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Abstract. Muller’s ratchet, in its prototype version, models a haploid, asexual popu-
lation whose size N is constant over the generations. Slightly deleterious mutations are
acquired along the lineages at a constant rate, and individuals carrying less mutations
have a selective advantage. The classical variant considers fitness proportional selection,
but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et
al. [EPW09] we propose a parameter scaling which fits well to the “near-critical” regime
that was in the focus of [EPW09] (and in which the mutation-selection ratio diverges
logarithmically as N → ∞). Using a Moran model, we investigate the“rule of thumb”
given in [EPW09] for the click rate of the “classical ratchet” by putting it into the con-
text of new results on the long-time evolution of the size of the best class of the ratchet
with (binary) tournament selection. This variant of Muller’s ratchet was introduced in
[GCSW23], and was analysed there in a subcritical parameter regime. Other than that
of the classical ratchet, the size of the best class of the tournament ratchet follows an
autonomous dynamics up to the time of its extinction. It turns out that, under a suit-
able correspondence of the model parameters, this dynamics coincides with the so called
Poisson profile approximation of the dynamics of the best class of the classical ratchet.
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1. Introduction

Muller’s ratchet is a prototype model in population genetics. Originally it was con-
ceived to explain the ubiquity of sexual reproduction among eukaryotes despite its many
costs [Mul64, Fel74]. In its bare bones version, Muller’s ratchet models a haploid, asexual
population whose size N is constant over the generations. The neutral part of the random
reproduction is given by a Wright-Fisher or a Moran dynamics. Slightly deleterious muta-
tions are acquired along the lineages at a rate m, and individuals carrying less mutations
have a selective advantage. The classical variant of Muller’s ratchet considers fitness pro-
portional selection, where the selective advantage of an individual carrying κ deleterious
mutations over a contemporanean that carries a larger number κ′ of deleterious mutations
is s

N (κ′ − κ). Since the mutation mechanism is assumed to be unidirectional, every once
in a while the type with the currently smallest number of mutations κ will disappear from
the population. As Herbert Muller puts it in his pioneering paper [Mul64], “an irreversible
ratchet mechanism exists in the non-recombining species . . . that prevents selection, even if
intensified, from reducing the mutational loads below the lightest . . . , whereas, contrariwise,
’drift’, and what might be called ’selective noise’ must allow occasional slips of the lightest
loads in the direction of increased weight.”

It is these “slips of the lightest loads” which are called clicks of the ratchet. The question
“How often does the ratchet click?” was asked by Etheridge, Pfaffelhuber and one of the
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present authors in [EPW09], and there it was found that

γ :=
m

s log(Nm)
(1.1)

is “an important factor in determining the rate of the ratchet”. Specifically, under the
assumption 1 ≪ Nm ≪ N , [EPW09] states the following Rule of Thumb for the classical
ratchet:
(RTC) The rate of the (classical) ratchet is of the order Nγ−1mγ for γ ∈ (12 , 1), whereas

it is exponentially slow in (Nm)1−γ for γ < 1
2 .

With the mutation-selection ratio

θ :=
m

s
,

(RTC) predicts the expected interclick time in the case γ ∈ (12 , 1) as

N(Nm)−γ = Ne−θ.
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Figure 1. This is an illustration of the Rule of Thumb (RTC) predict-
ing the order of magnitude of the interclick times of the classical ratchet.
Each data point was obtained by pooling the interclick times no. 50 to
150 from 100 simulations of the (classical) ratchet for the corresponding
parameter configuration (N, β, δ) in the (β, δ)-scaling (1.2). In the expo-
nential regime, (RTC) predicts an order of magnitude exp(cN1−β−δ) for
the interclick times. In panel (A), we see that the constant c is difficult to
estimate from simulations up to N = 104, but c = 2.3 as chosen there gives
a reasonable fit. For the polynomial regime, (RTC) predicts the order of
magnitude N1−δ, which fits very well the data in the situation of panel (B).
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As observed by John Haigh ([Hai78]), in the deterministic limit (N → ∞ and m, s not
depending on N) the type frequency profile in equilibrium becomes Poisson with parame-
ter θ. Consequently, for γ ∈ (12 , 1) the rule (RTC) goes along with Haigh’s prediction that
the rate of the ratchet should be proportional to the inverse of the size of the best class.

For a polynomial mutation rate m = N−β, 0 < β < 1, the condition that γ remains
constant (or at least bounded away from 0 and ∞) as N → ∞ amounts to the requirement
that the mutation-selection ratio θ is of the order logN as N → ∞.

For the purpose of illustration we will consider a family of parameter scalings for (m, θ)
which we call the (β, δ)-scaling of the classical ratchet:

m = N−β, θ = δ logN. (1.2)

This amounts to moderate mutation-selection, with the mutation-selection ratio θ diverging
logarithmically in N . The factor δ in front of logN turns out to be critical for the click
rate. Indeed, in the (β, δ)-scaling, (1.1) takes the form

γ(β, δ) =
δ

1− β
.

The condition 0 < γ < 1 from (RTC) restricts the pair (β, δ) to the triangle

∆ := {(β, δ) : 0 < β, 0 < δ < 1− β}. (1.3)

The polynomial and the exponential regime predicted by (RTC) correspond to

P := {1
2 < γ(β, δ) < 1} = {(β, δ) ∈ ∆ : 1

2(1− β) < δ < 1− β},
E := {0 < γ(β, δ) < 1

2} = {(β, δ) ∈ ∆ : 0 < δ < 1
2(1− β)},

and the predictions for the orders of magnitude of the expected interclick times take the
form

N(Nm)−γ = N1−δ for γ ∈ (12 , 1), (1.4)

exp
(
const(Nm)1−γ

)
= exp

(
constN1−β−δ

)
for γ ∈ (0, 12). (1.5)

In view of the predicted transition from polynomial to exponential click rates we refer to
P ∪ E as a near-critical regime. See Figure 1 for an illustration of (RTC) via simulations.

The evidence for (RTC) that is given in [EPW09] is based on a diffusion approximation
for the evolution of the relative size X0 of the best class (which consists of the individuals
that carry the least amount of mutations in the current population). Because of the fitness
proportional selection, the drift coefficient in this diffusion approximation contains the first
moment M of the type frequency configuration (X0, X1, . . .). In order to obtain an ap-
proximate autonomous dynamics for X0, the empirical first moment M has to be predicted
based on X0. A classical way to do this uses the so-called Poisson profile approximation,
which we will explain in some detail in Section 3.

In the present paper we will consider a variant of Muller’s ratchet in which fitness
proportional selection is replaced by (binary) tournament selection. This kind of selection
has been studied in the context of evolutionary computation ([BT96, BFM18]) and has
found attention also in the biological literature [PBB+15]. In the ratchet’s context this
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means that selective advantage of an individual carrying κ deleterious mutations over a
contemporanean that carries a larger number κ′ of deleterious mutations is constant (say s

N
for some s = sN > 0), irrespective of the value of the difference κ′ − κ. For the Moran
version of the tournament ratchet, which was introduced in [GCSW23] and whose definition
we recall in Section 2, this means that “pairwise selective fights” are always won by the
fitter individual.

Other than in the classical ratchet, the size of the (m, s)-tournament ratchet’s best
class follows an autonomous dynamics up to its time of extinction; at this time the class
which was so far the second-best becomes the best one. As we will see in Section 3, this
dynamics is equal to that of the Poisson profile approximation of the size of the classical
(m, s)-ratchet’s best class, provided that

ρ :=
m

s
= 1− exp(−m/s) = 1− e−θ. (1.6)

We now state a main finding of the present paper.
Rule of thumb for the near-critical tournament ratchet (RTT):

As N → ∞, the expected time between clicks is

≍
√

N

m
if Nm(1− ρ)2 → 0, (1.7)

≍ exp
(
Nm(1− ρ)2

)
if Nm(1− ρ)2 → ∞. (1.8)

Here and below, ≍ stands for logarithmic equivalence, i.e. aN ≍ bN means log aN ∼ log bN ,
or equivalently log aN

log bN
→ 1.

We will not give a complete proof of (RTT) in this work, but will present Theorem 3.4
which gives strong evidence for its validity. See Figure 2 for an illustration of (RTT) in
the light of Theorem 3.4. In Remark 3.5 we will discuss what are the ingredients missing
to go from Theorem 3.4 to a proof of (RTT), and we will also indicate a different route to
the proof of (RTT), using the technique developed in [GCSW23].

We emphasise that, in view of the correspondence (1.6), Theorem 3.4 also is a result
on the asymptotics of the Poisson profile approximation of the classical ratchet, here in
terms of Moran processes with mutation and selection. A similar asymptotics was obtained
in [EPW09] heuristically by passing right away to the diffusion approximation for logistic
branching processes.

In view of (1.6) we define, in analogy to (1.2), the (β, δ)-scaling for the tournament
ratchet as

m = N−β, ρ =
m

s
= 1−N−δ.

With this scaling, (RTT) takes the following form: As N → ∞, the expected time between
clicks is

≍ N
1+β
2 if (β, δ) ∈ P, (1.9)

≍ exp
(
N1−β−2δ

)
if (β, δ) ∈ E . (1.10)
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While both (RTC) and (RTT) state the same boundary (γ = 1
2) between the polynomial

and the exponential regime, the exponents differ between (1.4) and (1.9) as well as be-

tween (1.5) and (1.10). Specifically, in the polynomial regime P the exponent 1+β
2 for the

tournament ratchet is larger than the exponent 1− δ for the classical ratchet.
Here is an explanation for the polynomial regime. The centers of attraction of the

equilibrium profile weights of the best and the second best class differ asymptotically by

the factor
√
1− ρ = N

δ
2 for the tournament ratchet (see (3.5)), while they are given by the

Poisson weights e−θ and θe−θ for the classical ratchet and hence for the latter differ only
by the factor θ = δ logN (and thus have the same polynomial order N1−δ). This latter
factor is only logarithmic in N ; therefore, when starting the “new best class” at the time
of a click in its “old” center of attraction, the tournament ratchet has a longer way to go
than the classical ratchet. The exponent 1+β

2 in (1.7) will be obtained by a Green function
analysis in the proof of Theorem 3.4. This analysis will also explain the exponent 1 − δ
in (1.4), which corresponds to Haigh’s prediction, saying that “the interclick times are of
the order of the size of the best class”. An intuitive explanation for the appearance of the
exponent 1− β − 2δ in (1.8) will be given at the end of Section 3.2. The reason why this
exponent is different from the one appearing in (1.5) is that [EPW09] work here not with
the Poisson profile approximation, but with (a rescaling of the diffusion approximation of)
the so-called relaxed Poisson profile approximation.

Similar as [EPW09], the papers [PSW12, NS12, AP13, MPV20, BS22] used a diffusion
approximation for the classical ratchet and modifications thereof. Metzger and Eule [ME13]
consider, as a proxy to the classical ratchet, a two-type Moran model with selective advan-
tage s of type 0 over type 1 and mutation rate m from type 0 to type 1. Their formula (8)
corresponds to our formula (1.6) but their approximations for the classical ratchet concen-
trate on a regime in which θ remains bounded (see the discussion around [ME13, (23)],
and also [WL10, (7),(8)]), whereas we focus here on a regime in which θ = θN diverges
logarithmically in N .

In [GCSW23] it was discovered that the tournament ratchet has a dual which consists
of a hierarchy of competing logistic processes. The main results of [GCSW23] (on the click
rate of the tournament ratchet and its type frequency profile between clicks) were obtained
for the so-called subcritical regime (see Sec. 2.2) and were proved there via duality, with
the help of recent results on logistic processes (see [Lam05, SaSha13, CCM16]). This
“backward in time” view, which comes on top of an Ancestral Selection Graph decorated
with mutation events, opens a route for proving the above stated result (RTT) and for
analysing the type frequency profile of the tournament ratchet also in the near-critical
regime. This will be pursued in future work.

In [GCSW23] the rate of the tournament ratchet was identified in the subcritical regime
(i.e. for ρ = m/s < 1 and not depending on N) up to logarithmic equivalence. Thus
our Theorem 3.4 b), which is valid both for the near-critical and the subcritical regime,
provides an essential step in sharpening the rate asymptotics of [GCSW23] from logarithmic
equivalence to asymptotic equivalence, see Remark 3.5a).
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2. Muller’s ratchet as a Moran process with mutation and selection

2.1. Model and basic concepts. In the Moran version of Muller’s ratchet, neutral re-
sampling within any ordered pair of individuals happens at rate 1

2N , and mutation from
κ to κ + 1 takes place at rate m/N along each individual lineage. Selective reproduction
for an individual i of type κ(i) happens at rate 1

N

∑
j Φ(κ(j) − κ(i)), where the sum is

taken over all those individuals j whose type κ(j) is larger (and therefore “worse”) than
κ(i). Here Φ is the fitness function, with Φ(0) = 0 and Φ(−d) = −Φ(d) for d ∈ N. For
the classical case of proportional selection, one has Φ(κ′ − κ) = s (κ′ − κ), while for the
case of (binary) tournament selection one has Φ(κ′ − κ) = s (1{κ′>κ} − 1{κ′<κ}). In the
sequel we will refer to these two Moran variants of Muller’s ratchet briefly as the classical
ratchet and the tournament ratchet. Both models have (N,m, s) as their parameter triple,
and in both models a crucial role is played by the mutation-selection ratio m

s . In this
section we reserve the symbol s for the selection parameter. Later, this will be specified
as different parameters s and s for the tournament and the classical ratchet, respectively.
The following definition gives the rates for the type frequencies of the two ratchets.

Definition 2.1.

a) Writing Nκ for the current number of individuals of type κ, the jump rates are
specified as follows:

- Resampling: for κ ̸= κ′,
(Nκ, Nκ′) jumps to (Nκ + 1, Nκ′ − 1) at rate 1

2NNκNκ′

- Mutation: for κ,
(Nκ, Nκ+1) jumps to (Nκ − 1, Nκ+1 + 1) at rate mNκ

- Selection: for κ < κ′,

(Nκ, Nκ′) jumps to (Nκ+1, Nκ′−1) at rate

{
s
NNκNκ′(κ′ − κ) for the classical ratchet
s
NNκNκ′ for the tournament ratchet

b) The currently best type is

K∗(t) := min
{
κ ∈ N0 : Nκ(t) > 0

}
.

c) The click times of the ratchet are the jump times of K∗, i.e. the times at which
the currently best type is lost from the population. The type frequency profile seen
from the currently best type has the (random) weights

X
(N)
k (t) :=

1

N
NK∗(t)+k(t), k = 0, 1, 2 . . . (2.1)

We say that a (non-random) type frequency profile (pk)k∈N0 obeys the mutation-selection
equilibrium conditions (for the parameters m and s) if

m(pk − pk−1) = s pk


∑

k′∈N0

pk′Φ(k
′ − k)


 , k = 0, 1, 2 . . . , (2.2)

where we put p−1 := 0.
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For the classical ratchet, (2.2) turns into

m(pk − pk−1) = s pk(µ− k), k = 0, 1, 2 . . . , (2.3)

where µ :=
∑

ℓ ℓpℓ is the first moment of the profile. As already noticed by John Haigh
([Hai78]), (2.3) is solved by the Poisson weights with first moment µ = m

s . Indeed, this is
the unique solution of (2.3) under the condition p0 > 0.

For the tournament ratchet, (2.2) turns into

m (pk − pk−1) = s pk


∑

k′∈N0

pk′
(
1{k′>k} − 1{k′<k}

)

 , k = 0, 1, 2 . . . (2.4)

Here the condition p0 > 0 leads to the requirement m < s and yields p0 = 1− m
s . Various

properties of the solution (pk′) of (2.4) are stated in [GCSW23] Theorem 2.4. The r.h.s.
of (2.4) equals

s pk


1− pk − 2

k−1∑

k′=0

pk′


 , k = 0, 1, 2 . . . (2.5)

A formal analogy between (2.3) and (2.4) results because (2.5) is close to 2s pk(
1
2 − g(k)),

where g is the cumulative distribution function of (pk′). In this sense the role played by
the profile’s first moment in (2.3) is taken by the profile’s median in (2.4).

2.2. The subcritical regime of the tournament ratchet.
We now report briefly on the main results of the recent paper [GCSW23]. The parameters
of the tournament ratchet will be denoted by (m, s) and its mutation-selection ratio by
ρ := m

s . In [GCSW23], as N → ∞, the mutation-selection ratio ρ = m
s is kept constant

and smaller than 1, and it is assumed that m → 0 and mN → ∞. (For technical reasons,
mN is assumed to be of larger order of log logN , which keeps the regime slightly away
from that of weak mutation, in which mN would be of order one as N → ∞.) We will
refer to this regime as the subcritical regime of the tournament ratchet. Informally stated,
the main results of [GCSW23] are

• In the subcritical regime the click rate of the tournament ratchet on the 1
m -timescale

is, as N → ∞, logarithmically equivalent to

e
−2Nm

(
1
ρ
−1+log ρ

)
. (2.6)

• In the subcritical regime and for N large, the empirical type frequency profile at generic
time points between clicks of the tournament ratchet is with high probability close to the
mutation-selection equilibrium system (pk) given by (2.4) with p0 = 1− ρ.

See Theorems 2.2 and 2.3 in [GCSW23], which there are proved via a hierarchical duality.
As discussed in Remark 3.5.a), Theorem 3.4 b) can be considered as a significant step in
sharpening (2.6) to an asymptotic equivalence.
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3. A synopsis of the classical and the tournament ratchet

3.1. The dynamics of the best classes.
For k = 0, 1, . . . let Y C

k (t) = NC
K∗+k(t) and Y T

k (t) = NT
K∗+k(t) be the sizes of the

(k + 1)st-best class of the classical and the tournament ratchet, where (NC
κ )κ∈N0 and

(NT
κ )κ∈N0 follow the dynamics specified in Definition 2.1. Here we assume that the muta-

tion rate m is equal for both ratchets, but the selection coefficients are different:

s =

{
m
θ =: s for the classical ratchet
m
ρ =: s for the tournament ratchet.

The jump rates from n to n− 1 are given for both Y C
0 and Y T

0 by

n

(
1

2

(
1− n

N

)
+m

)
, (3.1)

but the jump rates from n to n+ 1 are different: those of Y T
0 are

n

(
1

2

(
1− n

N

)
+

m

ρ

(
1− n

N

))
, (3.2)

while those of Y C
0 are

n


1

2

(
1− n

N

)
+

m

θ

∞∑

k=1

kXk


 (3.3)

where (Xk(t))k∈N0 is the type frequency profile as defined in (2.1), with (NC
κ ) in place of

(Nκ). Writing

M(t) :=

∞∑

k=1

kXk(t)

for the first moment of the type frequency profile (Xk), the upward jump rate (3.3) takes
the form

n

(
1

2

(
1− n

N

)
+m

M

θ

)
. (3.4)

An inspection of the jump rates in Definition 2.1 reveals that for each k ∈ N the process
(Y T

0 , . . . , Y T
k ) obeys an autonomous dynamics up to the extinction time of Y T

0 ; for k = 0

this is evident from (3.1) and (3.2). For later reference we note here that (Y T
0 , Y T

1 ) has,
asymptotically as N → ∞, the center of attraction

(a, b) :=
(
N(1− ρ), N

√
1− ρ

)
(3.5)

provided Nm → ∞ and ρ → 1. To see this, note that the dynamics of (Y T
0 , Y T

1 ) is
autonomous up to the first hitting of {0}×{0, . . . , N}, and that the states of (Y T

0 , Y T
1 ) for

which the upward jump rates are asymptotically equal to the downward jump rates have
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the asymptotic (Np0, Np1), with (p0, p1) given by (2.4) and (2.5). In addition to p0 = 1−ρ,
this leads to the equation

p1(1− p1 − 2(1− ρ)) = ρ(p1 − (1− ρ)),

with the solution p1 =
√
1− ρ

(√
ρ+ 1

4(1− ρ)− 1
2

√
1− ρ

)
∼ √

1− ρ as ρ ↑ 1.

In contrast to the tournament ratchet, the rates (3.4) depend not only on the size of the
best class but also on the profile (Xk( t))k≥0 (via its first moment M(t)). There are various
ways to predict M(t) on the basis of Y C

0 (t), and thereby to replace (3.4) by a rate which
is autonomous. One of them will be described in the remainder of this section, a second
one will be addressed in Remark 3.2. As observed already by John Haigh [Hai78], such
a strategy requires a regime in which “genetic drift”, i.e. the fluctuations due to neutral
reproduction, needs a time to take Y C

0 to extinction which is large compared to the time
which the noiseless classical ratchet needs to “relax” towards its (new) equilibrium. The
dynamics of the latter is

dxk(t) =


s
∑

ℓ

xℓ(ℓ− k) +m(xk−1(t)− xk(t))


 dt, k = 0, 1, . . . (3.6)

(with x−1 ≡ 0). As already indicated after (2.3), the unique vector of probability weights
on N0 which has a non-vanishing weight at 0 and is a stationary point of (3.6) is given by
the Poisson profile

πk = e−θ θ
k

k!
, k ≥ 0. (3.7)

For the initial profile

x(0) := 1
1−π0

(
π1, π2, . . .

)
,

the relaxation time τ which it takes for x0(t) to come down from 1
1−π0

π1 to e
e−1π0 turns

out to be

τ =
log θ

s
,

(see [EPW09, Remark 4.3]1). The time to extinction of a neutral Moran(N)-process start-
ing in Nπ0 = Ne−θ is of the order Ne−θ. Haigh’s requirement can thus be formulated
as

Ne−θ ≫ log θ

s
,

which in the (β, δ)-scaling (1.2) just means that β + δ < 1.

1In order to ease the look-up we use here and below the numbering of the arxiv version of [EPW09],
which otherwise is identical in content with the version published in the LMS Lecture Note Series.
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3.2. The Poisson profile approximation for the classical ratchet.
Here the idea is to think of the profile (Xk)k≥1 as (nearly) proportional to the Poisson

profile (3.7), and as the mass π0 −X0 being distributed proportionally upon this profile.
This leads to the so-called Poisson profile approximation of (Xk)k≥1 based on X0, given by

Π(X0) :=

(
X0,

1−X0

1− π0

(
π1, π2, . . .

))
.

(cf [EPW09, (2.5)]). The first moment of Π(X0) is

M(X0) := (1−X0)
θ

1− π0
,

in accordance with [EPW09, (5.3a)]. Plugging this into (3.4) in place of M leads to the
following Poisson profile approximation of the upward jump rates (3.4):

n

(
1

2

(
1− n

N

)
+

m

1− e−θ

(
1− n

N

))
. (3.8)

We denote the birth-and death-process on N0 with downward jump rates (3.1) and upward
jump rates (3.8) by YPPA; this process can be seen as an approximation of Y C

0 .

Remark 3.1. A crucial observation is that the upward jump rates (3.8) and (3.2) are equal
if and only if ρ = 1 − e−θ. In other words, under the “dictionary” (1.6), the jump rates
(3.1) and (3.2) of the size of the best class of the (m, s)-tournament ratchet are equal to
the jump rates (3.1) and (3.8) of the Poisson profile approximation for the size of the best
class of the classical (m, s)-ratchet.

Remark 3.2. Not least to provide a systematic framework for previous approaches ([SCS93,
GC00]) to the approximation of the size of the ratchet’s best class, [EPW09] embedded the
Poisson profile approximation (PPA) into a one-parameter family RPPA(A), A ≥ 0, the
so-called relaxed Poisson profile approximations. Roughly, the idea was to take some delay
into account for the prediction of M based on X0. For A = 1, this results (see [EPW09,
(5.3b)]) in

M(X0) := θ +
1

e− 1

(
1− X0

π0

)
, (3.9)

which then is plugged into the upward jump rate (3.4) in place of M . In Figure 6 we
compare the quality of the PPA and RPPA(1) approximations for the rate of the classical
ratchet in the light of simulations of our Moran model.

3.3. On the expected time to extinction of the best class. In this subsection we
focus on the birth-and-death process Y := Y T

0 with jump rates (3.1) and (3.2). As observed
in Remark 3.1, this process has the same dynamics as the process YPPA defined in Sec-
tion 3.2, provided the mutation rates are equal and the selection coefficients are translated
through the “dictionary” (1.6).
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Remark 3.3. Before turning to a rigorous analysis, let us give a heuristics for the long-term
behaviour of Y , which also points towards (RTT) as well as part of (RTC). The rates
(3.1) and (3.2) display 3 parts: the fluctuation terms ±n

2

(
1− n

N

)
, the net linear birth rate

nm
ρ (1 − ρ) and the quadratic death rate m

ρ
n2

N . The center of attraction of Y (which we

encountered already in (3.5)) is that (asymptotic) value of n for which the the net linear
birth rate equals the quadratic death rate and thus equals

a = N(1− ρ).

As long as Y is below a/2, it is stochastically bounded from below by a binary Galton-
Watson process Y ℓ with supercriticality m(1−ρ)/2, and stochastically bounded from above
by a binary Galton-Watson process Y u with supercriticalitym(1−ρ). By Haldane’s formula
(which in this case coincides with the formula for the escape probability of a simple random
walk with constant drift), the survival probability of the offspring of one individual in Y ℓ

(resp Y u) is ∼ N−β−δ (resp. ∼ 2N−β−δ). Hence the probability that Y when starting

in a/4 hits 0 before reaching a/2, is asymptotically between
(
1− 2N−β−δ

)N1−δ/4
and

(
1−N−β−δ

)N1−δ/4
, which converge to 0 if and only if 1− β − 2δ > 0, i.e. γ > 1

2 . In this

case the number of excursions which Y makes from a/4 up to a/2 before going extinct is

geometric with expectation asymptotically between exp
(
1
4N

1−β−2δ
)
and exp

(
1
2N

1−β−2δ
)
.

This gives an intuitive explanation why γ = 1
2 is the bound between the exponential and

the polynomial regime, and also sheds light on the result of Theorem 3.4
In the case γ > 1

2 , the center of attraction plays a negligible role. What becomes relevant

then is that threshold for n above which the quadratic death rate m
ρ

n2

N becomes large.

Obviously, the order of magnitude of this threshold is
√

N
m = N

1+β
2 . Above this threshold,

Y is strongly pushed downwards, making the time spent above the threshold negligible.
Below the threshold, Y behaves similar to a (driftless linear) birth-and-death process with
upward and downward jump rates (3.1). This gives a qualitative explanation of the orders
of magnitude of the expected times to extinction that are obtained in Theorem 3.4 also for
the polynomial regime.

The proof of the following theorem is the content of Section 4. This proof relies on
an asymptotic analysis of the Green function represented by formula (4.1). The fit of
a numerical calculation of the Green function based on this formula with the empirical
occupation times of the size of the best class of the tournament ratchet is displayed in
Figure 3. A heuristic explanation of the orders obtained in Theorem 3.4 has been given in
Remark 3.3.

In the following we use the notation

f(N) ≪ g(N) ⇐⇒ lim
N→∞

f(N)

g(N)
= 0. (3.10)
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(3.13) with jN = N1− δ
2

(B)

Figure 2. This is an illustration of the Rule of Thumb for the tournament
ratchet (RTT) in the light of Theorem 3.4. Each data point was obtained
by pooling the interclick times no. 50 to 150 from 100 simulations of the
tournament ratchet for the corresponding value of N . Here, in panel (A)
(β, δ) = (0.6, 0.28), which belongs to the polynomial regime P, and in
panel (B) (β, δ) = (0.8, 0.08), which belongs to the exponential regime E .
Each panel shows two predictions based on the asymptotics of Theorem 3.4,
using the initial values a = N1−δ and b = N1−δ/2, respectively. In the ex-
ponential regime the predictions using a and b, respectively, are virtually
indistinguishable, while in the polynomial regime the prediction using b is
by far better than the one using a.

Also, we will usually suppress the N -dependence in the notation, as for example in Y , m
and ρ in the following theorem. Note that this theorem comprises a larger regime than the
one described by the (β, δ)-scaling for (β, δ) ∈ ∆, see (1.3).

Theorem 3.4. Let T0 be the extinction time of the birth-and-death process Y with jump
rates (3.1) and (3.2), let 1 ≫ m ≫ 1

N , and let ρ be a sequence in [ρ0, 1) for some fixed
ρ0 ∈ (0, 1).

a) [Polynomial regime] Assume Nm(1− ρ)2 → 0 as N → ∞. Let (jN ) be a sequence

of natural numbers in [N ]. If jN ≪
√

N/m
log(N/m) , then

EjN [T0] ∼ 2jN

(
log

√
N

m
− log jN

)
, (3.11)

whereas if jN ≫
√

N
m , then

EjN [T0] ∼
π3/2

2

√
N

m
. (3.12)
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The expected number of returns of the process Y to ⌈a⌉, when starting above a =
(1− ρ)N , is asymptotically equivalent to 1

m(1−ρ) as N → ∞.

b) [Exponential regime] Assume Nm(1 − ρ)2 → ∞ and 1 ≪ jN ≤ N as N → ∞.
Then

EjN [T0] ∼


1− exp

(
−2m

(
1

ρ
− 1

)
jN

)

√

π

mN
vN , (3.13)

with

vN :=
1

m
(
1
ρ − 1

) exp
(
2Nm(1− ρ)2η(m, ρ)

)
, (3.14)

η(m, ρ) := − 1

2m


 1

1− ρ
log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
(1− ρ)ℓ−1

ℓ(ℓ+ 1)


 .

In particular, with

eN :=
1

1− ρ

√
π

mN
vN (3.15)

one has

EjN [T0] ∼





eN if jN ≫ 1
m(1−ρ)

eN (1− exp(−2C/ρ)) if jN ∼ C
m(1−ρ)

eN 2jN m(1/ρ− 1) if jN ≪ 1
m(1−ρ)

. (3.16)

The expected number of returns of the process Y to ⌊a⌋, when starting above a =
(1− ρ)N , is asymptotically equivalent to (3.14) as N → ∞.

Remark 3.5. a) Theorem 3.4 constitutes an essential step on the way to a proof of the
claim (RTT) formulated in (1.7) and (1.8). One way to complete this proof could
lead via the analysis of the system (Y N

0 , Y N
1 ) of the sizes of the best and the second-

best class of the tournament ratchet; recall that this system is autonomous up to
the time of extinction of its first component. Then, Y N

0 (0) and Y N
1 (0) stand for the

(random) sizes of the new best and second best class at the time of a click. With TN
0

denoting the extinction time of Y N
0 , we conjecture that both in the polynomial and

in the exponential regime Y N
1 (TN

0 ) will with high probability be ≫
√

N
m , provided

that both Y N
0 (0) and Y N

1 (0) are ≫
√

N
m .

b) While the present work focuses on a forward-in-time approach, an alternative route
for proving (RTT) is provided by the backward-in-time approach that was devel-
oped in [GCSW23] in terms of a hierarchical duality for the tournament ratchet.
This requires the extension of the backward-in-time analysis from the subcritical
to the near-critical regime, and will be a subject of future research.
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Remark 3.6. a) Theorem 3.4 b) suggests the conjecture that not only in the exponen-
tial regime of the near-critical case ρ ↑ 1, but also in the entire subcritical case
ρ < 1 the rate of the tournament ratchet is asymptotically equivalent to (3.15).
This would improve the logarithmic equivalence (2.6) obtained in [GCSW23, The-
orem 2.2] to an asymptotic equivalence. Here it is worth noticing that (as we will
show at the end of Section 4.2) the exponents in (2.6) and (3.14) obey for all ρ < 1

(1− ρ)2η(m, ρ) ∼ 1

ρ
− 1 + log ρ as m → 0. (3.17)

b) In the light of Remark 3.1, Theorem 3.4 is relevant not only for the tournament
ratchet, but also for the Poisson profile approximation of the classical ratchet.
Prominent starting values for Y are

– with regard to the classical ratchet: nC
0 := Nπ1 = Nθe−θ, which in the (β, δ)-

scaling equals N1−δδ logN ,
– with regard to the tournament ratchet: nT

0 := N
√
1− ρ, which according

to (3.5) is the asymptotic center of attraction of the size of its second best class,

and in the (β, δ)-scaling equals N1−δ/2.
Figures 4 and 5 illustrate that these asymptotics of the starting values can indeed

be seen in simulations of the classical and the tournament ratchet. The starting
values nC

0 and nT
0 are used in Figures 6 and 7.

For (β, δ) ∈ P we have

1− δ <
1 + β

2
< 1− δ

2 .

Hence Theorem 3.4.a) gives, in accordance with (1.7) and (1.4),

EnT
0
[T0] ≍ N

1+β
2 and EnC

0
[T0] ≍ N1−δ.

c) Recalling that m = ρs with ρ < 1 (and all these parameters depending on N), the
difference of the upward and downward jump rates (3.2) and (3.1) is

λn − µn = n

(
s−m− s

n

N

)

and their sum is λn + µn ∼ n as long as n ≪ N . Hence the dynamics of Y N

(although its state space is {0, 1, . . . , N} rather than N0) bears similarities to that
of a logistic branching process. Indeed, we conjecture that a logistic branching

process Ŷ N with upward and downward jump rates λ̂n and µ̂n given by

λ̂n = n

(
1

2
+ s

)
, µ̂n = n

(
1

2
+m+ s

n

N

)
(3.18)

will exhibit very similar asymptotics of the expected times to extinction as those
obtained for the process Y N in Theorem 3.4. This would complement results
of [SaSha13] and [CCM16], both of which do not cover the parameter regime

given by (3.18). The paper [SaSha13] considers jump rates of the form λ̂n = ns,
µ̂n = nm+n(n−1)θ with constant s,m and small θ; this corresponds to (3.18) but
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without the fluctuation terms 1
2 which are of dominant order in (3.18). (For con-

ceptual clarification we point out that [SaSha13] addresses the case of a constant
ratio s/m > 1 as supercritical, while in our context this corresponds to a subcrit-
ical mutation-selection ratio.) The paper [CCM16] considers quasi-equilibria and
extinction times of a class of birth-and-death processes that is more general than
logistic branching processes, but imposes a scaling condition of the dynamics which
is not fulfilled by (3.1) and (3.2). Still, both papers point to interesting routes which
may offer alternatives to our way of proving Theorem 3.4.
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0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

y/a

β = 0.5, δ = 0.1

emp. occup.
G(b, n)
G(a, n)

(A)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

0.5

1

1.5

2

2.5

3

3.5

4

y/a

β = 0.7, δ = 0.2

emp. occup.
G(b, n)
G(a, n)

(B)

Figure 3. The empirical occupation times of the size of the best class in a
simulation of the tournament ratchet are compared to the Green functions
G(a, ·), G(b, ·), which are computed numerically using formula (4.4). Panels
(A) and (B) feature the exponential and the polynomial regime, respectively,
with γ = 0.2 in panel (A) and γ = 2

3 in panel (B). In panel (B) the

population size is N = 500 and simulations were run up to the first 104 +1
clicks, where the first click was ignored. In (A), 101 clicks were observed and
the first one ignored. Here the population size was N = 100. See [EPW09,
Figure 5] for similar plots concerning the classical ratchet.
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Figure 4. For N = 105 we compare the size of the “new best class” of the
classical ratchet immediately after a click (observed in simulations) with
the two theoretical predictions Nπ0 = N1−δ and Nπ1 = N1−δδ logN , cf.
Remark 3.6. b). For various values of γ = δ/(1 − β), we consider (the
logarithms of) these observed and predicted quantities as functions of β.
Each data point was obtained by pooling the interclick times no. 5 to 30
from 20 simulations of the classical ratchet for the corresponding parameter
configuration. Roughly, the average of the observed logarithmic sizes of the
new best class seems to wander away from Nπ0 towards Nπ1 (and beyond)
as γ increases.
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Figure 5. For N = 105 we compare the size of the “new best class” of the
tournament ratchet immediately after a click (as observed by simulations)

with a = N1−δ and b = N1−δ/2, which are the centers of attraction of the
best and the second best class of the tournament ratchet(cf. Remark 3.6. b)).
For various values of γ = δ/(1 − β), we consider (the logarithms of) these
quantities as functions of β. Each data point was obtained by pooling the
interclick times no. 5 to 30 from 20 simulations of the tournament ratchet for
the corresponding parameter configuration. For a wide range of parameters
with γ between 1/2 and 1, b is a better fit for the size of the new best class
than a.
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Figure 6. For fixed population size N = 105 the predictions for the ex-
pected interclick time of the classical ratchet based on a numerical calcula-
tion of the Green function (i) of the PPA and (ii) of the RPPA(1) approx-
imation are compared with simulations. Here, formula (4.3) is used (i) for
the jump rates (3.1) and (3.2), and (ii) for the downward jump rate (3.1)
and the upward jump rate resulting from (3.4) and (3.9). Each data point
was obtained by pooling the interclick times no. 5 to 30 from 20 simulations
of the tournament ratchet for the corresponding parameter configuration.
Each plot shows this for one fixed value of γ with varying β.
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Figure 7. For fixed population size N = 105 the predictions for the ex-
pected interclick time of the tournament ratchet based on i) a numerical cal-
culation of the Green function (using formula (4.3)) and ii) the asymptotics
provided by Theorem 3.4 are compared with simulations. Each data point
was obtained by pooling the interclick times no. 5 to 30 from 20 simulations
of the tournament ratchet for the corresponding parameter configuration.
Each plot shows this for one fixed value of γ and for varying β.
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4. Proof of Theorem 3.4

4.1. Green function. The proof is based on an asymptotic analysis of the Green function
of Y = Y N ,

G(j, n) := GN (j, n) = Ej

[∫ T0

0
I{Y N

t =n} dt

]
, 1 ≤ j, n ≤ N

as N → ∞. By assumption the upward and downward jump rates of Y from n are given
by

λn := n

(
1

2

(
1− n

N

)
+

m

ρ

(
1− n

N

))
, (4.1)

µn := n

(
1

2

(
1− n

N

)
+m

)
.

Recall that all quantities, including λn and µn, depend on N , even if we suppress this in
the notation for the sake of readability. We express the Green function in terms of the
oddsratio products

r0 := 1, rk :=
k∏

ℓ=1

µℓ

λℓ
, k ∈ {1, . . . , N − 1} . (4.2)

The following lemma is well known, see e.g. [SaSha13, (2.4)] for a proof of (4.5) via a
decomposition with respect to excursions from j. For convenience we include a derivation
of (4.3) in Section 4.5. See also [DSS05, (15)] for a similar representation of G(j, n).

Lemma 4.1. For 1 ≤ j, n ≤ N ,

G(j, n) =
1

µn

j−1∧n−1∑

ℓ=0

n−1∏

k=ℓ+1

λk

µk
. (4.3)

In Figure 3, formula (4.3) is compared to empirical occupation times from simulations
of the process Y .
With

Rk :=
k−1∑

i=0

ri, k ∈ {1, . . . , N} ,

we obtain from (4.3):

G(j, n) =





Rj∧n

λnrn
if n < N,

Rj

µNrN−1
if n = N.

(4.4)

Consequently,

Ej [T0] =
N∑

n=1

G(j, n) =
N−1∑

n=1

Rn∧j
λnrn

+
Rj

µNrN−1
. (4.5)
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Note that

U(j) := log rj (4.6)

(sometimes also referred to as potential, cf. [DSS05, (16)]) is an additive functional, and
(4.3) translates into

G(j, n) =
1

µn

j−1∧n−1∑

ℓ=0

e−(U(n−1)−U(ℓ)).

4.2. Asymptotics for the cumulated oddsratio products. In view of (4.5) we are
going to find asymptotics for the terms rk and Rk as N → ∞.
Our analysis, see Lemmas 4.3 and 4.6, shows that, as j increases, rj is essentially constant
on a large interval, before it starts to decrease as j approaches the center of attraction
N(1 − ρ). The asymptotics of the cumulated oddsratio products Rj and of the terms
G(j, n) will be analysed, depending on the order of magnitude of j, in Lemmas 4.3, 4.4
and 4.5 for the polynomial regime, and in Lemmas 4.6 and 4.7 for the exponential regime.

We recall the notation f(N) ≪ g(N) from (3.10). Also, we recall that we usually
suppress the N -dependence in the notation, as for example in m, ρ and j.

We can express log rj as

log rj =

j∑

k=1

log

(
µk

λk

)
= j log

(
1 + 2m

1 + 2m/ρ

)
+

j∑

k=1

log

(
1− k/((1 + 2m)N)

1− k/N

)
. (4.7)

This expression allows us the following asymptotic description which is key in what follows.

Lemma 4.2. Let ξ = ξN be a sequence converging to 0 so slowly that ξ ≫ m. Then for N
large enough and j ≤ (1− ξ)N

0 ≤ log rj − j log

(
1 + 2m

1 + 2m/ρ

)
−

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

jℓ+1

N ℓ
≤ const · m

ξ
. (4.8)

Lemma 4.3. Let K := KN > 0 either be constant or a diverging sequence. Then for all
k ≤ K

√
N/m

ek
2m/((1+2m)N)−4(1−ρ)K

√
mN ≤ rk ≤ ek

2m/N+K3/(
√
mN−K) (4.9)

and

e−4(1−ρ)K
√
mN

∫ k−1

0
ex

2m/((1+2m)N) dx ≤ Rk ≤ eK
3/(

√
mN−K)

∫ k

1
ex

2m/N dx. (4.10)

Lemma 4.2 and Lemma 4.3 will be proved in Section 4.5. We conclude this subsection
by showing (3.17). To this end, note the two asymptotic equivalences

log

(
1 + 2m

1 + 2m/ρ

)
= log

(
1 +

2m(ρ− 1)

ρ+ 2m

)
∼ 2m

(
1− 1

ρ

)
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and ∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
(1− ρ)ℓ−1

ℓ(ℓ+ 1)
∼ 2m

∞∑

ℓ=1

(1− ρ)ℓ−1

ℓ+ 1
,

which combine to

(1− ρ)2η(m, ρ) ∼ 1

ρ
− 1− (1− ρ)−

∞∑

ℓ=2

(1− ρ)ℓ

ℓ
=

1

ρ
− 1 + log ρ.

4.3. The polynomial regime: Proof of Theorem 3.4.a). Throughout this subsection
we assume Nm(1− ρ)2 → 0 as N → ∞.

We start with the expected number of returns to a := ⌊N(1−ρ)⌋ of the process Y when
starting in a. (4.4) together with Lemma 4.3 gives

G(a, a) =
Ra

λara
∼
∫ a
1 ex

2 m
N dx

λara
.

From [Wei, (1), (9)] we get ∫ a

1
ex

2 m
N dx ∼ ea

2m/N

2m
N a

,

and hence by using (4.9) as well as λa ∼ 1
2ρ(1− ρ)N we get

G(a, a) ∼ 1

mρ(1− ρ)2N
as N → ∞,

which together with the asymptotics λa + µa ∼ ρ(1− ρ)N gives

G(a, a)(λa + µa) ∼
1

m(1− ρ)
as N → ∞. (4.11)

In order to prove the rest the following two lemmas will be proved in Section 4.6.

Lemma 4.4. Let ζ := ζN → 0 such that ζ ≫
[
N(1− ρ)2m

]1/4
, and K = KN such that

K → ∞ and

K
(
(1− ρ)

√
Nm ∨ (Nm)−1/6

)
→ 0.

Then
K
√

N/m∑

k=ζ
√

N/m

Rk

λkrk
=

√
N

m

(
π3/2

2
+O(ζ) +O

(
1

K

))
as N → ∞.

Here and below, we will omit the Gauss brackets in the summation bounds for better
readability.

Lemma 4.5. Let K = KN and ξ = ξN be sequences with KN → ∞ and 1 ≫ ξ ≫ m.
Then there exists a constant C > 0 such that for all k with K

√
N/m ≤ k ≤ N(1− ξ)

Rk

rk
≤ C

Nm

k
. (4.12)
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With these three lemmas we have the tools for proving Theorem 3.4.a), which concerns

the polynomial regime. We will distinguish between the cases j ≫
√
N/m and j ≪

√
N/m,

since the potential U (given by (4.6)) turns out to be essentially flat below
√
N/m.

4.3.1. Proof of (3.11). Abbreviating γ := log(1/m) and recalling that we are in the case

j ≪
√

N/m

log (N/m)
, (4.13)

we decompose the mean extinction time from state j given by (4.5) as follows

Ej [T0] =

j−1∑

k=1

Rk∧j
λkrk

+

γ
√

N/m∑

k=j

Rk∧j
λkrk

+

N∑

k=γ
√

N/m+1

Rk∧j
λkrk

=

j−1∑

k=1

Rk

λkrk
+Rj

γ
√

N/m∑

k=j

1

λkrk
+Rj

N∑

k=γ
√

N/m+1

1

λkrk

=: E1(j) + E2(j) + E3(j). (4.14)

In view of the asymptotics

Rk ∼ k for k ≪
√

N/m

and λk ∼ k/2 for k ≪ N , and because of the inequality λkrk = µkrk−1 ≥ mkrk−1 for any
k ≤ N − 1, we have

E1(j) + E3(j) ≤ 4

j−1∑

k=1

k

k
+

2j

m

N∑

k=γ
√

N/m+1

1

krk−1
.

For the sake of readability, let us introduce the function f(k) via

m

N
k2f(k) := k log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
kℓ+1

ℓ(ℓ+ 1)N ℓ
. (4.15)

We see that f(k) ≥ 1/2 when k ≫
√

N/m. Hence there exists a finite constant C such
that

N∑

k=γ
√

N/m+1

1

krk−1
≤

N∑

k=γ
√

N/m

e−
mk2

2N

k
≤
∫ ∞

γ

e−x2/2

x
dx ≤ e−γ2/2

γ2
.

In order to see the first inequality we argue as follows: From Lemma 4.2 we get that for
any k,

log rk ≥ k log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

kℓ+1

N ℓ

≥ k log

(
1 + 2m

1 + 2m/ρ

)
+

(
1− 1

(1 + 2m)

)
1

2

k2

N
.
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From the observation that

log

(
1 + 2m

1 + 2m/ρ

)
∼ −2m

ρ
(1− ρ),

(
1− 1

(1 + 2m)

)
1

2

k

N
∼ m

k

N

and
k

N
≫ (1− ρ)

for k at least of order
√
N/m we see that rk−1 ≥ emk2/(2N). From this we get

E1(j) + E3(j) ≤ 4j + 2jeγ
e−γ2/2

γ2
,

which is of lower order than the r.h.s of (3.11). We will now analyse E2(j), which turns

out to be the dominant term. First, as j ≪
√
N/m, it may be simplified as follows,

E2(j) ∼ 2j

log(1/m)
√

N/m∑

k=j

1

krk
.

By sandwiching arguments using (4.8) and (4.15) we conclude that

γ
√

N/m∑

k=j

1

krk
∼
∫ γ

√
N/m

j

e−
m
N
x2f(x)

x
dx.

Thanks to (4.13) there exists a sequence ξ = ξN → 0 such that ξ2 ≫ 1/ log
(√

N/m
)
and

jN ≤ ξN
√
N/m. From (4.9), if k ≤ ξ

√
N/m and N is large enough, then |(m/N)k2f(k)| ≤

2ξ2. Hence

e−2ξ2
(
log
(
ξ
√
N/m

)
− log j

)
≤
∫ ξ

√
N/m

j

e−
m
N
x2f(x)

x
dx ≤ e2ξ

2

(
log
(
ξ
√
N/m

)
− log j

)
.

Moreover, f(k) ≥ ξ2/2 for k ≥ ξ
√
N/m. We deduce

∫ γ
√

N/m

ξ
√

N/m

e−
m
N
x2f(x)

x
dx ≤

∫ γ
√

N/m

ξ
√

N/m

e−
m
N
x2ξ2/2

x
dx ≤

∫ ∞

ξ

e−y2ξ2/2

y
dy.

By substituting t = ξy in the integral, the right hand side can be written as
∫ ∞

ξ2

e−t2/2

t
dt,

which is of order ξ−2. Since this is of lower order than log
(√

N/m
)
we deduce that

E2(j) ∼ 2j

(
log
(√

N/m
)
− log j

)
. (4.16)

This ends the proof of of (3.11). □
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4.3.2. Proof of (3.12). We recall that this concerns the case j = jN ≫
√
N/m. Let

K = KN be a sequence which converges to ∞ so slowly that K
√

N/m ≤ j and that K
satisfies the requirements of Lemma 4.3. Moreover, let ξ = ξN be a sequence with ξ → 0
and ξ ≫ m. In the first part of the proof we impose the condition

jN ≤ N(1− ξN ). (4.17)

Let ζ = ζN be a sequence converging to 0. Using again (4.5), we decompose the mean
extinction time from state j as follows:

Ej [T0]

=

ζ
√

N/m∑

k=1

Rk

λkrk
+

K
√

N/m∑

k=ζ
√

N/m+1

Rk

λkrk
+

N(1−ξ)∑

k=K
√

N/m+1

Rk∧j
λkrk

+

N−1∑

k=N(1−ξ)+1

Rj

λkrk
+

Rj

µNrN−1

=: F1 + F2 + F3(j) + F4(j) + F5(j).

The asymptotic of the second sum, F2, has been derived in Lemma 4.4 and leads to the

r.h.s. of (3.12). It thus suffices to show that F1 + F3(j) + F4(j) + F5(j) = o
(√

N/m
)
.

With E2(1) defined in (4.14), and because of (4.16) we obtain the estimate

F1 ≤ E2(1) ∼ 2 log
(√

Nm
)
= o

(√
N/m

)
.

The term F5(j) is bounded by
RN−1

µNrN−1
. By (4.12) and (3.1) the latter is at most of order

1/m, which is o
(√

N/m
)
because of the standing assumption that Nm → ∞.

Let us now turn to the analysis of F3(j). For this we have the upper bound

N(1−ξ)∑

k=K
√

N/m+1

Rk

λkrk
. (4.18)

By using

λk ∼ k

2

(
1− k

N

)
=

1

2

k

N
(k −N)

and the bound (4.12), the term (4.18) is asymptotically bounded from above by

2

N−1∑

k=K
√

N/m+1

N

k(N − k)

N

2mk
=

N2

m

N−1∑

k=K
√

N/m+1

1

k2(N − k)
.

We claim that this is o
(√

N/m
)
, which is equivalent to

N2

m

√
m

N

N−1∑

k=K
√

N/m+1

1

k2(N − k)
(4.19)
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converging to zero. This term we approximate by an integral

N2

m

√
m

N

N−1∑

k=K
√

N/m+1

1

k2(N − k)

=
N2

m

√
m

N
· 1

N3
·N · 1

N

N−1∑

k=K
√

N/m+1

1

(k/N)2(1− k/N)

∼ N2

m

√
m

N
· 1

N3
·N ·

1− 1
N∫

K/
√
mN

1

x2(1− x)
dx

=
1√
Nm

1− 1
N∫

K/
√
mN

1

x2(1− x)
dx.

The integral is of order
(
K/

√
mN

)−1
∨ logN = (

1

K

√
mN) ∨ logN.

Thus (4.19) is of order (
√
Nm/K)∨logN√

Nm
, which converges to zero as N → ∞.

We are left with the analysis of

F4(j) =

N−1∑

k=N(1−ξ)+1

Rk∧j
λkrk

.

This sum is bounded by

Rj

N−1∑

k=N(1−ξ)+1

1

λkrk
.

Since we assumed j ≤ N − ξN this is again bounded from above by

RN(1−ξ)

rN(1−ξ)

N−1∑

k=N(1−ξ)+1

rN(1−ξ)

λkrk
.

Recall from (4.7) that for j, ℓ ∈ N,

log rj+ℓ − log rj = ℓ log

(
1 + 2m

1 + 2m/ρ

)
+

j+ℓ∑

k=j+1

log

(
1− k/((1 + 2m)N)

1− k/N

)
.

Noticing that the term

log

(
1− k/((1 + 2m)N)

1− k/N

)
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is increasing with k, and performing a Taylor expansion, we obtain that for

k = N(1− ξ) + ℓ

we have the inequality

log rk − logN(1−ξ) ≥ ℓ(1− ξ)m.

Together with Lemma 4.5 and the asymptotic λk ∼ k(1− k/N) we obtain

RN(1−ξ)

rN(1−ξ)

N−1∑

k=N(1−ξ)+1

rN(1−ξ)

λkrk

≤ const · Nm

N(1− ξ)

N−1∑

k=N(1−ξ)+1

1

k(1− k/N)
exp

(
−m(1− ξ)

[
k −N(1− ξ)− 1

])

By using
1

k(1− k/N)
≤ 2 for N(1− ξ) ≤ k ≤ N − 1

this is bounded by

const · m

1− ξ

N−1∑

k=N(1−ξ)+1

exp
(
−m(1− ξ)

[
k −N(1− ξ)− 1

])
,

which in turn can be bounded by

const · m

1− ξ

∫ N−1

x=N(1−ξ)+1
exp

(
−m(1− ξ)

[
x−N(1− ξ)− 1

])
dx

≤ const ·m
1− ξ

∫ N(1−ξ)

0
exp

(
−m(1− ξ)x

)
dx.

The latter integral is of order 1/m as N → ∞. Thus we obtain

F4(j) = o

(√
N

m

)
,

which finishes the proof of (3.12) in the case j ≤ N(1− ξ).
In the remaining part of the proof we consider sequences which not necessarily satisfy

the restriction (4.17). In view of the first part it suffices to show that the expected time

which Y needs to come down from N to N(1− ξ) is of lower order than
√

N/m. For this,
we impose an additional condition on the sequence ξ, and will show the following claim:
Let ξ = ξN be a sequence converging to 0 and obeying m ≪ ξ ≪ m(N/m)1/4 as N → ∞.

Then EN [TN(1−ξ)] = o(
√
N/m).

To prove this claim, let Y be the time-discrete birth-and-death process corresponding
to Y . By (3.1) and (3.2) the probability of Y to go down in the next step when starting in
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k is given by

1
2

(
1− k

N

)
+m

(
1− k

N

)
+m+ m

ρ

(
1− k

N

) .

which for N(1− ξ) ≤ k ≤ N is bounded from below by

q :=
1

2

1 + 2m
ξ

1 + m
ξ + m

ρ

.

Let us put p := 1− q, and consider the (p, q)-random walk W on Z as well as the random

walk Ŵ on Z∩{. . . , N−2, N−1, N} that is obtained by reflecting W at N , i.e. by putting

PN (Ŵ1 = N) := p, PN (Ŵ1 = N − 1) := q. A suitable coupling of Y and Ŵ (both starting
in N) shows that for N(1 − ξ) ≤ k ≤ N the expected number visits of Y to k before Y
reaches N(1 − ξ) is not larger than the expected number of visits of Ŵ to k before Ŵ
reaches N(1 − ξ). The expected number of visits of the transient random walk W to its

starting point is q
q−p ∼ ξ

m , and the same is true for Ŵ . The jump rates (3.1) and (3.2)

from state k ≥ N(1− ξ) add up to

k

[
N − k

N
+m+

N − k

N

m

ρ

]
≥ 1

2
Nm.

Altogether, we obtain the estimate

EN [TN(1−ξ)] ≤
2

Nm
ξN

q

p− q
∼ 2ξ2

m2
, (4.20)

whose r.h.s. is o(
√
N/m) due to our assumption on ξ.

This concludes the proof of Theorem 3.4.a). □

4.4. The exponential regime: Proof of Theorem 3.4.b). Throughout this section we
assume Nm(1− ρ)2 → ∞. In this regime the process Y should spend a long time around
its center of attraction (1−ρ)N , which makes the following decomposition of (4.5) natural:
for a small ζ > 0 write

Ej [T0] =

(1−ζ)(1−ρ)N∑

k=1

Rk∧j
λkrk

+

(1+ζ)(1−ρ)N∑

k=(1−ζ)(1−ρ)N+1

Rk∧j
λkrk

+
N∑

k=(1+ζ)(1−ρ)N+1

Rk∧j
λkrk

=: A(ζ) +B(ζ) + C(ζ). (4.21)

The assertion of Theorem 3.4.b) will be derived at the end of this section from Proposi-
tion 4.7, whose proof, in turn, will rely on the following lemma. The proof of this lemma
as well as that of Proposition 4.7 will be given in Section 4.7.

Lemma 4.6. Let j = jN be a sequence of natural numbers converging to ∞, and let
ξ < 1/2. Then
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• If j ≤ ξ(1− ρ)N , then for sufficiently large N

1− e−(1+2ξ)2m(1−ρ)j/ρ

(1 + 2ξ)2m(1− ρ)/ρ
≤ Rj ≤

1− e−(1−2ξ)2m(1−ρ)j/ρ

(1 + 2ξ)2m(1− ρ)/ρ
.

• If 1/(m(1− ρ)) ≪ j ≤ (2− ξ)(1− ρ)N ∧N(1−√
m), then, under the assumption

ξ ≥ 2 log(mN(1− ρ)2)/(mN(1− ρ)2),

Rj ∼
ρ

2m(1− ρ)
as N → ∞.

• If j = C(1− ρ)N ≤ N(1−√
m), with 1

1−ρ ≥ C > 2/ρ (implying ρ > 2
3), then

Rj ∼ ρ(1− C(1− ρ))
exp

(
−2m(1− ρ)2NH(C)

)

2m(C − 1)(1− ρ)
as N → ∞,

where the function H(.) = H((m, ρ), .) on R+ is defined by

H(y) := − y

2m


 1

1− ρ
log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
(1− ρ)ℓ−1yℓ

ℓ(ℓ+ 1)


 . (4.22)

This is the central ingredient for the proof of the following proposition, which, in turn,
will be key for the proof of Theorem 3.4.b).

Proposition 4.7. Let A(ζ), B(ζ) and C(ζ) be defined by (4.21). Then for ζ = ζN con-

verging to 0 so slowly that ζ
√
mN(1− ρ) → ∞ , we have

B(ζ) ∼
(
Rj ∧

ρ

2m(1− ρ)

)√
π

mN

2

1− ρ
exp

(
2m(1− ρ)2NH(1)

)
as N → ∞, (4.23)

and
A(ζ) + C(ζ) = o(B(ζ)) as N → ∞.

The proof of this proposition will be given in Section 4.7.

Proof of Theorem 3.4.b). (i) For j = jN = O(1/(m(1 − ρ))) and any sequence ξ = ξN
converging to zero we have

1− exp
(
−(1± 2ξ)2m(1− ρ)j/ρ

)
∼ 1− exp

(
−2m(1− ρ)j/ρ

)
.

Hence Proposition 4.7 together with the first bullet point of Lemma 4.6 gives

Ej [T0] ∼ B(ζ) ∼ 1− exp
(
−2m(1− ρ)j/ρ

)

2m(1− ρ)

√
π

mN

2ρ

1− ρ
exp

(
2m(1− ρ)2NH(1)

)
,

(ii) For j ≫ 1/(m(1−ρ)) Proposition 4.7 together with the second bullet point of Lemma 4.6
gives

Ej [T0] ∼ B(ζ) ∼ ρ

m(1− ρ)2

√
π

mN
exp

(
2m(1− ρ)2NH(1)

)
.

(iii) To conclude (3.13) from (i) and (ii) it suffices to observe that η(m, ρ) = H(1), and
that the assumption on j in (ii) implies the convergence 1− exp(−2m(1− ρ)jN/ρ) → 1 as
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N → ∞. The claimed asymptotics (3.16) is an immediate consequence of (3.13).
(iv) It remains to prove the claim on the expected number of excursions from a := ⌊a⌋,
with a = (1 − ρ)N being the asymptotic center of attraction of Y . In view of (4.4) this
expected number equals

(λa + µa)G(a, a) = (λa + µa)
Ra

λara
. (4.24)

In order to estimate ra we observe that (4.8), when expressed in terms of the function H
(which was defined in (4.22)), gives the asymptotics

1

ra
∼ exp

(
2m(1− ρ)2NH(1)

)
as N → ∞. (4.25)

In addition, the second bullet point of Lemma 4.6 gives

Ra ∼ ρ

2m(1− ρ)
as N → ∞. (4.26)

Since λa ∼ µa as N → ∞, the combination of (4.25) and (4.26) shows that (4.24) is
asymptotically equivalent to (3.14). □

4.5. Proofs of Lemmas 4.1 Lemma 4.2 and Lemma 4.3.

Proof of Lemma 4.1. We denote the time-discrete embedded process corresponding to Y
by Y, and write G(m,n) for the expected number of visits at n of Y when starting in m.
Let us start with an analysis of G(n, n). By standard arguments we have

G(n, n) = 1

ϕ(n)
, (4.27)

where ϕ(n) is the escape probability of Y from the state n, i.e.

ϕ(n) =
µn

µn + λn
(1− h(n)(n− 1)), (4.28)

where h(n) : {0, 1, . . . , n} → [0, 1] is Y-harmonic on {1, . . . , n−1} and satisfies the boundary

conditions h(n)(0) = 0, h(n)(n) = 1. Hence

h(n)(ℓ) =

∑ℓ−1
j=0 rj∑n−1
k=0 rk

, ℓ = 0, . . . , n, (4.29)

with the oddsratio product rk as in (4.2). From (4.29) we obtain

1− h(n)(n− 1) =
rn−1∑n−1
k=0 rk

. (4.30)

For G(n, n), the expected time spent by Y in n when starting in n, we thus obtain the
relation

G(n, n) =
G(n, n)
λn + µn

=
1

ϕ(n)
· 1

µn + λn
.
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Combining this with (4.27), (4.28) and (4.30) we arrive at

G(n, n) =
1

µn
·
n−1∑

k=0

rk
rn−1

=
1

µn

n−1∑

ℓ=0

n−1∏

k=ℓ+1

λk

µk
. (4.31)

For j > n we have

G(j, n) = G(n, n), (4.32)

while for j < n

G(j, n) = hn(j)G(n, n) =

∑j−1
ℓ=0 rℓ∑n
ℓ=0 rℓ

G(n, n).

Together with (4.31) this gives for j < n

G(j, n) =
1

µn

n−1∑

k=0

rk
rn−1

·
∑j−1

ℓ=0 rℓ∑n−1
ℓ=0 rℓ

=
1

µn

j−1∑

ℓ=0

n−1∏

k=ℓ+1

λk

µk
. (4.33)

It remains to observe that the three cases j > n, j = n, j < n (which are covered by (4.32),
(4.31) (4.33)) combine to (4.3) □

Proof of Lemma 4.2. We have already seen

log rj =

j∑

k=1

log

(
µk

λk

)
= j log

(
1 + 2m

1 + 2m/ρ

)
+

j∑

k=1

log

(
1− k/(1 + 2m)N

1− k/N

)

= j log

(
1 + 2m

1 + 2m/ρ

)
+

j∑

k=1

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ

(
k

N

)ℓ

.

As j ≤ N − 1, we may apply Fubini’s theorem to write

j∑

k=1

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ

(
k

N

)ℓ

=
∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ

j∑

k=1

(
k

N

)ℓ

.

Now sandwiching arguments yield

jℓ+1

(ℓ+ 1)N ℓ
=

∫ j

0

(
x

N

)ℓ

dx

≤
j∑

k=1

(
k

N

)ℓ

≤
∫ j

1

(
x

N

)ℓ

dx+

(
j

N

)ℓ

=
1

(ℓ+ 1)N ℓ
(jℓ+1 − 1) +

(
j

N

)ℓ

.
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This means that if we introduce

∆j :=

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ

j∑

k=1

(
k

N

)ℓ

−
∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

jℓ+1

N ℓ
,

we have

0 ≤ ∆j ≤
∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ

(
j

N

)ℓ

From the observation that

1− 1

(1 + 2m)ℓ
≤ 2mℓ,

we get

0 ≤ ∆j ≤ 2m

∞∑

ℓ=1

(
j

N

)ℓ

.

Now let ξ ≫ m. Then j ≤ (1− 2ξ)N implies that for N marge enough, j + 1 ≤ (1− ξ)N .
Hence

∆j ≤ 2m

∞∑

ℓ=1

(1− ξ)ℓ = 2m
1− ξ

ξ
= o(1).

This entails that there exists C such that for any j ≤ (1− 2ξ)N and N large enough,

0 ≤ log rj − j log

(
1 + 2m

1 + 2m/ρ

)
−

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

jℓ+1

N ℓ
≤ const · m

ξ
. (4.34)

□

Proof of Lemma 4.3. We set out from (4.8). Notice that for any x, y ≥ 0, 1−(1+x)−y ≤ xy.

Hence, for k ≤ K
√
N/m,

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
kℓ+1

ℓ(ℓ+ 1)N ℓ
≤ 2m

∞∑

ℓ=1

kℓ+1

(ℓ+ 1)N ℓ
≤ m

∞∑

ℓ=1

kℓ+1

N ℓ

= k2m/N +mN
∞∑

ℓ=3

kℓ

N ℓ

= k2m/N +mN
k3

N3

1

1− k/N

≤ k2m/N +
K3

√
mN −K

.

Conversely we have

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
kℓ+1

ℓ(ℓ+ 1)N ℓ
≥
(
1− 1

(1 + 2m)

)
k2

2N
∼ k2m/N.
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Finally, for k ≤ K
√
N/m we also have

∣∣∣∣∣k log
(

1 + 2m

1 + 2m/ρ

)∣∣∣∣∣ = k

∣∣∣∣∣log
(
1− 2m(1− ρ)

ρ+ 2m

)∣∣∣∣∣ ∼ 2mk(1− ρ) ≤ 2K
√
m(1− ρ)2N = o(1).

This concludes the proof of (4.9). The estimate (4.10) then follows by approximating the

sum Rk :=
∑k−1

ℓ=0 rℓ from below by an integral from 0 to k−1 and from above by an integral
from 1 to k. □

4.6. Proofs of Lemmas 4.4 and 4.5.

Proof of Lemma 4.4. Noting that our choices of K and ζ entail

k2m

(1 + 2m)N
≫ 4(1− ρ)

√
mN ∀k ≥ ζ

√
N/m

as well as

4(1− ρ)K
√
mN → 0

K3

√
mN − 1

→ 0.

We can deduce

K
√

N/m∑

k=ζ
√

N/m

Rk

krk
∼

K
√

N/m∫

y=ζ
√

N/m

e−
m
N
y2 dy

y

y∫

z=0

e
m
N
z2 dz =: IN

from (4.9) and (4.10). We thus need to find an equivalent of IN for large N . Three
successive changes of variables entail the equalities:

IN =

K
√

N/m∫

y=ζ
√

N/m

dy

y

y∫

z=0

e−
m
N
(y2−z2) dz

=

K
√

N/m∫

y=ζ
√

N/m

dy

1∫

λ=0

e−
m
N
y2(1−λ2)dλ =

√
N

m

1∫

λ=0

dλ

K∫

z=ζ

e−z2(1−λ2) dz

=

√
N

m

1∫

λ=0

dλ√
1− λ2

K
√
1−λ2∫

w=ζ
√
1−λ2

e−w2
dw.

Hence

IN ≤
√

N

m

1∫

λ=0

dλ√
1− λ2

∞∫

w=0

e−w2
dw =

√
N

m

π

2

√
π

2
=

√
N

m

π3/2

4
.
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For the lower estimate we proceed as follows:

π3/2

4
− IN

√
m

N
=

1∫

λ=0

dλ√
1− λ2




ζ
√
1−λ2∫

w=0

e−w2
dw +

∞∫

w=K
√
1−λ2

e−w2
dw




≤
1∫

λ=0

dλ√
1− λ2


ζ +

∞∫

w=K
√
1−λ2

e−w2
dw




≤ π

2
ζ +

1∫

λ=0

dλ√
1− λ2




∞∫

w=K
√
1−λ2

e−w2
dw


 .

We write the double integral on the r.h.s. as
∫ 1

0

∫ ∞

z=K
e−z2(1−λ2) dz dλ =

∫ ∞

z=K
e−z2

∫ 1

0
ez

2λ2
dλ dz.

By substituting x = λz the inner integral is equal to

1

z

∫ z

0
ex

2
dx,

which by [Wei, (1),(9)] is bounded from above by const · ez2/z2, such that in total (4.6) is
bounded from above by

∫ ∞

K
e−z2

(
const · e

z2

z2

)
dz ≤ const · 1

K
,

so in total

π3/2

4
− IN

√
m

N
= O(ζ) +O

(
1

K

)
.

Hence, as λk ∼ k/2 for k ≪ N , we have proved that

K
√

N/m∑

k=ζ
√

N/m

Rk

λkrk
∼

K
√

N/m∑

k=ζ
√

N/m

2
Rk

krk
=

√
N

m

(
π3/2

2
+O (ζ) +O

(
1

K

))
.

□

Proof of Lemma 4.5. Lemma 4.2 enables us to write

rj ∼ exp

(
m

N
j2f(j)

)
for j ≤ N − ξN.
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So

Rj =

j∑

ℓ=1

rℓ ∼
j∑

ℓ=1

exp

(
m

N
ℓ2f(ℓ)

)

≤ const ·
∫ j

1
exp

(
m

N
x2f(x)

)
dx

and

Rj

rj
≤ const exp

(
−m

N
j2f(j)

)
·
∫ j

1
exp

(
m

N
x2f(x)

)
dx

= const ·
∫ j

1
exp

(
m

N

(
x2f(x)− j2f(j)

))
dx. (4.35)

Since f is non-decreasing and f(x) ≥ 1
2 for x ≫

√
N/m, see the discussion after (4.15), we

have f(x) ≤ f(j) for x ≤ j as well as f(j) ≥ 1
2 . So since the exponent in the integral in

(4.35) is negative, (4.35) is bounded from above by

const exp

(
− m

2N
j2
)
·
∫ j

0
exp

(
m

2N
x2
)
dx. (4.36)

By substituting z =
√

m
2N the integral is equal to

√
2N

m

∫ √
m
2N

j

0
ez

2
dz,

which by [Wei, (1),(9)] is bounded from above by

const · e
j2· m

2N

j
· 2N
m

.

So (4.36) - and hence also (4.35) - is asymptotically bounded by const · N
mj , which concludes

the proof of the Lemma. □

4.7. Proofs of Lemma 4.6 and Proposition 4.7.

Proof of Lemma 4.6. We start by collecting a few properties of the function H defined in
(4.22). The first two derivatives of H are

H ′(y) = − 1

2m


 1

1− ρ
log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
(1− ρ)ℓ−1yℓ

ℓ




= − 1

2m(1− ρ)


log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
(1− ρ)ℓyℓ

ℓ




= − 1

2m(1− ρ)
log

(
1 + 2m

1 + 2m/ρ

1− (1− ρ)y/(1 + 2m)

1− (1− ρ)y

)
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= − 1

2m(1− ρ)
log

(
1 + 2m− (1− ρ)y

(1 + 2m/ρ)(1− (1− ρ)y)

)

= − 1

2m(1− ρ)
log

(
1 +

2m

ρ

(1− ρ)(y − 1)

(1 + 2m/ρ)(1− (1− ρ)y)

)
. (4.37)

Since ρ ≥ ρ0 we have that for y < 1
2 and N large enough

∣∣∣∣
2m

ρ

(1− ρ)(y − 1)

(1 + 2m/ρ)(1− (1− ρ)y)

∣∣∣∣ ≥
2m

ρ

(1− ρ)12
1 + 2m/ρ

,

such that ∣∣∣∣∣log
(
1 +

2m

ρ

(1− ρ)(y − 1)

(1 + 2m/ρ)(1− (1− ρ)y)

)∣∣∣∣∣ ≥
1

2

2m(1− ρ)

ρ(1 + 2m/ρ)
,

which gives

H ′(y) ≥ 1

2m(1− ρ)

1

2

2m(1− ρ)

ρ(1 + 2m/ρ)
≥ 1

2ρ

1

1 + 2m/ρ0
≥ 1

4
(4.38)

for y ≤ 1
2 and N large enough. We continue with the analysis of H ′′ and obtain

H ′′(y) = − 1

2m(1− ρ)

[
− (1− ρ)

1 + 2m− (1− ρ)y
+

(1− ρ)

1− (1− ρ)y

]

=
1

2m

[
1

1 + 2m− (1− ρ)y
− 1

1− (1− ρ)y

]
≤ 0.

Hence, H(0) = 0, H reaches its maximum at y = 1, and then decreases, and as N → ∞

H(1) = − 1

2m


 1

1− ρ
log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
(1− ρ)ℓ−1

ℓ(ℓ+ 1)


 ,

and

H ′′(1) =
1

2ρm

[
1

1 + 2m/ρ
− 1

]
∼ − 1

2ρm
2m/ρ = − 1

ρ2
, as N → ∞.

Moreover, H is non-negative on [0, y0] and negative on (y0,∞), with y0 satisfying

y0 ∼
2

ρ
as N → ∞.

For later use we also notice that from (4.37) we get for all y ∈ R \ {1}

H ′(y) ∼ 1− y

ρ(1− (1− ρ)y)
as N → ∞. (4.39)

We now focus on the second bullet point of the lemma. So j is of the form

j =
g(N)

2m(1− ρ)
(4.40)

with g(N) satisfying

g(N) → ∞ and g(N) ≤ (2/ρ− ξ)2m(1− ρ)2N.
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In particular, this means

1

m(1− ρ)
≪ j ≤ (2/ρ− ξ)(1− ρ)N ∧N(1−√

m).

Using (4.7) we obtain by a sandwiching argument

Rj ∼
∫ j

0
exp


x log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

xℓ+1

N ℓ


 dx

= j

∫ 1

0
exp


jy


log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

(jy)ℓ

N ℓ





dy

= j

∫ 1

0
exp

(
−2m(1− ρ)2NH

(
jy

N(1− ρ)

))
dy

= j



∫ ε

0
exp

(
−2m(1− ρ)2NH

(
jy

N(1− ρ)

))
dy

+

∫ 1

ε
exp

(
−2m(1− ρ)2NH

(
jy

N(1− ρ)

))
dy




where an adequate choice of ε (independent of N) will be made below. By (4.40) and the
above stated properties of the function H we get that for all y ∈ [ε, 1],

H

(
jy

N(1− ρ)

)
≥ H

(
g(N)ε

2m(1− ρ)2N

)
∧H

(
2/ρ− ξ

)
. (4.41)

Moreover, because

H ′(0) ∼ 1

ρ
and H ′(2/ρ) ∼ −1

ρ
as N → ∞,

combining (4.38) and (4.41) and setting ε = 1
4 we obtain for all y ∈ [ε, 1] and N large

enough,

H

(
jy

N(1− ρ)

)
≥ inf

0≤u≤ε
H ′((2/ρ− ξ)u)

g(N)ε

2ρm(1− ρ)2N
∧ inf

0≤u≤y0−2/ρ+ξ
|H ′(u)|ξ

≥ g(N)ε

8ρm(1− ρ)2N
∧ ξ

4ρ
.

Hence
∫ 1

ε
exp

(
−2m(1− ρ)2NH

(
jy

N(1− ρ)

))
dy
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≤ exp

(
−2m(1− ρ)2N

(
g(N)ε

8ρm(1− ρ)2N
∧ ξ

4ρ

))

= exp

(
−g(N)ε

4ρ

)
∨ exp

(
−1

2
m(1− ρ)2Nξ/ρ

)
.

The equivalence H ′(0) ∼ 1/ρ also entails that

j

∫ ε

0
exp

(
−2m(1− ρ)2NH

(
jy

N(1− ρ)

))
dy

∼ j

∫ ε

0
exp

(
−2m(1− ρ)2N

jy

Nρ(1− ρ)

)
dy

= j

∫ ε

0
exp

(
−2m(1− ρ)jy/ρ

)
dy

∼ ρ

2m(1− ρ)
=

jρ

g(N)
.

In total, as

exp

(
−g(N)ε

4ρ

)
= o

(
1

g(N)

)

and

exp

(
−1

2
m(1− ρ)2Nξ/ρ

)
≤ 2

(Nm(1− ρ))2
≤
(

8

ρg(N)

)2

= o

(
1

g(N)

)

this gives Rj ∼ ρ/(2m(1− ρ)) and thus proves the second bullet point of the lemma.

We now turn to the third bullet point. So j is of the form j = C(1 − ρ)N with
C > 2/ρ and j ≤ N(1 − √

m) (Note that C(1 − ρ)N ≤ N and C > 2ρ imply ρ > 2/3.)
Using (4.8) and sandwiching arguments yields

Rj ∼ (1− ρ)N

∫ C

0
exp

(
−2m(1− ρ)2NH(y)

)
dy.

H(y) is non-negative for y ≤ y0 with y0 ∼ 2/ρ, and negative for y > y0. Moreover, H ′′ < 0.
Consequently we get

Rj ∼ (1− ρ)N

∫ C

y0

exp
(
−2m(1− ρ)2NH(y)

)
dy.

By (4.39) there exists x ≥ 0 such that

H ′(y) ∈ [−xξ−(C−1)/(ρ(1−C(1−ρ))), xξ−(C−1)/(ρ(1−C(1−ρ)))], ∀y ∈ [C−ξ, C+ξ].

This entails
∫ C

C−ξ
e−2m(1−ρ)2N((C−1)/(ρ(1−C(1−ρ)))+xξ)(C−y) dy
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≤
∫ C

C−ξ
e−2m(1−ρ)2N(H(y)−H(C)) dy

≤
∫ C

C−ξ
e−2m(1−ρ)2N((C−1)/(ρ(1−C(1−ρ)))−xξ)(C−y) dy.

Moreover,
∫ C−ξ

y0

exp
(
−2m(1− ρ)2NH(y)

)
dy ≤ C exp

(
−2m(1− ρ)2NH(C − ξ)

)

= o

(
exp

(
−2m(1− ρ)2NH(C)

))
.

We deduce that

Rj ∼ (1− ρ)N
ρ(1− C(1− ρ)) exp

(
−2m(1− ρ)2NH(C)

)

2m(C − 1)(1− ρ)2N

=
ρ(1− C(1− ρ))

2m(C − 1)(1− ρ)
exp

(
−2m(1− ρ)2NH(C)

)
,

which proves the third bullet point of the lemma.

Finally, we focus on the first bullet point. Let j ≤ ξ(1 − ρ)N with ξ ≤ 1
2 . From the

observation that

1− 1

(1 + 2m)ℓ
≤ 2mℓ

we get
∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

jℓ

N ℓ
≤ 2m

∞∑

ℓ=1

1

ℓ+ 1

jℓ

N ℓ

≤ m
∞∑

ℓ=1

jℓ

N ℓ

≤ m
ξ(1− ρ)

1− ξ(1− ρ)
≤ m

ρ
ξ(1− ρ).

As

log

(
1 + 2m/ρ

1 + 2m

)
= log

(
1 +

2m

ρ

1− ρ

1 + 2m

)
∼ 2m

ρ
(1− ρ)

we deduce that
∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
1

ℓ(ℓ+ 1)

jℓ

N ℓ
≤ ξ log

(
1 + 2m/ρ

1 + 2m

)
.

Hence for j ≤ ξ(1− ρ)N ≤ (1− ρ)N ,

−(1 + ξ)
2m

ρ
(1− ρ)j ≤ j log

(
1 + 2m

1 + 2m/ρ

)
+

∞∑

ℓ=1

(
1− 1

(1 + 2m)ℓ

)
jℓ+1

ℓ(ℓ+ 1)N ℓ
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≤ −(1− ξ)
2m

ρ
(1− ρ)j.

Consequently,

1− e−(1+2ξ)(2m/ρ)(1−ρ)j

(1 + 2ξ)(2m/ρ)(1− ρ)
=

∫ j

0
e−(1+2ξ)(2m/ρ)(1−ρ)x dx

≤ Rj ≤
∫ j

0
e−(1−2ξ)(2m/ρ)(1−ρ)x dx =

1− e−(1−2ξ)(2m/ρ)(1−ρ)j

(1 + 2ξ)(2m/ρ)(1− ρ)
.

This ends the proof of Lemma 4.6. □

Proof of Proposition 4.7. Let us first study the asymptotics of B(ζ). Thanks to the second
bullet point of Lemma 4.6 we know that for any (1 − ζ)(1 − ρ)N ≤ k ≤ (1 + ζ)(1 − ρ)N
one has Rk ∼ ρ/(2m(1− ρ)). Hence

B(ζ) ∼
(
Rj ∧

ρ

2m(1− ρ)

) (1+ζ)(1−ρ)N∑

k=(1−ζ)(1−ρ)N+1

1

λkrk
.

Moreover, for k ∈
[
(1− ζ)(1− ρ)N, (1 + ζ)(1− ρ)N

]
we have λk ∼ ρk/2. Hence

2

ρ(1 + 2ζ)(1− ρ)N

(1+ζ)(1−ρ)N∑

k=(1−ζ)(1−ρ)N+1

1

rk
≤

(1+ζ)(1−ρ)N∑

k=(1−ζ)(1−ρ)N+1

1

λkrk

≤ 2

ρ(1− 2ζ)(1− ρ)N

(1+ζ)(1−ρ)N∑

k=(1−ζ)(1−ρ)N+1

1

rk
.

We are left with the study of

(1+ζ)(1−ρ)N∑

k=(1−ζ)(1−ρ)N+1

1

rk
∼ N(1− ρ)

∫ 1+ζ

1−ζ
exp

(
2m(1− ρ)2NH(y)

)
dy,

where the equivalence is a consequence of (4.8). (Note that the function H, see (4.22),
appears in (4.8).) Since the function H reaches its maximum at 1 and H ′′(1) ∼ −1/ρ2,
and since ζ satisfies

ζ
√
mN(1− ρ) → ∞ as N → ∞,

an application of the Laplace method yields
∫ 1+ζ

1−ζ
exp

(
2m(1− ρ)2NH(y)

)
dy ∼

√
2πρ2

2m(1− ρ)2N
exp

(
2m(1− ρ)2NH(1)

)

=

√
π

mN

ρ

1− ρ
exp

(
2m(1− ρ)2NH(1)

)
.

Hence

B(ζ) ∼
(
Rj ∧

ρ

2m(1− ρ)

)√
π

mN

2

1− ρ
exp

(
2m(1− ρ)2NH(1)

)
.
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This completes the proof of (4.23).

To bound A(ζ), it is enough to notice that for any k ≤ (1− ζ)(1− ρ)N ,

λk ≥ k

2
(1− (1− ζ)(1− ρ)), rk ≥ exp

(
−2m(1− ρ)2NH(1− ζ/2)

)
, Rk∧j ≤

ρ

2m(1− ρ)
.

The first inequality is a direct consequence of the definition of λk in (4.1), the second one
stems from equality (4.7), and the last one is a consequence of Lemma 4.6. Altogether this
yields that

A(ζ) ≤ (1− ζ)(1− ρ)ρN

2m(1− ρ)

2

k(1− (1− ζ)(1− ρ))
exp

(
2m(1− ρ)2NH(1− ζ/2)

)

= o
(
B(ζ)

)
.

The term C(ζ) is more delicate to bound and we have to decompose it into several terms.
This decomposition depends on the value of ρ:

Let us begin with the simplest case, that is ρ ≤ 2/3. In this case (2/ρ)(1 − ρ) ≥ 1 and
thus (2/ρ)(1− ρ)N ≥ N . Recall that the positive root y0 of H satisfies y0 ∼ 2/ρ. We may
decompose C(ζ) as follows:

C(ζ) =

(y0(1−ρ)∧1)N(1−√
m)∑

k=(1+ζ)(1−ρ)N+1

Rk∧j
λkrk

+
N∑

k=(y0(1−ρ)∧1)N(1−√
m)+1

Rk∧j
λkrk

:= Cα(ζ) + Cβ(ζ).

Using thatH is non-negative and decreasing on [1, y0] and y0 ∼ 2/ρ we obtain from equality
(4.7) that for any (1 + ζ)(1− ρ)N + 1 ≤ k ≤ (y0(1− ρ) ∧ 1)N(1−√

m),

λkrk = kqkrk−1 ≥ km exp
(
−2m(1− ρ)2NH(1 + ζ/2)

)
and Rk∧j ≤

ρ

2m(1− ρ)
.

Hence

Cα(ζ) ≤ ρN

2m(1− ρ)

1

km
exp

(
2m(1− ρ)2NH(1 + ζ/2)

)
= o

(
B(ζ)

)
.

To bound Cβ(ζ) we apply (4.20) with ξ ∼ √
m satisfying

(y0(1− ρ) ∧ 1)N(1−√
m) = N(1− ξ).

This shows that C(ζ) = o(B(ζ)) in the case ρ ≤ 2/3.
Let us now consider the case ρ > 2/3. We decompose C(ζ) into three terms as follows:

C(ζ) =

(2/ρ−ζ)(1−ρ)N∑

k=(1+ζ)(1−ρ)N+1

Rk∧j
λkrk

+

(2/ρ+ζ)(1−ρ)N∑

k=(2/ρ−ζ)(1−ρ)N+1

Rk∧j
λkrk

+
N∑

k=(2/ρ+ζ)(1−ρ)N+1

Rk∧j
λkrk

:= C1(ζ) + C2(ζ) + C3(ζ).
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C1(ζ) may be bounded with similar arguments as for A(ζ): for any (1+ ζ)(1− ρ)N ≤ k ≤
(2/ρ− ζ)(1− ρ)N ,

λkrk = kqkrk−1 ≥ km exp
(
−2m(1− ρ)2NH(1 + ζ/2)

)
and Rk∧j ≤

ρ

2m(1− ρ)
.

This entails

C1(ζ) ≤ (1− 2ζ)(1− ρ)N

2mρ(1− ρ)

1

km
exp

(
2m(1− ρ)2NH(1 + ζ/2)

)
= o

(
B(ζ)

)
.

Now, recalling the third bullet point of Lemma 4.6, that R. is increasing and that rk is
increasing with k when k is larger than (1 + ζ)(1 − ρ)N , we get for (2/ρ − ζ)(1 − ρ)N ≤
k ≤ (2/ρ+ ζ)(1− ρ)N ,

λkrk = kqkrk−1 ≥ km exp
(
−2m(1− ρ)2NH(2/ρ− 2ζ)

)

and

Rk ≤ R(2/ρ+ζ)(1−ρ)N ∼ ρ(1− (2/ρ+ ζ)(1− ρ))
exp

(
−2m(1− ρ)2NH(2 + ζ)

)

2m(2/ρ+ ζ − 1)(1− ρ)
.

Using that H ′(2/ρ) ∼ −1/ρ, we deduce that there exists a constant K such that

C2(ζ) ≤ Kζ(1− ρ)N

(1− ρ)2Nm2
exp

(
2m(1− ρ)2N(H(2− 2ζ)−H(2 + 2ζ))

)

≤ Kζ

(1− ρ)m2
exp

(
Km(1− ρ)2Nζ

)
= o

(
B(ζ)

)
.

Notice that for k ≥ (2/ρ+ ζ)(1− ρ)N − 1, rk = sup{rℓ, ℓ ≤ k}. Hence, for any j,

C3(ζ) =
N∑

k=(2/ρ+ζ)(1−ρ)N+1

Rk∧j
kqkrk−1

≤ 1

m

N∑

k=(2/ρ+ζ)(1−ρ)N+1

Rk

krk−1

=
1

m

N∑

k=(2/ρ+ζ)(1−ρ)N+1

r0 + ...+ rk−2 + rk−1

krk−1
≤ N

m
= o

(
B(ζ)

)
.

This shows that C(ζ) = o(B(ζ)) in the case ρ > 2/3, and thus concludes the proof of
Proposition 4.7. □
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