 

For the initial model of mGluR1 the HOMER server (version 1.3) [Tosatto, 2005] was used. 

HOMER was successful for the transmembrane regions, however, most of the modeled loops 

were not closed, i.e., they were only connected to a single helix instead of connecting two 

helices. Thus the torsion angles of the loop residues were refined manually to enable the 

connection of the helices. The loops were minimized with the Tripos force field (max. 500 

steps Powell with Simplex initiation) within Sybyl 7.1 [Tripos Inc.]. The extracellular loop 2 

(EL2) in direct contact with the inverse agonist in bovine rhodopsin was modeled by taking 

the backbone coordinates of the conserved disulfide bridge and neighboring residues (Figure 

3.2.5-a). In class C GPCRs the linker from the disulfide Cys in EL2 to TM5 is much shorter 

compared to bovine rhodopsin. To enable a connection between TM5 and EL2, TM5 was 

moved towards the center of the seven helices until the residues were sufficiently near to each 

other to be connected. The structure was minimized, and irresolvable side chain clashes were 

solved by using different rotamers. Ligands were placed manually into the receptor, based on 

the position of 11-cis-retinal in bovine rhodopsin, and subsequently minimized with the 

Tripos force field. Residue numberings are used according to the scheme proposed by 

Malherbe [Malherbe et al., 2003b]. 
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3.2.6 Datasets 

Four different datasets were employed for the present studies: The EMQMCM-data 

collection has been compiled based on a series of quinoline-derivatives [Mabire et al., 2005] 

and was used for the QSAR studies. Initially, it contained 49 compounds bearing the same 

core structure including precise activity data for the rmGlu1 receptor. Ten molecules have 

been removed from the dataset either lacking precise bioactivity values or being structurally 

distinct from the other molecules (that is their residues point into spatial regions not covered 

by other molecules; consequently, they would falsify the QSAR models).  

The Asinex Gold Collection provided by Asinex [Asinex Ltd.] was used in sd-format for 

virtual screening purposes. This external compound library is continuously being updated and 

we applied the versions of February 2003 (194,598 entries) and October 2003 (201,304 

entries). Apart from the 2D-chemical structures they include predicted Lipinski rule properties 

[Lipinski et al., 1997]. Both versions contain many compounds violating these rules, as it was 

exemplified for the latter version (October 2003). The database was filtered for drug-likeness 

according to the following cut-offs [Lipinski et al., 1997]: five or less H-bond donor atoms, 

10 or less H-bond acceptor atoms, MW < 500 and SlogP < 5. 156,112 structures (77.55%) 

fulfilled these criteria but 45,192 (22.45%) failed. 

The COBRA 3.12 database was solely used for developing SOMs. This collection (5,376 

molecules) was compiled from scientific literature and is a set of bioactive reference 

compounds affecting a large number of different targets like proteases, kinases, GPCRs and 

ion channels [Schneider & Schneider, 2003]. The COBRA compounds have mean values of 

MW and logP which are within the limits proposed by Lipinski`s rule of five (MW<500 and 

logP<5) [Lipinski et al., 1997]. 

The mGluR-data collection comprises 357 positive and negative allosteric modulators of 

mGluR1 and mGluR5 and was manually compiled from literature. It served as reference 

molecule dataset for all campaigns in this thesis (detailed description in Section 4.1) 
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4 Scaffold Identification 

A goal of this thesis was to improve the understanding of function and ligand binding in the 

transmembrane region (HD) of group I metabotropic glutamate receptors (mGluR) and in 

particular of subtype 1. The identification of ligands acting as allosteric modulators and 

providing novel core structures (i.e., “scaffolds”) was one of the two main rationales of this 

thesis since these ligands may facilitate further insight into the binding mode at the allosteric 

binding site (e.g., knowledge about structural requirements for (i) potent and selective binding 

and (ii) inactivation of receptor function). The precise architecture of the HD of group I 

mGluRs is still unexplored; yet some hypotheses have been published [Belenikin et al., 2003; 

Malherbe et al., 2003a/b]. Therefore, a structure-based approach for the detection of novel 

ligands remains inherently difficult so we pursued a ligand-based approach. Several methods 

of virtual screening have been employed (Section 1.5). In the following chapter we describe 

their application and evaluate their suitability for the given research objective. The whole hit 

finding procedure describes a sensible alternative to simple compound screening pursued by 

HTS. 

 

4.1 Data Consolidation 

The elucidation of novel hits for mGlu1 receptor via virtual screening requires the 

collection of ligands affecting mGluR1. More precisely, before applying several virtual 

screening methods the need of compiling a data collection of reference molecules providing 

as much structural information as possible arose. Homology models of the transmembrane 

region of the mGlu1 receptor have been reported [Belenikin et al., 2003; Malherbe et al., 

2003a] but they remain only hypotheses as long as the crystal structure is not known. Thus, 

we pursued the ligand-based approach. Such approaches aiming at detecting novel ligands for 

a given target regarding the chemical core structure need at least one known bioactive 

molecule as a starting point. This requirement was fulfilled for both, mGluR1 and mGluR5 

(Section 1.4.2). Since success or failure of performing virtual screening procedures and 

setting up a valid pharmacophore hypothesis strongly depends on the reference dataset, 

compounds to be included in such a library have to be carefully selected concerning the 

subtype selectivity and the correct chemical structure. 
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4.1.1 Assembling a Data collection  

A collection of reference molecules in the following referred to as mGluR-data collection 

has been compiled. This library comprises in total 357 ligands acting at the allosteric sites of 

the mGlu1 and mGlu5 receptor (Table 4.1.1, Table 7.1-a), which have been solely collected 

from scientific literature and patents published until August 2003. Though this dataset has 

been continuously updated by adding recently published molecules, a copy of the original 

compilation was saved for the purpose of retrospective analyses. Each entry is described by 

the chemical structure of the molecule and its activity and, if available, affinity data. 

However, it must be stressed that the functional assays that were performed to determine the 

activities differ to some extent between different research groups, mainly concerning the 

tissue (e.g., membranes or cell lines) and the detecting devices. Consequently, the relative 

potency at the same receptor could not strictly be compared for molecules from different 

publications or patents. During the hit finding process such differences were not crucial since 

no SAR studies were performed where precise activity values are generally required. 

Therefore, at this stage it was sufficient to discriminate mainly between “potent” (< 1 µM cut-

off) and “highly potent” (< 100 nM cut-off) compounds. 

 

Table 4.1.1-a. Distribution of the mGluR-compounds in the mGluR-data collection regarding 
the receptor subtype and interaction mode. 

Target Molecules 

Negative allosteric modulators of mGluR1 212 

Positive allosteric modulators of mGluR1 19 

Negative allosteric modulators of mGluR5 125 

Positive allosteric modulators of mGluR5 1 
 
 

4.2 Pharmacophore Model 

To initiate a hit finding process it seemed reasonable to create a flexible overlay of known 

allosteric mGluR1 antagonists. Such an alignment describes the template for establishing a 

pharmacophore model. A pharmacophore model in turn can be interpreted as a visualized 

pharmacophore hypothesis. It displays a set of structural features, which preferably several 

ligands have in common and is related to the ligand`s recognition at the target site (Section 

1.5.1).  



76 

The underlying idea of starting a hit identification process in this way has several reasons: 

(i) Some of the ligand-based screening approaches rely on a three-dimensional 

pharmacophore model or at least on certain molecules used for that model. (ii) It was helpful 

to get a first impression of common structural features of ligands bearing different core 

structures and of their potentially pivotal interaction points. In general, initial knowledge of 

relevant pharmacophore features obtained, e.g., by collecting reference molecules as starting 

point for virtual screening and postulating a hypothesis is inevitable to correctly interpret 

screening results. In particular, visually revising a set of retrieved virtual hits in order to sort 

out potentially non-relevant molecules is only feasible when the medicinal chemist is 

provided with sufficient information about already known ligands (meaning structural 

requirements, that is features being crucial for binding to the receptor). 

 

4.2.1 Molecules from the Reference Data collection 

The pharmacophore hypothesis presented herein is based on a set of six reference 

molecules. They were selected from the mGluR-data collection as they were corresponding to 

the following requirements: 

- Ligands known as allosteric antagonists of mGluR1 

- Ligands being structural diverse to each other 

- Ligands revealing high activity (< 100 nM cut-off) at mGluR1. 

 

In total, six compounds were selected fulfilling these criteria (Figure 4.2.1-a). This number 

was assumed to be sufficient since a proper pharmacophore model should comprise as few 

molecules as necessary providing as much structural information as possible. 
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R-01 (7nM)                                                  R-02 (3nM)                              R-03 (3nM)

R-04 (5nM)                                                  R-05 (5nM)                              R-06 (45nM)  
Figure 4.2.1-a. Chemical structures including functional activity at mGluR1 of reference 
molecules R-01-R-06 selected from the mGluR-data collection and used for the 
pharmacophore model. Molecules R-01 and R-03 closely resemble R214127, molecules R-05 
and R-06 are EM-TBPC analogues. R-02 is identical to R193548 and R-04 is identical to 
NPS 2390 (both Figure 2.2.1-a). 

 

Molecules R-01-R-03 present an almost identical scaffold, since it has proven in the past to 

be advantageous to use at least two molecules providing the same scaffold as starting point to 

perform a flexible overlay (Section 4.2.2). In this context, similarities of the reference 

molecules according to MACCS keys are given in Table 4.2.1-a. Molecules R-05 and R-06 

display the highest degree of structural similarity, whereas similarity between R-02 – R-03 is 

less pronounced. Overall, the similarity index is below 0.8, which is usually considered as an 

indication of different chemotypes [Matter, 1997; Martin et al., 2002].  

 
Table 4.2.1-a. Similarities of the six mGluR-data collection representatives. Values denote 
Tanimoto coefficient of MACCS similarity. 

Number 
MACCS 

Similarity 
to R-01 

MACCS 
Similarity 

to R-02 

MACCS 
Similarity 

to R-03 

MACCS 
Similarity 

to R-04 

MACCS 
Similarity 

to R-05 

MACCS 
Similarity 

to R-06 
R-01 1 0.457 0.614 0.442 0.258 0.304 

R-02 0.457 1 0.674 0.316 0.292 0.346 

R-03 0.614 0.674 1 0.318 0.275 0.345 

R-04 0.442 0.313 0.318 1 0.362 0.380 

R-05 0.258 0.292 0.275 0.362 1 0.765 

R-06 0.304 0.346 0.345 0.380 0.765 1 
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4.2.2 Creating the Pharmacophore Model 

After generating 3D structures for all molecules using a favored force field for small 

compounds (MMFF94) [Halgren, 1996], molecules R-01 and R-02 were superimposed in a 

flexible manner using the Flexible Alignment tool included in the MOE software package 

Version 2003.02 [Chemical Computing Group] according to the following settings (Iteration 

limit: 200 attempts; Failure limit: 20 configurations in a row; Energy Cutoff: 10.0 energy 

value plus the minimum generated value; Configuration limit: 1000 alignment configurations; 

Alpha: 2.5; Gradient Test: 0.01; RMSD Tolerance: 0.5Å; Maximum steps: 500 energy 

minimization steps; Similarity Terms: H-bond Donor/Acceptor (1/1), Aromaticity (3), 

Acid/Base (1), Hydrophobe (1), Polar Hydrogens (1), Volume (3)) . Several orientations have 

been calculated including their corresponding energy values. One orientation with a low 

energy value and a reasonable overlay (i.e., the most complete overlay with respect to the core 

structures) was manually selected and both molecules were kept in a fixed position relative to 

each other for further alignments. In the next step, molecule R-03 was superimposed onto this 

orientation and a sensible overlay was saved and fixed for the next alignment procedure. 

Eventually, the remaining three structures were aligned one after the other on this orientation 

resulting in a final alignment for allosteric mGluR1 antagonists (Figure 4.2.2-a). Alignment 

settings remained unchanged throughout the whole process. 

 

 
Figure 4.2.2-a. Flexible alignment of reference compounds R-01-R-06 (hydrogen atoms not 
shown). 

 



Scaffold Identification 
 

79 

A pharmacophore hypothesis was established based upon this flexible overlay using the 

Pharmacophore Query Editor of the MOE software. This tool displays certain chemical 

properties (H-bond donor/acceptor, etc.) of non-hydrogen atoms of each molecule to be 

edited, which are here referred to as annotation points (a complete list is given in the 

Appendix, Table 7.2-a). A pharmacophore scheme defines how each ligand in the database to 

be searched is annotated. Depending on the selected pharmacophore scheme, lipophilic or 

aromatic properties of ring systems, for instance, can be displayed either for each carbon atom 

of the corresponding ring (Planar-Polarity-Charge-Hydrophobicity; PPCH-type) or by one 

annotation point for the whole ring located in its center (Polarity-Charge-Hydrophobicity; 

PCH-type). For this model the default PCH-type was employed. Here, annotation points of 

the same label, which occur in all reference molecules at nearly the same spatial position were 

presumed to be important, for instance item F2:Acc in the lower left part of Figure 4.2.2-b. 

Query features were then assigned to these important annotation points (Figure 4.2.2-b). 

 

F1: Acc

F2: Acc F3: Aro

F4: Aro|Hyd
F5: Aro

F6: Hyd
F1: Acc

F2: Acc F3: Aro

F4: Aro|Hyd
F5: Aro

F6: Hyd

 
Figure 4.2.2-b. Preliminary pharmacophore hypothesis and underlying reference alignment 
for non-competitive antagonists of the mGlu1 receptor (H-atoms were hidden for more 
clarity). Small and solid balls in various colors according to their properties indicate the 
automatically proposed annotation points. Light blue spheres denote manually allocated query 
features for H-bond acceptors, light green spheres represent aromatic features and dark green 
spheres show hydrophobic query features. For details see text. 

 

A query feature denotes a point in space with a radius-like tolerance on spatial proximity 

and an associated expression. Expression and radius of each query feature were manually 

edited as follows: The expression corresponds to the annotation points found here (e.g., query 
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feature F4:Aro|Hyd in Figure 4.2.2-b denotes a region where aromatic and hydrophobic 

labeled annotation points were found). The diameter of each tolerance radius was chosen 

sufficiently large to cover identical annotation points of every molecule in that region.  

Constraints and partial matches (both are options within the Pharmacophore Query Editor) 

have not been applied to the initial pharmacophore model. A constraint groups query features 

that tie the required presence of one feature to the presence of another feature. A partial match 

in turn allows a certain degree of violations within a constraint (e.g., a constraint of three 

query features combined with a partial match of at least one query feature means that at least 

one of these three queries must be matched irrespective which of them).  

The preliminary pharmacophore hypothesis contains six query features assumed to play an 

important role (Figure 4.2.2-b). Excluded volumes, which denote spheres that must not 

contain any non-hydrogen atom of a ligand to be aligned have not been allocated. 

 

4.2.3 Validation 

Prior to performing a pharmacophore search on an external compound library the 

preliminary model had to be assessed for its validity. Therefore, a set of ten 3D-conformations 

was calculated for each molecule of the mGluR-data collection using MOE Conformation 

Input (10 conformations, no input filters (physicochemical properties) but default Constraints; 

MM Settings (default): Stochastic Search Strain Limit: 7, Superpose RMSD Test: 0.15, 

Refinement Conformation Limit: 300, Stochastic Search Failure Limit: 30, Stochastic Search 

Iteration Limit: 500, Energy Minimization Iteration Limit: 200, Energy Minimization 

Gradient Test: 0.01).  

The mGluR-data collection was then virtually screened by employing the preliminary 

model and the aim was to retrieve as many of the 212 non-competitive mGluR1 antagonists as 

possible and as few other data collection members as possible. In general, an automatic 

pharmacophore search can be described as follows: When a new ligand is aligned with the 

query set, its ligand annotation points will match the given query feature only if the points lie 

within the specified radius of the query feature and if its set of attached labels satisfies the 

expression associated with the feature. 

After a first pharmacophore search of the mGluR-data collection certain settings of the 

query set were slightly changed in order to optimize the screening results. This was an 

iterative process where only one parameter was manually modified in each step. However, no 

crucial modifications have been done like removing or adding essential query features. 

Mainly, the radius-like tolerance of a query feature was enlarged or reduced.  
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Visual inspections of the first pharmacophore search results revealed that many mGluR1 

antagonists being members of the mGluR-data collection failed to match the query set since 

their structures did not satisfy all query features allocated to the pharmacophore model. To 

circumvent this pitfall initially all query features were tied together to one constraint and a 

partial match was introduced. During the iterative validation process one or two query 

features were alternately removed from the constraint or incorporated into it and the partial 

match restriction was changed accordingly.  

 

Table 4.2.3-a. Distribution of the mGluR-data collection and the mGluR1-enriched subset 
after the pharmacophore search. 

Target mGluR-data collection Retrieved subset

Negative allosteric modulators of mGluR1 212 69 

Positive allosteric modulators of mGluR1 19 5 

Negative allosteric modulators of mGluR5 125 2 

Positive allosteric modulators of mGluR5 1 - 
 

The validation process was terminated after roughly ten steps when no further enrichment 

in the subset of correctly retrieved mGluR1-reference compounds was yielded (Table 4.2.3-a). 

The results illustrate a successful performed search, which is confirmed by an enrichment-

factor ef of 1.53 (Equation 1.5.2-b). Interestingly, a fourth of all positive mGluR1 modulators 

has also been extracted, whereas less than 2% of all mGluR5 antagonists matched the 

pharmacophore model’s queries. Only a third of all target compounds (69 of 212) has been 

correctly classified, which impairs the model to a certain extent as it does not retrieve all 

chemotypes of the reference molecules. This is caused by the fact that only a small selection 

of the many different scaffolds of mGluR1 antagonists was considered in the molecule 

alignment. The integration of additional scaffolds would most likely have led to an impaired 

molecule alignment (less overlay) and consequently to a less precise pharmacophore model. 

 



82 

F1: Acc

F2: Acc
F3: Aro

F4: Aro|Hyd

F5: Aro

F6: Hyd
F1: Acc

F2: Acc
F3: Aro

F4: Aro|Hyd

F5: Aro

F6: Hyd

 
Figure 4.2.3-a. Final pharmacophore hypothesis and underlying reference alignment for non-
competitive antagonists of the mGlu1 receptor (H-atoms not shown). Light blue spheres 
denote query features for H-bond acceptors, light green spheres represent aromatic features 
and dark green spheres show hydrophobic query features. 

 

The final hypothesis still contained the initial six query features that were assumed to best 

describe the properties of potential allosteric mGluR1 modulators (Figure 4.2.3-a, Table 

4.2.3-b). Eventually, query features F1, F2, F3 and F5 were tied together in a way that at least 

three of them had to be matched by a newly aligned ligand (i.e., queries F4 and F6 had to be 

satisfied by all means). 

 

Table 4.2.3-b. Collection of all relevant features for the final pharmacophore hypothesis. 

Code Feature Description Radius [Å]

F1 Acc H-bond acceptor 0.9 

F2 Acc H-bond acceptor 1.0 

F3 Aro aromatic system 1.0 

F4 Aro|Hyd either aromatic or hydrophobic system 1.2 

F5 Aro aromatic system 1.1 

F6 Hyd hydrophobic residue 1.2 

C1 Constraint matching at least three features of F1, F2, F3, F5  - 
 

Based upon iterative validation steps the crude, preliminary pharmacophore hypothesis was 

refined leading to an improved final pharmacophore model: The manually compiled mGluR-

data collection served as reference dataset comprising “active” (negative mGluR1 

antagonists) and “inactive” (others) members for retrospective analyses. However, we did not 
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perform retrospective virtual screenings on a large dataset of many thousand “inactive” 

members spiked with some “actives”. The reason can be found in a drawback associated with 

datasets containing numerous “inactive” (better: negative) compounds: We know that 

“inactive” members of our mGluR-data collection are definitely inactive mGluR1 antagonists, 

which has been experimentally proven (according to literature). In contrast, the tremendous 

number of “negative” members of large datasets is usually randomly selected from even 

larger databases but not tested on the target of interest. 

 

4.2.4 Conclusions 

The proposed final pharmacophore hypothesis for non-competitive mGluR1 antagonists 

(Figure 4.2.3-a) was capable of selectively retrieving allosteric mGluR1 modulators of the 

mGluR-data collection during a validation step of retrospective screening. This hypothesis 

was established to recover negative mGluR1 modulators listed in the reference collection 

(32.5% of them have been correctly identified), yet it also identified five of nineteen positive 

mGluR1 modulators (~26%) from the reference mGluR-dataset.  

  

4.3 Virtual Screening by CATS Similarity Search  

A topological pharmacophore search based upon an atom-pair descriptor and the Euclidian 

distance measure is provided by CATS [Schneider et al., 1999]. It allows for rapidly 

screening even largest compound libraries with a speed nearly comparable to simple 

substructure searches. The notable advantage of CATS and related molecule descriptors is, 

however, that molecules might be retrieved or designed bearing core structures unlike the 

structures of the reference molecules [Schneider et al., 1999; Nærum et al., 2002]. Here, the 

rationale was to retrieve molecules from the Asinex Gold Collection February 2003 [Asinex 

Ltd.] that are similar - according to the CATS atom-pair descriptor - to a set of six reference 

compounds. In this study we employed as reference compounds the same six molecules that 

were used for setting up the pharmacophore model for mGluR1 antagonists (Figure 4.2.1-a).  

 

4.3.1 Reference Compounds and Test Compounds 

Test compounds as well as reference compounds were encoded with the CATS atom-pair 

descriptor (Section 3.2.1) as follows: 2D structures of test and reference molecules were saved 

as MDL MOL-file and all hydrogen atoms were removed using CLIFF software [Molecular 
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Networks GmbH]. Distance (Euclidean metric) calculation was restricted to 10 (0 to 9 bonds) 

intervening bonds resulting in a 150-dimensional correlation vector representation for each 

molecule (10 bonds multiplied with 15 possible atom-pairs). This vector was scaled to relative 

counts (S2). 

Here, six separate similarity searches were carried out: Each reference compound served as 

query structure for one search process, and the remaining five molecules were merged with all 

compounds of the Asinex Gold Collection 2003 (Section 3.2.6). This database “spiking” was 

done to get an idea of the relevance of the obtained virtual hit lists [Schneider & Schneider, 

2004]. For each run the CATS-software was prompted to create a ranked list for the 100 most 

similar molecules (according to the CATS descriptor) of the “spiked” database. Hence, we 

obtained six top 100 ranking lists (Appendix, Section 7.3). The first five test compounds of 

each list as well as all test compounds, which occur in at least three top 100 scoring lists 

simultaneously, were purchased and their pharmacological profile (mGluR1 binding assay, 

mGluR1 functional assay) was characterized.  

 

4.3.2 Results of the CATS Similarity Searches and Discussion 

Regarding the first five test molecules of each list four molecules appeared twice in 

different top five scoring lists (6 lists multiplied with 5 entries leading to 30 test molecules 

minus 4 doubles: 26 selected compounds). Additionally, twelve test compounds appeared in 

three different scoring lists among the first hundred compounds. The fact that they occurred 

solely in the scoring lists of reference compounds R-01-R-03 can be explained by the degree 

of similarity of compounds R-01-R-03 according to MACCS keys and CATS similarity 

(Table 4.2.1-a, Figure 4.3.2-a), which consequently also applies for the members of their 

scoring lists. In accordance to this observations, reference compounds R-01, R-02 and R-03 

appeared among the top 100 scoring lists of each other (e.g., R-02 is ranked as number one 

and R-03 as number 58 among the first 100 entries for R-01´s similarity search; Appendix, 

Table 7.3-a).  

In total, 38 compounds were found in the Asinex Gold Collection and ordered, but only 23 

of them were delivered (Table 4.3.2-a). Compound C-23 has accidentally been ordered and 

delivered although it was retrieved only by the first and second CATS run (reference 

molecules R-01 and R-02) among the top 100 molecules. A detailed overview about all 

ordered and delivered compounds of this study is given in the Appendix, Section 7.3. 

 The structural similarity between the seed compounds R-01-R-03 and the test compounds 

C-05, C-19 and in particular C-20 was confirmed by the similarity values (Table 4.3.2-a). 
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Visual inspection detected also similarity between R-04 and test compound C-08: Both 

molecules have similar scaffolds with two H-bond acceptors (nitrogens were replaced with 

oxygens), the same polar linker and hydrophobic moieties of comparable size (Figure 4.2.1-a, 

Table 4.3.2-a). The vast majority of test compounds is, however, structurally distinct from the 

reference compounds.  

 

Table 4.3.2-a. Retrieved (available) test compounds of the output of six separate CATS runs. 
The number of a CATS run corresponds to the reference compound’s ID this search was 
based on (e.g., for CATS run 1: R-01). Similarity Score indicates the Euclidean distance 
between reference and test molecule. Experiments were performed in quadruplicate (binding) 
or sextuplicate (fct.), respectively. 

CATS 
Run Rank 

Similarity 
Score 

Chemical Structure Number Binding 
Ki [µM] 

Functional 
IC50 [µM] 

1 3 0.3986 

2 2 0.3671 
N

O

N
C-01 >40 7.9 

(± 2.5) 

1 4 0.4144 N Cl

O

S

 

C-02 >40 20.8 
(± 0.8) 

1 5 0.4279 

2 5 0.4031 

O

N O

 

C-03 >40 >40 

1 6 0.4279 

2 6 0.4031 

O

OO

 

C-04 >40 18.9 
(± 3.0) 

3 1 0.2863 
O

O

O

 

C-05 >40 >40 

3 2 0.3369 
B O

OF
O

F C-06 25.3  
(± 5.1) 

13.5 
(± 7.0) 

3 3 0.3470 
OO O

Cl

 

C-07 0.75  
(± 0.05) 

0.36 
(± 0.03) 

4 2 0.3401 N
H

O

O

O

 

C-08 >40 >40 



86 

4 3 0.3616 
N N

N
H

O
F

F

F

C-09 >40 >40 

5 1 0.7360 
N

NN
N
H

N N
OH

 
C-10 >40 >40 

5 3 0.8153 N
N N O

N
HOH

 

C-11 >40 >40 

6 1 0.5254 NN

OH

O

F
F

F

 

C-12 >40 29.1 
(± 3.7) 

6 3 0.5640 
N N

N

OH  

C-13 21.6  
(± 3.6) 

12.9 
(± 1.0) 

6 4 0.5804 NN

OH

O

F
F

F

 

C-14 >40 >40 

1 75 0.5670 

2 54 0.5313 

3 91 0.4568 

N

O

O

 

 
C-15 >40 >40 

1 65 0.5511 

2 59 0.5364 

3 16 0.3886 S

O

O

O

 
C-16 33.8 17.3 

(± 0.9) 

1 74 0.5666 

2 29 0.5014 

3 76 0.4505 
N O

O

 
C-17 >40 20.9 

(± 1.6) 

1 100 0.5847 

2 66 0.5445 

3 40 0.4200 
N

O

O  
C-18 >40 >40 

1 8 0.4569 

2 8 0.4312 

3 38 0.4187 

O

O

F

 
C-19 >40 23.8 

(± 3.3) 

1 24 0.5031 

2 10 0.4405 

3 46 0.4280 O

O

F

 
C-20 >40 17.2 

(± 4.7) 
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1 77 0.5684 

2 41 0.5114 

3 72 0.4495 ON

O

Cl
 

 
C-21 >40 13.2 

(± 4.1) 

1 32 0.5196 

2 18 0.4763 

3 95 0.4570 

S

O

O  

 
C-22 >40 11.1 

(± 3.0) 

1 38 0.5275 

2 99 0.5711 

O

O

N

F

C-23 9.3 >40 

 

The occurrrence of test molecules representing structurally distinct chemotypes (with 

respect to the reference molecules) might be explained due to the fact that non-hydrogen 

atoms of the molecules are classified into five generalized atom types for this study, meaning 

that molecules with the same atom types (e.g., H-bond donor) but not necessarily with the 

same atom (e.g., a hydroxyl group could be replaced with a thiol) within a given bond 

distance are assumed to be similar. Moreover, since the distance counted between two atom 

types solely depends on the absolute number intervening of bonds, the spatial distance could 

vary to some extent depending on the bond length, the bond angle and whether or not the 

bond is rotatable (Figure 4.3.2-a). 

O
N

O O O

N

Spatial distance: ~1.3 Å Spatial distance: ~5.0 Å

180°

 
Figure 4.3.2-a. Sketch of two hypothetical 3D-arrangements of a sample molecule (here: 3-
Pyridin-2-ylmethyl-pyran-2-one). In both orientations the bond distance between carbonyl-
oxygen and nitrogen (both H-bond acceptors) is five (CATS atom-pair: AA5). The calculated 
spatial distance between both features, however, increases from the left to the right molecule 
arrangement. 
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Consequently, a given test compound could resemble a particular seed compound regarding 

potentially important interacting points but the possible difference in the spatial orientation of 

these pharmacophore features could lead to a change or even a loss of binding affinity and 

functional activity. 

 

Affinity and activity of compounds C-01-C-23 has been characterized using mGluR1 

binding and functional assays. First, single concentration determinations were carried out in 

both assays in order to roughly classify a given compound as a high (Ki or IC50: < 1µM), 

medium (Ki or IC50: < 15µM), low active (Ki or IC50: 15 - 40µM) or inactive (Ki or IC50: > 

40µM) candidate rather than to reflect its precise activity value for structure activity 

relationships. The correlation between estimated IC50-values via a single point measurement 

and determined IC50-values for a certain concentration range were given in Section 3.1.11. In 

general, all test compounds showing baseline corrected values from >80% (~40µM) were 

assumed to be inactive (Section 3.1.11). Full CRCs were only recorded for those compounds 

displaying IC50-values below 10µM due to limited solubility. Table 4.3.2-a reveals the 

antagonistic activity of all test compounds. Results are given as mean values of two 

independent experiments performed in quadruplicate (binding) or sextuplicate (functional), 

respectively. Asterisks denote values determined by full CRCs. In total, one compound was 

found to be “highly active” (IC50: < 1µM) and five compounds were “moderately active” with 

IC50-values between 1-15µM in functional assay (Figure 4.3.2-b). Furthermore, eight 

compounds revealed a low activity (IC50: 15 – 40µM) and nine compounds were inactive 

(IC50: > 40µM) leading to a total hit rate of approximately 26 % (IC50: < 15µM).  

It must be emphasized that such a small subset of virtual hits (here: 23 compounds) hardly 

allows for giving reliable (i.e., precise) information in terms of hit rates for a given task. This 

applies for all methods where only a limited number of test compounds was retrieved, ordered 

and assayed. 
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Figure 4.3.2-b. Graphical summary of the screening results (rmGluR1 functional assay) of 23 
hit compounds retrieved from the Asinex Gold Collection by the CATS similarity search. 

 

The test compounds elicited predominantly low activity at the receptor except for molecule 

C-07. In contrast, the six seed compounds that were used for the similarity search in this study 

are of extremely high potency (Figure 4.2.1-a). However, similarity searches aim at 

discovering new core structures (“scaffold-hopping”), which does not necessarily mean that 

these ligands perfectly fit into the binding pocket. New chemotypes can be structurally 

optimized afterwards. 

We focused on compound C-07 that was found to bind to the allosteric site of the mGlu1 

receptor with an IC50-value in the nano molar range and significantly inhibits DHPG-induced 

receptor activation (Figure 4.3.2-c). Moreover, compound C-07 seems to selectively interact 

with mGluR1 since no affinity towards mGluR5, the closest related subtype according to 

sequence similarity, was observed (Figure 4.3.2-d).  
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Figure 4.3.2-c. Compound C-07 is a non-competitive antagonist of the mGlu1 receptor. It 
displaces [³H]-EMQMCM binding to the allosteric mGluR1 site with an Ki-value of 0.753µM 
(A, SEM: 0.048) and inhibits DHPG-induced intracellular IP3-formation with an IC50-value of 
0.362µM (B, SEM: 0.031). Results are the mean values of two independent experiments 
performed in quadruplicate (binding) or sextuplicate (functional), respectively. 

 

 
 
Figure 4.3.2-d. Compound C-07 does not displace [³H]-MPEP (5nM) binding to the allosteric 
site of the mGlu5 receptor (A) nor does it significantly inhibit quisqualate induced 
intracellular Ca2+ release in rat cortical astrocytes (B, for detailed experimental procedures see 
Section 3.1.4 and 3.1.8). Results are the mean values of two independent experiments 
conducted in duplicate (MPEP binding) or quintuplicate (Ca-flux). Error bars denote SEM.  

 
Apart from the promising pharmacological data the chemical structure of molecule C-07 is 

attractive since to the best of our knowledge no interaction with family 3 GPCRs has been 

reported for any coumarine-derivatives to date. The most prominent coumarine-derivatives 

phenprocoumon and warfarin are well known drugs acting as indirect anticoagulants due to 

interfering with the vitamin-K synthesis. They are used for the prophylaxis of thrombosis and 
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embolism in many disorders. The therapeutic potential of other coumarines like scoparone 

(reduces total cholesterol and triglycerides), osthole (causes hypotension in vivo, inhibits 

platelet aggregation in vivo) and cloricromene (reveals antithrombotic antiplatelet actions, 

causes vasodilatation) has been reviewed [Hoult & Paya, 1996]. Since some 3,4-

dimethylcoumarines like esuprone inhibit either monoamine oxidase type A or B the 

treatment of epilepsy by representatives of this chemical class has been discussed [Loscher et 

al., 1999]. Coumarine-derivatives were hereby introduced as potential drug candidates to the 

therapy of mental disorders connected with mGlu1 receptor interaction. 

 

4.3.3 Conclusions 

In this study we have performed similarity searches based on a topological pharmacophore 

descriptor for six reference compounds on a large and diverse database. A set of 23 test 

compounds showing high similarity towards the reference compounds was selected and 

assayed for affinity and functional activity at mGluR1. All compounds selectively interacted 

with mGluR1 as they did not evoke any response on the closely related subtype mGluR5. An 

overall hit rate of 26 % (activity < 15µM) demonstrated the applicability of this concept. One 

compound, structurally belonging to the chemical class of coumarines, exhibited binding 

affinity and functional activity at mGluR1 below 1µM. 

 

4.4 Data mining by ChemSpaceShuttle  

ChemSpaceShuttle (CSS) is an application that facilitates the reduction of a multi-

dimensional space to a 3D-representation [Givehchi et al., 2003] (Section 1.5.3, Section 

3.2.3). Noteworthy, this data mining application is not a SAR tool since the network training 

algorithm does not implement any biological data like activity or affinity. It allows for 

revealing hidden relationships within a large set of molecular data and gives an overview over 

the occupied and unoccupied chemical space. Thus, commercial databases can be analyzed 

with respect to their molecular distribution which in turn facilitates the design of activity-

enriched subsets. The rationale of CSS within this study was to select a few virtual hits from a 

potentially activity-enriched library (here referred to as “focused library”). This “cherry-

picking” procedure was part of a virtual screening campaign. 

 



92 

4.4.1 Compilation of a focused library 

The idea was to visualize not the total compound library but a single subset. Thus, a 

“focused library” was compiled by performing a pharmacophore search as follows: The 

complete Asinex Gold Collection February 2003 [Asinex Ltd.] was virtually screened with 

the final pharmacophore model for non-competitive mGlu1 receptor antagonists (Figure 

4.2.3-a). This searching process was carried out by running the Pharmacophore Search tool 

of the MOE software package Version 2003.02 [Chemical Computing Group]. The following 

settings were applied: Asinex database (single conformation for each molecule) was specified 

as input database. It was preprocessed to make searching faster: For each database entry an 

annotation field (pharmacophore scheme: PCH; Section 4.2.2) was automatically calculated. 

The refined pharmacophore model (Section 4.2.3) was specified as query set. The search tool 

was prompted to create a new output database, containing the same indication fields (e.g., 

molecule and ID) as the input database.  

The search resulted in a subset A of 3137 virtual hits, retrieved from a total number of 

194104 molecules out of the Asinex database. Next, subset A as well as the mGluR-data 

collection were characterized by two 2D-descriptors implemented in MOE, namely SlogP and 

Weight. According to the Gaussian-like distribution of the reference compounds of the 

mGluR-data collection (Figure 4.4.1-a), a range of descriptor values restricted by defined 

thresholds for both descriptors was set for all entries in subset A: 

 

Lipophilicity (SlogP):  lower threshold = 0, upper threshold = 6 

Molecular weight (Weight): lower threshold = 230, upper threshold = 500 
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Figure 4.4.1-a. Distribution pattern for molecule weight and lipophilicity of the mGluR1-data 
collection (212 members). Values are binned into ranges of 10 unit size (MW) or 0.2 unit size 
(SlogP), respectively. 
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As it turned out that nearly all reference compounds exhibited values to be found within the 

proposed threshold ranges, subset A was narrowed down to the “focused library” by removing 

all test compounds eliciting values beyond the given parameter range (i.e., exceedingly high 

or low MW and poor lipophilicity) irrespective of the original distribution patterns of subset A 

(Figure 4.4.1-b). The bell-shaped distribution for the test compounds was shifted to the right if 

compared with the reference compounds. Approximately one third of all test compounds (926 

of 3137 or 29.5%) did not match the defined criteria, which is also demonstrated by the 

distribution patterns for test molecules (Figure 4.4.1-b). 
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Figure 4.4.1-b. Distribution pattern for molecule weight and lipophilicity of subset A (3137 
members). Dashed lines border the range for molecules of the “focused library”. Values are 
binned into ranges of 10 unit size (MW) or 0.25 unit size (SlogP), respectively. 

 

4.4.2 Processing the Data 

All molecules of the focused library (2211 members) as well as the “washed” mGluR-data 

collection (negative allosteric modulators of mGluR1 and –5; positive modulators were 

discarded; 337 members) were encoded with all 146 2D-descriptors provided by MOE. Non-

relevant descriptors (i.e., descriptors displaying the same value for all reference compounds) 

were removed resulting in 130 2D-descriptors. Potentially redundant descriptors have been 

retained. Reference compounds were classified as “R-1” or “R-5”, respectively and test 

compounds as “unknown” without changing the original ID number. After transforming both 

datasets into tab-separated text files, the mGluR-data collection was imported in 

ChemSpaceShuttle, a weight optimization was performed in the training mode and the three 

principal components were calculated and visualized in the projection mode (Figure 4.4.2-a). 

The scatter plot demonstrates that this method allows for discriminating between “R-1” and 

“R-5” compounds: “R-5” compounds form a sharply defined cluster pointing to the upper 
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background. All members of this cluster belong to the same chemical class of modulators. In 

contrast, “R-1” compounds are predominantly located in the upper foreground apart from 

some widely distributed molecules in the lower front. However, both groups of modulators 

are not completely spatially separated as they partly overlap with each other. Especially the 

main cumulation of “R-1” compounds is spotted with several “R-5” molecules. 
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Figure 4.4.2-a. 3D-Plot displaying the distribution of reference compounds. Factors X, Y and 
Z represent the principal components calculated from the multidimensional space. 

 

In the next step, reference compounds were plotted together with all test members of the 

focused library (Figure 4.4.2-b). Compared to the reference compounds test molecules cover a 

large area where they are mainly located in one prolate cluster. However, they do not extend 

to all regions occupied by the reference compounds, which is most likely due to the limited 

number of subset members. Therefore, not the total space, which is covered by the reference 

molecules can be exploited for analysis (i.e., the distance dependent detection of test 

molecules, vide infra). 
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Figure 4.4.2-b. 3D-Plot displaying the distribution of reference compounds and test 
compounds. Factors X, Y and Z represent the principal components calculated from the 
multidimensional space. 

 

Since these three-dimensional plots provide topology-preserved mappings, compounds 

which are close to each other on this grid are also assumed to be in close proximity in the 

original multidimensional space. Consequently, they are assumed to bear similar properties 

with respect to the descriptors they are encoded with. Therefore, a radius-like distance 

tolerance (marked distance) was applied for all “R-1” compounds to detect adjacent 

compounds within this certain range irrespective of their type (Figure 4.4.2-c). In some 

densely populated regions many compounds were detected by a single “R-1” compound. In 

contrast, some of the widespread reference molecules (in the lower right corner on Figure 

4.4.2-c) were not able to find any molecules within the defined distance. 
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Figure 4.4.2-c. Original 3D-Plot visualized in CSS (display detail). White spots denote 
mGluR1 reference compounds, green spots are test compounds and other reference 
compounds. White lines represent the three axes spanning the coordinate system. Green lines 
represent the distance between the mGluR1 reference compounds and their neighbors within a 
marked distance in the 3D space. 

 

All molecules located within this radius were listed in a tab-separated text file and reference 

compounds labeled with “R-1” and “R-5” were removed. The remaining 46 test molecules 

were then sorted according to their distance to the corresponding reference compound and 30 

compounds displaying the lowest distance-value were selected. After visual revision, eighteen 

of those were ordered from the database vendor [Asinex Ltd.]. 

 

4.4.3 Results of the Neighborhood Search and Discussion 

Fifteen virtual hits have been delivered as solids and tested in-house for binding affinity and 

functional activity on mGluR1. The chemical structures and a list of all ordered and delivered 

compounds can be found in the appendix (Section 7.4). Summarized, no compound was found 

to be “highly active” (<1µM), three compounds were “moderately active” with IC50-values 

between 1-15µM in functional assay (Figure 4.4.3-a). Furthermore, two compounds revealed 
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a low activity (15 – 40µM) and ten compounds were inactive (>40µM) leading to a total hit 

rate of  20 % (cut off <15µM). 

 

Table 4.4.3-a. Overall result of in vitro pharmacological experiments for all test compounds. 
Results are the mean values of at least two independent experiments performed in 
quadruplicate (binding) or sextuplicate (functional), respectively. Asterisks denote values, 
which were determined by full CRCs. Compounds with IC50-values higher than 40µM were 
assumed to be inactive. SEM are given in parentheses. 

Number Binding Ki [µM] Functional IC50 [µM] 
P-01 >40 >40 

P-02 >40 >40 

P-03 >40 >40 

P-04 21.9 (± 4.0) >40 

P-05 >40 >40 

P-06 *33.27 (± 5.34) *1.11 (± 0.41) 

P-07 >40 >40 

P-08 >40 >40 

P-09 >40 25.7 (± 1.6) 

P-10 >40 >40 

P-11 >40 12.9 (± 0.4) 

P-12 >40 >40 

P-13 >40 25.1 (± 2.5) 

P-14 *13.05 (± 0.94) 7.4 (± 0.5) 

P-15 >40 >40 

 

Compound P-06 was found to be the most potent molecule among all compounds of this 

subset. It structurally resembles the prominent negative allosteric modulator LY456066 

(Figure 4.4.3-a, Figure 1.4.2-a). The remaining compounds display poor, if any, functional 

activity and binding affinity.  
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Figure 4.4.3-a. Graphical summary of the screening results (rmGluR1 functional assay) of 15 
hit compounds retrieved from the Asinex Gold Collection by the 3D-pharmacophore searches 
combined with non-linear PCA (performed by CSS). 

 

Regarding the scaffolds most of  the structures closely resemble either LY456066 or 

R214147. This could probably have several reasons: The previously performed 

pharmacophore search retrieved a subset mainly comprising molecules structurally related to 

R214147 since the underlying pharmacophore alignment predominantly contains R214147 

derivatives. Second, due to the fact that the majority of reference compounds belongs to either 

groups many test compounds have been found being located within a marked distance of 

those reference molecules. Based upon this, we assumed that the chosen descriptors encode 

molecules in a way that mainly structures bearing the same scaffold are adjacently located (in 

the high- and low-dimensional space) and not molecules with similar features but different 

scaffolds. 

The low hit rates might be caused due to the following facts: (i) The high number of 

reference compounds revealing weak activity, (ii) test compounds were ranked, selected and 

ordered according to their distance to any reference compound, not just to the potent reference 

molecules and (iii) the focused library serving as test compound collection contained 

molecules with less structural diversity than the complete Asinex database. This loss of 

diversity was most likely attributed to the pharmacophore search based on a model that has 

proven not to match all chemotypes of mGluR1 antagonists during validation (Section 4.2.3). 
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One can conclude in turn that this pharmacophore model ignores several potential hits from 

the Asinex database. 

Moreover, the total amount of compounds retrieved by the pharmacophore search and 

analyzed by CSS was probably too low. Initially, the pharmacophore search was employed to 

reduce the amount of test compounds and to apply a “focused library” to CSS. After 

analyzing the results of the CSS run and visualizing the plot we observed that for many 

reference compounds no test compounds were found within the defined distance (Figure 

4.4.2-b). The application of the whole Asinex database for data mining by CSS would have 

solved probably the issues of (i) a too specific data subset (regarding chemical diversity) and 

of (ii) a too small subset not covering the whole space provided by the reference compounds. 

Furthermore, ranking criteria solely considering highly potent reference molecules combined 

with an increased marked distance for neighborhood search would have presumably enhanced 

the chance of detecting more promising structures.  

 

4.4.4 Conclusions 

The strategy for identifying novel scaffolds presented in this section aimed at combining the 

advantages of two methods: (i) The design of a potentially activity-enriched subset from a 

large library by pharmacophore search and (ii) the retrieval of some “virtual hits” from this 

subset via a data mining tool suitable to reduce and visualize the data distribution. Since the 

focused library comprised too many compounds to manually select some of them for follow-

up (i.e., order and assay), it was decided to apply the “filter” presented in this section to 

minimize the subset. We recovered a set of 18 molecules from the focused library. This set 

was ordered and the delivered 15 compounds were tested on binding affinity and functional 

activity on mGluR1. One molecule revealed inhibitory activity of 1.1µM (Ki-value). 

 

4.5 Virtual Screening using Self-Organizing Maps  

SOMs or Kohonen-networks -- describing a certain type of unsupervised neural networks -- 

are predominantly applied for molecule clustering and topology preserving projections. They 

allow for designing focused libraries of ligands affecting a given target [Schneider & 

Nettekoven, 2003]. Consequently, they are understood more as an application to assist and 

support a given virtual screening campaign rather than as a virtual screening tool itself.  
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Once again the Asinex Gold Collection February 2003 [Asinex Ltd.] was employed as 

source for retrieving molecules potentially interacting with the allosteric mGluR1 binding 

site, whereas the COBRA database [Schneider & Schneider, 2003] was used to unfold and 

train a SOM and the mGluR-data collection contained the necessary reference molecules. The 

CATS atom-pair descriptor was applied to encode all compounds for the network. The aim 

was to create and visualize 2D-distribution patterns for mGluR1 and mGluR5 antagonists, 

which should facilitate a clear discrimination between ligands of both subtypes. Based upon 

two-dimensional mappings of the Asinex database activity-enriched subsets should be 

retrieved from this database and tested afterwards for affinity and activity on the mGlu1 

receptor.  

 

4.5.1 Training the Maps 

The first step of this virtual screening procedure was the conversion of all molecules of the 

three different datasets into a 150-dimensional vector representation using the CATS 

topological pharmacophore descriptor. Thereafter, a SOM was developed based on the 

COBRA database that means the 150-dimensional space was mapped onto a plane by 

applying a slightly modified version of the Kohonen algorithm [Schneider & Schneider, 

2004]. Since the projection is topology-preserving, molecules, which are in close proximity 

on the two-dimensional projection, are also adjacently located in high-dimensional space 

(Section 1.5.3). Here, a SOM is composed of a grid of 100 (or 225) neurons, each of which 

containing molecules having certain pharmacophore features in common. The map was 

visualized according to the density value of each neuron meaning the number of molecules to 

be included in a certain neuron (Figure 4.5.1-a). As it can be seen, the molecular distribution 

is more or less consistent apart from some highly occupied clusters close to neurons with low 

density. Only 1% (2.7%) of all neurons is unoccupied demonstrating a successfully trained 

and unfolded SOM. 
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Figure 4.5.1-a. Self-organizing maps showing the distribution of the COBRA database 
molecules in CATS topological pharmacophore space according to the density values of the 
neurons. 

 

Since this study aimed at detecting novel and selective allosteric antagonists of the mGlu1 

receptor the selectivity aspect was firstly investigated, meaning the discrimination between 

molecules acting on mGluR1 and mGluR5. Here, the main question was whether it is possible 

to separate between non-competitive antagonists of mGluR1 and mGluR5. In this context, the 

mGluR dataset was projected onto the smaller SOM (10x10 grid) developed before. Then, the 

map was visualized according to the mGluR subtype selectivity of each compound (Figure 

4.5.1-b). One large mGluR1 cluster in the upper right corner and two mGluR5 cluster were 

found, one in the upper center and the other in the lower right corner. Only six neurons (6%) 

contain molecules of both subtypes. However, it should be stressed that this particular 

visualization gives no hint about the molecular density of the neurons. Yet, the map 

demonstrated that one could successfully discriminate between molecules of each receptor 

subtype. This result substantiates earlier findings that both the CATS descriptor and the SOM 

procedure are suited for clustering compounds according to their pharmacological activity 

[Anzali et al., 1996; Polanski & Walczak, 2000; Schneider & Nettekoven, 2003; Teckentrup 

et al., 2004; Xiao et al., 2005]. 
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Figure 4.5.1-b. Self-organizing map showing the selectivity of the mGluR data collection 
molecules in the CATS topological pharmacophore space according to discrimination 
between subtype 1 and 5. Dashed arrows point to mGluR5 clusters and the black arrow to the 
mGluR1 cluster. 

 

In the next step only the mGluR1 subset of the mGluR data collection was mapped onto the 

SOM that was trained by the COBRA database. The map was once again visualized according 

to the density value of each neuron (Figure 4.5.1-c). Considering that these SOMs have a 

toroidal “donut-like” shape in the three-dimensional space, both of them (10x10 and 15x15 

grid) reveal one large cluster, one smaller cluster and several “activity islands” distributed 

over the whole map. The large cluster comprises derivatives of R214127, EM-TBPC, 

CPCCOEt and LY456066 (Figure 1.4.2-a). Neurons 8/7 and 6/6, respectively displayed the 

highest density of reference compounds. These are structurally related to some extend in the 

topological pharmacophore space. This mapping was necessary to detect those areas in the 

Asinex database where test compounds can be found with pharmacophore properties similar 

to those of the mGluR1 reference compounds (Section 4.5.2). 
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Figure 4.5.1-c. Self-organizing maps showing the distribution of the mGluR1 dataset 
molecules in the CATS topological pharmacophore space according to the density values of 
the neurons. 

 

4.5.2 Selection of Virtual Hits  

Finally, the complete Asinex Gold Collection was projected onto the SOM that was trained 

with the COBRA database. The map was visualized according to the density value of each 

neuron (Figure 4.5.2-a). Apart from one densely populated “receptive field” (neuron) the 

molecules of the Asinex library were consistently distributed over the whole space that was 

provided by the trained SOM. Only three neurons (1.3%) of the larger grid were unoccupied. 
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Figure 4.5.2-a. Self-organizing maps showing the selectivity of the Asinex database 
molecules in the CATS topological pharmacophore space according to the density values of 
the neurons. 

 

Since we were interested in those Asinex test compounds that bear topological 

pharmacophore features similar to those of the mGluR-reference data collection we focused 

on neurons 8/7 and 6/6, respectively displaying the highest density of mGluR-reference 

compounds on the mGluR1 map (Figure 4.5.1-c). In general, molecules included in neurons 

8/7 and 6/6 of the Asinex map were assumed to be similar to molecules incorporated in 

neurons 8/7 and 6/6 of the mGluR1 map. Neuron 8/7 (10x10 grid) comprised 1864 cluster 

members whereas 6/6 (15x15) contained 749 cluster members. All molecules that were 

represented by both maps (10x10 and 15x15) – altogether 407 -  have been selected and 

ranked by ascending order according to their distance to the centroid of neuron 6/6 (15x15). 

We selected this neuron and not neuron 8/7 of the small grid (10x10) as the large map 

provides higher resolution. A total of 29 compounds from the first 50 compounds being in 

closest proximity to the centroid were ordered from Asinex (a detailed list of the 50 best 

ranked compounds is given in the appendix, Section 7.5). 28 of them were delivered and 

tested in binding and functional assays of mGluR1 (Table 4.5.2-a). 
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Table 4.5.2-a. Overall results of in vitro pharmacological experiments for all test compounds. 
Results are the mean values of at least two independent experiments performed in 
quadruplicate (mGluR1 binding assay) or sextuplicate (mGluR1 functional assay), 
respectively. Asterisks denote values which were determined by full CRCs. Compounds with 
IC50-values above 40µM were assumed to be inactive. SEM are given in parentheses. 

Number Binding Ki [µM] Functional IC50 [µM] 
S-01 >40 >40 

S-02 >40 >40 

S-03 >40 23.9 (± 1.2) 

S-04 >40 22.5 (± 7.3) 

S-05 *9.18 (± 1.08) *1,71 (± 0.15) 

S-06 >40 *8.49 (± 0.62) 

S-07 >40 >40 

S-08 *9.93 (± 1.25) *0.74 (± 0.29) 

S-09 *17.23 (± 2.14) *2.97 (± 0.40) 

S-10 >40 14.8 (± 3.5) 

S-11 >40 25.7 (± 4.9) 

S-12 >40 >40 

S-13 >40 >40 

S-14 >40 >40 

S-15 >40 >40 

S-16 >40 9.0 (± 2.2) 

S-17 >40 >40 

S-18 >40 23.9 (± 0.9) 

S-19 >40 30.0 

S-20 >40 >40 

S-21 >40 >40 

S-22 >40 >40 

S-23 >40 >40 

S-24 >40 28.4 (± 3.9) 

S-25 >40 >40 

S-26 >40 >40 

S-27 >40 >40 

S-28 *36.16 (± 2.60) *10.63 (± 1.80) 

 

Full CRCs were only recorded for those compounds displaying IC50-values below 10µM 

due to their limited solubility. Regarding functional activity values nearly half of molecules S-
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01-S-28 reveal at least low activity. We achieved a higher hit rate than standard HTS. One 

compound (3.6%) was classified as “highly active” (>1µM), six compounds (21.4%) were 

“moderately active” (1-15µM), six compounds revealed low activity (15-40µM) and for 

fifteen compounds (53.6%) we observed “no activity” (>40µM) leading to a total hit rate of 

approximately 46% (<15µM). Concerning binding affinity values the majority of the 

compounds displays no affinity towards the allosteric site of the mGlu1 receptor. Two 

compounds (7.1%) were of “moderate affinity” (1-15µM) and two compounds exhibited “low 

affinity” (15-40µM), whereas the remaining 24 compounds (85.7%) showed “no affinity” 

(>40µM) towards the binding site. 

 

 
Figure 4.5.2-b. Graphical summary of the screening results (rmGluR1 functional assay) of 28 
hit compounds selected from the Asinex Gold Collection visualized by self-organizing maps. 

 

A detailed pharmacological profile has been created for molecules S-05, S-06, S-08, S-09 

and S-28, the five most active compounds. Full dose-response curves have been carried out in 

order to precisely determine affinity and activity values. Possible interactions of these 

compounds with the closely related mGlu5 receptor were also in our focus in order to evaluate 

their selectivity: All active compounds displayed no interaction with the allosteric binding site 

of mGluR5 (Figure 4.5.2-c) indicating that we have found selective allosteric mGluR1 

modulators. These findings correspond well with the predictions that were made before: 

According to Figure 4.5.1-b there is only few overlap between compounds of both mGluR 

subtypes and molecules S-05, S-06, S-08, S-09 and S-28 were located in areas with no 

mGluR5 reference compounds. 
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Figure 4.5.2-c. A: Compounds S-05, S-06, S-08, S-09 and S0-28 are non-competitive 
antagonist of the mGlu1 receptor. They inhibit DHPG-induced intracellular IP3-formation 
with IC50-values of 1.706µM (SEM: 0.1508µM), 8.488µM (0.6187µM), 0.744µM 
(0.2676µM), 2.973µM (0.4046µM) and 10.633µM (SEM 1.7972), respectively. Results are 
the mean values of two independent experiments performed in sextuplicate. B: Compounds S-
05, S-06, S-08, S-09 and S0-28 (10µM) do not displace [³H]-MPEP, binding to the allosteric 
site of the mGlu5 receptor (MPEP: 10µM). Results are the mean values of two independent 
experiments conducted in duplicate. Error bars denote SEM. 

 

4.5.3 Discussion 

Despite the fact that most of the reference compounds used for this study exhibited high 

potency, the corresponding test compounds were structural similar and elicited predominantly 

low inhibitory activity at the mGlu1 receptor. This discrepancy regarding the activity values is 

not surprising since virtual screening techniques mainly detect structurally new molecules 

with low rather than high activity. Nevertheless, the five outstanding compounds, S-05, S-06, 

S-08, S-09 and S-28, interacted subtype-selectively with the mGlu1 receptor, hence 

confirming the applicability of this method. Apart from compounds representing various 

different core structures, nearly half of all retrieved molecules (11 structures of 28, ~40%) can 

be assigned to one of two different scaffolds. They belong either to the 2H-Chromen-2-one 

derivatives, which can also be interpreted as coumarine analogues, or the 2-Chloroquinoline 

derivatives (Figure 4.5.3-a).  
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Figure 4.5.3-a. The two chemotypes found within the 28 virtual hits as exemplified by S-07 
(left) and S-05 (right), respectively. Red bonds and atoms represent the common scaffold. 

 

The chemical structures of all 28 molecules are given in the appendix. One promising 

coumarine derivative has also been found by the CATS similarity search (Section 4.3). The 

fact that all training and test molecules used within the CATS similarity search and for the 

Kohonen maps have been encoded with the same descriptor could serve as a reasonable 

explanation. In contrast to the 2-Chloroquinolines that closely resemble the R214127-

analogues (quinolines), a strategy of further optimizing the coumarine derivatives has been 

pursued (Section 5.3). 

 

4.5.4 Conclusions 

The rationale of the present campaign was to reduce molecule clusters – encoded with the 

CATS descriptor - from a multidimensional space to a 2D-representation and, thus, to detect 

hidden relationships between molecules of several classes (e.g., test compounds and reference 

compounds). Since the selectivity aspect plays an important role for group I mGluRs it was 

also inevitable for further analysis to prove whether or not our method allows to discriminate 

between ligands affecting either receptor subtype 1 or subtype 5. 

The complete Asinex database was employed for this study, which is in contrast to the 

previous concept based on ChemSpaceShuttle, where we performed data reduction and 

visualization on a “focused library” (Section 4.3). Here, a subset of 28 test compounds - 

comprising only two different chemotypes - was selected and assayed for binding affinity and 

functional activity on mGluR1 and nearly a half of them (13) evoked inhibitory activity below 

15µM. 

 



Summary 109 

 

5 Scaffold Optimization 

In chapter 4 the application of virtual screening concepts like similarity searching (Section 

4.3) and SOM-based clustering (Section 4.5) to identify novel structures affecting the mGlu1 

receptor were proposed. Chemical classes were detected so far not associated with family 3 

GPCRs. In particular, coumarine derivatives introduced in Section 4.3 seemed to provide the 

most promising scaffold. The following chapter contains procedures that aimed at exploiting 

the results of the screening campaigns in terms of optimizing the detected coumarine scaffold 

with respect to activity and investigating a potential binding mode for quinolines (e.g., 

EMQMCM, R193845) by comparative molecular field analyses (CoMFA). The conclusions 

drawn from a reliable CoMFA model improved the understanding of the binding mode of 

coumarines. Furthermore, we introduced a simple yet effective method to predict potential 

cross-activities for a set of group I allosteric mGluR antagonists. Compound selectivities were 

predicted by self-organizing maps. Since selectivity plays a crucial role for potential drugs 

this procedure also pertains to the hit optimization process. 

Based on the detection of C-07, a promising mGluR1 antagonist, a hit optimization project 

was started (Section 5.3). Structure-Activity Relationships for coumarines were investigated  

Eventually, the hypothesized binding mode of two prominent chemotypes of allosteric 

mGluR1 antagonists – coumarines and quinolines - was discussed by means of a homology 

model for the transmembrane region of mGluR1 (Section 5.2.2).  

 

5.1 QSAR Studies on Quinoline Derivatives 

Conventional structure-activity relationships (SAR) will be applied based upon a large data 

set of coumarine analogues to emphasize the impact of this novel class of non-competitive 

mGlu1 receptor antagonists (Section 5.3). Quantitative structure-activity relationships for a 

chemical classes of negative allosteric modulators on mGluR1 will be reported within this 

section: Computer assisted comparative molecular field analyses (CoMFA) were employed to 

quantitatively describe the influence of a certain structure on bioactivity values for the 

prominent class of quinoline derivatives [Mabire et al., 2005].  
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5.1.1 Statistical Evaluation of a CoMFA Model  

The structure-activity relationship of the quinolines exemplified for the potent molecules 

EMQMCM and its derivatives is probably one of the best-evaluated SAR and it represents an 

ideal data set to quantitatively describe this relationship and to obtain further insights into the 

binding mode of this group of ligands. A detailed SAR study has been reported [Mabire et al., 

2005] and based upon molecular structures and functional activity values (rmGluR1) included 

therein, QSAR analyses were conducted. Coumarines, structurally not resembling the 

quinolines, were assumed to bind to the same cavity like the latter group since they were 

found to selectively displace EMQMCM from its binding site within the transmembrane 

region of mGluR1 (Section 4.3.2, Figures 4.3.2-b and 4.3.2-c). Considerations regarding the 

alignment of EMQMCM as quinoline and B-04 as coumarine relative to each other will also 

be proposed (Section 5.4.2). 

The above-mentioned study of Mabire and co-workers contains 49 quinoline derivatives 

with a common core structure differing only in the nature and position of the attached 

substituent at the core scaffold. Initially, a preselection of the structure dataset was done as 

follows: Five compounds were removed from the subset since they were lacking precise 

bioactivity data. Another five molecules were discarded as they exhibited structural 

inconsistency with respect to other ligands. Thus, it was difficult to calculate reliable 

predictions since they pointed into spatial regions that were not covered by other molecules. 

The remaining 39 compounds formed the EMQMCM-data collection (Section 3.2.6) and were 

further subdivided into a training set (thirty entries) and a test set (nine entries) according to 

the following procedure: All molecules were sorted alphanumerically with respect to their ID 

values in ascending order. The first nine molecules denoted the test set and the remaining 30 

molecules the training set (Appendix, Section 7.6). We are well aware that this procedure is 

far from a random allocation and for statistical safety random classifications and analyses 

were performed as well (vide infra). Molecular flexible alignment and CoMFA studies were 

carried out as given in Section 3.2.4. 

The CoMFA study yielded a model with the following statistical parameters for the training 

set: q²(cv)training gave 0.617 for nine components with a conventional non cross-validated 

correlation coefficient r² of 0.991 and a SEP of 0.679. The estimated error SEE was 0.104 

with a relatively high estimated F-test value of 246.257. In general, higher r² and F-values 

indicate higher accuracy and in most cases a high q²(cv) corresponds to a low SEP. Sterical 

properties contributed with 59.2% to the model and electrostatic properties with 40.8%. 
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Figure 5.1.1-a. Graphic plotting the experimentally obtained bioactivity data (given as pIC50-
values) vs. the predicted data for the initial model where q²(cv)training was 0.62 and q²(cv)test 
was 0.60. Black circles denote the training set members and red circles the test set members. 
Training and test set are fitted by the black regression lines. 

 

The relatively high q²(cv)training and r² values confirm the predictive power and the 

applicability of this model. This is also supported by Figure 5.1.1-a: Only a few molecules of 

the training set slightly deviate from the regression line, which nearly traverses the point of 

origin. Three of the test compounds deviate from the regression line by nearly one logarithmic 

unit, which is due to the fact that they bear certain functional groups which are either flexible 

or do not occur within the set of training molecules. Thus, significant changes in activity are 

associated with a certain degree of predictive error. Consequently, the q²(cv)test-value is 

marginally impaired when compared to q²(cv)training. As a rule q²(cv) values above 0.4-0.5 are 

assumed to result in a statistically significant analysis. 

To evaluate the statistical significance of the given model new subsets have been created 

and models have been derived. This was done as follows: The whole data set was divided into 

two subsets of equal size (training set: 20 entries; test set: 19 entries). The 39 molecules were 

ten times randomly assigned to one of the subsets resulting in ten different training and test 

sets. For each data set a CoMFA model was established in the same way as it was shown for 

the initial model and an average model was calculated (Table 5.1.1-a). A detailed list 

including all CoMFA parameters for each single dataset is given in the Appendix (Section 

7.6). 
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Table 5.1.1-a. Results of an average CoMFA model based upon ten independent datasets. 

Parameters Mean value SEM 
q²(cv)training 0.507 0.036 

SEP 0.645 0.020 

Components 3.6 0.499 

F 87.122 28.874 

r²(conventional) 0.912 0.023 

SEE 0.247 0.028 

Electrostatic contributions 0.681 0.018 

Steric contributions 0.319 0.018 

 

The predictive power of this average model was significantly impaired when compared to 

the previous model. This may have two reasons. First, the more members a training set 

consists of (20 vs. 30) the more data are available leading to a gain of information to be 

exploited. Hence, the resulting model is more reliable. Second, the initial allocation of 

molecules to either the training or the test set led by chance to a model with considerable 

predictive power. 

Figure 5.1.1-b visualizes the decrease of predictive power from the initial model to the 

average model. The actual regression line significantly deviates from the ideal (dashed) 

regression line representing an ideal data distribution. Although of poorer quality than the 

initial model, the average model still has sufficient predictive capabilities. 
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Figure 5.1.1-b. Graphic plotting the experimentally obtained bioactivity data (given as pIC50-
values) vs. the predicted data showing the average of ten independent models where the mean 
q²(cv)training was 0.51. Green circles denote the molecules of the whole data set. Error bars 
indicate SEM. The black line is the resulting regression line whereas the dashed red line 
represents the ideal course of the regression line. 

 

Since steric and electrostatic interactions of CoMFA studies are sensitive to the distance 

between probe atoms and molecule atoms, there exists a considerable dependence of q² values 

on the relative orientation of the molecular aggregate with respect to the probe lattice [Böhm 

et al., 1999]. Two methods, All-Orientation Search (AOS) and All-Placement Search (APS), 

have been reported to evaluate this influence [Wang et al., 1998] (Section 3.2.4). They have 

proven to be helpful in (i) searching for the optimal orientation resulting in the highest q² 

value and in (ii) detecting the q² value of the initial model relative to all possible models. 

The result for the training set of the present CoMFA model is given in Figure 5.1.1-c. Both 

searches clearly demonstrate that the initial model is among the best 5% (AOS) and 10% 

(APS), respectively of all possible models for this particular alignment. The histogram plots 

nearly correspond to a normal (Gaussian) distribution. However, the relatively broad ranges 

of obtained q² values varying between 0.3 and 0.7 slightly impair the robustness of the model.  
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Figure 5.1.1-c. Histograms displaying the distribution of the q²(cv)training values calculated as 
LOO cross-validation of the training set after rotation of the molecular aggregate around x-, y- 
and z-axis (AOS) and after systematic translation of the grid relative to the aligned molecules 
(APS). The q²(cv) values are binned into ranges of 0.01 units size and red bins denote the 
range where the q²(cv) of the initial model is located. 

 

5.1.2 Contour Maps 

Before analyzing the CoMFA studies it has to be emphasized that in addition to 

pharmacophore models CoMFA models remain hypotheses as long as they are not verified or 

falsified by experiments. The present spatial orientation of substituents (the molecular 

alignment) attached to the common core is the most likely arrangement i.e., the energetically 

most favored arrangement since the protein structure is not taken into account. However, the 

real orientation of the side chains of the bound ligand could differ to some extent. But it is 

assumed that the arrangement of substituents from different molecules relative to each other 

will always be similar. 

Having a closer look at the electrostatic CoMFA plots (Figure 5.1.2-a) we observed that the 

carbonyl group, connecting the aromatic with the hydrophobic moiety (“polar linker”) is 

crucial for a potent ligand. This is evidenced by a large red isocontour below and a small 

isocontour above the carbonyl oxygen. Interestingly, this map allows for visualizing an 

important feature: Methoxy-groups attached to the cyclohexane of the hydrophobic moiety in 

cis-conformation are favored against the trans-conformation. The oxygen in trans-position 

points to a large blue isopleth indicating a region where negative charges and H-bond 

acceptors are disfavored. In contrast, the oxygen in cis-position directs to a red isopleth. Here, 

the weak H-bond acceptor and negatively charged oxygen is favored. Indeed, switching from 

cis-conformation to trans-conformation in one molecule leads to a significantly attenuated 

activity. The blue bulky contour at the left end of the aromatic moiety denotes a region where 
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H-bond donors or positively charged heteroatoms or substituents are favored. It should be 

stressed that, in contrast to the “polar linker”, no prediction can be made for the quinoline 

core structure since this molecular part is retained in all structures. 

 

trans-configured 
methoxy-substituents

methoxy-substituentscis-configured 
Methoxy-substituents

trans-configured 
Methoxy-substituentstrans-configured 
methoxy-substituents

methoxy-substituentscis-configured 
Methoxy-substituents

trans-configured 
Methoxy-substituents

 
Figure 5.1.2-a. Contour map displaying electrostatic fields for the 39 molecules of the 
EMQMCM-data collection. Blue polyhedrons denote regions were positive charges (H-bond 
donors) are favored and negative charges (H-bond acceptors) are detrimental. Red 
polyhedrons show the opposite case. 

 

The steric contour map visualizes bulky features inevitable for potent ligands not 

considering any properties related to charges or partial charges. Regarding the present model 

(Figure 5.1.2-b) we noticed that the hydrophobic moiety on the right may extend downwards 

and in particular upwards. The lack of yellow polyhedrons in this region does not necessarily 

mean that the hydrophobic residue may rotate freely into each direction. The model does not 

explore areas not covered by either type of isocontours. Thus, no conclusion could be drawn 

for this space. 
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Figure 5.1.2-b. Contour map displaying steric fields for the 39 molecules of the EMQMCM-
data collection. Green polyhedrons denote sterically favored regions and yellow polyhedrons 
show regions where steric bulk is disfavored. 

 

The yellow polyhedrons denote sterically detrimental regions and they can also be assumed 

as restricted volumes. Accordingly, those substituents of the quinoline core structure pointing 

to the lower left corner (mainly heterocycles) considerably diminish activity. An additional 

(hetero)cycle condensed to the quinoline scaffold or a short aliphatic side chain retains 

activity of a potent ligand. This is visualized by the green polyhedron in the upper left corner. 

Exploiting all information given by the contour maps lead to the following proposed results, 

which are summarized in Figure 5.1.2-c. Starting from the quinoline scaffold the hydrophilic 

carbonyl linker is crucial for high activity at mGluR1. The hydrophobic residue (R3) may 

contain either aromatic or alicyclic structures. A weak H-bond acceptor (methoxy group) is 

favored in p-position of the alicycle (cyclohexane) preferably in cis-conformation. Ali- or 

heterocycles (O and S as heteroatoms) condensed at the quinoline ring at position 2 (R2) and 

3 (R1) retain high activity (R214127) if they replace a short (max. 3 carbon-atoms) aliphatic 

side chain at position 3. Heterocycles (e.g., thiophene, thiazole) substituted at R2 attenuate 

activity of the ligand. 
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Figure 5.1.2-c. Overview about the structural requirements for potent quinoline derivatives as 
non-competitive mGlu1 receptor antagonists. 

 

5.1.3 Conclusions 

It has been demonstrated that the structural (relatively) consistent quinoline derivatives 

combined with precise functional activity data facilitated the development of a consistent and 

presumably reliable CoMFA model. Predictions made for a test set of molecules support this 

assumption (vide supra). However, apart from such “virtual” model evaluations no “real” 

verifications were done, i.e., no molecule was sketched based on the present model and 

afterwards synthesized or ordered to check in functional assays whether the predicted 

bioactivity could be experimentally confirmed or not. The rationale for performing CoMFA 

studies on quinolines was the visualization of steric and electrostatic properties of the 

molecules of interest in order to detect substituents important for exerting the desired 

inhibitory activity. Likewise conventional SAR studies on coumarines (Section 4.3), the 

quantitative SAR of quinolines presented herein served as a basis for suggesting a ligand 

orientation at the allosteric mGluR1 binding domain for members of this class. 

 

5.2 Cross-Activities of Group I mGluR Antagonists 

As poor selectivity of potential drug candidates is often inherently associated with 

undesired side effects in later drug development phases, target specificity plays a pivotal role 

in today’s early hit optimization processes. Therefore, the aspect of selectivity must be taken 

into account as soon as possible. Testing a given compound on a large panel of different 
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targets is ineffective and expensive to perform and attempts have been made to find concepts 

that circumvent this step [e.g., Schnur et al., 2006; Cleves & Jain, 2006]. In the following 

chapter a simple yet effective way to predict potential cross-activities for known allosteric 

antagonists of group I metabotropic glutamate receptors will be presented. 

The principle and the application of self-organizing maps (SOM) in terms of hit finding has 

been introduced before (Section 1.5.4, Section 4.5). We used the mapping results presented in 

Section 4.5 to predict potential cross-activities for group I mGluRs. Since it turned out that the 

CATS descriptor was able to precisely discriminate antagonists of mGluR1 and mGluR5 we 

tried to exploit the SOM results of the 15x15 grid for predicting potential additional binding 

behavior of the ligands.  

 

5.2.1 Target Prediction and Proof of Cross-Activity  

First, the mGluR-data collection was complemented by the molecules from the COBRA 

database [Schneider & Schneider, 2003] containing a broad set of known drugs, leads, and 

lead candidates affecting a large number of different drug targets. Subsequently, the 

molecules were converted to a vector representation giving the scaled occurrence frequencies 

of topological potential pharmacophore point pairs (CATS2D method). In this study, 

intramolecular distances from zero to nine bonds were considered, resulting in a 150-

dimensional vector representation of each molecular compound. 

The complete COBRA database was subjected to clustering and mapping onto a two-

dimensional grid by the SOM approach (Section 4.5.1). As a result, all molecules from 

COBRA were distributed into 225 (15×15) clusters (“neurons” or “receptive fields”). The 

distribution of these compounds is also shown in Figure 5.2.1-a, panel A. It is evident that the 

SOM is devoid of large patches of empty clusters (< 3%) and pronounced densities, which 

indicates successful mapping and also reflects the diversity of the COBRA entries. After 

SOM training the mGluR data were projected onto this map and the resulting distribution 

patterns were analyzed. The two mGluR ligand classes form separate localized distributions, 

where the distribution of the mGluR5 antagonists (Figure 5.2.1-a, panel B) appears to be 

slightly more focused than the mGluR1 data (Figure 5.2.1-a, panel C). Noteworthy, only 6% 

of the two ligand classes were clustered together (Figure 4.5.1-b). The SOM was able to 

discriminate between antagonists of the two mGluR subtypes.  
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Figure 5.2.1-a. SOM projection of the complete COBRA data (A), the mGluR1 antagonists 
(B), and mGluR5 antagonists (C). The distribution of the compounds on the map was 
separately scaled for each figure. Field (6/6) was selected as the target “mGluR1 cluster”, and 
field (8/5) as the target “mGluR5 cluster”. Gray fields indicate empty clusters. Note that the 
map forms a torus. See also Section 4.5.1. 

 

Clusters (6/6) and (8/5) revealed the highest density of mGluR1 and mGluR5 reference 

molecules, respectively (Figure 5.2.1-a). For prediction of potential side effects or additional 

binding behavior of the mGluR antagonists, the targets of those COBRA ligands that were co-

located in these two clusters were listed. Based on this analysis, mGluR1 antagonists of 

cluster (6/6) and mGluR5 antagonists of cluster (8/5) were predicted to interact with human 

dopamine D2-like receptors, histamine H1 receptor, and muscarinic acetylcholine (mACh) 

receptor. For pharmacological testing, we selected representative molecules from each cluster 

and if not available structurally related compounds from a Merz molecule collection (Figure 

5.2.1-b). Except EMQMCM, R193845, M-MPEP, MTEP and D-06 all molecules were from a 

Merz library but closely resemble their pendants in the mGluR data collection. 
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Figure 5.2.1-b. Known mGluR1 (EMQMCM, R193845) and mGluR5 antagonists, which 
were selected for activity testing based on the SOM results. 

 

Representatives were defined as being closest to the cluster centroids in descriptor space. 

Four scaffold classes were found: Molecules EMQMCM, R193845, MTEP and M-MPEP 

have been described elsewhere (Section 1.4.2, Section 2.2), D-01 - D-03 are imidazo[1,2-

a]pyrazine derivatives, and D-04 - D-08 represent imidazo[1,2-a]pyridine derivatives [Mutel 

et al., 2002]. In addition, for each of these test compounds individual predictions of target 

preference were made. This prediction was based on the relative occurrence frequencies of 

known COBRA compounds in the clusters, for example in the mGluR5 cluster we found 4 × 

H1, 2 × D2, 1 × mACh ligands. Based on this crude statistics, compounds EMQMCM and 

R193845 were predicted to interact with all four targets, the remaining compounds preferably 

with H1. We also found aromatase inhibitors co-located in cluster (8/5), which was not further 

pursued but might be worthwhile testing. 
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Table 5.2.1-a. IC50 values (mACh, mGluR1, mGluR5) and Ki values (D2, D3, H1) of selected 
compounds. Underlined values indicate the predictions according to the SOM analysis. 

Identifier mACh 
(M1) [µM] D2  [µM] D3 [µM] H1 [µM] mGluR1 

[µM] 
mGluR5 

[µM] 

EMQMCM 54.7 (±.2.8) 91.6 (± 13.6) 45.4 (± 27.1) 22.0 (± 3.7) 0.008 - 

R193845 n.d. 80.7 (± 0.8) 25.4 (± 9.4) 20.6 (± 1.1) 0.080 - 

MTEP n.d. n.d. 76.2 (± 46.9) 26.3 (± 4.1) - 0.005 

M-MPEP n.d. n.d. 75.6 (± 23.5) 33.6 (± 3.2) - 0.010 

D-01 n.d. n.d. n.d. 22.9 (± 1.9) - > 30.0 

D-02 n.d. n.d. 90.9 (± 78.4) 16.2 (± 7.1) - > 30.0 

D-03 n.d. n.d. 16.0 (± 6.5) 4.6 (± 1.7) - 28.8 

D-04 n.d. n.d. n.d. 36.4 (± 33) - > 30.0 

D-05 n.d. n.d. 53.4 (± 37.2) 4.8 (± 0.8) - > 30.0 

D-06 n.d. n.d. 24.3 (± 4.4) 6.5 (± 3.4) - 8.8 

D-07 n.d. n.d. 32.9 (± 16.7) 4.5 (± 1.1) - > 30.0 

D-08 n.d. n.d. n.d. 4.3 (± 0.6) - > 30.0 
n.d.: no detectable activity/affinity at the concentrations tested. 

 

The pharmacological assays results are summarized in Table 5.2.1-a. Although only weak 

binding constants in the low to medium micro molar range were determined, the results 

confirm the SOM predictions. Noteworthy, all tested compounds exhibit binding affinity in 

our H1 receptor assay, indicating a potential general interaction of mGluR1/5 antagonists with 

the histamine receptor. It might thus be meaningful testing affinities to other histamine 

receptor subtypes. With the exception of D-01, D-04, and D-08, the compounds showed 

moderate binding to dopamine D3 receptors. Only EMQMCM and R193845 also exhibited 

dopamine D2 receptor binding affinity, all others were inactive at dopamine D2 receptors, 

meaning that three out of the four substance classes represent D2-selective chemotypes. The 

known mGluR1 antagonists EMQMCM and R193845 were most “promiscuous”. These are 

the only compounds that comprise additional mACh activity and dopamine D2 receptor 

binding affinity.  

 

5.2.2 Conclusions 

In summary, we successfully applied a topological pharmacophore descriptor and SOM-

based clustering to predicting potential activities of known mGluR antagonists. This 

prediction concept, which includes molecule encoding, clustering and visualization gives no 
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hint about the potency of compounds at the predicted targets. Nevertheless, in this study the 

tested compounds exhibited weak yet detectable affinities towards the allosteric binding site 

of mGluR1 and mGluR5, respectively, with binding constants in the micro molar range. 

Whether such activity or affinity is of actual pharmacological relevance remains to be shown.  

Irrespective of the outcome of such studies for the particular compounds employed here, the 

present virtual screening concept might provide a basis for early recognition of potential side-

effects in lead discovery. Moreover, this concept could perhaps also applied to other issues or 

tasks in drug discovery. Assumed that suitable descriptors and databases are available many 

predictions regarding, e.g., toxicity and ADME properties may be proposed. 

 

5.3 Hit Optimization and SAR Analysis of Coumarines 

Since C-07 has proven to be a potent novel allosteric antagonist of mGluR1 a hit 

optimization project for the promising coumarine core structure was raised. Compounds 

bearing this scaffold were found by the topological pharmacophore search (Section 4.3) as 

well as the self-organizing maps (Section 4.5). In both studies, the molecules were encoded 

with the CATS atom-pair descriptor. However, the five coumarine derivatives detected within 

the SOM study (S-03, S-07, S-12, S-18, S-21; Section 4.5.2 and Appendix, Section 7.5) did 

not show any affinity or activity at the mGlu1 receptor. 

 

The synthesis of all compounds described herein has been carried out at the Institute of 

Organic Synthesis (IOS, Riga, Latvia), which is a co-operation partner of Merz. Aigars 

Jirgensons, group leader in Organic Synthesis at the IOS, managed the synthesis project. 

Structure-activity relationship investigations have been performed at Merz. Synthesis 

proposals based upon bioactivity data of already assayed compounds were presented to the 

chemists of the IOS and discussed with them. The complete project was supervised by Tanja 

Weil from Merz. 

 

5.3.1 Synthesis Strategy 

The idea of this project was to systematically explore potential influences of various 

substituents attached to the common core at all possible positions. Newly designed molecules 

should have (i) higher affinity and activity than the reference compound C-07 and (ii) they 
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should show the same or improved solubility compared to C-07. In a further step the scaffold 

was also partially modified. 

The initial strategy comprised the following modifications of C-07 (Figure 5.3.1-a): Attaching 

small hydrophobic side chains (methyl, trifluoromethyl) at several positions of the cyclohexyl 

ring at R1, R2 and R3; introducing new substituents at position R6, predominantly small and 

polar (nitro-, amino-groups and short alkylamino groups) residues; replacing the chloro-

substituent (R4) with other halogens, (C1-C6alkyl)amino-, nitro- or heteroaryl-substituents.  
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Figure 5.3.1-a. Chemical structure of C-07 and the proposed positions for side chain 
modifications of the scaffold (a) and the introduction of new ring systems (b). Black digits 
denote potential substitution positions of the common scaffold according to the IUPAC 
nomenclature. 

 

The most thorough modifications were achieved at position R5. While retaining the oxygen 

as linker, the i-propyl group was replaced, e.g., with short and flexible groups like allyl- or 

difluoromethyl-groups as well as with bulky cycloalkyl-substituents. A similar strategy was 

followed for short alkylthio- and amino-groups where the oxygen has been replaced with 

sulfur or nitrogen. Furthermore, some derivatives were synthesized where R5 was linked 

either to R4 or R6, thus adding another ring system to the coumarine scaffold (Figure 5.3.1-a, 

panel b). Other modifications aimed at opening the coumarine core structure by cleaving the 
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ring system (Figure 5.3.1-b). Molecules with new and flexible scaffolds distinct from the 

coumarine core were yielded (B-34; Table 5.3.2-h). 
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Figure 5.3.1-b. Modifications of the core structure as a result of bond splitting at several 
bonds indicated by black arrows. 

 

The whole optimization project resulted in a focused library of approximately 200 

coumarine analogues. In order to investigate the SAR within this novel chemical series, all 

compounds were tested with respect to their ability to bind at the allosteric site of the rat 

mGlu1 receptor and to antagonize its activation. Most of the active compounds were also 

tested on the human mGlu1 receptor. A selection is given in the following tables showing 

structural diverse coumarine derivatives and their bioactivity data. 

 

5.3.2 Structure-Activity Relationship 

The first step describes various substituents at position 9 while retaining the ether linker 

(Table 5.3.2-a). Removing the i-propyl substituent of C-07 or replacing it with flexible 

aliphatic chains, alkyl-ether substituents or a hydrogen led to a slight decrease (B-03, B-04) or 

loss (B-01) of activity. The more the substituent resembles the i-propyl structure the higher is 

the corresponding affinity (B-05). A substituent similar to the hydrophobic cyclohexyl residue 
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in the quinoline EMQMCM is also assumed to nearly retain activity (B-04). This synthesis 

allowed for comparing both scaffolds, the quinolines and coumarines and gave hints to the 

hypothesized binding mode of them at the receptor site (Section 5.4.2). 

 
Table 5.3.2-a. Pharmacological data of diverse 9-substituted coumarines (ether linker). 
Values in italic indicate estimated data (tested at 10µM). SEM are given in parentheses. 

O OR5

Cl

 

Compound-No. R5 
rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1 
IC50 (µM) 

C-07 i-propoxy 0.753 (± 0.048) 0.362 (± 0.031) 9.8 (± 0.65) 

B-01 OH >100 >100 n.t. 

B-02 
O

 

31.9 (± 1.08) 5.1 (± 0.70) n.t. 

B-03 

O

O
 

31.6 (± 0.87) 4.8 (± 0.82) >100 

B-04 
O

O

 
8.267 (± 1.27) 3.3 (± 0.28) >100 

B-05 difluoromethoxy 7.1 (± 0.19) 2.8 (± 0.24) >100 

n.t.: not tested on this target 
 

The replacement of oxygen by a sulfur at position 9 of C-07 yields B-06 with slightly 

diminished activity. A short flexible side chain containing two H-bond acceptors considerably 

improves activity (B-07) and solubility (data not shown) whereas a methylsulfonate at that 

position results in loss of activity (B-09, Table 5.3.2-b). 
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Table 5.3.2-b. Pharmacological data of diverse 9-substituted coumarines (thioether linker). 
Values in italic indicate estimated data (tested at 10µM). SEM are given in parentheses. 

O OR5

Cl

 

Compound-No. R5 
rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1 
IC50 (µM) 

B-06 S
 

10.86 (± 0.09) 1.9 (± 0.29) n.t. 

B-07 
S

NO

 
2.728 (± 0.002) 0.123 (± 0.007) >100 

B-08 N

S
 

28.2 (± 0.50) 5.35 (± 0.90) >100 

B-09 S
O O

 
>100 >100 n.t. 

n.t.: not tested on this target 
 

Since it turned out that the dimethylthiocarbamyl substituent at position 9 increases activity 

(B-07) the respective substitution pattern for this compound at R2 – R4 was investigated 

(Table 5.3.2-c). At least the presence of a non-hydrogen atom at position 8 (R4) seems to be 

crucial (B-12). Only an introduced methyl group at R3 could nearly retain activity (B-11). 

Other even minor modifications yielded inactive compounds or compounds with attenuated 

activity 

 

Table 5.3.2-c. Pharmacological data of diverse 4,5,8-substituted coumarines. Values in italic 
indicate estimated data (tested at 10µM). SEM are given in parentheses. 

OS

N

O

O

R2

R4

R3  

Compound-
No. R2 R3 R4 

rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1
IC50 (µM) 

B-10 H H Cl 
2.728  

(± 0.002) 
0.123  

(± 0.007) 
>100 
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B-11 H methyl Cl 
5.243 

(± 0.52) 
0.774 

(± 0.062) 
n.t. 

B-12 H H H 
39.6 

 (± 1.26) 
6.8  

(± 0.92) 
>100 

B-13 ethyl H Cl 
23.4 

(± 0.37) 
>100 n.t. 

B-14 phenyl H Cl >100 >100 n.t. 

n.t.: not tested on this target 
 

Starting from C-07 an additional H-bond donor at position 10 (R6) led to a loss of activity 

(B-15) whereas a H-bond acceptor even as part of a bulky substituent only slightly decreased 

activity (B-17, B-19). However, in general it was found that the bulkier the moiety the weaker 

the observed activity is (Table 5.3.2-d). 

 

Table 5.3.2-d. Pharmacological data of diverse 10-substituted coumarines. Values in italic 
indicate estimated data (tested at 10µM). SEM are given in parentheses. 

OO O

Cl

R6

 

Compound-No. R6 
rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1 
IC50 (µM) 

B-15 NH2 >100 >100 >100 

B-16 NO2 >100 4.5 (± 0.16) >100 

B-17 O NH

 
16.56 (± 0.763) 1.333 (± 0.161) n.t. 

B-18 NH

O

O

OH  
34.0 (± 0.74) 4.9 (± 0.65) >100 

B-19 N

OO

 
17.5 (± 0.26) 3.2 (± 0.31) n.t. 

B-20 NH

O

 
>100 6.7 (± 1.19) >100 

n.t.: not tested on this target 
 

Changing substituents at position 8 (R4) yielded compounds with low-micro molar activity 

(Table 5.3.2-e). Either a H-bond acceptor or a short aliphatic side chain (B-21, B-22), which 
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slightly reduced activity (IC50: 0.36 µM to 2.5µM), have been investigated. H-bond donors 

are not favorable at that position (B-24). Here, the same applies as for position 10: a too 

capacious residue decreases activity (B-23). 

 
Table 5.3.2-e. Pharmacological data of diverse 8-substituted coumarines. Values in italic 
indicate estimated data (tested at 10µM). SEM are given in parentheses. 

OO O

R4

 

Compound-No. R4 
rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1 
IC50 (µM) 

C-07 Cl 0.753 (± 0.048) 0.362 (± 0.031) 9.8 (± 0.65) 

B-21 NO2 7.5 (± 0.41) 1.6 (± 0.21) n.t. 

B-22 ethyl 2.625 (± 0.05) 2.5 (± 0.24) n.t. 

B-23 N
H

O

 
>100 4.0 (± 0.41) >100 

B-24 NH2 21.5 (± 0.27) 5.7 (± 0.52) >100 

n.t.: not tested on this target 
 

Short and lipophilic side chains at positions 3, 4 and 5 (Table 5.3.2-f) were able to nearly 

maintain (B-25, B-26) or slightly enhance activity (B-27). Position 5 (R3) has even earlier 

proven to be a suitable place for the introduction of a methyl group (B-11). Unfortunately, it 

has not been further explored for other substituents. 

 

 

Table 5.3.2-f. Pharmacological data of diverse 3,4,5-substituted coumarines. Values in italic 
indicate estimated data (tested at 10µM). SEM are given in parentheses. 

OO O

Cl
R1

R2
R3  

Compound-
No. R1 R2 R3 

rmGluR1
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1
IC50 (µM)

B-25 methyl H H 
0.828 

(± 0.131) 
1.2  

(± 0.09) 
n.t. 
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B-26 H trifluoromethyl H 
2.984 

(± 1.05) 
0.574  

(± 0.052) 
n.t. 

B-27 H H methyl 
0.691 

(± 0.047) 
0.199  

(± 0.017) 
23.6  

(± 1.41) 
n.t.: not tested on this target 

 

Eventually, removing the condensed cyclohexene and introducing an adamantylcarbonyl 

group at the new position 3 led to substantially improved activity and affinity data. Various 

kinds of additional residues (H-bond acceptors, lipophilic and more hydrophilic groups) at the 

new position 7 (R5) resulted in compounds potently binding to the allosteric site of mGluR1 

and inhibiting its DHPG-induced activity (Table 5.3.2-g). The fact that this series (i) lacks the 

common core structure and (ii) revealed highly active inhibitors led to the assumption that 

these ligands bind to the receptor in a way distinct to that of the other molecules of this 

project. Probably the crucial role, however, plays the voluminous adamantyl substituent that 

forces these molecules in a slightly “shifted” orientation relative to the other coumarines, 

according to the hypothesis (Section 5.4.1).  

 

Table 5.3.2-g. Pharmacological data of diverse 3-(Adamantane-1-carbonyl)-2H-chromen-2-
one derivatives. Values in italic indicate estimated data (tested at 10µM). SEM are given in 
parentheses. 

O O

O

R5

 

Compound-No. R5 
rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1 
IC50 (µM) 

B-28 methoxy 0.293 (± 0.022) 0.058 (± 0.008) 30.6 (± 1.19) 

B-29 diethylamino 0.049 (± 0.004) <1 >100 

B-30 Br 0.431 (± 0.049) 0.197 (± 0.053) n.t. 

B-31 dimethylamino 0.088 (± 0.011) <1 17.6 (± 1.12) 
n.t.: not tested on this target 

 

Several attempts to modify the core structure have been made, yet most of the resulting 

structures revealed no activity (data not shown). A selection of some modifications is given in 

Table 5.3.2-h. Replacing the cyclohexyl ring in C-07 with a cyclopentyl ring nearly conserves 

inhibitory activity (B-32). Neither the extension of the ring system provided by B-33 nor 
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cleavage of the heterocycle (B-34) led to molecules maintaining the activity of the structurally 

related compounds B-32 and C-07. 

 

Table 5.3.2-h. Pharmacological data of coumarine derivatives and related modifications. 
Values in italic indicate estimated data (tested at 10µM). SEM are given in parentheses. 

Others 

Compound-
No. R 

rmGluR1 
Ki (µM) 

rmGluR1 
IC50 (µM) 

hmGluR1 
IC50 (µM) 

B-32 
OO O

Cl

 

3.948 (± 0.23) 0.494 (± 0.119) >100 

B-33 

OO

N
S

O

 
>100 11.8 (± 1.28) n.t. 

B-34 
OO

Cl

N  

>100 >100 n.t. 

n.t.: not tested on this target 
 

 

5.3.3 Discussion and Summary 

Summarizing the results of 189 coumarine derivatives obtained by pharmacological 

experiments allows for drawing some conclusions concerning a general structure activity 

relationship for these compounds. The coumarine structure exemplified by C-07 is given in 

Figure 5.3.3-a. The potential positions for substituting are also indicated. Here, a light grey 

ellipse emphasizes the common core structure of the vast majority of derivatives. One 

important feature attached to the scaffold is the cyclohexene ring highlighted by a dark grey 

ellipse. Although this moiety is also assumed to be part of the scaffold, which is stressed by 

the red digits, it is suggested as a condensed substituent in this scheme. It could either be an 

aromatic or heteroaromatic ring but preferably a cyclohexene. Additional short aliphatic and 

hydrophobic substituents may be introduced at each position but favorably at position 5. The 

influence of separated side chains at position 7 has not been explored, only if connected with 

substituents at position 8, thus introducing an additional ring. However, they turned out to be 

disfavored in terms of bioactivity.  
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Figure 5.3.3-a. Proposed SAR scheme at a glance. The series of coumarine derivatives is 
exemplified by C-07. Red digits denote potential substitution positions of the common 
scaffold according to the IUPAC nomenclature. For more information see text. 

 

A substituent at position 8 has proven to be crucial. Here, this feature is displayed as a 

yellow ellipse. It can either consist of a halogen, a H-bond acceptor or a short aliphatic side 

chain. This strongly supports the hypothesis that preferably a short yet bulky substituent 

should be attached at position 8 (Figure 5.3.3-a). Only H-bond donors were disfavored (Table 

5.3.2-e). Another pivotal feature is the residue at position 9 highlighted by a light blue ellipse. 

It can comprise a ring system such as (B-05) although a short and relatively rigid hydrophobic 

side chain is preferred. It must contain at least one heteroatom (weak H-bond acceptor) 

directly attached to the scaffold but might also include other polar features (presumably 

because of increased solubility). The hypothesized influence of features at position 8 with 

respect to activity is detailed below (Figure 5.3.3-b). Finally, the blue-white hatched ellipse at 

position 10 denotes a region where bulky residues containing H-bond acceptors at least nearly 

retain activity whereas other features (e.g., H-bond donors) lead to a loss of activity. 

However, this substituent turned out to be of minor importance. 
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Detailed investigations have been made for the presumed interaction between substituent 8 

and a H-bond donor site at the receptor. The chloro atom at position 8 in C-07 (Figure 5.3.3-b, 

a) is a relatively small atom that can interact with a H-bond donor via weak hydrogen 

bonding. This residue seems to be meaningful but not essential since molecule c) exhibits a 

decrease but not a loss of activity (Figure 5.3.2-3, c). Furthermore, replacement with a H-bond 

donor attenuates activity, which is exemplified by B-24 (Figure 5.3.2-3, d). 

 

OO O

Cl

OO O

Cl

O O O

HR HR

a) C-07; 0.362µM

O OO

N
+O

OHR

b) B-21; 1.6µM

O OO

N
+O

OHR HR

b) B-21; 1.6µM

c) 4.5µM d) B-24; 5.7µM

O OO

N
H

H
 

Figure 5.3.3-b. Hypothesized interactions between the substituents at positions 8 and a 
hydrogen provided by the receptor. Chloro atom (a) and nitro residue (b) form a weak 
hydrogen bond thereby presumably stabilizing a certain molecular orientation. If position 8 
lacks a H-bond acceptor no interaction via hydrogen bonding can be established at that 
position. For more information see text. 

 

Eventually, another H-bond acceptor at position 8, e.g., a nitro group can also interact with 

a hydrogen provided by the receptor site, which is shown for B-21 (Figure 5.3.3-b, b). The 

decrease in activity from C-07 to B-21 might be a result of a hampered hydrogen bonding 

since the nitro group is more voluminous than the chloro atom. Noteworthy, a hydrogen bond 

R-OH···O-N-R is stronger than R-OH···Cl-C-R since the chlorine acts as a weak acceptor 

[Desiraju & Steiner, 1999]. 

Summarized, a substituent at position 8 of the coumarine scaffold should be of small size, 

act as a H-bond acceptor and should preferably have hydrophobic properties (C-07 and B-21, 

Table 5.3.2-e).Within the described hit optimization project a total of 189 compounds 
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including the first hit C-07 were synthesized and pharmacologically characterized. The 

influence of crucial features and features of less importance has been investigated for 

biological relevance. Even the scaffold itself was partly modified yet without success 

regarding the pharmacological profile. The results of all compounds have been exploited for 

SAR purpose leading to a proposed SAR scheme (Figure 5.3.3-a). 

An overall functional activity hit rate is given in Figure 5.3.3-c. The ranges of activity 

classes shown here slightly differ compared to those used for hit rates of virtual screening 

campaigns. Fourteen compounds (7.4%) including C-07 were classified as “highly active” 

(>1µM), twenty-eight compounds (14.8%) were “moderately active” (1-10µM), nineteen 

compounds (10.1%) revealed moderately to low activity (10-20µM),  twenty-nine compounds 

had low activity (15.3%) and for ninety-nine compounds (52.4%) “no activity” was observed 

(>30µM) leading to a total hit rate of approximately 22% (<10µM). This is an acceptable hit 

rate for hit optimization projects. However, it must be stressed that only few compounds were 

able to allosterically antagonize the mGlu1 receptor more potently than the initial hit. Some of 

those molecules affecting the receptor in the low nano molar range (Table 5.3.2-g) are 

assumed to have an orientation in the binding pocket distinct to the others (Section 5.4.1), 

which will be addressed in the next chapter. 

 

 
Figure 5.3.3-c. Overall hit rate for coumarine derivatives synthesized within the hit 
optimization project. Digits at the edge denote the absolute number of compounds of the 
corresponding activity subset. 
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5.3.4 Conclusions 

Based on compound C-07 we performed a hit optimization project for coumarines as 

negative allosteric modulators of mGluR1 leading to 189 coumarine related structures. 

Although no promising lead candidate emerged from this project the extensive exploration of 

the chemically feasible space of coumarine derivatives facilitated a comprehensive SAR 

description. Precise knowledge of the pharmacological relevance of various substituents at 

any scaffold position meaning their influence on ligand binding enabled or at least supported 

the hypothesized molecule orientation in the receptor (Section 5.4.1), which followed after 

analysis of the observations made in this chapter.  

 

5.4 The Hypothesized Allosteric Binding Pocket of mGluR1 

Until now, only the structures of ligands binding to group I mGluRs have been taken into 

account. Based on pharmacophore models (Section 4.2) as well as on SAR analyses (Section 

5.3) and contour maps of a CoMFA model (Section 5.1) potential interaction points of several 

allosteric mGluR1 antagonists were discussed and considered as crucial features or features, 

which are presumably favored but not essential. Here, an attempt was done to transfer the 

knowledge obtained within the mentioned chapters to evaluate a possible binding behavior of 

those ligands at the corresponding target, the binding site in the HD of the mGlu1 receptor. 

Therefore, a homology model of mGluR1 was developed (Section 3.2.5) to get an idea of a 

potential binding mode of coumarines and quinolines. 

 

5.4.1 Binding of Coumarines 

The diverse molecules C-07 and B-28 (Section 5.3) were selected as coumarine 

representatives to investigate the binding mode of coumarines at the allosteric site of 

mGluR1. The ligands were placed manually into the transmembrane region in proximity to 

the pocket where 11-cis-retinal was found in bovine rhodopsin. Preliminary results with 

automated docking methods did not lead to reasonable results, thus we decided to place the 

ligands manually in a way most consistent with our SAR data and mutational results from 

literature [Malherbe et al., 2003a] that were based on binding of EM-TBPC, a prominent 

mGluR1 antagonist, followed by energy minimization. It must be stressed that all presented 

binding modes are hypotheses fitting to our data rather than extensively evaluated and 

confirmed results. For some of the ligands the functional activity in human mGluR1 was also 
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measured (Section 5.3.2). All ligands exerted explicitly lower activity in the human receptor. 

This led us to the conclusion that the ligands had to be in contact with V7575.47 (superscript 

indicates TM and position [Balesteros & Weinstein, 1995]), which is replaced with an leucine 

in the human mGluR1, the single difference between rat and human receptor within the 

ligand-binding region. The hydrophobic unsaturated ring was selected as candidate for this 

contact.  

Figure 5.4.1-a (panel a) displays the predicted binding mode of C-07 in the binding pocket 

of mGluR1. The unsaturated ring is in contact with the rat selective V7575.47, which is 

surrounded by further hydrophobic residues V7535.43 and P7565.46 that form a hydrophobic 

cluster (panel a).  

 
Figure 5.4.1-a. Potential binding mode of C-07 (a) and B-28 (b) in the allosteric binding site 
of mGluR1. View from the extracellular side of the membrane. 

 

In the homology model, the two central coumarine-oxygens interact as hydrogen-bond 

acceptors forming a hydrogen-bonding with R6613.29, N74745.51. The hydrophobic isopropoxy 

substituent of C-07 interacts with the hydrophobic residues I74545.49 and V6643.32. The 

isopropoxy oxygen is involved in a hydrogen bond with T8157.39. Replacing the isopropoxy 

group with a dimethylthiocarbamyl group resulted in increased activity (B-10 vs. C-07, IC50: 

0.123µM vs. 0.362µM). This might be explained by the formation of a stronger hydrogen-

bond to T8157.39. Substituents at the chlorine site of C-07 might interact with V6643.32 and 

T8157.39.  

For the ligands with an adamantyl substituent (B-28 - B-31) the receptor model suggests 

that there is not sufficient space for the adamantyl group in the sub pocket covered by the 

unsaturated ring of C-07, given the binding mode of C-07. Thus, an alternative binding mode 
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was proposed for the adamantyl-containing ligands, illustrated by B-28 (Figure 5.4.1-a, panel 

b). Here the adamantyl group fills the same part of the pocket as the unsaturated ring in C-07. 

The oxygen of the carbonyl linker of B-28 is involved in the hydrogen bond cluster containing 

R6613.29, and the oxygen acceptor in the ring from the coumarine core forms a hydrogen-

bonding interaction with T8157.39. 

 

R661/N747 T815

V757

OO

Cl

O

OO O

C-07

B-28

R661/N747 T815

V757

OO

Cl

O

OO O

C-07

B-28

 
Figure 5.4.1-b. Alignment of the structurally different allosteric mGluR1 antagonists C-07 
and B-28 and visualization of crucial interaction points within the binding pocket of the 
mGluR1 homology model. 

 

The proposed binding pocket of C-07 and B-28 is located in a similar region compared with 

the negative allosteric mGluR1 modulator EM-TBPC, for which mutational data were 

published before [Malherbe et al., 2003a]. EM-TBPC is assumed to interact with V7575.47, 

W7986.48, F8016.51, Y8056.55, T8157.39, which are all in proximity to C-07 and B-28. Mutation 

of N74745.51 and N75045.54 to alanine resulted in an increased effect of EM-TBPC, which 

might be caused by the lack of a hydrogen-bonding interaction partner of EM-TBPC. These 

findings are consistent with a direct interaction of N74745.51 with our ligands. For mGluR5 it 

was also shown that mutation of R6473.29 (R661 in mGluR1) to alanine increased the activity 

of the mGluR5 negative allosteric modulator MPEP [Malherbe et al., 2003b]. This is 

confirmed by a potential direct interaction of R6473.29 with bound ligands.  

These data support our hypothesis for the binding mode of the series of coumarines as 

mGluR1 negative allosteric modulators presented in Section 5.3. Furthermore, the existence 

of different binding modes within the pocket could serve as an explanation for the observed 
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differences in the functional and binding assay results as well as the failed attempt to find a 

quantitative SAR (data not shown). 

 

5.4.2 Binding of Quinolines 

The aim of this chapter was the comparison of quinolines and coumarines bound to the 

allosteric recognition site of mGluR1 with focus on their orientations relative to each other. 

Based on the proposed orientation it was feasible to relate the results obtained with the 

CoMFA studies of quinolines (Section 5.1) to the SAR of the coumarines (Section 5.3). In 

this context it must be stressed that our CoMFA studies were based on functional activity data 

for mGluR1 and not on binding affinity values. 

Initially, a flexible overlay comprising one representative of each group, EMQMCM for the 

quinolines and B-04 representing the coumarines, served as a starting point for the 

hypothesized binding mode. B-04 was selected to simplify the automated aligning as it 

structurally resembles EMQMCM with respect to the cyclohexyl residue (Section 5.3.2). Both 

molecules were superimposed in a flexible manner using the Flexible Alignment tool included 

in the MOE software package Version 2005.06 [Chemical Computing Group] by applying the 

same settings as used for the flexible overlay of six reference structures in Section 4.2.2. 

Several orientations have been calculated including their corresponding energy values. One 

orientation with a low energy value and a reasonable overlay (that is the most complete 

overlay with respect to the molecule structures) was selected. It was then slightly modified 

regarding the side chains, which were adjusted to refine the overlay. The final alignment is 

given in Figure 5.4.2-a. 
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Figure 5.4.2-a. Alignment of the structurally diverse allosteric mGluR1 antagonists B-04 
(coumarine) and EMQMCM and visualization of pivotal interaction points within the binding 
pocket of the mGluR1 homology model. 

 

EMQMCM representing the quinolines is assumed to interact with the same amino acids as 

the coumarines, thus binding in the same pocket of the receptor. The nitrogen of the the core 

structure potentially interacts with R6613.29 or N74745.51 via an H-bond bridge. 2-Methyl and 

3-ethyl substituents point into a region where there is few yet sufficient space for another 

condensed cycle as visualized for B-04 (Figure 5.4.2-a). It might establish a hydrophobic 

interaction with V7575.47. This is consistent with the SAR data for quinolines postulating that 

an extended ring system is favored (e.g., R214127, IC50: 2nM). Moreover, EMQMCM´s 

“polar linker” connecting the aromatic quinoline moiety with the cyclohexyl moiety acts as H-

bond acceptor, hence forming a bridge to T8157.39. Since the p-methoxy substituent as weak 

H-bond acceptor is essential neither in B-04 nor in EMQMCM, no interacting amino acid was 

proposed. However, it has influence on activity in quinolines as cis-conformation is preferred 

(Section 5.1.2).  

Further amino acids potentially influencing the binding mode of quinolines and coumarines 

are given in Figure 4.4.2-b. V6643.32 or I74545.49 provide hydrophobic interactions with either 

the cyclohexyl residue or the chlorine in B-04, whereas W7986.48
 is presumably responsible 

for π-π stacking with the coumarine or quinoline core structures, respectively. The influence 

of the mentioned amino acids was previously confirmed by mutation analyses [Malherbe et 

al., 2003a] as already described (Section 5.4.1).  
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Figure 5.4.2-b. Potential binding mode of B-04 and EMQMCM in the allosteric binding site 
of mGluR1. View from the extracellular side of the membrane. 

 

Summarized, the above-proposed alignment has the advantage that several criteria for 

binding with amino acids of the target are fulfilled. Among these are (i) the nitrogen of the 

quinoline core structure providing an acceptor like the oxygen in the ring system and carbonyl 

oxygen in B-04 for interaction with R6613.29 and/or N74745.51, (ii) the planar aromatic ring 

system - present in both structures - to satisfy W7986.48 and (iii) another H-bond acceptor 

(carbonyl linker in EMQMCM, ether in B-04) forming a contact with T8157.39. Moreover, the 

conclusions drawn from the CoMFA studies (Section 5.1.2, Figure 5.1.2-c) perfectly fit to the 

hypothesized  alignment, which is confirmed by the following facts: 

According to the QSAR analyses the quinoline core system can be extended to the left, 

preferably with a condensed (hetero)aromatic cycle(R1/R2 in Figure 5.1.2-c). This cycle may 

contain another acceptor (oxygen, sulfur), which is, however, not required. In fact, according 

to Figure 5.4.2-b, there is only few space left between the aligned structures and TM5. 

Furthermore, no amino acids can be detected potentially interacting with another H-bond 

acceptor in this gap. Beyond the polar linker of the quinolines there should favorably be an 

aliphatic or aromatic residue, which can include polar features (R3 in Figure 5.1.2-c). This is 

confirmed by (i) the alignment of EMQMCM and B-04 placed into the binding pocket and 
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displaying sufficient space in the region where the cyclohexyl residue is located (Figure 5.4.2-

b) and (ii) by the SAR scheme of the coumarines (Figure 5.3.2-a) postulating that the residue, 

which is attached at position 9 via an oxygen (or sulfur) should preferably be short and rigid 

but can also include a cycle and polar atoms. 

 

5.4.3 Conclusions 

Earlier studies detected a binding cavity in the HD of the mGlu1 receptor [Malherbe et al., 

2003a]. We exploited these receptor informations regarding crucial amino acids for ligand 

binding as well as our own SAR data of coumarines (ligand information) to get insights into 

the binding mode of coumarines in the HD of mGluR1. Binding orientations of coumarines 

were proposed as exemplified by two representatives of this chemotype. Furthermore, we also 

proposed a general binding mode for quinolines as non-competitive mGluR1 antagonists. For 

this purpose we exploited SAR data of quinolines [Mabire et al., 2005] and the results of our 

own QSAR studies to detect features essential for ligand binding. 

It has been proven by experiments that representatives of coumarines and quinolines bind to 

the same cavity in the transmembrane region of mGluR1: C-07, but also B-28 and analogues 

are capable of almost completely displacing [³H]-EMQMCM from its binding site. 
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6 Summary 

6.1 Conclusions and Outlook 

Binding assays on cerebellar (mGluR1) and cortical membranes (mGluR5) were developed 

to facilitate limited throughput screening on 96-well plates. The mGluR5 binding assay, 

however, has the disadvantage that it has to be performed at low temperature (< 4°C). Even 

under these conditions control values were poorer than observed in the mGluR1 binding 

assay. As a consequence the mGluR5 binding assay on 96-well plates was only used for 

studies described in this thesis and considered as not applicable for regular in-house 

compound screening. 

In an iterative process a pharmacophor query for non-competitive mGluR1 antagonists was 

set up. It was revised in a validation step where the in-house mGluR-data collection was 

employed. The following drawbacks can be attributed to the model: (i) It is not a general 

model as it only considers some chemotypes of mGluR1 antagonists, (ii) retrospective 

screening was performed on the mGluR-data collection but not on a large dataset comprising 

“positive” and “negative” members and (ii) prospective screening was conducted only in 

combination with the data reduction tool ChemSpaceShuttle. 

Three virtual screening campaigns were applied: CATS similarity search and data reduction 

with Kohonen maps and encoder networks (ChemSpaceShuttle). The Asinex Gold Collection 

February 2003 served as test database for the first two campaigns. For data clustering with 

Kohonen maps we applied the same topological pharmacophore descriptor as for the 

similarity searches. This descriptor enabled a clear discrimination of mGluR1 and mGluR5 

antagonists and an acceptable hit rate was yielded, but the detected virtual hits can mainly be 

classified into only two chemotypes. Other descriptor sets might retrieve other scaffolds but 

have not been tested. A major pitfall of data clustering with ChemSpaceShuttle was the fact, 

that only a small subset (“focused library”) of the Asinex database described the test 

molecules: The complete database was filtered previously with the final pharmacophore query 

for mGluR1 antagonists. Recommendations for future screening: (i) Apply a large test 

database, (ii) use for neighborhood search only high potent reference compounds, (iii) select 

more virtual hits and (iv) test also other descriptors. 

General recommendations regarding virtual screening: The application of other methods 

like support vector machines or random forest classification could be tested. 
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A CoMFA model for quinolines, a class of prominent mGluR1 antagonists, was set up to 

evaluate the influence of side chain modification on functional activity. It was developed to 

improve the understanding of ligand binding at the allosteric mGluR1 recognition site. No 

chemically modified quinolines have been synthesized and tested to confirm the predictive 

power of the CoMFA model, which might be worth proving. 

We further introduced an interesting concept to predict compound selectivity for mGluR1 

and mGluR5 antagonist. A successful prediction of cross-activities at several receptors was 

made. Some aspects have not been addressed: (i) The application of another descriptor set for 

the underlying SOM analysis and (ii) the exclusive use of potent ligands as reference 

molecules for side effect predictions. 

A hit optimization project was launched for a coumarine, acting as non-competitive 

mGluR1 antagonist. Binding affinity and inhibitory activity were improved but no lead 

candidate for follow-up was yielded. A reason might be the fact that an increase in 

affinity/activity was associated with enhanced lipophilicity and, thus, diminished solubility. 

The project was finally discontinued. 

For two classes of allosteric mGluR1 modulators, quinolines and coumarines, binding 

orientations at the known recognition site were proposed. However, they are only hypotheses 

as representatives of each group were manually placed into the binding pocket of a mGluR1 

homology model and no automated docking was performed. 

 

6.2 Summary 

The goal of this thesis was to gain further insight into the binding behavior of ligands in the 

heptahelical domain (HD) of group I metabotropic glutamate receptors (mGluRs). This was 

realized by the establishment of strategies for the detection and optimization of molecules 

acting as non-competitive antagonists of group I mGluRs (mGluR1/5). These strategies 

should guarantee high diversity in the retrieved chemotypes of the detected compounds not 

resembling original reference molecules (“scaffold-hopping”). The detection of new scaffolds, 

in turn, was divided into two approaches: First the development of pharmacological assays to 

screen compounds at a certain target for bioactivity (here: affinity towards the allosteric 

recognition site of mGluR1 and mGluR5), and second the evaluation of computer assisted 

methods for the identification of virtual hits to be screened afterwards on the pharmacological 

assays established before. Promising molecules should be optimized with respect to 
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activity/affinity and selectivity, their binding mode investigated and, finally, compared to 

existing lead compounds. 

Initially, membrane based binding assays for the HD of mGlu1 and mGlu5 receptors with 

enhanced throughput (shifting from 24-well plates to 96-well plates) were set up. For the 

mGluR1 assay the potent antagonist EMQMCM exhibited high affinity towards the binding 

site (Ki ~3nM), which is in accordance with published data from Mabire et al. (functional IC50 

3nM). For mGluR5 the reference antagonist MPEP binds with high affinity to the receptor 

(binding IC50 13.8nM), which confirmed earlier findings from Anderson et al. (binding IC50 

15nM). In another series of experiments the properties of rat cerebellar (mGluR1) and cortical 

membranes (mGluR5) as well as of radiotracers were investigated by means of binding 

saturation studies and kinetic experiments. Furthermore, the influence of the solvent DMSO, 

necessary for compound screening of lipophilic substances, on positive and negative controls 

was evaluated. 

As the precise architecture of the HD of mGluR1 is still not known our efforts in identifying 

new ligands for this receptor focused on the ligand-based approach. All computer assisted 

methods that were applied to virtually screen large compound collections and to retrieve 

potential hits (“activity-enriched subsets”) acting at the heptahelical domain of mGluR1 relied 

on the existence of a valid dataset of reference molecules. This was realized by an initial 

compilation of a mGluR reference data collection comprising in total 357 entries 

predominantly negative but also some positive allosteric modulators for mGluR1 and 

mGluR5. In the next step a pharmacophore model for non-competitive mGluR1 antagonists 

was constructed. It was based upon six selective, potent and structurally diverse ligands. 

Prospective virtual screening was performed using the CATS atom-pair descriptor. The 

Asinex Gold-Collection was  screened for each seed compound and some of the most similar 

compounds (according to the CATS descriptor) were ordered and tested for binding affinity 

and functional activity at mGluR1. A high hit rate of approximately 26% (IC50 < 15µM) was 

yielded confirming the applicability of this method. One compound exerted functional activity 

below one micro molar (IC50-value of C-07: 362nM ± 0.03).  

Moreover, non-linear principal component analysis was employed. Again the Asinex 

vendor database served as test database and was filtered by the pharmacophore model for 

mGluR1 established before. Test molecules that were adjacently located with mGluR1 

antagonist references were selected. 15 compounds were tested on mGluR1 in binding and 

functional assays and three of them exhibited functional activity (IC50) below 15µM. The 

most potent molecule P-06 revealed an IC50-value of 1.11µM (± 0.41). 
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The COBRA database comprising 5,376 structurally diverse bioactive molecules affecting 

various targets was encoded with the CATS descriptor and used for training two self-

organizing maps (SOM). The encoded mGluR reference data collection was projected onto 

this map according to the SOM algorithm. This projection allowed to clearly distinguish 

between antagonists of mGluR1 and mGluR5 subtype. 28 compounds were ordered and tested 

on activity and affinity for mGluR1. They exhibited functional activity down to the sub-micro 

molar range (IC50-value of S-08: 744nM ± 0.29) yielding a final hit rate of 46% (<15µM). 

Then, the Asinex collection was screened using the SOM approach. For a predicted target 

panel including the muscarinic mACh (M1) receptor, the histamine H1-receptor and the 

dopamine D2/D3 receptors, the tested mGluR ligands exhibited the calculated binding pattern. 

This virtual screening concept might provide a basis for early recognition of potential side-

effects in lead discovery. 

We superimposed a set of 39 quinoline derivatives as non-competitive mGluR1 antagonists 

that were recently published by Mabire and co-workers. A CoMFA model (QSAR) was 

established and the influence of several side chains on functional activity was investigated. 

The coumarine derivative C-07 was obtained as a result of similarity searching. Starting 

from this compound a series of chemical derivatives was synthesized. This led to the 

discovery of potent (B-28, IC50: 58nM ± 0.008; Ki: 293nM ± 0.022) and selective (rmGluR5 

IC50: 28.6µM) mGluR1 antagonists. From a homology model of mGluR1 we derived a 

potential binding mode for coumarines within the allosteric transmembrane region. Potential 

interacting patterns with amino acids were proposed considering the difference of the binding 

pockets between rat and human receptors. The proposed binding modes for quinolines (here: 

EMQMCM) and coumarines (here: B-04) were compared and discussed considering in 

particular the influence on activity of several side chains of quinolines obtained from the 

QSAR studies. 

 

The present studies demonstrated the applicability of ligand-based virtual screening for 

non-competitive antagonists of a G-protein coupled receptor, resulting in novel, potent and 

selective agents. 

 

6.3 Zusammenfassung 

Ziel dieser Doktorarbeit war es weiteren Einblick in das  Bindungsverhalten von Liganden 

in der transmembranen Region von Gruppe I metabotropen Glutamatrezeptoren (mGluRs) zu 
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gewinnen. Verwirklicht wurde dies durch den Entwurf von Strategien zur Auffindung und 

Optimierung von Molekülen die als nichtkompetitive Antagonisten an Gruppe I mGluRs 

(mGluR1/5) wirken. Diese Strategien sollten eine hohe Diversität der chemischen Strukturen 

der entdeckten Verbindungen gewährleisten und nicht den ursprünglichen Referenzmolekülen 

ähneln (das sogenannte „Grundgerüst-Springen“). Die Auffindung neuer Kernstrukturen 

wiederum wurde in zwei Herangehensweisen aufgeteilt: Zum einen die Entwicklung von 

pharmakologischen Tests um Substanzen auf Bioaktivität an einer bestimmten Zielstruktur zu 

untersuchen (hier: die Affinität zur allosterischen Bindungsstelle von mGluR1 und mGluR5), 

und zum anderen die Evaluierung von computergestützten Methoden für die Identifizierung 

von virtuellen Suchtreffern die dann in den zuvor etablierten pharmakologischen 

Testsystemen untersucht werden können. Basierend auf den hierin gemachten Ergebnissen 

sollten vielversprechende Moleküle bezüglich Aktivität, Affinität und Selektivität optimiert 

werden, ihr Bindungsmodus untersucht und schließlich mit dem von bereits bekannten 

Leitstrukturen verglichen werden. 

Anfangs wurden membranbasierte Bindungstests für die transmembrane Region von 

mGluR1 und mGluR5 mit erhöhtem Durchsatz entworfen (Transfer vom 24-Lochplatten- auf 

96-Lochplattenformat). In diesem Zusammenhang wurde das bereits vorhandene Wissen über 

einen zur Verfügung stehenden NMDA-Rezeptor-Bindungstest genutzt. Hierbei wurde der 

Einfluss verschiedener Parameter wie Proteinkonzentration, Inkubationszeit, 

Inkubationstemperatur, etc. erforscht. Validiert wurden die Testsysteme mit 

Affinitätsmessungen für Standardverbindungen: Für den mGluR1 Bindungsversuch zeigte der 

potente Antagonist EMQMCM hohe Affinität an der Bindungsstelle (Ki ~3nM), was in 

Übereinstimmung mit publizierten Daten von Mabire et al. steht (funtioneller IC50 3nM). Für 

mGluR5 zeigte der Referenz-Antagonist MPEP hohe Affinität am Rezeptor (Bindungs IC50 

13,8nM) was durch frühere Untersuchungen von Anderson et al. bestätigt wird (Bindungs 

IC50 15nM). In einer weiteren Experimentreihe wurden die Eigenschaften von Cerebellum-

Membranen (mGluR1) und Cortex-Membranen (mGluR5) der Ratte untersucht sowie die 

Eigenschaften eines Radioliganden, und zwar in Form von Bindungs-Sättigungsversuchen 

und Kinetik-Experimenten. Desweiteren wurde der Einfluss des Lösungsmittels DMSO, das 

für das Lösen lipophiler Substanzen notwendig war, auf Positiv- und Negativkontrolle 

geprüft. 

Da die exakte Kristallstruktur der transmembranen Region von mGluR1 noch immer 

unbekannt ist haben sich unsere Anstrengungen zur Identifizierung neuer Liganden für diesen 

Rezeptor auf den ligandenbasierten Ansatz beschränkt. Alle computergestützten Methoden 
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die für das virtuelle Durchforsten großer Substanzdatenbanken zur Auffindung potentieller 

Treffer angewandt wurden (sogenannter „aktivitätsangereicherte Untergruppen“) basieren auf 

der Existenz eines validen Datensatzes von Referenzmolekülen. Verwirklicht wurde dies zu 

Beginn durch das Zusammenstellen einer mGluR Referenzdatenbank mit 357 Einträgen, 

vornehmlich negative aber auch einige positive Modulatoren an mGluR1 und mGluR5. 

Anhand umfangreicher Suche in sachbezogener Literatur (Patente und Veröffentlichungen) 

wurden Angaben gesammelt. Im nächsten Schritt wurde ein Phramakophormodell für 

nichtkompetitive mGluR1 Antagonisten erstellt. Es basiert auf einigen potenten, selektiven 

und strukturell diversen Liganden aus der mGluR Referenzdatenbank. Die Entwicklung eines 

aussagekräftigen Pharmakophormodells stellte einen wichtigen Schritt dar und war Grundlage 

für folgende Struktursuchen. Die dem Modell zu Grunde liegenden Moleküle wiederum 

dienten als Referenzmoleküle für eine auf einem topologischen Pharmakophordeskriptor 

basierende Ähnnlichkeitssuche: Prospektive virtuelle Suche wurde unter Benutzung des 

CATS Atompaar-Deskriptors durchgeführt, einer konformationsfreien Korrelationsvektor-

repräsentation. Eine große Datenbank kommerziell erhältlicher Moleküle (Asinex Gold 

Collection: ~ 200.000 Einträge) wurde für jede Referenzstruktur durchsucht und einige der 

entsprechend dem CATS Deskriptor als am ähnlichsten erachteten Verbindungen wurden 

bestellt und auf Aktivität und Affinität an mGluR1 untersucht. Eine Trefferrate von ungefähr 

26% (IC50 < 15µM) die den Nutzen dieser Methode bestätigte, wurde erzielt. Darüber hinaus 

wies eine Verbindung submikromolare funktionelle Aktivität auf (IC50-Wert von C-07: 

362nM ± 31). Da dieses Cumarin auch eine vielversprechende Kernstruktur aufwies, wurde es 

direkt einer Leitstrukturoptimierung unterzogen.  

In einer weiteren Studie wurden die Vorteile von Pharmakophorsuche und Datenreduktion 

anhand nichtlinearer Hauptkomponentenanalyse kombiniert. Wiederum diente die Asinex 

Kollektion als Testdatenbank und wurde mit dem zuvor erstellten mGluR1 

Pharmakophormodell gefiltert. Die resultierende „fokussierte Datenbank“ enthielt 2211 

Einträge und wurde zusammen mit der mGluR Referenzdatenbank mit einer Vielzahl von 2D-

Deskriptoren kodiert und anhand von ChemSpaceShuttle in einen dreidimensionalen Raum 

projiziert. Testverbindungen die in räumlicher Nachbarschaft zu mGluR1 Referenzen zu 

finden waren wurden ausgewählt. Einige von ihnen wurden bestellt und auf ihre gewünschte 

Bioaktivität hin untersucht. Insgesamt wurden fünfzehn Verbindungen in funktionellen Tests 

und Bindungstest für mGluR1 gemessen wobei drei von ihnen funktionelle Aktivität unter 

15µM aufwiesen. Die potenteste Verbindung P-06 zeigte einen IC50-Wert von 1,11µM (± 

0,41). 
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Kohonen-Karten stellen eine Alternative zu Ähnlichkeitssuchen im Bereich der virtuellen 

Suche dar. Sie gruppieren Moleküle indem sie ähnliche Datenwerte zusammenstellen. In der 

vorliegenden Studie wurde die COBRA 3.12 Datenbank, die 5.376 strukturell 

unterschiedliche bioaktive Moleküle enthält die mit verschiedenen Rezeptoren und Enzymen 

wechselwirken, mit dem CATS Deskriptor verschlüsselt. Dann wurden zwei 

selbstorganisierende Karten (SOM) damit trainiert, eine mit 100 Neuronen und eine mit 225 

Neuronen. Anschließend wurde die kodierte mGluR Referenzdatenbank gemäß dem SOM 

Algorithmus auf diese Karten projiziert. Diese Projektion erlaubte eine klare Trennung 

zwischen Antagonisten vom Subtyp mGluR1 und mGluR5. Ermutigt durch diese Ergebnisse 

wurde die Untergruppe der mGluR1 Referenzverbindungen auf die mit der COBRA 

Datenbank trainierten Karten projiziert und diejenigen Neurone die die höchste Dichte an 

Referenzverbindungen aufwiesen ausgewählt (Neuron 8/7 auf der kleinen Karte und 6/6 auf 

der großen Karte). In diesem Sinne wurde auch mit der Asinex Datenbank verfahren und alle 

Verbindungen die sich in beiden der eben erwähnten Neurone gruppiert haben wurden 

entsprechend ihrer räumlichen Entfernung zum Zentroid des jeweiligen Neurons sortiert. 28 

der ersten 60 Molekülstrukuren wurden bestellt und auf Affinität und Aktivität an mGluR1 

getestet. Sie wiesen (inhibitorische) Aktivitäten bis in den submikromolaren Bereich auf 

(IC50-Wert von S-08: 744nM ± 290) und führten zu einer Trefferquote von 46% (<15µM). 

Die Anwendung der hier beschriebenen virtuellen Suchmethoden gewährte uns eine 

Auswahl von selektiven mGluR1 Antagonisten mit neuen Kernstrukturen. Im folgenden 

wurde ihr Bindungsmodus im Verhältnis zu dem der Referenzverbindungen untersucht und 

eine vielversprechende Verbindung, ein Cumarin-Derivat das durch die Ähnlichkeitssuche 

gefunden worden ist, wurde strukturell optimiert. 

Quantitative Struktur-Wirkungsbeziehung (QSAR) zielt darauf ab den Zusammenhang 

zwischen Ligandenstrukturen und ihren Bioaktivitätsdaten quantitativ zu beschreiben. 

Diesbezüglich haben wir einen Satz von 39 Chinolin-Derivaten der mGluR1 Antagonisten 

darstellt und kürzlich von Mabire und Mitarbeitern veröffentlicht wurde verwendet. Die 

Strukturen wurden flexibel in einer sinnvollen Anordnung überlagert und in einen 

Trainingsdatensatz (30 Moleküle) und einen Testdatensatz (9 Moleküle) aufgeteilt. Ein 

CoMFA-Modell das die beste Vorhersagefähigkeit besaß (q2(cv):  0,617) wurde erstellt. Zur 

statistischen Absicherung wurde derselbe Gesamtdatensatz zehnmal per Zufallsprinzip in 

Trainings- (20 Moleküle) und Testdatensatz (19 Moleküle) aufgeteilt was in einem mittleren 

q2(cv) von 0,507 (± 0,036) resultierte. Nachdem für das urprüngliche Modell Konturkarten, 
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die sterische und elektrostatische Beiträge darstellten, berechnet worden sind wurde der 

Einfluss verschiedener Seitenketten auf die funktionelle Aktivität untersucht. 

Für einige Gruppe I mGluR Referenzverbindungen wurden, basierend auf den Ergebnissen 

der virtuellen Suche mit den Kohonen-Karten, Selektivitätsbetrachtungen durchgeführt. Die 

Kombination eines topologischen Pharmakophor-Deskriptors (CATS) und der SOMs wurde 

für die Vorhersage von multiplen Rezeptorinteraktionen von bekannten Gruppe I mGluR 

Antagonisten verwendet. Moleküle der mGluR Referenz-Sammlung und der COBRA 

Datenbank, die als Testdatensatz diente, wurden mit den CATS Deskriptor kodiert und einer 

Klassifizierung und Projektion gemäß dem SOM Algorithmus unterzogen. Für eine 

vorausgesagte Auswahl an Rezeptoren, darunter der muskarinische mACh (M1) Rezeptor, der 

Histamin H1-Rezeptor und die Dopamin D2/D3 Rezeptoren, konnten die gemessenen mGluR 

Liganden die berechneten Interaktionen aufweisen. Dieses Konzept des virtuellen Suchens 

könnte eine Basis für die frühe Erkennung von potentiellen Wechselwirkungen in der 

Arzneiforschung darstellen.  

Das Cumarin-Derivat C-07 wurde im Rahmen der Ähnlichkeitssuche mit dem CATS 

Deskriptor gefunden. Ausgehend von dieser Verbindung wurde in dem folgenden Aktivitäts-

Optimierungsprogramm eine Reihe von chemischen Derivaten synthetisiert. Das führte zur 

Entdeckung von potenten (B-28, IC50: 58nM ± 8; Ki: 293nM ± 22) und selektiven (rmGluR5 

IC50: 28,6µM) mGluR1 Antagonisten. Auf Grundlage unseres Homologiemodells haben wir 

einen potentiellen Bindungsmodus für Cumarine innerhalb der transmembranen Region 

ermittelt, was am Beispiel von C-07 und B-28 gezeigt wurde. Es wurden potentielle 

Interaktionsmuster mit Aminosäuren vorgeschlagen, die auch den Unterschied der 

Bindetaschen vom Ratten- und Humanrezeptor berücksichtigen. Desweiteren wurden die 

vermuteten Bidungsmodi für Chinoline (hier: EMQMCM) und Cumarine (hier: B-04) 

verglichen und diskutiert, und zwar unter besonderer Berücksichtigung des Einflusses von 

verschiedenen Chinolin-Seitenketten auf die Aktivität gemäß den vorausgegangenen QSAR 

Studien.  

 

Die vorliegenden Untersuchungen veranschaulichen den Nutzen von ligandbasierten 

virtuellen Suchen für nichtkompetitive Antagonisten von G-Protein gekoppelten Rezeptoren 

was in der Auffindung neuer, potenter und selektiver Verbindungen mündete. 
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7 Appendix 

7.1 Complete mGluR-Data Collection 

Table 7.1-a. In-house collection of mGluR-reference compounds (release 08.03). Each 
molecule is depicted as SMILES string. 

Molecule Action IC50 
O1CCCc2cc3cc(ccc3[nH0]c12)Cc1ccccc1 mGluR1 85 nM 
O=C(OC)[C@H](NC(=O)[C@](Oc1ccccc1C(=NO)[C@H](C1)2)12)Cc1cc mGluR1 930 nM 
Clc1ccc2[nH0]c(SCCO)[nH0]c(NC3C4CCC3CC4)c2c1 mGluR1 44 nM 
O(C)CCOc1[nH0][nH0]c(C#N)c([nH0]1)N1CCc2ccccc2CC1 mGluR1 3000 nM 
OCCNc1[nH0][nH0]c(C#N)c([nH0]1)N1CCc2ccccc2CC1 mGluR1 31 nM 
OC(C)CNc1[nH0][nH0]c(C#N)c([nH0]1)N1CCc2ccccc2CC1 mGluR1 27 nM 
s1ccc2CCN(CCc12)c1[nH0]c([nH0]c(OCC)c1[N+](=O)[O-])C mGluR1 440 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CCc2ccccc21 mGluR1 245 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1COc2ccccc2C1 mGluR1 115 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C12CC3CC(CC(C3)C2)C1 mGluR1 125 nM 
O=C(CC(C)C)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 162 nM 
O=C(Cc1cccc(OC)c1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 135 nM 
O=C(NC1CCC(OC)CC1)c1ccc2[nH0]c(O)c(cc2c1)CC mGluR1 10000 nM 
ON=C(c1ccc2[nH0]c(O)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 10000 nM 
Fc1cccc(c1)C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 48 nM 
N#Cc1[nH0][nH0]c(N)[nH0]c1N1CCc2ccccc2CC1 mGluR1 27 nM 
O=C(OCCCC)c1[nH]c(C)c(c1C)C(=O)OC(C)(C)C mGluR1 160 nM 
O=C(c1ccccc1)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 5.7 nM 
O=C(Cc1ccccc1)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 5.8 nM 
Brc1ccc2c(SC=3CC(C)(C)CCC=3C2=O)c1 mGluR1 9 nM 
Clc1cc2SC=3CC(CCC=3C(=O)c2cc1F)CC mGluR1 97 nM 
S1c2cc(ccc2C(=O)C=2CCC(C)(C)CC1=2)c1cccc(C#N)c1 mGluR1 21 nM 
S1c2cc(NC(=O)CC)ccc2C(=O)C=2CCC(CC1=2)CC mGluR1 35 nM 
S1c2cc(ccc2C(=O)C=2CCC(C)(C)CC1=2)c1c[nH0]ccc1 mGluR1 31 nM 
S1c2cc(ccc2C(=O)C=2CCC(CC1=2)CC)c1cccc(C#N)c1 mGluR1 23 nM 
S1c2cc(N3CCCCC3)ccc2C(=O)C=2CCC(CC1=2)CC mGluR1 13 nM 
S1c2cc(N3CCCCC3)c(F)cc2C(=O)C=2CCC(CC1=2)CC mGluR1 28 nM 
S1c2cc(N(C)COCC)ccc2C(=O)C=2CCC(CC1=2)CC mGluR1 22 nM 
S1c2cc(ccc2C(=O)C=2CCC(CC1=2)CC)c1c[nH0]c[nH0]c1 mGluR1 35 nM 
S1c2cc(ccc2C(=O)C=2CCC(CC1=2)CC)C1=NOC(=O)N1 mGluR1 81 nM 
S1c2cc(N[S+2]([O-])([O-])C3CC3)ccc2C(=O)C=2CCC(CC1=2)CC mGluR1 25 nM 
Clc1[nH0]c([nH0]c(N2CCN(CC2)c2ccccc2)c1C#N)NCC1CC1 mGluR1 25 nM 
Fc1ccc(N2CCN(CC2)C=2N=C(N(CCO)C(=O)C=2[N+](=O)[O-])C)cc1 mGluR1 42 nM 
Fc1ccc(N2CCN(CC2)c2[nH0]c([nH0]c(OCCO)c2[N+](=O)[O-])C)cc1 mGluR1 58 nM 
Fc1ccc(N2CCN(CC2)C=2N=C(N(CC)C(=O)C=2[N+](=O)[O-])C)cc1 mGluR1 49 nM 
N#Cc1c([nH0]c([nH0]c1N1CCN(CC1)c1ccccc1)NC1CC1)NC1CC1 mGluR1 64 nM 
OCCNc1[nH0]c([nH0]c(N2CCN(CC2)c2ccccc2)c1C#N)NC1CC1 mGluR1 33 nM 
OCCNc1[nH0]c([nH0]c(N2CCC(CC2)c2ccccc2)c1C#N)NCc1c[nH0]ccc mGluR1 30 nM 
O=C(OCCC)c1[nH]cc(c1)C(=O)OC(C)C(C)(C)C mGluR1 15.8 nM 
Fc1ccc(N2CCN(CC2)c2[nH0]c([nH0]c(OCC)c2[N+](=O)[O-])C)cc1 mGluR1 180 nM 
O=[N+]([O-])C=1C(=O)NC(=NC=1N1CCC(CC1)c1ccccc1)C mGluR1 63 nM 
Fc1ccc(N2CCN(CC2)C=2N=C(NC(=O)C=2[N+](=O)[O-])C)cc1 mGluR1 810 nM 
S(C)c1ccccc1N1CCN(CC1)c1[nH0]c([nH0]c(NCCO)c1C#N)NCCO mGluR1 350 nM 
Fc1ccc(cc1)C1CCN(CC1)C=1N=C(N(CCCCO)C(=O)C=1[N+](=O)[O-])C mGluR1 280 nM 
Fc1ccccc1N1CCN(CC1)c1[nH0]c([nH0]c(NCCO)c1C#N)NCCO mGluR1 290 nM 
O=[N+]([O-])c1ccccc1N1CCN(CC1)c1[nH0]c([nH0]c(NCCO)c1C#N)N mGluR1 750 nM 
Fc1ccc(cc1)C1CCN(CC1)c1[nH0]c([nH0]c(NCCO)c1C#N)NCCO mGluR1 700 nM 
Fc1ccc(cc1)C1=CCN(CC1)c1[nH0]c([nH0]c(NCCO)c1C#N)NCCO mGluR1 390 nM 
OCCNc1[nH0]c(NCCO)c(C#N)c([nH0]1)N1CCC(CC1)c1ccc(C#N)cc1 mGluR1 1800 nM 
N#Cc1c([nH0]c([nH0]c1N1CCC(CC1)c1ccccc1)NCc1[nH0]cccc1)NCc mGluR1 1500 nM 
OCCNc1[nH0]c([nH0]c(N2CCN(CC2)c2ccccc2)c1C#N)NCc1c[nH0]ccc mGluR1 150 nM 
Clc1[nH0]c([nH0]c(N2CCC(CC2)c2ccc(F)cc2)c1C#N)NCCO mGluR1 140 nM 
S(C)c1[nH0]c(N)[nH0]c(N2CCN(CC2)c2ccc(F)cc2)c1C#N mGluR1 210 nM 
S(C)c1[nH0]c(N)[nH0]c(N2CCC(CC2)c2ccc(F)cc2)c1C#N mGluR1 159 nM 
N#Cc1[nH0]c(CC)c([nH0]c1N1CCN(CC1)c1ccccc1)C mGluR1 17 nM 
N#Cc1[nH0]c(C)c([nH0]c1N1CCN(CC1)c1ccccc1)CC mGluR1 23 nM 
Fc1ccc(N2CCN(CC2)c2[nH0]c(NCCO)c[nH0]c2C#N)cc1 mGluR1 1000 nM 
OCCNc1[nH0][nH0]c(C#N)c([nH0]1)N1CC=C(CC1)c1ccccc1 mGluR1 660 nM 
Fc1ccc(N2CCN(CC2)c2[nH0]c(C)c([nH0+]([O-])c2C#N)CC)cc1 mGluR1 25 nM 
O=C(c1ccc2[nH0]c3OCCCc3cc2c1)C1CCC(OC)CC1 mGluR1 3.2 nM 
Clc1[nH0]c2ccc(cc2cc1CC)C(=O)C1CCC(OC)CC1 mGluR1 4 nM 
Fc1[nH0]c2ccc(cc2cc1CC)C(=O)C1CCC(OC)CC1 mGluR1 4.2 nM 
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O=C(c1ccc2[nH0]c3OCCc3cc2c1)C1CCC(OC)CC1 mGluR1 4.2 nM 
S1CCCc2cc3cc(c(C)cc3[nH0]c12)C(=O)Cc1ccccc1 mGluR1 3.3 nM 
O=C(c1ccc2[nH0]c3CCCc3cc2c1)C1CCC(OC)CC1 mGluR1 4.4 nM 
S1CCCc2cc3cc(ccc3[nH0]c12)C(=O)C1CCC(OC)CC1 mGluR1 4.7 nM 
Clc1[nH0]c2cc(C)c(cc2cc1CC)C(=O)C1CCC(OC)CC1 mGluR1 4.8 nM 
O=C(c1ccc2[nH0]c(ccc2c1)CCC)C1CCC(OC)CC1 mGluR1 5.3 nM 
FC1(CCC(OC)CC1)C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 5.4 nM 
O=C(Cc1ccccc1)c1cc2cc3CCCOc3[nH0]c2cc1C mGluR1 5.4 nM 
Fc1ccccc1CC(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 5.6 nM 
S1CCCc2cc3cc(ccc3[nH0]c12)C(=O)Cc1ccccc1 mGluR1 9.5 nM 
O=C(CC1C[C@@H](CCC1C1)1)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 9.4 nM 
S1CCCc2cc3cc(ccc3[nH0]c12)C(=O)Cc1ccccc1F mGluR1 10 nM 
s1ccc(c1)CC(=O)c1ccc2cc3OCCCc3cc2c1 mGluR1 7.2 nM 
S1CCc2cc3cc(ccc3[nH0]c12)C(=O)C1CCC(OC)CC1 mGluR1 9 nM 
O=C(Cc1ccccc1)c1ccc2[nH0]c3OC(C)Cc3cc2c1 mGluR1 8.8 nM 
S1CCc2cc3cc(ccc3[nH0]c12)C(=O)C1CCCCC1 mGluR1 7.7 nM 
O=C(c1ccc2[nH0]c(N)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 7.2 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CCC)C1CCC(OC)CC1 mGluR1 7.4 nM 
O=C(c1cc2cc(CC)c([nH0]c2cc1C)C)C1CCC(OC)CC1 mGluR1 5.9 nM 
O=C(c1ccc2[nH0]c3CCCCc3cc2c1)C1CCC(OC)CC1 mGluR1 7.3 nM 
O(C)c1ccc2[nH0]c[nH0]c(NC3CC4CCC3C4)c2c1 mGluR1 2430 nM 
O(C)c1ccc2[nH0]c[nH0]c(NC3CCCCC3)c2c1 mGluR1 328 nM 
Clc1[nH0]c(NC2Cc3ccccc3C2)c2cc(OC)ccc2[nH0]1 mGluR1 30 nM 
Clc1ccccc1CCNc1[nH0]c[nH0]c2ccc(OC)cc12 mGluR1 300 nM 
Clc1[nH0]c(Nc2ccc(OC)cc2)c2cc(OC)ccc2[nH0]1 mGluR1 40 nM 
Clc1[nH0]c(NC2Cc3ccccc3C2)c2cc(Cl)ccc2[nH0]1 mGluR1 18 nM 
Clc1[nH0]c(NCCc2ccccc2Cl)c2cc(OC)ccc2[nH0]1 mGluR1 23 nM 
Clc1ccc2[nH0]c[nH0]c(NC3CC4CCC3C4)c2c1 mGluR1 1130 nM 
S(CC)c1[nH0]c(NCC(F)c2ccccc2)c2CCCCc2[nH0]1 mGluR1 10 nM 
S(CC)c1[nH0]c(NOC)c2CCCCc2[nH0]1 mGluR1 32 nM 
Clc1ccccc1C(O)CNc1[nH0]c(SCC)[nH0]c2CCCCc12 mGluR1 23 nM 
S(CC)c1[nH0]c(NCC(F)(F)c2ccccc2)c2CCCCc2[nH0]1 mGluR1 15 nM 
Clc1ccccc1CCNc1[nH0]c(SCC)[nH0]c2CCCCc12 mGluR1 24 nM 
S(CC)c1[nH0]c(Nc2ccc(F)cc2)c2CCCCc2[nH0]1 mGluR1 32 nM 
S(CC)c1[nH0]c(NC2Cc3ccccc3C2)c2CCCCc2[nH0]1 mGluR1 39 nM 
Clc1cccc(Cl)c1CSCCNc1[nH0]c(SCC)[nH0]c2CCCCc12 mGluR1 246 nM 
S(CC)c1[nH0]c(NN2Cc3ccccc3C2)c2CCCCc2[nH0]1 mGluR1 550 nM 
Clc1ccccc1C(OC)CNc1[nH0]c(SCC)[nH0]c2CCCCc12 mGluR1 610 nM 
Clc1ccccc1OCCNc1[nH0]c(SCC)[nH0]c2CCCCc12 mGluR1 1000 nM 
S(CC)c1[nH0]c(NC2CC3CCC2C3)c2CCCCc2[nH0]1 mGluR1 320 nM 
O=C(OCC)c1[nH]cc(c1C)C(=O)OC(C)(C)C mGluR1 340 nM 
O=C(OCCC)c1[nH]cc(c1C)C(=O)OC(C)(C)C mGluR1 75 nM 
O=C(OCc1[nH]c(c(C)c1C(=O)OC(C)(C)C)C(=O)OCCC)C mGluR1 2700 nM 
O=Cc1[nH]c(c(C)c1C(=O)OC(C)(C)C)C(=O)OCCC mGluR1 2000 nM 
O=C(OC)c1[nH]c(c(C)c1C(=O)OC(C)(C)C)C(=O)OCCC mGluR1 3200 nM 
O=C(OCCC)c1[nH]c(c(c1C)C(=O)OC(C)(C)C)C(=O)NCC1CC1 mGluR1 2500 nM 
O=C(OC(C)(C)C)c1[nH]cc(c1C)C(=O)OC(C)(C)C mGluR1 100 nM 
O=C(OCc1occc1)c1[nH]cc(c1C)C(=O)OC(C)(C)C mGluR1 1200 nM 
O=C(OCC1CC1)c1[nH]cc(c1C)C(=O)OC(C)(C)C mGluR1 48 nM 
O=C(OCCC)c1[nH]cc(c1C)C(=O)OC(C)C(C)(C)C mGluR1 4 nM 
O=C(OC(C)(C)C)c1[nH]cc(c1C)C(=O)OC(C)C(C)(C)C mGluR1 17 nM 
Fc1c(F)c(F)c(OC(=O)c2[nH]cc(c2C)C(=O)OC(C)C(C)(C)C)c(F)c1F mGluR1 160 nM 
O=C(OC(C)CN(C)C)c1[nH]cc(c1C)C(=O)OC(C)C(C)(C)C mGluR1 390 nM 
Clc1[nH]c(c(C)c1C(=O)OC(C)C(C)(C)C)C(=O)OCCC mGluR1 160 nM 
O=C(Oc1c[nH0]ccc1)c1[nH]cc(c1C)C(=O)OC(C)C(C)(C)C mGluR1 720 nM 
O=C(OC1CN(CC1)CC)c1[nH]cc(c1C)C(=O)OC(C)C(C)(C)C mGluR1 260 nM 
O=C(Oc1[nH0]c[nH0]cc1)c1[nH]cc(c1C)C(=O)OC(C)C(C)(C)C mGluR1 1450 nM 
O=C(OCCC)c1[nH0](C)c(C)c(c1C)C(=O)OC(C)(C)C mGluR1 1000 nM 
O=C(OCCC)c1[nH0](CCCO)c(C)c(c1C)C(=O)OC(C)C(C)(C)C mGluR1 5800 nM 
O=C(OC(C)C(C)(C)C)c1[nH0][nH0](C)c(c1)C(=O)OCCC mGluR1 3200 nM 
O=C(OCCC)c1[nH0][nH0](C)c(c1)C(=O)OC(C)C(C)(C)C mGluR1 3200 nM 
O=C(OC(C)C(C)(C)C)c1[nH0][nH0](C)c(c1)C(=O)OC(C)C(C)(C)C mGluR1 1500 nM 
O=C(OC(C)C(C)(C)C)c1[nH0][nH0](C)c(c1)C(=O)OCC mGluR1 6900 nM 
O=C(OCCCC)c1[nH0][nH]c(c1)C(=O)OC(C)C(C)(C)C mGluR1 3400 nM 
O=C(OCCC)c1[nH0][nH]c(c1)C(=O)OC(C)C(C)(C)C mGluR1 3400 nM 
s1c(N)c(c(C)c1C(=O)OC)C(=O)OCC mGluR1 8000 nM 
s1c(C)c(c(N)c1C(=O)OCC)C(=O)OCC mGluR1 6000 nM 
s1cc(c(C)c1C(=O)OCC)C(=O)OCC mGluR1 4000 nM 
s1cc(c(C)c1C(=O)OCCC)C(=O)OC(C)(C)C mGluR1 160 nM 
s1cc(c(C)c1C(=O)OCCC)C(=O)OC(C)C(C)(C)C mGluR1 32 nM 
s1c(N)c(c(C)c1C(=O)OCCC)C(=O)OC(C)C(C)(C)C mGluR1 320 nM 
O=C(OCCC)c1ccc(cc1)C(=O)OCCC mGluR1 4000 nM 
O=C(OCCC)c1ccc(cc1)C(=O)OC(C)(C)C mGluR1 400 nM 
O=C(OCCC)c1ccc(cc1)C(=O)OC(C)C(C)(C)C mGluR1 63 nM 
O=C(OCC1CC1)c1ccc(cc1)C(=O)OC(C)C(C)(C)C mGluR1 26 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 3 nM 
O=C(c1ccc2[nH0]c(OC)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 20 nM 
O=C(c1ccc2[nH0]cc(cc2c1)CC)C1CCC(OC)CC1 mGluR1 3.5 nM 
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Clc1[nH0]c2cc(C)c(cc2cc1CC)C(=O)C1CCC(OC)CC1 mGluR1 4.8 nM 
O=C(c1ccc2[nH0]c(N(C)C)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 31 nM 
O=C(OCc1[nH0]c2ccc(cc2cc1CC)C(=O)C1CCC(OC)CC1)C mGluR1 91 nM 
O=C(c1ccc2[nH0]c(O)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 14 nM 
O=C(Cc1ccccc1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 9.8 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CC2CCC1C2 mGluR1 13 nM 
O=C(CC1CCC(OC)CC1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 15 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CCC(C)CC1 mGluR1 15 nM 
FC1(CCC(OC)CC1)C(=O)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 17 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1Cc2ccccc2C1 mGluR1 56 nM 
O=C(CC1C[C@@H](CCC1C1)1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 60 nM 
O=C(Cc1ccccc1OC)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 67 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1Oc2ccccc2OC1 mGluR1 83 nM 
O=C(c1ccc2[nH0]c(C#N)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 11.5 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CCC(O)CC1 mGluR1 19 nM 
S1CCc2cc3cc(ccc3[nH0]c12)C(=O)C1CCC(OC)CC1 mGluR1 2.6 nM 
O=C(c1ccc2[nH0]c3N(C)CCCc3cc2c1)C1CCC(OC)CC1 mGluR1 8.1 nM 
O=C1Nc2ccc(cc2C=C1CC)C(=O)C1CCC(OC)CC1 mGluR1 8.7 nM 
O=C(c1ccc2[nH0]c(C)c([nH0]c2c1)C)C1CCC(OC)CC1 mGluR1 36 nM 
O=C(c1ccc2[nH0]3[nH0][nH0][nH0]c3C(=Cc2c1)CC)C1CCC(OC)CC1 mGluR1 44 nM 
s1ccc(c1)C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 7.2 nM 
Brc1ccc(cc1)C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 17 nM 
Fc1ccc(cc1)C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 20 nM 
Fc1cccc(c1F)C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 74 nM 
Fc1ccccc1C(=O)c1ccc2[nH0]c3OCCCc3cc2c1 mGluR1 42 nM 
O=C(NC12CC3CC(CC(C3)C2)C1)c1[nH0]c2ccccc2[nH0]c1 mGluR1 5 nM 
O=C(OCC)C12Oc3ccccc3C(=NO)C2C1 mGluR1 3400 nM 
O=C(OCC)[C@@](Oc1ccccc1C(=NO)[C@@H](C1)2)12 mGluR1 3000 nM 
O=C(OCC)[C@](Oc1ccccc1C(=NO)[C@H](C1)2)12 mGluR1 1500 nM 
O=C(OC)[C@@H](NC(=O)[C@](Oc1ccccc1C(=NO)[C@H](C1)2)12)Cc1c mGluR1 430 nM 
O=C(OC)[C@H](NC(=O)C12Oc3ccccc3C(=NO)C2C1)Cc1ccccc1 mGluR1 1400 nM 
O=C(OC)[C@@H](NC(=O)C12Oc3ccccc3C(=NO)C2C1)Cc1ccccc1 mGluR1 1200 nM 
S(CCO)c1[nH0]c(NC2Cc3ccccc3C2)c2CCCCc2[nH0]1 mGluR1 1 nM 
S(CCO)c1[nH0]c(Nc2ccc(OC)cc2)c2cc(OC)ccc2[nH0]1 mGluR1 11 nM 
Clc1cccc(Cl)c1CSCCNc1[nH0]c([nH0]c2CCCCc12)C mGluR1 7 nM 
Clc1cccc(Cl)c1CSCCNc1[nH0]c[nH0]c2ccccc12 mGluR1 46 nM 
O(C)c1ccc(Nc2[nH0]c[nH0]c3ccc(OC)cc23)cc1 mGluR1 96 nM 
Clc1ccc2[nH0]c[nH0]c(NC3C4CCC3CC4)c2c1 mGluR1 400 nM 
Clc1cccc2c([nH0]c[nH0]c12)NC1C2CCC1CC2 mGluR1 1895 nM 
N#Cc1[nH0][nH0]c(N)[nH0]c1N1CCc2ccccc2CC1 mGluR1 27 nM 
N#Cc1[nH0][nH0]c([nH0]c1N1CCc2ccccc2CC1)N(C)C mGluR1 1380 nM 
N#Cc1[nH0][nH0]c([nH0]c1N1CCc2ccccc2CC1)NCC1CC1 mGluR1 5 nM 
N#Cc1[nH0][nH0]c([nH0]c1N1CCc2ccccc2CC1)NN mGluR1 370 nM 
O=C(OC(C)(C)C)NCCNc1[nH0][nH0]c(C#N)c([nH0]1)N1CCc2ccccc2C mGluR1 27 nM 
N#Cc1[nH0][nH0]c([nH0]c1N1CCc2ccccc2CC1)NCCc1c[nH0]ccc1 mGluR1 29 nM 
N#Cc1[nH0]c(CC)c([nH0]c1N1CCc2ccccc2CC1)C mGluR1 6 nM 
N#Cc1[nH0]c(C)c([nH0]c1N1CCc2ccccc2CC1)CC mGluR1 103 nM 
N#Cc1[nH0]cc[nH0]c1N1CCc2ccccc2CC1 mGluR1 470 nM 
N#Cc1[nH0]c(c([nH0]c1N1CCc2ccccc2CC1)C)c1ccccc1 mGluR1 45 nM 
OCCNc1[nH0]c(N2CCc3ccccc3CC2)c([nH0]c1)C#N mGluR1 500 nM 
s1c2CCN(CCc2[nH0]c1C)C=1N=C(NC(=O)C=1[N+](=O)[O-])C mGluR1 30000 nM 
s1c2CCN(CCc2[nH0]c1C)c1[nH0]c([nH0]c(OCC)c1[N+](=O)[O-])C mGluR1 4200 nM 
s1c2CCN(CCc2[nH0]c1C)C=1N=C(N(CC)C(=O)C=1[N+](=O)[O-])C mGluR1 2100 nM 
s1c2CCN(CCc2[nH0]c1N)C=1N=C(NC(=O)C=1[N+](=O)[O-])C mGluR1 49000 nM 
s1c2CCN(CCc2[nH0]c1N)C=1N=C(N(CC)C(=O)C=1[N+](=O)[O-])C mGluR1 6000 nM 
s1c[nH0]c2CCN(CCc12)C=1N=C(NC(=O)C=1[N+](=O)[O-])C mGluR1 43000 nM 
s1ccc2CCN(CCc12)C=1N=C(NC(=O)C=1[N+](=O)[O-])C mGluR1 1900 nM 
s1ccc2CCN(CCc12)C=1N=C(N(CC)C(=O)C=1[N+](=O)[O-])C mGluR1 69 nM 
O=C(c1ccc2[nH0]c(N3CCCCC3)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 3630 nM 
O=C(c1ccc2[nH0]c(c(cc2c1)CC)c1occc1)C1CCC(OC)CC1 mGluR1 257nM 
O=C(Nc1ccc2[nH0]c(O)c(cc2c1)CC)C1CCC(OC)CC1 mGluR1 10000 nM 
O=C(N(C)c1ccccc1)C12Oc3ccccc3C(=NO)C2C1 mGluR1 2000 nM 
O=C(c1ccccc1)c1ccc2cc3CCCOc3[nH0]c2c1 mGluR1 8300 nM 
O=C(Nc1ccc(cc1)C(=O)C1CCC(OC)CC1)C mGluR1 7585 nM 
O=C(c1ccc2[nH0]c([nH]c2c1)C)C1CCC(OC)CC1 mGluR1 575 nM 
O=C(CCc1ccccc1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 229 nM 
O=C(Cc1ccc(N(C)C)cc1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 646 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CCNCC1 mGluR1 10000 nM 
O=C(c1ccc2[nH0]c(C)c(cc2c1)CC)C1CCC(N(C)C)CC1 mGluR1 10000 nM 
O=C(c1ccc(OC)c(OC)c1)c1ccc2[nH0]c(C)c(cc2c1)CC mGluR1 10000 nM 
S1c2cc(ccc2C(=O)C=2CCC(CC1=2)CC)c1[nH0][nH0][nH0][nH]1 mGluR1 9 nM 
FC(F)(F)COc1[nH0]c([nH0]c(N2CCC(CC2)c2ccccc2)c1C#N)NCCO mGluR1 36 nM 
O=C(OCC)NC(=O)C(c1ccccc1)c1ccccc1 mGluR1 (pos.) 170 nM 
O=C(OCC)NC(=O)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 9 nM 
[S+2]([O-])([O-])(N1CCC[C@H]1(c1ccc(C)cc1))c1ccc(C)cc1 mGluR1 (pos.) 200 nM 
O=C(Nc1[nH0]oc([nH0]1)C)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 52 nM 
O=C(Nc1[nH0]oc([nH0]1)CC)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 6 nM 
O=C(Nc1[nH0]oc([nH0]1)C(C)C)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 22 nM 
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O=C(Nc1[nH0]oc([nH0]1)CCC)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 25 nM 
O=C(Nc1[nH0]oc([nH0]1)C1CC1)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 23 nM 
O=C(Nc1[nH0]oc([nH0]1)CC(C)C)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 10 nM 
O=C(Nc1[nH0][nH0][nH0]([nH0]1)C)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 180 nM 
O=C(Nc1[nH0][nH0][nH0]([nH0]1)CC)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 65 nM 
O=C(Nc1[nH0][nH0][nH0]([nH0]1)CCC)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 29 nM 
O=C(Nc1[nH0][nH0][nH0]([nH0]1)C(C)C)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 29 nM 
O=C(Nc1[nH0][nH0][nH0]([nH0]1)CC(C)C)C1c2ccccc2Oc2ccccc21 mGluR1 (pos.) 34 nM 
O=C(NCc1cccc2ccccc21)c1[nH0]cc(cc1)CCCC mGluR1 (pos.) 135 nM 
N(c1ccccc1)C1CC(C)(C)CC(C)(C)C1 mGluR1 (pos.) 158 nM 
[nH0]1ccccc1CC=C(c1ccccc1)c1ccccc1 mGluR1 (pos.) 151 nM 
s1c([nH0]cc1C(=O)N1CCc2cc(OC)c(OC)cc2C1)C mGluR1 (pos.) 164 nM 
O=C(N1CCCCCC1)c1[nH0][nH0]2c(N=C(C=C2C)c2ccccc2)c1 mGluR1 (pos.) 164 nM 
O=[N+]([O-])c1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 10000 nM 
[nH0]1c(C)cccc1C#Cc1ccccc1 mGluR5 30 nM 
[nH0]1c(C)cccc1C=Cc1ccccc1 mGluR5 3500 nM 
O=C(C=Cc1ccccc1)c1[nH0]c(C)ccc1 mGluR5 10000 nM 
N#Cc1ccc(C#Cc2[nH0]c(C)ccc2)cc1 mGluR5 1000 nM 
[nH0]1cc(C)ccc1C#Cc1ccccc1 mGluR5 640 nM 
N#Cc1ccccc1C#Cc1[nH0]c(C)ccc1 mGluR5 360 nM 
N#Cc1cccc(C#Cc2[nH0]c(C)ccc2)c1 mGluR5 2 nM 
Oc1ccccc1C#Cc1[nH0]c(C)ccc1 mGluR5 360 nM 
[nH0]1c(C)cccc1C#Cc1ccccc1C mGluR5 48 nM 
[nH0]1c(C)cccc1C#Cc1cccc(C)c1 mGluR5 33 nM 
O=C(Nc1ccccc1)c1[nH0]c(C)ccc1 mGluR5 3500 nM 
Oc1ccc(C#Cc2[nH0]c(C)ccc2)cc1 mGluR5 1200 nM 
Oc1cccc(C#Cc2[nH0]c(C)ccc2)c1 mGluR5 2 nM 
O(C)c1ccccc1C#Cc1[nH0]c(C)ccc1 mGluR5 66 nM 
O(C)c1ccc(C#Cc2[nH0]c(C)ccc2)cc1 mGluR5 1700 nM 
O(C)c1cccc(C#Cc2[nH0]c(C)ccc2)c1 mGluR5 10 nM 
[nH0]1c(C)cccc1C#Cc1ccc(C)cc1 mGluR5 50000 nM 
s1cc([nH0]c1C)C#Cc1c[nH0]ccc1 mGluR5 5 nM 
s1cc([nH0]c1C)C#Cc1[nH0]cccc1 mGluR5 53 nM 
s1cc([nH0]c1C)C#Cc1cc[nH0]cc1 mGluR5 120 nM 
s1cc([nH0]c1C)C#Cc1ccccc1 mGluR5 14 nM 
s1c[nH0]c(C#Cc2ccccc2)c1 mGluR5 97 nM 
s1cc[nH0]c1C#Cc1ccccc1 mGluR5 80 nM 
O(C)c1ccc(cc1OC)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 6800 nM 
O(C)C=1C=C[nH0]2cc([nH0]c2C=1)c1ccc(OC)c(OC)c1 mGluR5 3300 nM 
O(C)c1cc(ccc1OCc1ccccc1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 830 nM 
Brc1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 950 nM 
Ic1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 970 nM 
Clc1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 1230 nM 
[nH0]1c2[nH0](C=CC=C2)cc1c1cccc(C)c1 mGluR5 1550 nM 
FC(F)(F)c1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 2790 nM 
Fc1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 3410 nM 
[nH0]1c2[nH0](C=CC(=C2)CC)cc1c1ccc(C)c(C)c1 mGluR5 3640 nM 
s1c(C)ccc1c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 6130 nM 
[nH0]1c2[nH0](C=CC(C)=C2)cc1c1ccccc1 mGluR5 7500 nM 
[nH0]1c2[nH0](C=CC=C2)cc1c1ccc(C)cc1 mGluR5 8770 nM 
O(C)c1cccc(c1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 1650 nM 
O(C)c1ccc(cc1OC)c1[nH0]c2[nH0](C=C(C)C=C2)c1 mGluR5 8300 nM 
O1C=C(OC2C=CC=CC12)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 990 nM 
[nH0]1c2[nH0](C=C(C)C=C2)cc1c1ccc(C)cc1 mGluR5 10000 nM 
[nH0]1c2[nH0](C=CC=C2)cc1c1ccc2CCCc2c1 mGluR5 930 nM 
o1c2ccccc2cc1c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 1660 nM 
s1cc(c2ccccc12)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 2760 nM 
O1CCc2cc(ccc12)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 2860 nM 
s1cc([nH0]c1C#Cc1ccccc1)C mGluR5 13 nM 
S(CC(=O)OCC)c1[nH0]cc(Cc2[nH0](C)ccc2)c(N)[nH0]1 mGluR5 380 nM 
Clc1ccc(c(Cl)c1)c1c[nH0]c(SCC(=O)OCC)[nH0]c1N mGluR5 3850 nM 
S(CC(=O)COCC)c1[nH0]cc(c(N)[nH0]1)C(=O)OCC mGluR5 270 nM 
s1cccc1Cc1c[nH0]c(SCC(=O)OCC)[nH0]c1NCC mGluR5 600 nM 
s1cccc1Cc1c[nH0]c(SC(C)C)[nH0]c1N mGluR5 1390 nM 
S(CC(=O)OCC1CC1C)c1[nH0]cc(Cc2ccccc2)c(N)[nH0]1 mGluR5 630 nM 
S(CC(=O)OCC1CCC1)c1[nH0]cc(Cc2ccccc2)c(N)[nH0]1 mGluR5 1460 nM 
S(CC(=O)OCC1CC1)c1[nH0]cc(Cc2ccccc2)c(N)[nH0]1 mGluR5 200 nM 
S(Cc1o[nH0]c([nH0]1)C1CC1)c1[nH0]cc(Cc2ccccc2)c(N)[nH0]1 mGluR5 450 nM 
s1cccc1Cc1c[nH0]c(SCC=C)[nH0]c1N mGluR5 2790 nM 
s1cccc1Cc1c[nH0]c(SCc2[nH0]oc[nH0]2)[nH0]c1N mGluR5 400 nM 
O=C(OCC)c1[nH0](C)c([nH0]c1C)C#Cc1ccccc1 mGluR5 250 nM 
O=C(OCC)c1[nH]c([nH0]c1C)C#Cc1ccccc1 mGluR5 2400 nM 
O(C)c1cccc(C#Cc2[nH0]c(C)c[nH0]2C)c1 mGluR5 350 nM 
[nH0]1cc[nH0](C)c1C#Cc1ccccc1 mGluR5 720 nM 
[nH0]1cc[nH]c1C#Cc1ccccc1 mGluR5 200 nM 
O=[N+]([O-])c1[nH0](CCO)c([nH0]c1)C#Cc1ccccc1 mGluR5 2110 nM 
Clc1cccc(Cl)c1C#Cc1[nH0]c(C)c([nH0]1C)C(=O)OCC mGluR5 1000 nM 
O=C(OCC)c1[nH0]c([nH0](c2ccccc2)c1C)C#Cc1ccccc1 mGluR5 not available 
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O=C(OCC)c1[nH0](C)c([nH0]c1C)C#Cc1cccc(C)c1 mGluR5 130 nM 
O=C(Nc1cccc(C#Cc2[nH0]c(C)c([nH0]2C)C(=O)OCC)c1)C mGluR5 2120 nM 
O=C(OCC)c1[nH0](C)c([nH0]c1C)C#Cc1cccc(N2CC=CC2)c1 mGluR5 180 nM 
o1[nH0]c([nH0]c1c1[nH0](C)c([nH0]c1C)C#Cc1ccccc1)C mGluR5 11 nM 
Clc1ccc(C#Cc2[nH0]c(C)c([nH0]2C)C(=O)OCC)cc1 mGluR5 not available 
Fc1ccc(C#Cc2[nH0]c(C)c([nH0]2C)C(=O)OCC)cc1 mGluR5 250 nM 
O=C(OCC)c1[nH0](C)c([nH0]c1C)C#Cc1ccc(cc1)c1ccccc1 mGluR5 210 nM 
Fc1ccccc1C#Cc1[nH0]c(C)c([nH0]1C)C(=O)OCC mGluR5 90 nM 
Fc1ccccc1C#Cc1[nH0]cc[nH0]1C mGluR5 70 nM 
O=C(OCC)c1[nH0](C)c([nH0]c1C)C#Cc1ccc(N)cc1 mGluR5 1530 nM 
Clc1ccccc1C#Cc1[nH0]cc[nH0]1C mGluR5 1100 nM 
Clc1[nH0]c([nH0](CC(=O)OCC)c1Cl)C#Cc1ccccc1 mGluR5 520 nM 
[nH0]1c[nH0](C)c(C#Cc2ccccc2)c1 mGluR5 220 nM 
O=C(NCCc1c2cc(OC)ccc2[nH]c1C#Cc1ccccc1)C mGluR5 580 nM 
S1Cc2[nH0](c[nH0]c2C#Cc2ccccc2)c2ccc[nH0]c12 mGluR5 150 nM 
O1Cc2[nH0](c[nH0]c2C#Cc2ccccc2)c2ccccc12 mGluR5 70 nM 
ClCC(O)C[nH0]1c([nH0]c(C#Cc2ccccc2)c1[N+](=O)[O-])C mGluR5 230 nM 
O=Cc1[nH0](C)c[nH0]c1C#Cc1ccccc1 mGluR5 1790 nM 
[nH0]1c[nH]cc1C#Cc1ccccc1 mGluR5 3360 nM 
[nH0]1c[nH0](C)cc1C#Cc1ccccc1 mGluR5 500 nM 
O=[N+]([O-])c1[nH0](C)c([nH0]c1C#Cc1ccccc1)C mGluR5 20 nM 
[nH0]1[nH0](C)c(C#Cc2ccccc2)cc1C mGluR5 5000-10000 nM 
[nH0]1c([nH0](C)c(c1C(C)C)C(C)C)C=Cc1ccccc1 mGluR5 1820 nM 
Fc1ccc(cc1)C=Cc1[nH0]c(c([nH0]1C)C(C)C)C(C)C mGluR5 5000-10000 nM 
Clc1ccc(cc1)C=Cc1[nH0]c(c([nH0]1C)C(C)C)C(C)C mGluR5 5000-10000 nM 
O(CCCC)c1ccc(cc1)C=Cc1[nH0]c(c([nH0]1C)C(C)C)C(C)C mGluR5 5000-10000 nM 
O(C)c1cc(C)c(C=Cc2[nH0]c(c([nH0]2C)C(C)C)C(C)C)c(C)c1C mGluR5 5000-10000 nM 
O(C)c1ccc(cc1)C=Cc1[nH0]c(c([nH0]1C)C(C)C)C(C)C mGluR5 5000-10000 nM 
Clc1ccc(cc1F)C=Cc1[nH0]c(c([nH0]1C)C(C)C)C(C)C mGluR5 10000 nM 
O(CC)c1ccc(cc1)C=Cc1[nH0]c(c([nH0]1C)C(C)C)C(C)C mGluR5 10000 nM 
O(C)c1ccc(C=Cc2[nH0]c(c([nH0]2C)C(C)C)C(C)C)c(OC)c1OC mGluR5 10000 nM 
Clc1ccc(C=Cc2[nH0]c(c([nH0]2C)C(C)C)C(C)C)c(Cl)c1 mGluR5 10000 nM 
[nH0]1c([nH0](C)c(c1C(C)C)C(C)C)C=Cc1ccc(C)cc1 mGluR5 3250 nM 
Brc1[nH0]c[nH0](C)c1C=Cc1ccccc1 mGluR5 3060 nM 
[nH0]1c[nH0](C)c(c1)C=Cc1ccccc1 mGluR5 8000 nM 
O=C(OC)N1CC[C@H]([C@H]1(CCC[C@@](O)(C#Cc1cccc(C)c1)1))1 mGluR5 20 nM 
O(C)c1cc(OC)cc(c1)C=Cc1[nH0]c(C)ccc1 mGluR5 30 nM 
Clc1cc(ccc1CC#N)c1oc2ccccc2[nH0]1 mGluR5 6 nM 
o1c2ccccc2[nH0]c1c1ccc(CC#N)c(OC)c1 mGluR5 3 nM 
o1c2ccccc2[nH0]c1c1ccc(c(OC)c1)c1[nH0]cccc1 mGluR5 41 nM 
o1c2ccccc2[nH0]c1c1ccc(c(OC)c1)c1c[nH0]ccc1 mGluR5 416 nM 
O(C)c1cc(ccc1c1c[nH0]ccc1)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 22 nM 
S1C=C[nH0]2cc([nH0]c12)c1ccc(c(OC)c1)c1c[nH0]ccc1 mGluR5 23 nM 
S1CC[nH0]2cc([nH0]c12)c1ccc(c(OC)c1)c1c[nH0]ccc1 mGluR5 325 nM 
o1[nH0]c([nH0]c1c1cccc(C#N)c1)c1[nH0]cccc1 mGluR5 42 nM 
o1cc([nH0]c1c1cccc(C#N)c1)c1[nH0]cccc1 mGluR5 45 nM 
S(CC(=O)OCC)c1[nH0]cc(Cc2ccccc2)c(N)[nH0]1 mGluR5 140 nM 
Brc1ccc(cc1)Cc1c[nH0]c(SCC(=O)OCC)[nH0]c1N mGluR5 180 nM 
s1ccc(c1)Cc1c[nH0]c(SCC(=O)OCC)[nH0]c1N mGluR5 180 nM 
S(CC(=O)OCC)c1[nH0]cc(Cc2cocc2)c(N)[nH0]1 mGluR5 160 nM 
S(CC(=O)OCC=C)c1[nH0]cc(Cc2ccccc2)c(N)[nH0]1 mGluR5 120 nM 
s1cccc1Cc1c[nH0]c(SCC(=O)OCC)[nH0]c1NCC(C)C mGluR5 160 nM 
ClC=1C=C[nH0]2cc([nH0]c2C=1)c1ccc(C)c(C)c1 mGluR5 100 nM 
O(C)C=1C=C[nH0]2cc([nH0]c2C=1)c1ccc(C)c(C)c1 mGluR5 140 nM 
[nH0]1c2[nH0](C=CC=C2)cc1c1ccc(C)c(C)c1 mGluR5 37 nM 
[nH0]1c2[nH0](C=CC(C)=C2)cc1c1ccc(C)c(C)c1 mGluR5 280 nM 
Brc1cc(ccc1F)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 690 nM 
s1c(C)cc(c1C)c1[nH0]c2[nH0](C=CC=C2)c1 mGluR5 580 nM 
Oc1ccc([nH0]c1N=Nc1ccccc1)C mGluR5 3700 nM 
O(C)c1ccc(cc1OC)c1[nH0]c2[nH0](C=CC(C)=C2)c1 mGluR5 1880 nM 
Fc1cccc(c1)C=NN=Cc1cccc(F)c1 mGluR5 (pos.) 2000 nM 
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7.2  Register of Pharmacophore Features  

Table 7.2-a. Annotation points defined by the PCH pharmacophore scheme in MOE Version 
2003.02 (Section 4.2.2) 

Type Definition 

H-bond donor (Don) Hydrogen bond donors, not including tautomeric donors (e.g.: 
primary and secondary amines, hydroxy-groups). 

H-bond acceptor (Acc) Hydrogen bond acceptors, not including tautomeric acceptors 
(e.g.: carbonyl-groups, unsaturated nitrogens). 

Cation (Cat) Cations, including resonance cations (e.g.: protonated amines) 

Anion (Ani) Anions, including resonance anions (e.g.: carboxylate-anions). 

Aromatic centers (Aro) Centers of aromatic homocycles or heterocycles (e.g.,: benzenes, 
pyridines, quinolines). 

Hydrophobic areas (Hyd) Areas of hydrophobic properties (e.g.: aliphatic chains, 
cycloalkanes) 
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7.3 Similarity Lists obtained in Section 4.3 

Table 7.3-a. List containing the top 100 test compounds of the CATS run for reference 
molecule R-01. Molecules with blue ID were ordered, molecules with bold ID were ordered 
and delivered. 

Rank ID Similarity Score Rank ID Similarity Score 
1 R-02 0.1461 51 BAS_2276958  0.5408 

2 BAS_0391501 0.3368 52 BAS_1027129  0.5417 
3 BAS_0399020 0.3986 53 BAS_0719950  0.5419 

4 BAS_2276984 0.4144 54 BAS_0316110  0.5428 

5 BAS_0399026 0.4279 55 BAS_0466184  0.5432 

6 BAS_0398973 0.4279 56 BAS_0733586  0.5448 
7 BAS_1280297 0.4477 57 BAS_0733331  0.5448 

8 BAS_1293648 0.4569 58 R-03  0.5450 

9 BAS_3200195 0.4643 59 BAS_0721849  0.5480 
10 BAS_3200194 0.4643 60 BAS_0316106  0.5487 

11 BAS_0726193 0.4644 61 BAS_0549667  0.5502 

12 BAS_1293659 0.4690 62 BAS_0872503  0.5504 

13 BAS_3569630 0.4770 63 BAS_0116912  0.5507 
14 BAS_3840865 0.4841 64 BAS_0119421  0.5510 

15 BAS_0726155 0.4848 65 BAS_0491076  0.5511 

16 BAS_2276957 0.4855 66 BAS_0829447  0.5528 
17 BAS_0434242 0.4885 67 BAS_0115283  0.5540 

18 BAS_0484981 0.4888 68 BAS_1293655  0.5541 

19 BAS_1280306 0.4937 69 BAS_0997506  0.5546 
20 BAS_0032180 0.4969 70 BAS_0369581  0.5583 

21 BAS_0457554 0.5008 71 BAS_0450775  0.5590 

22 BAS_0369588 0.5017 72 BAS_1044756  0.5645 

23 BAS_0637934 0.5022 73 BAS_0619947  0.5658 
24 BAS_1293653 0.5031 74 BAS_0600286  0.5666 

25 BAS_3147583 0.5048 75 BAS_0069082  0.5670 

26 BAS_1123649 0.5069 76 BAS_0672186  0.5681 
27 BAS_1293647 0.5103 77 BAS_1585664  0.5684 

28 BAS_5307694 0.5111 78 BAS_0232984  0.5686 

29 BAS_0457561 0.5134 79 BAS_0481364  0.5694 

30 BAS_1053334 0.5170 80 BAS_0308659  0.5696 
31 BAS_0726256 0.5175 81 BAS_0396059  0.5703 

32 BAS_2303581 0.5196 82 BAS_1077633  0.5707 

33 BAS_0899874 0.5198 83 BAS_2236264  0.5710 
34 BAS_1293657 0.5209 84 BAS_2236261  0.5710 

35 BAS_1280314 0.5215 85 BAS_0745008  0.5715 

36 BAS_0530782 0.5228 86 BAS_0671951  0.5722 

37 BAS_0369580 0.5267 87 BAS_0247237  0.5743 
38 BAS_2603597 0.5275 88 BAS_0069084  0.5744 

39 BAS_1365856 0.5287 89 BAS_0834407  0.5770 

40 BAS_1077624 0.5306 90 BAS_0784504  0.5781 
41 BAS_0139098 0.5306 91 BAS_1044763  0.5784 

42 BAS_0099446 0.5307 92 BAS_1018141  0.5810 

43 BAS_0069083 0.5326 93 BAS_0733420  0.5818 
44 BAS_0129908 0.5345 94 BAS_1123751  0.5822 

45 BAS_0529716 0.5361 95 BAS_1123652  0.5822 

46 BAS_0459058 0.5372 96 BAS_0329602  0.5824 

47 BAS_0672162 0.5385 97 BAS_0834813  0.5829 
48 BAS_1123749 0.5393 98 BAS_0066965  0.5835 

49 BAS_1123654 0.5393 99 BAS_5621609  0.5840 

50 BAS_1293630 0.5401 100 BAS_1280290  0.5847 
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Table 7.3-b. List containing the top 100 test compounds of the CATS run for reference 
molecule R-02. Molecules with blue ID were ordered, molecules with bold ID were ordered 
and delivered. 

Rank ID Similarity Score Rank ID Similarity Score 
1 R-01  0.1461 51 BAS_1123654  0.5246 
2 BAS_0399020  0.3671 52 BAS_0719950  0.5253 
3 BAS_1280297  0.3956 53 BAS_0454887  0.5263 
4 BAS_0391501  0.3958 54 BAS_0069082  0.5313 
5 BAS_0399026  0.4031 55 BAS_1053334  0.5336 
6 BAS_0398973  0.4031 56 BAS_0530782  0.5339 
7 BAS_2276984  0.4083 57 BAS_0997506  0.5343 
8 BAS_1293648  0.4312 58 BAS_0726256  0.5350 
9 BAS_0726193  0.4389 59 BAS_0491076  0.5364 
10 BAS_1293653  0.4405 60 BAS_0329364  0.5398 
11 BAS_1293659  0.4427 61 BAS_0829447  0.5398 
12 BAS_1365856  0.4604 62 BAS_1123747  0.5401 
13 BAS_3840865  0.4636 63 BAS_0637766  0.5416 
14 BAS_1293647  0.4700 64 BAS_0659984  0.5437 
15 BAS_0899874  0.4732 65 BAS_0066155  0.5437 
16 BAS_0032180  0.4733 66 BAS_1280290  0.5445 
17 BAS_3569630  0.4733 67 BAS_2236264  0.5450 
18 BAS_2303581  0.4763 68 BAS_2236261  0.5450 
19 BAS_1280314  0.4763 69 BAS_0119421  0.5481 
20 BAS_1280306  0.4772 70 BAS_1118531  0.5508 
21 BAS_3147583  0.4874 71 BAS_0733447  0.5525 
22 BAS_0726155  0.4883 72 BAS_1365860  0.5540 
23 BAS_1293630  0.4886 73 BAS_0726125  0.5555 
24 BAS_0529716  0.4920 74 BAS_0872503  0.5560 
25 BAS_1293657  0.4923 75 BAS_0672162  0.5571 
26 BAS_0129908  0.4938 76 BAS_5621609  0.5574 
27 BAS_1293655  0.4949 77 BAS_0327258  0.5575 
28 BAS_0484981  0.4962 78 BAS_2236262  0.5576 
29 BAS_0600286  0.5014 79 BAS_0834813  0.5592 
30 BAS_0450775  0.5031 80 BAS_0726207  0.5595 
31 R-03  0.5042 81 BAS_0725815  0.5595 
32 BAS_1123649  0.5043 82 BAS_0457561  0.5622 
33 BAS_0834407  0.5053 83 BAS_0705143  0.5624 
34 BAS_0733586  0.5065 84 BAS_1077633  0.5629 
35 BAS_0733331  0.5065 85 BAS_0667696  0.5631 
36 BAS_0637934  0.5074 86 BAS_5432992  0.5637 
37 BAS_0459058  0.5087 87 BAS_0329602  0.5652 
38 BAS_0069083  0.5095 88 BAS_4912490  0.5657 
39 BAS_5307694  0.5103 89 BAS_1256720  0.5657 
40 BAS_0745008  0.5112 90 BAS_0069084  0.5664 
41 BAS_1585664  0.5114 91 BAS_1209494  0.5671 
42 BAS_0369588  0.5149 92 BAS_0119417  0.5675 
43 BAS_2276957  0.5185 93 BAS_1293627  0.5677 
44 BAS_1077624  0.5193 94 BAS_1293625  0.5677 
45 BAS_0139098  0.5193 95 BAS_0099446  0.5678 
46 BAS_0434242  0.5201 96 BAS_0872247  0.5695 
47 BAS_3200195  0.5203 97 BAS_0066965  0.5698 
48 BAS_3200194  0.5203 98 BAS_1018141  0.5704 
49 BAS_0457554  0.5226 99 BAS_2603597  0.5711 
50 BAS_1123749  0.5246 100 BAS_1317855  0.5715 
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Table 7.3-c. List containing the top 100 test compounds of the CATS run for reference 
molecule R-03. Molecules with blue ID were ordered, molecules with bold ID were ordered 
and delivered. 

Rank ID Similarity Score Rank ID Similarity Score 
1 BAS_1293657  0.2863 51 BAS_0187775  0.4318 
2 BAS_0154462  0.3369 52 BAS_0398896  0.4325 
3 BAS_2236262  0.3470 53 BAS_0329591  0.4330 
4 BAS_2236264  0.3475 54 BAS_0015466  0.4353 
5 BAS_2236261  0.3475 55 BAS_0015465  0.4353 
6 BAS_0997507  0.3558 56 BAS_2171303  0.4357 
7 BAS_3603162  0.3596 57 BAS_1026950  0.4366 
8 BAS_0872246  0.3625 58 BAS_0872536  0.4386 
9 BAS_0872247  0.3644 59 BAS_0872357  0.4386 
10 BAS_0872298  0.3650 60 BAS_2556540  0.4399 
11 BAS_1152576  0.3712 61 BAS_0435696  0.4433 
12 BAS_1152575  0.3712 62 BAS_1293655  0.4436 
13 BAS_0872537  0.3712 63 BAS_0363772  0.4443 
14 BAS_0872358  0.3712 64 BAS_3077368  0.4450 
15 BAS_0231929  0.3876 65 BAS_0849059  0.4454 
16 BAS_0491076  0.3886 66 BAS_0637766  0.4463 
17 BAS_0883093  0.3936 67 BAS_0573103  0.4468 
18 BAS_1969380  0.3949 68 BAS_0631939  0.4468 
19 BAS_0872244  0.3954 69 BAS_2988684  0.4480 
20 BAS_0872538  0.3961 70 BAS_1839775  0.4480 
21 BAS_0872359  0.3961 71 BAS_0848995  0.4489 
22 BAS_0454671  0.3975 72 BAS_1585664  0.4495 
23 BAS_0872483  0.3983 73 BAS_1808748  0.4496 
24 BAS_0872486  0.4014 74 BAS_4085088  0.4498 
25 BAS_1121722  0.4014 75 BAS_0129908  0.4498 
26 BAS_0872485  0.4019 76 BAS_0600286  0.4505 
27 BAS_2236263  0.4098 77 BAS_0190164  0.4516 
28 BAS_0872613  0.4118 78 BAS_0363869  0.4521 
29 BAS_1053338  0.4125 79 BAS_0024127  0.4525 
30 BAS_0669878  0.4125 80 BAS_0991456  0.4526 
31 BAS_1355775  0.4132 81 BAS_0726125  0.4536 
32 BAS_0218058  0.4159 82 BAS_2785758  0.4540 
33 BAS_0653659  0.4160 83 BAS_0872534  0.4544 
34 BAS_0653662  0.4168 84 BAS_0872355  0.4544 
35 BAS_0203131  0.4168 85 BAS_0818838  0.4546 
36 BAS_4912490  0.4182 86 BAS_0917444  0.4552 
37 BAS_2556549  0.4185 87 BAS_0069083  0.4552 
38 BAS_1293648  0.4187 88 BAS_1312687  0.4563 
39 BAS_0534732  0.4188 89 BAS_0757453  0.4565 
40 BAS_1280290  0.4200 90 BAS_0584664  0.4565 
41 BAS_0869325  0.4211 91 BAS_0069082  0.4568 
42 BAS_0899656  0.4213 92 BAS_1123747  0.4568 
43 BAS_0129155  0.4249 93 BAS_0015469  0.4569 
44 BAS_0472011  0.4253 94 BAS_0872503  0.4569 
45 BAS_0345519  0.4260 95 BAS_2303581  0.4570 
46 BAS_1293653  0.4280 96 BAS_0997477  0.4590 
47 BAS_0717216  0.4282 97 BAS_0640325  0.4607 
48 BAS_5497245  0.4287 98 BAS_0399408  0.4610 
49 BAS_0119464  0.4302 99 BAS_0484084  0.4614 
50 BAS_0872277  0.4312 100 BAS_0389731  0.4616 
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Table 7.3-d. List containing the top 100 test compounds of the CATS run for reference 
molecule R-04. Molecules with blue ID were ordered, molecules with bold ID were ordered 
and delivered. 

Rank ID Similarity Score Rank ID Similarity Score 
1 BAS_0712884  0.2897 51 BAS_0369027  0.5719 
2 BAS_2167520  0.3401 52 BAS_1939695  0.5720 
3 BAS_1939555  0.3616 53 BAS_0579882  0.5737 
4 BAS_1939648  0.3795 54 BAS_0407475  0.5737 
5 BAS_1939535  0.4046 55 BAS_0712780  0.5739 
6 BAS_1939546  0.4143 56 BAS_1316926  0.5742 
7 BAS_1939573  0.4280 57 BAS_1269260  0.5742 
8 BAS_1939536  0.4466 58 BAS_0579549  0.5742 
9 BAS_1939639  0.4507 59 BAS_1403566  0.5745 
10 BAS_0924173  0.4510 60 BAS_0369030  0.5755 
11 BAS_1939665  0.4714 61 BAS_0579885  0.5774 
12 BAS_1939551  0.4896 62 BAS_0369028  0.5779 
13 BAS_1939628  0.4931 63 BAS_0800382  0.5779 
14 BAS_1939563  0.5015 64 BAS_1939644  0.5788 
15 BAS_1939603  0.5047 65 BAS_0406838  0.5797 
16 BAS_1939570  0.5068 66 BAS_0578146  0.5803 
17 BAS_0368608  0.5132 67 BAS_0408214  0.5806 
18 BAS_1939531  0.5167 68 BAS_0542433  0.5806 
19 BAS_1939533  0.5204 69 BAS_1120137  0.5812 
20 BAS_1939629  0.5220 70 BAS_0579515  0.5812 
21 BAS_0798537  0.5377 71 BAS_0542784  0.5817 
22 BAS_1939534  0.5389 72 BAS_0579393  0.5821 
23 BAS_0798536  0.5404 73 BAS_0712763  0.5832 
24 BAS_1939567  0.5407 74 BAS_0579878  0.5844 
25 BAS_1939565  0.5407 75 BAS_0407476  0.5851 
26 BAS_0579385  0.5411 76 BAS_0838067  0.5859 
27 BAS_0406832  0.5427 77 BAS_0441450  0.5862 
28 BAS_0476182  0.5438 78 BAS_0579884  0.5876 
29 BAS_0579396  0.5450 79 BAS_0407062  0.5898 
30 BAS_1939654  0.5466 80 BAS_2778871  0.5900 
31 BAS_0369029  0.5475 81 BAS_0408213  0.5945 
32 BAS_1058381  0.5485 82 BAS_0579493  0.5963 
33 BAS_1939537  0.5495 83 BAS_0579482  0.5963 
34 BAS_1939562  0.5499 84 BAS_0369091  0.5964 
35 BAS_1939554  0.5499 85 BAS_0753957  0.5965 
36 BAS_1939548  0.5499 86 BAS_0408217  0.5966 
37 BAS_1939547  0.5499 87 BAS_1269241  0.5971 
38 BAS_0579407  0.5507 88 BAS_0758992  0.5979 
39 BAS_0369033  0.5601 89 BAS_0579428  0.5985 
40 BAS_0542311  0.5611 90 BAS_0579418  0.5985 
41 BAS_0368609  0.5626 91 BAS_0712754  0.5985 
42 BAS_0712762  0.5641 92 BAS_0579538  0.5990 
43 BAS_2975101  0.5659 93 BAS_0441433  0.5991 
44 BAS_0754427  0.5664 94 BAS_1939630  0.5992 
45 BAS_1939661  0.5667 95 BAS_0543754  0.5993 
46 BAS_0579879  0.5675 96 BAS_0712795  0.6007 
47 BAS_0084847  0.5712 97 BAS_0407482  0.6008 
48 BAS_0407336  0.5712 98 BAS_3374461  0.6008 
49 BAS_0661907  0.5713 99 BAS_0579890  0.6010 
50 BAS_0712798  0.5718 100 BAS_1939624  0.6016 
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Table 7.3-e. List containing the top 100 test compounds of the CATS run for reference 
molecule R-05. Molecules with blue ID were ordered, molecules with bold ID were ordered 
and delivered. 

Rank ID Similarity Score Rank ID Similarity Score 
1 BAS_0253277  0.7360 51 BAS_3058581  0.9345 
2 BAS_6264800  0.7521 52 BAS_0620124  0.9367 
3 BAS_0355555  0.8153 53 BAS_0774663  0.9369 
4 R-06  0.8470 54 BAS_0618998  0.9378 
5 BAS_6264802  0.8664 55 BAS_0341130  0.9379 
6 BAS_0253275  0.8716 56 BAS_0844616  0.9405 
7 BAS_4363443  0.8821 57 BAS_0844538  0.9405 
8 BAS_2720963  0.8916 58 BAS_0222891  0.9415 
9 BAS_6264827  0.8917 59 BAS_0732880  0.9416 
10 BAS_1377675  0.8939 60 BAS_1122474  0.9430 
11 BAS_4363433  0.8944 61 BAS_1004862  0.9435 
12 BAS_0022054  0.8946 62 BAS_0844509  0.9441 
13 BAS_0844542  0.8947 63 BAS_3387264  0.9455 
14 BAS_3387057  0.8981 64 BAS_0732884  0.9457 
15 BAS_0732895  0.8991 65 BAS_3387139  0.9461 
16 BAS_0964142  0.8993 66 BAS_0620125  0.9463 
17 BAS_3387347  0.9006 67 BAS_0222899  0.9468 
18 BAS_2725225  0.9035 68 BAS_1122473  0.9469 
19 BAS_3387060  0.9039 69 BAS_0844557  0.9491 
20 BAS_1122488  0.9087 70 BAS_0844502  0.9516 
21 BAS_5990601  0.9137 71 BAS_1122490  0.9532 
22 BAS_3635578  0.9140 72 BAS_2987851  0.9543 
23 BAS_0844556  0.9152 73 BAS_5022080  0.9547 
24 BAS_5990712  0.9156 74 BAS_0964143  0.9553 
25 BAS_0222915  0.9161 75 BAS_0732894  0.9557 
26 BAS_0222918  0.9165 76 BAS_2725212  0.9559 
27 BAS_4363483  0.9165 77 BAS_5829411  0.9563 
28 BAS_0222916  0.9176 78 BAS_0341126  0.9563 
29 BAS_0341128  0.9180 79 BAS_1228891  0.9564 
30 BAS_3387180  0.9201 80 BAS_0414917  0.9569 
31 BAS_1122472  0.9211 81 BAS_3387138  0.9569 
32 BAS_0021983  0.9237 82 BAS_5291804  0.9570 
33 BAS_0844559  0.9238 83 BAS_0222892  0.9579 
34 BAS_0896617  0.9241 84 BAS_0491907  0.9583 
35 BAS_0964141  0.9242 85 BAS_3301920  0.9587 
36 BAS_2600118  0.9246 86 BAS_0844541  0.9589 
37 BAS_0236268  0.9250 87 BAS_0253265  0.9592 
38 BAS_0732891  0.9251 88 BAS_2549735  0.9598 
39 BAS_6264821  0.9256 89 BAS_0253264  0.9601 
40 BAS_1322638  0.9256 90 BAS_3819173  0.9605 
41 BAS_3635676  0.9257 91 BAS_0620074  0.9622 
42 BAS_3301924  0.9264 92 BAS_5829394  0.9622 
43 BAS_6481840  0.9270 93 BAS_0844558  0.9642 
44 BAS_1322652  0.9277 94 BAS_0844523  0.9644 
45 BAS_0491826  0.9277 95 BAS_0844498  0.9644 
46 BAS_0222910  0.9280 96 BAS_1059074  0.9652 
47 BAS_0340791  0.9285 97 BAS_3386113  0.9657 
48 BAS_4914705  0.9294 98 BAS_0620113  0.9659 
49 BAS_0340790  0.9302 99 BAS_0620060  0.9661 
50 BAS_1002446  0.9302 100 BAS_1118258  0.9661 
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Table 7.3-f. List containing the top 100 test compounds of the CATS run for reference 
molecule R-06. Molecules with blue ID were ordered, molecules with bold ID were ordered 
and delivered. 

Rank ID Similarity Score Rank ID Similarity Score 
1 BAS_4299532  0.5254 51 BAS_5291883  0.6818 
2 BAS_3387180  0.5467 52 BAS_0606759  0.6849 
3 BAS_0393306  0.5640 53 BAS_3635673  0.6853 
4 BAS_1004866  0.5804 54 BAS_1403566  0.6862 
5 BAS_3387347  0.5807 55 BAS_0705188  0.6885 
6 BAS_3635578  0.5883 56 BAS_3386040  0.6889 
7 BAS_3387264  0.5934 57 BAS_1416427  0.6906 
8 BAS_4328488  0.5940 58 BAS_6264800  0.6907 
9 BAS_3387139  0.5947 59 BAS_0253264  0.6923 
10 BAS_0406650  0.5953 60 BAS_1322643  0.6938 
11 BAS_0702290  0.6069 61 BAS_0705221  0.6950 
12 BAS_0606878  0.6106 62 BAS_1259647  0.6962 
13 BAS_0161075  0.6137 63 BAS_5932036  0.6964 
14 BAS_3387138  0.6189 64 BAS_0705220  0.6964 
15 BAS_3635676  0.6226 65 BAS_0523555  0.6964 
16 BAS_3387057  0.6263 66 BAS_1002424  0.6979 
17 BAS_1268028  0.6272 67 BAS_5291802  0.7013 
18 BAS_1002446  0.6317 68 BAS_3387311  0.7055 
19 BAS_1004861  0.6347 69 BAS_3245128  0.7055 
20 BAS_3245127  0.6384 70 BAS_3386029  0.7056 
21 BAS_0406649  0.6389 71 BAS_0606854  0.7066 
22 BAS_3386064  0.6436 72 BAS_0253265  0.7066 
23 BAS_0686464  0.6450 73 BAS_1002513  0.7080 
24 BAS_1002477  0.6482 74 BAS_0630784  0.7089 
25 BAS_0774662  0.6509 75 BAS_0630770  0.7089 
26 BAS_5932079  0.6514 76 BAS_5932057  0.7095 
27 BAS_2987877  0.6543 77 BAS_0774663  0.7112 
28 BAS_0406651  0.6550 78 BAS_1426717  0.7114 
29 BAS_1416455  0.6556 79 BAS_0630769  0.7114 
30 BAS_1002428  0.6560 80 BAS_1095379  0.7115 
31 BAS_2987861  0.6567 81 BAS_0236242  0.7117 
32 BAS_1403567  0.6573 82 BAS_3387344  0.7138 
33 BAS_3387060  0.6575 83 BAS_0599010  0.7152 
34 BAS_1403569  0.6577 84 BAS_0443481  0.7168 
35 BAS_1268033  0.6589 85 BAS_1322631  0.7170 
36 BAS_5291892  0.6590 86 BAS_2987851  0.7179 
37 BAS_1004862  0.6592 87 BAS_1322652  0.7190 
38 BAS_1403573  0.6592 88 BAS_1677419  0.7190 
39 BAS_5931987  0.6593 89 BAS_3387473  0.7206 
40 BAS_0630794  0.6600 90 BAS_3387474  0.7236 
41 BAS_5291804  0.6601 91 BAS_2987946  0.7267 
42 BAS_1004869  0.6628 92 BAS_2937446  0.7274 
43 BAS_1004840  0.6647 93 BAS_0606853  0.7288 
44 BAS_1074213  0.6650 94 BAS_0443480  0.7291 
45 BAS_1003171  0.6652 95 BAS_1002476  0.7297 
46 BAS_0851285  0.6677 96 BAS_0687521  0.7302 
47 BAS_1322638  0.6694 97 BAS_0253261  0.7304 
48 BAS_0606868  0.6735 98 BAS_2937456  0.7310 
49 BAS_0606855  0.6735 99 BAS_0606749  0.7314 
50 BAS_3387305  0.6775 100 BAS_0606736  0.7314 
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7.4 Collection of Virtual Hits obtained in Section 4.4 
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Figure 7.4-a. Set of compounds that were retrieved from the Asinex Gold Collection 2003 
using the pharmacophore search and ChemSpaceShuttle (Section 4.4.3). 

 

Table 7.4-a. List containing all 18 compounds that were selected by neighborhoodsearch in 
ChemSpaceShuttle and ordered (Section 4.4.3). Entries with no internal number were ordered 
but not delivered. 

Vendor ID Number Vendor ID Number 
BAS_0165203 P-02 BAS_0918495 P-04 

BAS_0192172 - BAS_1121507 P-01 
BAS_0272674 - BAS_1356608 P-12 

BAS_0311677 P-10 BAS_1365657 P-06 

BAS_0318830 P-11 BAS_2054004 P-05 
BAS_0332029 P-09 BAS_2104611 P-13 

BAS_0565291 P-03 BAS_2255568 P-14 

BAS_0866717 - BAS_3108856 P-15 

BAS_0914660 P-08 BAS_3847150 P-07 
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7.5 Collection of Virtual Hits obtained in Section 4.5 
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Figure 7.5-a. Set of compounds that were retrieved from the Asinex Gold Collection 2003 
using the SOM approach (Section 4.5.2). Molecules were assigned to subsets according to 
their core structure. 
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Table 7.5-a. List displaying the 50 best ranked compounds retrieved from the Asinex 
database by the SOM approach (Section 4.5.2). Entries are sorted by ascending order with 
respect to their distance to the centroid of neuron 6/6 (15x15 map). Molecules with blue ID 
were ordered, molecules with bold ID were ordered and delivered. 

Vendor ID Number Distance (10x10) Distance (15x15) 
BAS_0395916  - 0.329 0.275 
BAS_0395917 S-02 0.329 0.275 
BAS_0511006 S-01 0.328 0.285 

BAS_1123567  - 0.318 0.287 

BAS_1018007  - 0.315 0.289 

BAS_1018066  - 0.315 0.289 
BAS_0872503 S-03 0.336 0.293 

BAS_0395926  - 0.339 0.299 
BAS_1123565 S-04 0.346 0.306 
BAS_2276953 S-05 0.342 0.308 

BAS_0084923 -  0.345 0.310 

BAS_0726371 -  0.338 0.314 
BAS_2276957 S-06 0.355 0.316 
BAS_0872364 S-07 0.377 0.318 
BAS_2276986 S-08 0.356 0.324 

BAS_0297500 - 0.381 0.326 
BAS_2276985 S-09 0.370 0.327 
BAS_0084926 S-10 0.358 0.328 
BAS_2276955 S-11 0.392 0.328 
BAS_0872424 S-12 0.348 0.332 
BAS_0794556 S-13 0.363 0.334 

BAS_1123720  - 0.318 0.334 

BAS_0434242  - 0.382 0.336 
BAS_1293648  - 0.374 0.336 
BAS_0203181 S-14 0.399 0.338 
BAS_1416611 S-15 0.391 0.338 
BAS_0308659 S-16 0.410 0.340 
BAS_0594844 S-17 0.383 0.342 
BAS_0872398 S-18 0.378 0.347 
BAS_1018019 S-19 0.376 0.348 
BAS_1018064 -  0.375 0.348 

BAS_2276958 -  0.382 0.348 
BAS_0316110 S-20 0.370 0.351 
BAS_0872419 S-21 0.371 0.352 
BAS_0329602 S-22 0.358 0.354 

BAS_0099446 -  0.397 0.355 
BAS_0530782 S-23 0.399 0.356 
BAS_0129956 -  0.423 0.357 
BAS_0260628 S-24 0.372 0.359 
BAS_1293659 S-25 0.396 0.359 
BAS_0369559 -  0.405 0.361 

BAS_0395869 -  0.385 0.361 
BAS_0119417 S-26 0.371 0.362 

BAS_0872214  - 0.420 0.362 
BAS_2276984  - 0.399 0.364 

BAS_0530807  - 0.392 0.365 

BAS_0162450  - 0.415 0.369 
BAS_0393988 S-27 0.397 0.369 
BAS_0669563 S-28 0.371 0.370 

BAS_0203174  - 0.415 0.372 
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7.6 Statistical Indices and Compounds from Section 5.1.1 

 

Table 7.6-a. Statistical indices for ten independent CoMFA models. All 39 molecules were 
randomly assigned either to the training or the test set, both of which having nearly equivalent 
size (training set: 20; test set: 19). For each model the same molecular alignment in the same 
spatial orientation was used. 
 
Model q² (cv) SEP Components F r² SEE % steric % electr. 

1 0.576 0.625 4 107.576 0.966 0.176 70.2 29.8 

2 0.503 0.721 3 55.115 0.912 0.304 65.9 34.1 

3 0.294 0.679 2 34.856 0.804 0.358 78.0 22.0 

4 0.598 0.661 4 59.741 0.941 0.253 68.8 31.2 

5 0.616 0.645 3 62.371 0.921 0.292 70.1 29.9 

6 0.553 0.519 1 56.260 0.758 0.382 56.2 43.8 

7 0.389 0.675 4 70.535 0.950 0.194 69.8 30.2 

8 0.523 0.667 4 77.466 0.951 0.214 70.0 30.0 

9 0.389 0.557 4 43.546 0.921 0.208 62.1 37.9 

10 0.626 0.700 7 303.750 0.994 0.086 70.0 30.0 

Mean 0.507 0.645 3.6 87.122 0.912 0.247 68.1 31.9 

SEM 0.036 0.020 0.5 24.874 0.023 0.028 1.8 1.8 

 
 
Table 7.6-b. Series of 39 quinoline derivatives used for the present CoMFA study. Entries are 
sorted with respect to their internal ID number. 
 
Molecule-ID Structure pIC50-value Dataset 
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