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Abstract. A common element of market structure analysis is the spatial representation of
firms’ competitive positions on maps. Such maps typically capture static snapshots in time.
Yet, competitive positions tend to change. Embedded in such changes are firms’ trajecto-
ries, that is, the series of changes in firms’ positions over time relative to all other firms in a
market. Identifying these trajectories contributes to market structure analysis by providing
a forward-looking perspective on competition, revealing firms” (re)positioning strategies
and indicating strategy effectiveness. To unlock these insights, we propose EvoMap, a
novel dynamic mapping framework that identifies firms’ trajectories from high-frequency
and potentially noisy data. We validate EvoMap via extensive simulations and apply it
empirically to study the trajectories of more than 1,000 publicly listed firms over 20 years.
We find substantial changes in several firms’ positioning strategies, including Apple, Wal-
mart, and Capital One. Because EvoMap accommodates a wide range of mapping methods,
analysts can easily apply it in other empirical settings and to data from various sources.
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1. Introduction
Firms need to understand the competitive structure of
their market to develop effective strategies and create
sustainable competitive advantages (Hunt 1983, Rao
and Sabavala 1986). Such knowledge allows managers
to assess how well their offerings are positioned, develop
clear positioning strategies, and identify critical elements
of their strategies (Lilien and Rangaswamy 2004). Beyond
positioning, market structure analysis informs new prod-
uct development, product policy, competitive advertis-
ing, and pricing strategies (Urban et al. 1984). Moreover,
broader strategic considerations, such as defining a firm'’s
business, assessing threats and opportunities, and allocat-
ing resources, also require a profound understanding of
competition in a market (Day et al. 1979). Hence, market
structure analysis is an essential ingredient in the strategic
market-planning process (Day 1984).

A common element of market structure analysis is
the derivation of a market structure map, that is, a
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spatial representation of firms” competitive positions rela-
tive to one another based on some measure of their
competitive relationships (DeSarbo et al. 1993). Mar-
ket structure maps visually summarize large amounts
of information, which facilitates decision making;
helps managers think more strategically; and pro-
vides them with explorative tools to identify competi-
tors, discover submarkets, and guide positioning and
differentiation decisions (Smelcer and Carmel 1997,
Lilien and Rangaswamy 2004).

With the increasing availability of extensive data on
firm positioning and consumer perception, market
structure maps’ informative potential continues to
grow. Recent studies in marketing leverage various
data sources, such as consumer search, shopping bas-
kets, product reviews, and social media engagement,
to create market structure maps (Kim et al. 2011, Lee
and Bradlow 2011, Netzer et al. 2012, Tirunillai and
Tellis 2014, France and Ghose 2016, Ringel and Skiera
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2016, Gabel et al. 2019, Liu et al. 2020, Yang et al.
2022). These maps are typically static; that is, they typ-
ically represent an isolated snapshot of a market’s
structure in a single period. Yet, changes in consum-
ers’ needs and preferences, new competitors' entries,
or incumbents' repositioning lead to evolving rather
than static market structures (Lambkin and Day 1989,
D'Aveni 1994, Ning and Villas-Boas 2021).

Recognizing that market structures tend to evolve
rather than remain static (Elrod et al. 2002), earlier
marketing research proposed approaches to examine
market structures across more than one period (DeSarbo
and Carroll 1985, Moore and Winer 1987, Cooper 1988,
Mela et al. 1998). However, the application of these ear-
lier approaches in the more recent marketing literature
is rare—even though many studies emphasize the poten-
tial value of monitoring the evolution of market structure
over time (e.g., Kim et al. 2011, Lee and Bradlow 2011,
Netzer et al. 2012, Ringel and Skiera 2016, Wedel and
Kannan 2016, Gabel et al. 2019). A possible reason might
be that, as we later show, mapping the evolution of mar-
ket structure in today’s large and fragmented markets is
not easily possible with existing approaches.

We suggest that mapping the evolution of market
structure across multiple periods provides additional
insights beyond those of single snapshots in time.
These additional insights, elaborated in what follows,
emerge from what we call firms’ trajectories—the evo-
lutionary paths of firms’ positions over time relative to
all other firms in a market (hereafter referred to as “firms’
trajectories” for brevity). In contrast to merely describing
the change in firms’ positions from one snapshot of mar-
ket structure to another, trajectories capture underlying
trends in competitors’ positions over multiple periods.
The joint examination of firms’ trajectories in a market
reveals the evolution of its structure and offers a unique
forward-looking perspective on how market structure
might look in the future.

Specifically, we suggest that firms’ trajectories can
contribute the following insights to market structure
analysis:

1. A forward-looking perspective on competition: By com-
paring other firms’ trajectories with their own firm's tra-
jectory, managers can better anticipate their competitive
situation in the future. Whereas converging trajectories
indicate competitive threats, diverging trajectories point
to an increase in differentiation. Likewise, new entrants’
trajectories reveal where they seek to position them-
selves in the market, thereby enabling incumbents to (a)
better qualify the competitive threat that these new
entrants might pose and (b) do so at an early stage.
Finally, a more gradual convergence of multiple firms’
trajectories away from their previous competitors can
point to a new submarket’s emergence.

2. A lens on competitors’ strategic intentions: Sudden changes
in other firms’ trajectories can point to repositioning

efforts of those firms. By monitoring other firms’ trajec-
tories, managers can detect (or see the impact of) such
repositioning, which they may need to account for in
their own strategy formulation.

3. An indicator of strategy effectiveness: Any change in a
firm’s trajectory should ideally align with the firm’s
strategic objectives. Therefore, monitoring their firm’s
trajectory enables managers to better evaluate the effec-
tiveness of their marketing strategy. Moreover, doing
s0 helps to assess the impact of marketing actions, such
as (re)positioning efforts or marketing mix decisions
(i.e., whether they “moved the needle”).

Consider, for example, a scenario where a change in
strategy prompts a firm’s management to reposition
the firm (e.g., change the firm’s name, introduce a
new logo, or adjust the marketing mix). Such changes
are common, as recent examples from the tech sector
illustrate (e.g., Odeo/Twitter, Netflix, or Facebook/
Meta). Because repositioning usually requires substan-
tial investments, managers must monitor the impact
and effectiveness of their efforts. Likewise, investors
likely want to evaluate whether the current manage-
ment achieves the desired transition to a new position.
Firms’ trajectories can provide the desired information
about the strategy change’s effectiveness, as they
reveal how the firm’s position changes relative to its
former competitors (i.e., its previous position) and its
new competitors (i.e., its targeted position).

Moreover, the firm needs to redefine its competitive
set. As repositioning efforts of multiple firms can coincide,
the firm may face both new and former competitors after
successfully repositioning itself. Firms' trajectories can
help managers anticipate their future competitive situa-
tion by providing a forward-looking perspective on com-
petition. Thereby, they can help inform corrective actions
where necessary. For example, some of Meta’s (previ-
ously Facebook) strongest competitors (e.g., Google) are
also positioning themselves in the virtual reality space
(e.g., the metaverse). At the same time, firms from other
parts of the market, such as gaming developers (e.g., Epic
Games) and hardware manufacturers (e.g., Sony), are
pushing into the realm of virtual reality. Although there
is little that firms can do about other firms’ trajectories,
these trajectories can alert them to emerging threats (ie.,
unanticipated competition) and opportunities (e.g., poten-
tial collaborators) at an early stage.

This article aims to (1) provide a novel dynamic
mapping framework that reveals firms’ trajectories and
(2) illustrate the additional market structure insights
that these trajectories create. Identifying firms’ trajecto-
ries is, however, not trivial. Although the marketing lit-
erature previously proposed several approaches for
mapping changes in market structure, we find that
these approaches are unfit to identify firms’ trajectories.
Common to extant approaches is the idea of indep-
endently generating a sequence of static maps and
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connecting them so that changes in a market’s structure
become apparent. By inspecting the change of firms’
positions from one static map to the next, marketers
sought to learn how the market under analysis evolved.
However, such a simple approach is limited in its
capacity to accurately reveal market structure evolution
because it (1) tends to generate a sequence of maps that
are misaligned, (2) fails to uncover trends that persist
over multiple periods, and (3) is sensitive to even low
levels of noise in the data.

Specifically, a sequence of independently generated
maps tends to be misaligned for two reasons. First, the
coordinate systems of subsequent maps can change
arbitrarily (Schonemann and Carroll 1970). Second,
modern mapping methods typically do not have a
unique solution but can approximate any given data in
multiple ways. Thus, they can produce a sequence of
substantially different maps when applied sequentially.
Consequently, changes in the absolute positions of
firms, or even in the relative distances between them,
can be arbitrary. So, they do not necessarily correspond
to actual changes in market structure. To mitigate the
misalignment problem, marketers traditionally resort
to Procrustes analysis (Gower 1975). Procrustes analysis
tries to align multiple maps after their estimation by
transforming their coordinate systems (e.g., rotations
and reflections). Procrustes analysis can be an effective
approach when the sequence of maps covers only a
few periods and when one uses linear mapping meth-
ods, such as metric ratio multidimensional scaling
(MDS) or centroid scaling (see, for instance, Moore and
Winer 1987, Borg and Groenen 2005). However, as we
later show, Procrustes analysis works less well with
modern (nonlinear) mapping methods commonly used
in contemporary market structure research (e.g., Ringel
and Skiera 2016, Gabel et al. 2019, Yang et al. 2022) or
when the analysis covers many periods.

Furthermore, changes in firms’ positions across mul-
tiple (more than two) successive maps can be erratic
when one generates each map independently; that is,
they can move back and forth instead of evolving con-
tinuously. Such erratic changes in map positions thwart
any attempt to faithfully reveal persistent trends in
firms’ competitive positions, that is, their trajectories.

Finally, because even tiny changes in the underly-
ing relationship structure can affect each individual
map, a sequence of maps is very sensitive to noise in
the data. This sensitivity to noise exacerbates succes-
sive maps’ misalignment, curtails the revelation of
trends, and may compromise the accurate representa-
tion of firms” actual relationships on each map.

The limitations of previous approaches for mapping
market structure evolution result from the fact that a
map inherently simplifies a set of competitive rela-
tionships based on a particular set of criteria—none of
which covers the alignment of firms’ positions across

multiple maps or the identification of persistent trends
over multiple periods.

Herein we propose a novel dynamic mapping frame-
work called EvoMap, which overcomes previous
approaches' limitations and is the first to accurately
reveal firms’ trajectories in evolving market structures.
EvoMap can accommodate a wide range of static map-
ping methods, such that one can easily apply it to vari-
ous empirical settings and various kinds of data. The
basic idea of EvoMap is to combine the estimation of
multiple successive maps into a joint optimization prob-
lem. Thereby, we introduce additional objectives to
achieve alignment, persistence, and noise cancelation.
We then merge the estimated sequence of maps into a
single dynamic market structure map that reveals each
firm’s trajectory over time relative to all other firms’
trajectories.

In this article, we implement EvoMap for a classic psy-
chometric method (metric MDS), a nonlinear variant
(Sammon Mapping; Sammon 1969), as well as a more
recent innovation in computer science (t-Distributed Sto-
chastic Neighbor Embedding (t-SNE); Maaten and Hin-
ton 2008). In an extensive simulation study, we validate
that EvoMap accurately recovers market structure evolu-
tion across various possible market structures and differ-
ent evolution patterns. Our simulation shows that
EvoMap outperforms all previous approaches in its
capacity to reveal accurate underlying trends in the
changes in firms’ positions. Our findings are consistent
across all three static mapping methods (ie., metric
MDS, Sammon Mapping, and t-SNE); that is, the supe-
rior performance of EvoMap is not contingent on a par-
ticular mapping method.

We use EvoMap (paired with t-SNE) to empirically
investigate the evolution of product market competi-
tion among publicly listed firms over two decades.
Our analysis uses the Text-Industry Network Classifi-
cation (TNIC) data that Hoberg and Phillips (2016)
provide. These data capture how firms position them-
selves relative to other firms based on product descrip-
tions in their annual report to the U.S. Securities and
Exchange Commission (SEC) (called Form 10-K). Using
EvoMap, we identify the trajectories of 1,092 firms across
20 years and confirm the face validity of the revealed tra-
jectories. Our analysis identifies individual firms” reposi-
tioning efforts and more global changes in market
structure, such as the convergence of entire industries.

The remainder of this article is structured as follows:
The following section embeds this article into the ex-
tant literature on dynamic market structure mapping
and details the limitations of previous approaches.
We then formally introduce our proposed framework.
Subsequently, we validate and benchmark it against
alternative mapping approaches in an extensive simu-
lation study. Finally, we use our framework to em-
pirically investigate the evolution of product market
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competition based on the TNIC data. We close with a
discussion on implications, limitations, and directions
for future research.

2. Extant Approaches and Their

Limitations

This article contributes to the literature on market
structure analysis, specifically to the literature stream
that seeks to capture complex networks of competitive
relationships among entities of interest (e.g., firms,
brands, or products) in spatial representations (maps).
Without loss of generality, we limit the subsequent
text to firms as the object of analysis.

2.1. Background on Mapping Market Structure
Studies that analyze market structure in maps usually
adopt one of two approaches to represent the firms in
a market: (1) as vectors in higher-dimensional space
or (2) as nodes in a network (Wei 2020). The vector
space approach models firms as vectors of d dimen-
sions, where each of the d dimensions corresponds to
one of the firms’ (potentially latent) attributes. One
can then measure firms’ competitive relationships as
pairwise dissimilarities or similarities between these
vectors. Alternatively, the network approach models
firms as nodes connected by edges that represent com-
petitive relationships (measured as pairwise similar-
ities). In both approaches, the basis for deriving a
market structure map is a square matrix of pairwise
competitive relationships (hereafter referred to as a
competitive relationship matrix)." Typically, the matrix
is symmetric (or symmetrized as part of the mapping
process), but methods exist for asymmetric relation-
ships (DeSarbo et al. 2006).

Given a competitive relationship matrix ¥ € Rj™",
static mapping methods fit a map—defined as a con-
figuration of the set of firms I in lower-dimensional
space X = {xi = (xgl), . xgd”’”’“)) eR¥mwlie] }, X € R™
n = |[|l—to the competitive relationship matrix Y as
well as possible. The resultant configuration is usually
two-dimensional to ease interpretation. Therefore, we
also focus on two-dimensional maps (i.e., dugp = 2).
Yet, one- or three-dimensional applications also exist.
Firms with strong competitive relationships appear
close together on the map, whereas firms with weak
competitive relationships appear more distant.

Commonly used mapping methods process either
dissimilarity matrices (as in the case of MDS) or simi-
larity matrices (as in the case of force-directed draw-
ing; Fruchterman and Reingold 1991). Although some
mapping methods use higher-dimensional vector data
as their input, they eventually transform it internally
into a relationship structure (e.g., by taking distances).
Both classes of methods share similar underlying

concepts, and each representation translates easily
into the other (e.g., by taking the inverse). There-
fore, we do not differentiate between similarities or
dissimilarities but refer to weak competitive re-
lationships (low similarities/high dissimilarities) or
strong competitive relationships (high similarities/
low dissimilarities).

Earlier studies of market structure largely measured
competitive relationships from surveys (Sabnis and
Grewal 2012). However, more recent marketing studies
draw on a range of alternative data sources to measure
competitive relationships. These new types of data—
which include data from online search (Kim et al. 2011),
online forum discussions (Netzer et al. 2012), customer
reviews (Tirunillai and Tellis 2014, France and Ghose
2016), clickstreams (Ringel and Skiera 2016), cofollower
networks in social media (Culotta and Cutler 2016),
social tags (Nam et al. 2017), firm-related images (Liu
et al. 2020), or user engagement in social media (Yang
et al. 2022)—are often regularly retrievable over time in
high frequency. Taken together, the abundance, accessi-
bility, and high frequency of data on competitive rela-
tionships provide new opportunities to study market
structure evolution and to create insights beyond those
of single snapshots in time.

2.2. Marketing Approaches for Mapping Market
Structure Evolution

Initial approaches in marketing for analyzing market

structure in maps over time typically followed one of

two approaches: (I) fixing the coordinate system ex

ante or (II) aligning mapping solutions ex post.

2.2.1. Approach I: Fixing the Coordinate System Ex
Ante. The first approach fixes two dimensions as the
map’s coordinate system. For example, one might
decide to use the attributes performance and ease-of-use
for the two dimensions of the coordinate system. One
can then plot each firm’s position on these two attrib-
utes at each period to show how firms’ positions
evolved. In other words, one describes the evolution
of a market’s structure using a time-indexed scatter
plot along two fixed dimensions. Examples from mar-
keting research that apply this approach include van
Heerde et al. (2004) and Tirunillai and Tellis (2014).
The limitation of this approach is that one needs to
assume that the chosen two attributes sufficiently
explain all relevant differences between firms over
time. To relax this limitation, market researchers can
resort to three-way MDS. Three-way MDS is an exten-
sion of MDS applicable whenever multiple relation-
ship matrices for the same objects (e.g., firms) are
available (for instance, one for each of several respond-
ents in a survey). In the context of market structure
analysis, three-way MDS can be used to estimate two
latent dimensions and firms” positions on them from
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multiple relationship matrices (Carroll and Chang 1970,
DeSarbo and Carroll 1985, Cooper 1988, Mela et al. 1998).
However, suppose these matrices represent successive
periods. In such a case, three-way MDS assumes that the
rank order of firms’ positions remains the same on
each dimension (and merely the importance of each
dimension changes over time). Moreover, the two dimen-
sions themselves need to remain constant over time. Yet,
these assumptions might be challenging to justify in
more complex and dynamic markets, where maps can
be particularly insightful.

2.2.2. Approach lI: Aligning Mapping Solutions Ex
Post. For the second approach, one independently
applies a static mapping method (e.g., MDS or t-SNE)
at each period. The result is a sequence of individual
maps that are not necessarily aligned (see panel (a) of
Figure 1 for an example). One reason for such misalign-
ment is that the maps are oriented differently (i.e., their
coordinate system differs), as any mapping solution is
unique only up to a linear transformation of its coordi-
nate system (such as rotation or reflection).

To resolve the misalignment of independently gener-
ated maps, one can employ Procrustes analysis (e.g.,
Moore and Winer 1987), which identifies linear transfor-
mations (i.e., translation, rotation, reflection, or scaling)
to align successive maps as well as possible (Schone-
mann 1966, Schonemann and Carroll 1970). Procrustes
analysis tends to work well for methods that provide a
linear mapping between the given relationship data and
the proximities on the estimated map, such as metric
ratio MDS (Borg and Groenen 2005). However, as
shown in panel (b) of Figure 1, Procrustes analysis
works less well for modern nonlinear mapping methods
(e.g., t-SNE). Although the successive maps in panel (b)
are more similar than in panel (a), substantial differences
remain. In particular, the erratic shifts in cluster 1’s posi-
tion remain even after applying Procrustes analysis.

One reason for such erratic shifts is that it is usually
impossible to perfectly preserve an entire matrix of pair-
wise competitive relationships on a two-dimensional
plane. In other words, a map is always an approxima-
tion of the underlying relationship matrix (Tversky and
Hutchinson 1986). When the utilized mapping method’s
objective function has multiple local optima, different
maps approximate the same competitive relationship
matrix equally well. Thus, repeatedly applying static
mapping methods tends to result in a sequence of mis-
aligned maps.

As Figure 1 shows, such misalignment is particularly
prevalent for modern nonlinear mapping methods (e.g.,
t-SNE) typically used when the number of objects (i.e.,
firms) or clusters (i.e., submarkets) in a map is large—as
is the case in many of today’s large markets (e.g., Ringel
and Skiera 2016, Gabel et al. 2019). These nonlinear
mapping methods are more flexible in how objects can

be arranged on a map (for instance, by focusing more
on placing objects with strong relationships nearby
rather than objects with weak relationships far apart).
However, this flexibility comes at the cost of allowing
the method to rearrange weakly related objects in vari-
ous ways without compromising the mapping quality
(ie, many local optima exist). Because these local
optima are no longer unique up to linear transforma-
tions, the entailing sequence of maps cannot be aligned
ex post via Procrustes analysis.

Some studies suggest resolving the local optima
problem by various initialization strategies, such as
using the same (i.e., fixed) random initialization in
each period or initializing periods sequentially with
the estimated map of the previous period (e.g., Gabel
et al. 2019). However, because the estimated positions
remain sensitive to even minor differences across suc-
cessive competitive relationship matrices, these initial-
ization strategies can easily fall short of producing
well-aligned maps.

Moreover, even when using linear mapping meth-
ods (such as metric MDS), ex post alignment may not
always lead to desirable outcomes. Specifically, by
generating maps independently, one risks overfitting
each map to even minor variations in the relationship
data that may constitute noise. As Procrustes analysis
only changes each map’s orientation, it cannot remedy
such overfitting. The resultant overfitting to each
period makes it hard to reveal persistent trends and
can impair the accurate representation of the market’s
structure. Moreover, Procrustes analysis does not tie
the alignment over time to changes in the input data.
It merely attempts to make maps similar over time
without considering which firms changed their rela-
tionships with other firms and, thus, their positions
(and to what extent). In sum, these extant approaches
are subject to limitations that make them less suitable
for many of today’s large, fragmented, and rapidly
evolving markets.

2.3. Other Approaches for Mapping Evolving
Relationship Data

The problem of mapping evolving relationships among
objects is not unique to market structure analysis. Out-
side of the marketing literature, researchers proposed
alternative approaches for visualizing changes in rela-
tionship data over time. For instance, in network visual-
ization, Xu et al. (2013) propose increasing the stability
of successive maps by preserving objects” positions as
much as possible over time through a regularization
scheme. Rauber et al. (2016) later apply the idea of Xu
et al. (2013) to t-SNE. They show that their “Dynamic
t-SNE” increases objects’ stability in pairwise compar-
isons of subsequent snapshots in time relative to inde-
pendently generated maps.
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Figure 1. (Color online) Illustration of Ex Post Alignment via Procrustes Analysis

(a) Independent Mapping of Three Successive Competitive Relationship Matrices
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(b) Aligning The Upper Solution Ex Post via Procrustes Analysis
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Notes. Three maps fitted independently to three competitive relationship matrices using t-SNE (a), aligned ex post via Procrustes Analysis (b).
Coloring based on cluster assignments identified within the competitive relationship matrices using Louvain community detection by Blondel
et al. (2008). Static mapping quality measured by Adjusted 10-NN Hit-Rate (10 Nearest Neighbor Hit-Rate adjusted for random agreement
(Chen and Buja 2009)). The arrow belonging to cluster 1 highlights the maps’ misalignment.

However, map stability alone is not sufficient when
the objective is to study market structure evolution.
Specifically, a very stable solution is undesirable when
parts (or individual firms) of the market undergo sub-
stantial changes, whereas other parts (or individual
firms) do not. Ideally, any firm’s map position should
be as stable as possible across a sequence of maps as
long as there are no substantial changes in that firm’s
actual position (as indicated by its competitive rela-
tionships with other firms in the market). Moreover,
Dynamic t-SNE merely links objects” positions across
two successive periods. Yet, as we will show in an
extensive simulation study, doing so still falls short of
revealing persistent trends.

2.4. Implications for Market Research
The limitations of extant approaches for mapping
market structure evolution (i.e., misalignment, lack of

persistence, sensitivity to noise) curtail market research-
ers’ abilities to study market structure evolution on
multiple fronts:

First, when successive maps are misaligned, firms’ posi-
tions change erratically (e.g., a group of firms “jumping”
to another place). As a result, it becomes impossible to
identify firms’ trajectories and characterize their directions
and lengths (e.g., to differentiate firms whose competitive
relationships changed substantially versus those whose
competitive relationships did not change).

Second, faithfully identifying underlying trends in
firms’ positions (for instance, to extrapolate them into
the future) is not easily possible when changes are not
persistent but revert. Both sequences of maps in Fig-
ure 1 exhibit highly nonpersistent changes: The aver-
age correlation of successive changes in firms’ positions
on these maps is —0.46 and —0.54, respectively, which
indicates that any move of a firm into one direction of
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the map tends to be followed by a move into the oppo-
site direction.

Third, the high sensitivity of individual maps to
changes in the input data makes inference of actual
market structure evolution harder. When, for instance,
two firms move closer together (further apart) on a
map, it is unclear whether this convergence (diver-
gence) is due to (1) actual changes in the firms’ posi-
tions, (2) noise in the data, or (3) different local optima
(or a combination thereof). This problem remains for
approaches that constrain the movement of all firms
uniformly, as these approaches risk constraining the
movement of some firms more (or less) than what is
justified by the underlying data.

We overcome these limitations of past approaches
with a novel dynamic mapping framework called
EvoMap. In contrast to past approaches in the market-
ing literature, EvoMap jointly estimates a sequence of
maps from a sequence of competitive relationship
matrices instead of attempting to align maps ex post.
EvoMap thereby not only ensures stability in succes-
sive maps as proposed by Xu et al. (2013) but explic-
itly accounts for heterogeneity in how strongly firms
change their positions.

To this end, EvoMap uses a novel adaptive regulari-
zation scheme, which adjusts constraints for each firm
based on the data at hand. To reveal persistent trends
in the evolution of firms’ positions, EvoMap addition-
ally smooths the estimated trajectories across multiple
periods by imposing further constraints on them. As a
result, the estimated trajectories do not overfit indi-
vidual periods (which would result in erratic oscilla-
tion) but reveal smooth underlying trends that ease
map exploration and allow to extrapolate into the
future. This “noise cancellation” property of EvoMap
makes it particularly suitable for high-frequency data
sources that are likely subject to a substantial amount
of noise, as in the case of, for example, relationships
derived from user-generated content or social media.
Finally, in contrast to recent approaches (i.e., Rauber
et al. 2016), we design EvoMap as a flexible frame-
work that can easily accommodate various static map-
ping methods (e.g., MDS, Sammon Mapping, t-SNE,
or methods not yet developed).

Table 1 summarizes the key differences between
EvoMap and extant approaches for mapping market
structure evolution.

3. Formal Description of EvoMap

Let Y € Rj™" denote a competitive relationship matrix
representing the market structure for the set of firms I
with 7 = |I|. The entries of ¥ consist of symmetric meas-
ures of pairwise competitive relationships. We do not
impose any restrictions on how these measures are
derived. That is, they could represent measures of

substitutability, brand switching, co-occurrence, or
distances in a high-dimensional embedding space
(among many others). We also do not restrict the
type of relationships (i.e., distances/dissimilarities
versus similarities), which depends upon the chosen
static mapping method.

Static mapping methods estimate the map X € R"™?
for any given competitive relationship matrix ¥ by
minimizing the cost function C(X): R™? — R], which
measures the discrepancy between firms’ competitive
relationships in the matrix ¥ and the relative proxim-
ities of their positions on a map X:

X = arg min C(X). (1)
XER"XZ

Note that different cost functions C give rise to different
mapping methods. We assume that C is a nonnegative
loss function such that smaller values correspond to
better solutions. For instance, C could represent Krus-
kal’s stress function (for MDS) or Kullback-Leibler
divergence (for t-SNE). If solution quality increases with
increasing values of C or if C takes negative values
(e.g., for a log-likelihood function), one first needs
to transform C to use it within our framework (e.g.,
invert it).

Applied to a sequence of competitive relationships
matrices (Y;),-; 1, static mapping methods derive a

sequence of maps (X t)i=1,. .t such that each map X; at
time t preserves the competitive relationships in Y; as
well as possible. In addition, we pursue the following
three objectives:

1. Successive maps should be aligned. That is, the
total changes in positions on successive maps =
Xt_1||,t =2,..., T should be small.

2. Changes in firms’ positions should persist across
successive periods; that is, their trajectories should reveal
gradual underlying trends rather than oscillate back and
forth. Specifically, successive movements (VX iz, . T»
where VX;=X;-X,1, should exhibit nonnegative
serial correlation.

3. Changes in firms’ positions on the map should
reflect actual changes in market structure. That is, any
firm’s trajectory length on the map should be related to
the degree of change in its actual position (as indicated
by its competitive relationships).

Meeting one objective might come at the cost of
another. Consider a sequence of relationship matrices
subject to some degree of change. An utterly stable
sequence of maps X, =X, =... = Xy, forinstance, aligns
successive maps perfectly but reduces the goodness-of-
fit of each map. Moreover, the absence of changes on
the map does not reflect the existing changes in the
competitive relationship matrices. Thus, we cannot
expect to meet all objectives perfectly. We, therefore,
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Table 1. Alternative Approaches for Mapping Market Structure Evolution

Various mapping Joint Adaptive
Approach Description methods Alignment  estimation regularization Smoothing
Independent Repeated independent Yes — — — —
mapping application of a static
mapping method
Fixed initialization Independent mapping Yes — — — —
using the same (i.e., a
fixed) initialization
Sequential Independent mapping, Yes — — — —
initialization using the map in t -1
as initialization in ¢
Ex post alignment Alignment of Yes Yes — — —
(Gower 1975) independent maps via
Procrustes analysis
Dynamic t-SNE t-SNE aligned during — Yes Yes — —
(Rauber et al. optimization
2016)
EvoMap (this Multiobjective Yes Yes Yes Yes Yes
article) optimization
framework,

implemented for
metric MDS, Sammon
Mapping, and t-SNE

balance these objectives in the following joint optimiza-
tion problem.

3.1. Optimization Problem for EvoMap

The basis for EvoMap is a static mapping method,
such as MDS, Sammon Mapping, or t-SNE. We design
EvoMap as a flexible framework to accommodate vari-
ous static mapping methods. This flexibility is important
for marketing research because it allows researchers to
select the mapping method that is most suitable for their
specific purpose, empirical setting, and data source.
Notably, EvoMap’s flexibility opens it to future advan-
ces in static mapping methods.

To meet the three additional mapping objectives
outlined in the previous subsection, we proceed as fol-
lows: Rather than fitting each map independently to
the respective competitive relationship matrix for all
te{l,...T}, we fit the sequence of maps jointly to the
sequence of competitive relationship matrices. Doing
so allows us to (1) incorporate information about
maps in successive periods into the estimation of each
map and to (2) add additional objectives.

Formally, we derive the sequence of maps

(Xt)j=1,...r as

(Xt)tzl,...,Tz argmin  Cypq(X1, ..., X71), )
Xi,...,XreR™?

where

T
CtotaZ(Xlr cee rXT) = Z Cstutic(Xt) +a- Ctempoml(Xlr cee /XT)-

3)

In Equation (3), the first term represents the static
component of EvoMap’s cost function, which equals
the sum of the cost function Cg;. of the selected static
mapping method evaluated at each period t € {1,...,T}.
This static component of EvoMap’s cost function seeks
to preserve the competitive relationships in Y; on the
map X; as closely as possible for every t € {1,...,T}.
The second term represents the temporal component
of the cost function, which seeks to meet the three
additional objectives outlined before. The hyperpara-
meter @ € R balances the relative importance of the
cost functions’ static versus temporal component. We
specify Cienporar @s follows:

2
’

n P T
Ctempoml(Xll (R /XT) = wa(l) Z Z 1[151,,k] ”vkxi,tl
i=1

k=1 t=k+1
(4)

where
1[1.61[*]: I —{0,1} denotes an indicator function

equal to one if firm i is present in time t and the k pre-
ceding periods 1[z‘e1[,k] = I‘[é‘:0 1jier, ), where 1jp,) =
o vich

fw:I—R" is a positive weight function defined on
the set of firms I,

p € Nis a second hyperparameter of positive integer
values that controls the degree of smoothing, and

kai,t € R? is the k-th (backward) difference of firm
i’s map position at time ¢:

k k-1 k-1
Vixip =V x =V x . 5)
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Fork=0, ka,',t simply is firm i’s position at time #:
Vs = x4 (6)

For k=1, kai,t equals the difference vector between
firm i’s positions in t and t — 1:

lei,t =Xit —Xit-1- (7)

For k>1, V¥x;; represents a higher-order difference
vector (e.g., for k =2, it corresponds to the difference
in differences of successive positions, analogous to
the acceleration). We outline the underlying intuition
of the terms in Equation (4) in what follows. We
also provide an illustrative example of its calculation
together with exemplary trajectories in Online Appen-
dix B.

First, to align successive maps, we link firms" posi-
tions in successive periods in our cost function. Specifi-
cally, we penalize all changes between successive maps,

measured as the squared Euclidean norm ||V1x,v,t||2 of the
first differences between each firm’s positions in ¢ and
t — 1, summed over all firms.” Doing so penalizes large
changes in firms’ positions over time and thereby aligns
successive maps.

To achieve our second aim (identifying trajectories
that capture underlying trends), the penalty term

||V1x1-,t||2 alone is insufficient as merely two successive
periods impact each firm’s position in a given period.
As a result, |[Vx;||* would, for instance, penalize oscil-
lation of firms’ positions equally strong as a smooth tra-
jectory into one direction, as long as the total length of
the movement path is the same (for a concrete example,
see Online Appendix B). Therefore, we extend the pen-
alty term such that more than two successive periods
impact each firm’s position in a given period. To do
so, we penalize higher-order differences between any
firm’s successive positions ”kai,t”2- For k = 2, for instance,
this term penalizes large differences in differences
(analogous to the acceleration of a firm’s moves on the
map). Effectively, these penalty terms impose stron-
ger constraints on the resultant trajectories by penaliz-
ing more complex trajectories (for instance, erratic
back-and-forth movement). As a result, the estimated
trajectories become less sensitive to changes in indi-
vidual periods and better recover underlying trends
across multiple periods. Hyperparameter p controls
the degree of smoothing.

To achieve our third aim (i.e., to link changes on the
map to actual changes in market structure), we further
augment the cost function with the weighting function
fw. Until now, the outlined specification imposes con-
straints on all firms’ trajectories uniformly—regard-
less of how much their competitive relationships with
others changed. Doing so, however, harms the ability

to differentiate between firms with dynamic and static
positions. Specifically, uniform penalties across all
firms are undesirable because firms may change their
competitive relationships with other firms at different
rates and to different extents. Consider, for instance, a
new entrant heading toward the market’s incumbents
(i.e., its competitive relationships with all incumbents
are strengthening). Overall, the entrant’s competitive
relationships are subject to substantial changes, where-
as any incumbent’s competitive relationships may
change only marginally (only the competitive relation-
ship with the new entrant changes substantially).
Ideally, the resultant sequence of maps should capture
such heterogeneity by retaining incumbents at their
current positions while allowing the new entrant to
change its position toward the incumbents (such that
its trajectory points toward them).

The weighting function f,:I —R" accounts for
such heterogeneity across firms by determining how
each firm i is affected by the previously outlined con-
straints. Specifically, firms whose competitive rela-
tionships changed very little should be constrained
from undergoing large changes in their positions on
the map (i.e., they should receive high weights). In
contrast, firms with substantial changes in their com-
petitive relationships should be free to change their
positions on the map more (i.e., they should receive
low weights). Thus, we specify f,, as a monotonically
decreasing function of the total change in firm i’s com-
petitive relationships. Specifically,

fwli) := exp(=bz), ®)

where
1

= max(@ien’ 9

T

2

zii= > Yir = Yigall™
=

Here, Y;; denotes the i-th row of the relationship
matrix Y:;. Thus, ||Yi:— Yi,t,1||2 captures the total
change in firm i’s relationships with all other firms
between periods t—1 and t; z; captures the total
change in firm i’s relationships to all other firms
across all periods. Note that the scale of z; depends on
the scale of the input data, that is, the entries in Y (for
instance, pairwise similarities are typically bound by
[0, 1], whereas pairwise distances can be much larger
than one). To account for such potential differences in
the input data’s scale, we use the normalizing con-
stant b in Equation (8).

Lastly, we add an indicator function 1 [ier,,] tO include
cases where not all firms are observable for the
entire observation period (e.g., due to market entry
or exit).
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Combining Equations (3) and (4), we fit the seq-
uence of maps according to (2), where

T
Crota(X1, - - -, X1) = Z Cstatic(Xt)
t=1

n 14 T
+a 3 fold) 25 27 e IVl
i=1

k=1 t=k+1
)

3.2. Python Implementation of EvoMap

Different mapping methods can be superior in differ-
ent empirical contexts and for different tasks (France
and Akkucuk 2021). Therefore, we designed EvoMap
independent of a particular static mapping method
(the choice of which only determines the specification
of Citatic, its corresponding component in the gradient,
and potentially its optimization technique). As out-
lined before, this flexibility allows market researchers
to decide which static mapping method is most suit-
able for their specific empirical setting.

In this article, we implement EvoMap for three pop-
ular mapping methods to demonstrate that EvoMap is
compatible with (I) traditional psychometric methods,
(I) their nonlinear advancements, and (III) recent
innovations in computer science:

I. metric MDS,

II. Sammon Mapping (Sammon 1969), and

III. t-SNE (Maaten and Hinton 2008).

We implement EvoMap in Python, adopt each map-
ping method's respective static cost function, and
derive the cost-minimizing solutions via iterative opti-
mization with adaptive step sizes. Specifically, we use
gradient descent with backtracking (via step halving)
for metric MDS and Sammon Mapping. For t-SNE, we
use momentum-based gradient descent with early
exaggeration. Further, we automatically adjust initial
step sizes via exponential decay to ensure conver-
gence. We provide the gradient derivations in Online
Appendix A.

Our Python implementation draws on the NumPy
library (https://numpy.org) for numerical computing
and the Numba compiler (https://numba.pydata.org)
for performance optimization. Our implementation is
available as a Python package with this journal article;
see https://github.com/mpmatthe/evomap. We pro-
vide further details on EvoMap’s implementation (in-
cluding the specific package versions and runtime
estimates) in Online Appendix E.

3.3. Hyperparameter Selection

The hyperparameters a and p give market researchers
additional control over their mapping solutions. To
illustrate and quantify the hyperparameters’ effects on

the resulting sequence of maps, we use the following
three metrics:

L. Static goodness-of-fit is measured as the average Hit-
Rate of k-nearest neighbor recovery across all T periods
and n firms, adjusted for random agreement: = [,
AR;, where AR; =13 a;—-5 and a; denotes the
number of firm i’s shared k-nearest neighbors in the
data and on the map (France and Carroll 2007, Chen
and Buja 2009). The choice of k depends upon the appli-
cation and can be adjusted to obtain a measure of local
recovery (when k is small) or global recovery (when k is
large). Given that market structure analysis typically
focuses on identifying close competitors (rather than
remote ones), we follow Ringel and Skiera (2016) and
set k to 10.

II. Misalignment is measured as the average move-
ment path length across successive positions: (Tlfl)
S ist i — xi4-1]l, using the Euclidean norm.

1. Persistence is measured as the Pearson correla-
tion coefficient between successive changes in all
firms’ positions (averaged across both dimensions
of the map).

Figure 2(a) shows that when « is set very low, the
static goodness-of-fit of each map (i.e., the average
Hit-Rate) is highest. Yet, maps tend to be misaligned
(panel (b)), and the resultant trajectories on successive
maps tend to evolve erratically (panel (c)). As «a
increases, misalignment decreases (panel (b)) and the
trajectories” persistence tends to increase (panel (c)),
while—at some point—the static goodness-of-fit of
each map decreases considerably (panel (a)).

The second hyperparameter p thereby defines the
highest order of differences considered in the penalty
term. As such, p effectively sets the degree of smoothing
by controlling how many successive periods impact each
firm’s map position at a given period. For p = 1, the pen-
alty only considers first-order differences (corresponding
to two successive periods). For p =2, the penalty also
considers second-order differences (corresponding to
three interdependent periods) and so on (i.e., p + 1 peri-
ods). A higher value of p sets higher constraints, produc-
ing smoother trajectories that are less sensitive to changes
in individual periods.

As evident from Figure 2, higher values of p make it
cheaper (in terms of static goodness-of-fit) to achieve
more persistent trajectories (panels (a) and (c)). Condi-
tional on a specific value of a, persistence is substan-
tially higher for increasing values of p (see panel (c) of
Figure 2), whereas the corresponding decrease in
static goodness-of-fit is small (see panel (a) of Figure
2). Hence, one can choose to trade off small decreases
in static goodness-of-fit against much smoother trajec-
tories by imposing higher constraints (i.e., setting p to
a higher value).

Based on the observed trade-offs, we propose the
following strategy for tuning the hyperparameters o
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Figure 2. (Color online) Impact of Hyperparameters (« and p) on Quality of Mapping Solutions
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and p. First, we select a threshold for how much static
goodness-of-fit we are willing to “trade” for better
dynamic mapping quality. For instance, we might set
this threshold to 5% in terms of the average Hit-Rate.
Then, starting with lowa values (e.g., @ near zero), we
increase « until the static mapping quality drops
below this threshold. In consequence, the entailing
sequence of maps will align as strongly as possible
without impairing the static mapping quality beyond
the threshold. We repeat the procedure for multiple
values of p (starting with p = 1) to obtain a set of can-
didate value pairs («, p) of which we pick the one that
produces the visually most appealing solution. Impor-
tantly, EvoMap is an unsupervised learning framework
that is explorative. Therefore, there is no straight-
forward procedure for finding an optimal hyperpara-
meter combination for each specific data set (such as
cross-validation in supervised learning). We, therefore,
recommend that analysts always test multiple hyper-
parameter combinations and fine-tune them via visual
inspection.

Although Figure 2 provides empirical evidence for
EvoMap’s ability to produce sequences of well-aligned
maps with persistent firm trajectories, it is confined
to a single application in which the ground truth is

(b)
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Notes:

Results for EvoMap (t-SNE) applied to our empirical data.

Hit-Rate: avg. 10-nearest neighbor recovery adjusted for

random agreement;

avg. Euclidean distance between subsequent

map positions;

Persistence: avg. Pearson correlation coefficient of
subsequent changes in map positions.

Misalignment:

Benchmark values for independent mapping:
Hit-Rate = .50, Misalignment = 35.36, Persistence: -.50

a: balances static vs. temporal cost
p: controls degree of smoothing

unknown. To obtain a more comprehensive and rigorous
understanding of EvoMap’s capabilities, we proceed
with an extensive simulation study in the next section.

4. Simulation Study
The objectives of our simulation study are fourfold:
(1) to validate EvoMap by testing its ability to accu-
rately recover various simulated market structures’
evolution; (2) to compare EvoMap with alternative
dynamic mapping approaches; (3) to study Evo-
Map’s ability to distinguish underlying trends from
noise in the data (i.e., avoid overfitting); and (4) to
test EvoMap’s suitability as a flexible framework
that can accommodate various static mapping
methods.

Our simulation study comprises four steps (see Figure
3 for a schematic overview). In the first step, we simu-
late firms’ positions as vectors in a higher-dimensional
attribute space (number of dimensions d > 2) with pre-
imposed cluster structures representing different sub-
markets. Next, we gradually adjust firms’ simulated
positions according to three evolution scenarios: (1)
emergence of a new submarket, (2) shifts in individual
firm’s positions, and (3) market entry of new competi-
tors. We design these three evolution scenarios to
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Figure 3. (Color online) Schematic Overview of the Four Steps of our Simulation Study
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capture fundamental patterns that we expect to
observe in the evolution of market structures. Our
three proposed evolution scenarios’” primary drivers
are new consumer needs, firms’ repositioning and dif-
ferentiation efforts, innovations, and new market
entries. Finally, we add a varying degree of Gaussian
white noise to all simulated positions to make our sim-
ulations more realistic.

In the second step, we derive a competitive relation-
ship matrix for each period by measuring the pairwise
squared Euclidean distances among all (noisy) simu-
lated positions in the higher-dimensional attribute
space. As a result, we obtain a time-indexed sequence
of competitive relationship matrices representing the
simulated market structure’s evolution and some de-
gree of noise (where each sequence corresponds to
one of the three evolution scenarios). In the third step,
we apply EvoMap and various alternatives to these
sequences of competitive relationship matrices to esti-
mate two-dimensional representations, that is, sequen-
ces of maps. Notably, we use noisy measurements for
estimation (i.e., the relationships measured after adding
noise to the simulated positions). In the fourth and final
step, we evaluate each sequence of maps with regard to
the desirable properties of dynamic market structure
maps, namely, (1) successive maps should be aligned,
(2) changes in firms’ positions should persist over suc-
cessive periods, and (3) changes in firms’ positions
should reflect actual changes in market structure.
Note that we evaluate the resultant maps (estimated
based on noisy measurements) against the actual mar-
ket structure (that is, the simulated positions before
adding any noise).

EvoMap & Alternatives

Appendix A provides a detailed description of our
data-generating process. To illustrate the evolution
scenarios, we generate six evolving market structures
and map them with EvoMap in Figure 4.

4.1. Evaluation Criteria and Comparison

To evaluate and compare dynamic mapping approaches,
we use the three metrics introduced in Section 3.3:
Hit-Rate (HIT-RATE), Misalignment (MIS-ALIGN), and
Persistence (PERS). To further evaluate how well the
estimated trajectories correspond to actual changes in
market structure, we introduce a fourth metric: Change-
Correlation (C-CORR), the Pearson correlation coefficient
between the movement path lengths of firms’ simulated
and estimated positions, respectively. The intuition
behind C-CORR is that firms should change their posi-
tions on a map in relation to how strongly their actual
positions have changed.

HIT-RATE and C-CORR represent goodness-of-fit
measures, which capture how well the estimated posi-
tions and trajectories fit the simulated data. MIS-
ALIGN and PERS represent descriptive measures,
which qualify different aspects of the estimated maps
and trajectories. Naturally, alternative specifications
for these metrics are possible, which we test in Online
Appendix C.

Our simulation study comprises the following six
dynamic mapping approaches: (1) EvoMap, (2) Dynamic
t-SNE,’ (3) ex post alignment via Procrustes analysis, (4)
sequential initialization of t-SNE, (5) fixed initialization
of t-SNE, and (6) independent mapping (the benchmark
for static mapping quality). Here, we focus on t-SNE as
the static mapping method as (I) we also use it later in



Matthe, Ringel, and Skiera: Mapping Market Structure Evolution
Marketing Science, 2023, vol. 42, no. 3, pp. 589-613, © 2022 The Author(s)

601

Figure 4. (Color online) Examples of Simulated Evolving Market Structures

Evolution Scenario I:

Evolution Scenario II: Evolution Scenario III:

Emergence of a new submarket Shifts in positioning Market entry
Illustration I: Yy ‘?- :..
Method EvoMap (MDS) L v, o R
Firms (n) 50 2 h B
Submarkets (k) 4
Trae
L 33 .
- s &
;' z 6"! ‘9“ % .
” o’
- g .
. O .
- " Sh: &,
>4 5 r
Illustration II: . " ' i
Method EvoMap (t-SNE) '
Firms (n) 250 *
Submarkets (k) 8 " * . ‘
@ @ o
> s, T
& £ 2 &

Notes. Six dynamic market structure maps, estimated by EvoMap (implemented for MDS and t-SNE) for two combinations from the simulation
parameter space in Table A.1 (each simulated once for each of the three evolution scenarios). Each bubble represents one firm’s position. Shaded
paths indicate the estimated trajectories. Colors indicate submarket membership. We set the remaining simulation parameters to their medium

values.

our empirical application and (II) it is frequently used in
recent marketing studies (e.g., Gabel et al. 2019, Yang
et al. 2022). Appendix B also evaluates EvoMap paired
with additional mapping methods (i.e., stress-based met-
ric MDS and Sammon Mapping).

4.2. Simulation Results

Visual inspection (as shown in Figure 4) confirms that
EvoMap generates well-aligned maps (i.e., the coarse-
grained configurations remain stable) in which indi-
vidual positions still change over time. Firms do not
erratically jump around in the estimated sequence of
maps. Instead, firms tend to follow relatively gradual
movement paths. Firms unaffected by the induced
evolution scenarios are visually separable; they retain
relatively stable positions. As a result, we can easily
discern firms’ trajectories (marked as shaded move-
ment paths in Figure 4).

Table 2 reports the results of our comparison,
organized by the three market evolution scenarios
using the previously outlined metrics: Hit-Rate, Mis-
alignment, Persistence, and Change-Correlation. We
report all metrics as means (standard deviation in
parentheses) across 729 combinations for each of the
three evolution scenarios. Thus, in total, we evaluate
each approach on 2,187 simulated evolving market
structures.

The results show that EvoMap consistently outper-
forms alternative approaches across all metrics and in
all three evolution scenarios by a substantial margin.
In contrast to all alternatives, EvoMap estimates well-
aligned maps (MIS-ALIGN is lowest), featuring grad-
ually evolving trajectories (PERS is highest), which
correspond well to the actual (i.e., simulated) changes
in market structure (C-CORR is highest). Notably,
static mapping quality is also higher than for all
remaining approaches. To understand why, recall that
we evaluate static mapping quality against the actual
(simulated) positions (i.e., without any noise) but esti-
mate maps using the noisy relationship matrices (i.e.,
the relationships measured after adding noise to the
simulated positions). Thus, any approach that merely
considers data from a single period cannot separate
the actual positions from the additional noise in each
period. EvoMap, in contrast, considers information
from multiple successive periods when estimating
the positions in each given period. Thereby, we can
(partially) cancel-out noise in each period. As a result,
the static mapping quality increases (HIT-RATE is
highest).

Considering the alternative approaches in more
detail, we make the following observations: our re-
sults confirm our earlier hypothesis that ex post align-
ment via Procrustes analysis performs poorly when
applied to maps generated by nonlinear methods like
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5. Empirical Study

In what follows, we aim to empirically show that Evo-
Map creates additional market structure insights
beyond traditional (i.e., static) mapping methods. Spe-
cifically, we seek to (1) reveal firms’ trajectories using
EvoMap, (2) test the estimated trajectories for face val-
idity, (3) and illustrate the additional insights that
firms’ trajectories provide. To do so, we use EvoMap
to empirically investigate the evolution of publicly
listed firms’ positions over two decades.

Specifically, we apply EvoMap to the Text-based
Network Industry Classification data by Hoberg and
Phillips (2016). These data consist of a time-indexed
sequence of pairwise similarity measures among all
publicly listed firms in the United States. Hoberg and
Phillips (2016) derive these measures of pairwise firm
similarity based on firms’ product descriptions in
their 10-k SEC filings.

We chose these data for four reasons: First, these
data span more than 20 years. Such an extended
period provides the ideal empirical setting to assess
EvoMap’s ability to identify trajectories that reveal
persistent underlying changes in firms’ positions.
Second, TNIC data are well established and validated
in the finance and economics literature. Previous
research leveraged these data to, for instance, study
mergers and acquisitions, firms’ reactions to product
market threats, the relationship between competition
and the cost of capital, or innovation strategies in the
information technology (IT) industry (Hoberg and
Phillips 2010, Valta 2012, Hoberg et al. 2014, Kim et al.
2016, Li and Zhan 2019). Third, TNIC data feature
well-known publicly listed firms, which facilitates
assessing the face validity of the identified market
structure and its evolution. Lastly, TNIC data provide
sufficient complexity in market structure (i.e., many
competitors, many submarkets) and include many
sources of market structure evolution (e.g., changes in
product portfolios, product innovations, or technolog-
ical change).

5.1. Sample Construction

We retrieved the TNIC data from Hoberg and Phillips’
(2016) website: https://hobergphillips.tuck.dartmouth.
edu/. The data comprise a time-indexed list of pairwise
similarity measures, which we transform into a seq-
uence of similarity matrices. Our observation period
ranges from 1998-2017, with one observation per year,
totaling 20 observations for each firm pair. The set of
firms changes every year because of entries (i.e., initial
public offerings) and exits (such as defaults, delisting,
or acquisitions). To study firms’ trajectories across an
extended period, we focus our analysis on firms
present in each period. We prune the firm network to
only those firms who (I) have at least three product

market competitors in the sample in each year and (II)
whose total similarity to other firms in the sample
exceeds 1% in each year. Setting such a minimum
threshold is required. Otherwise, our sample would
include firms that barely relate to any other firm in our
sample, such that we could not faithfully estimate their
positions. Our final sample comprises 1,092 firms
across 20 years. We match our sample to further data
from Compustat (via the “gvkey” identifier) to obtain
descriptive variables, such as the firm names and
Standard Industrial Classification (SIC) codes.

5.2. Dynamic Mapping of TNIC Data

We apply EvoMap (with t-SNE) to our full sample;
That is, to the pairwise relationships among all 1,092
firms for all 20 years. We set hyperparameters o and p
using our hyperparameter tuning procedure that we
proposed in Section 3.3: We quantitatively evaluate a
fine grid of 150 potential combinations (3 values for p
and 50 values for a, as depicted in Figure 2); identify
candidate values that trade-in approximately 5% of
goodness-in-fit (in terms of the adjusted 10-nearest
neighbor (NN) Hit-Rate) relative to independent map-
ping; and select the final hyperparameters based on
visual evaluation of the candidate values’ results. Spe-
cifically, we set @ = 6.92 x 10 and p = 3.

Figure 5 shows the first and the last map from Evo-
Map’s estimated map sequence (i.e., 1998 and 2017).
Both maps in Figure 5 reveal various submarkets (as
indicated by the pronounced clustering of the bubbles
in the maps) that are well aligned. To better under-
stand the visualized submarket structures and to test
for face validity, we manually label each submarket
based on the firms included in each submarket. For
instance, the technology submarket (bottom left) in-
cludes firms such as Apple, Microsoft, or Western
Digital, whereas the financials submarket (top right)
includes firms such as Capital One or Wells Fargo. All
submarkets have an easily identifiable theme. More-
over, the relative positioning is intuitive (for instance,
financials, investment, and insurance are positioned
close together in the top right corner).

The comparison of two aligned static market structure
maps, as presented in Figure 5, offers some insight into
the evolution of market structure over time (e.g., changes
in the submarket structure). However, it does not readily
reveal how individual firms changed their positions. A
dynamic market structure map, on the other hand, can
reveal such changes in market structure based on firms’
trajectories. We present EvoMap’s dynamic market struc-
ture map across 20 years in Figure 6.

Figure 6 (panel (a)) reveals all firms’ trajectories
from 1998 until 2017 as smooth, shaded paths. We
find that the global market structure (i.e., relative posi-
tions of submarkets) remains stable and individual
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Figure 5. (Color online) Static Market Structure Maps for the TNIC Sample in 1998 and 2017
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there is considerable movement of firms within and
across submarkets. For instance, within the bottom-left
part of the map (highlighted in panel (b) of Figure 6),
technology firms (such as Apple) move closer to com-
munication firms (such as AT&T), reflecting the

maps are well aligned. Although most firms change
their position only to a small extent, some firms sub-
stantially change their competitive positions (as indi-
cated by several long trajectories). Moreover, although
the global submarket structure remains relatively stable,

Figure 6. (Color online) EvoMap’s Dynamic Market Structure Map (1998-2017)

(a) (b)

e

MARRIOTT INTL INC

3 EBAYING
DISNEY (WALT, .
& an TIME WARNER INC LY
0% gt VIACOMCES I .
Y. COMCASEORP Y, INTUIT INC
e . - Seure s X HOLDNGSTRE = °y AUTOMATIC DATA PROCESSING
- Insurance ELECTR@NIC ARTS INC AUTOBESKING APPLEING o5,
» ; ROWN CASTLE INTL CORP :. » ADCEE INC
p . VERIZON GOMMUNIGATIQNS INC .
AN TOWER CORE, S OGNIZANT TECH SOLUTIONS

[AT&T INC

SOFT COfR = o
.\ - 13 CU"’({& \NCWC TECHNOULOGY CO
. SewcosvsTemspict . "

% it
o
. gy
.« 0il, Energy & Utilities
JNESTERN DIGITAL €0RP R
MMPHENOL'GORP
£ ANALOG DEVICES
TEXAS \NSTRLlMENTSi. '...f
G| ECHNOLOGY INC

\",AM RESEARGH CORP

APPLIED MATERIALS INC

Y »
-
“ Technology * Pharmaceuticals

Notes. Overlay of 20 maps estimated by EvoMap. Each bubble represents one firm. More transparent bubbles indicate earlier positions. Shaded
movement paths highlight firms’ trajectories over time. Panel (b) zooms in on the top 30 firms by market value (as of 2017) in the bottom left
area. Average adjusted 10-NN Hit-Rate: 44.6%.



Matthe, Ringel, and Skiera: Mapping Market Structure Evolution
Marketing Science, 2023, vol. 42, no. 3, pp. 589-613, © 2022 The Author(s)

605

increasingly important role of communication tech-
nologies for these firms’ products.

5.3. Evaluation

In what follows, we evaluate EvoMap’s trajectories
with respect to (1) their face validity and (2) the sub-
stantive insights they can create.

5.3.1. Face Validity. Figure 6 suggests that most firms
do not change their positions relative to other firms in
the market much (i.e., most trajectories are relatively
short). However, several firms substantially changed
their positions (as indicated by longer trajectories).
Our observation confirms the intuition that there is
heterogeneity regarding the extent to which firms
change their competitive position over time. Although
greater changes are easier to see in Figure 6, most
firms adjust their position to some extent (that is, we
observe almost no zero-length trajectories).

To test the face validity of the estimated trajectories,
we average their length on the SIC code level. Intui-
tively, if the identified trajectories accurately uncover
changes in firms’ positions, firms in less dynamic mar-
kets should (on average) have shorter trajectories than
firms in more dynamic markets. To evaluate whether
this relationship holds, we aggregate the average tra-
jectory length by market membership (measured as
the two-digit SIC code). Table 3 shows the 10 SIC
codes with the longest and shortest average trajectory
(measured as their movement path’s total length in
Figure 6). Our findings are intuitive because we
observe the shortest average trajectories in markets
with rather stable product portfolios (e.g., printing,
food stores, apparel). That is, firms in these markets,
including the New York Times or Abercrombie and
Fitch, did not exhibit substantial changes in the prod-
ucts they sell. For instance, although fashion trends
evolve, fashion products (i.e., apparel) change little.
Likewise, although the content published by news
publishers changes constantly, their products them-
selves remain rather similar. For instance, the New
York Times still sells news. In contrast, we observe the
longest average trajectories in markets with rather
dynamic product portfolios (e.g., retail, business serv-
ices, trade, or computer equipment). Firms in these
markets, including Adobe or Intuit, change their prod-
ucts relative to their peers much more substantially.
Many software firms, for instance, have been shifting
their solutions to cloud-based subscription models,
whereas wholesale trade firms, such as United Natu-
ral Food, constantly need to adjust their product port-
folios in response to changing trends (e.g., the
emergence of meat substitutes, vegan foods, or sus-
tainable products).

5.3.2. Substantive Insights. EvoMap’s trajectories offer
additional substantive insights beyond static market
structure maps. For example, monitoring an individ-
ual firm’s trajectory can reveal whether and how its
position has changed in the past. Panel (a) of Figure 7
displays the trajectory of Capital One (a large financial
service provider). Its trajectory reveals that Capital
One has indeed changed its position substantially
over the past 20 years. Moreover, we observe a pro-
nounced bend. This sudden change of direction
occurred around 2004 and coincided with the expan-
sion of Capital One’s business model. In the early
1990s, Capital One solely focused on selling credit
cards. Then, throughout the 1990s, Capital One expanded
into auto loans. Finally, around 2005, Capital One
expanded into consumer banking.

Likewise, the trajectory of American Express (panel
(b) of Figure 7) reveals its departure from the investment
submarket, where investment banks, such as Morgan
Stanley, Oppenheimer, or Jefferies, are positioned (and
remain at their position), toward the financials submar-
ket, including retail banks. This observation coincides
with the divesting of American Express’s investment
banking units, which started in the early 1990s. The
aforementioned trajectories are thereby insightful to the
respective firms themselves and other firms in the mar-
ket because these trajectories may alert them to emerg-
ing competitors at an early stage.

Besides studying each firm’s trajectory, market
researchers can gain additional insights from studying
firms’ trajectories relative to each other. Panel (c)
shows how the trajectory of Walmart diverges from
grocery stores (such as Weis Markets or United Natu-
ral Foods) and starts to move closer toward apparel
firms (such as Urban Outfitters or L Brands), revealing
the growing expansion of its fashion assortments fea-
turing both national and private brands.

Likewise, panel (d) of Figure 7 shows the trajecto-
ries for Apple versus some of its peers (such as West-
ern Digital). The map shows that Apple and Western
Digital were positioned closely in 1998. Both firms
provided computer hardware, together with other
hardware providers, such as HP. Over time, however,
Apple’s and Western Digital’s trajectories diverged.
Although the trajectory of Western Digital converges
with other hardware providers, such as Micron, the
trajectory of Apple points in a different direction.
Eventually, Apple’s trajectory converges with digital
services providers, such as Intuit. The recovered tra-
jectory for Apple reflects Apple’s evolving business
model, which evolved from mainly selling hardware
(such as the Mac) toward software and digital services
(such as its AppStore or iTunes). Although a static
market structure map (for instance, around 2010)
would place the three firms at approximately equal
distance, EvoMap’s dynamic market structure map
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Figure 7. Trajectories of Selected Firms
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Beyond identifying competitors, the revealed trajecto-
ries can also help monitor competitors” actions and alert
managers about their rivals’ strategic intentions, such as
changes in their positioning strategy. When formulating
one’s positioning strategy, a firm needs to consider its
competitors’ current positions and also their potential
actions, for example, whether they move in a similar
direction or not (Ning and Villas-Boas 2021). Monitoring
competitors’ trajectories can offer such indications and
thus inform marketing strategies. Finally, once a firm
has decided to reposition itself, the firm can monitor its
trajectory to evaluate the effectiveness of its actions.

The visual representation in maps provides an
easy-to-understand common language that facilitates
communication across different roles within a firm.
For instance, one could integrate dynamic market
structure maps into existing analytics dashboards,
which are a primary basis for decision making in the

industry (Wedel and Kannan 2016). With such dash-
boards, decision makers across a firm could easily and
frequently monitor market developments.

As EvoMap is a flexible framework, one can further
apply it to many other empirical settings beyond the
one presented in this article. For instance, one could
infer firms’ trajectories from changes in their ad copies
or changes in the content on their websites. Such data
are regularly archived and often made accessible, for
instance, by competitive intelligence platforms. Mod-
ern data science provides ample means to identify
and measure relationships among firms within such
(often unstructured) data. For instance, (pretrained)
embeddings allow market researchers to measure the
similarity among texts, images, speech, or a combina-
tion thereof. Paired with such techniques, EvoMap
might be used to study, for example, evolving product
designs, firm communication, or brand logos.
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Beyond firm-generated content, consumers’ digital
footprints offer a plethora of suitable data sources to
study evolving market structures. Some examples are
search logs, social media posts, and customer reviews.
Because such data are often available historically and in
real time, they create additional opportunities to study
evolving relationships among firms, brands, products,
and consumers. We also see potential applications of
EvoMap at the intersection of marketing and other
domains. For instance, political parties communicate their
positioning toward society in manifestos or through mem-
bers’ speeches. Such communication is often archived his-
torically and could reveal party trajectories. Researchers
could also use EvoMap in bibliometrics to study the
evolution of scientific fields or individual journals’
positions.

Future research could also explore different ways to
link map positions (and changes therein) to firm
attributes (e.g., how they describe their products).
Doing so could help to understand the underlying
market’s structure and its evolution even further.
Another avenue might be to investigate why firms in
some industries exhibit more dynamic positions than
others. As our empirical study showed, there exists
substantial variation in the length of firms’ trajecto-
ries. Identifying the drivers and consequences of these
dynamics could further help managers develop an
effective (re)positioning strategy.

Naturally, EvoMap is not free of limitations. First, Evo-
Map is subject to the limitations of the particular static
mapping method used. To mitigate this limitation, we
designed EvoMap as a flexible framework that can easily
accommodate various static mapping methods and
implemented it for three very different methods (i.e., met-
ric MDS, Sammon Mapping, and t-SNE). Second, the
quality of EvoMap’s dynamic market structure maps is
bounded by the quality of the used data. Although Evo-
Map offers several innovations, such as noise cancellation,
it still depends on valid relationship data. And third, Evo-
Map introduces two hyperparameters to the mapping
process (@ and p) that market researchers need to con-
sider in their analysis. However, we (1) investigate and
document their impact on map quality and (2) offer a tun-
ing scheme to set them appropriately for the particular
empirical setting and data at hand.

Methodologically, EvoMap provides the foundation
for further research into mapping the dynamics of com-
petitive relationships. Such research could, for instance,
pair EvoMap with additional mapping methods, with
more sophisticated optimization procedures (such as
majorization techniques); or embed the estimated tra-
jectories into models of consumer choice (for instance,
to augment dynamic market structure maps with
evolving consumer ideal points); or study how the tra-
jectories of firms that compete in multiple submarkets
(e.g., Amazon) evolve differently in those submarkets

(Ringel 2022). Although recent research in marketing
shows a growing interest in modeling and understand-
ing the dynamics in high-frequency data (Du and
Kamakura 2012, Schweidel and Moe 2014, Xiong and
Bharadwaj 2014, Ma et al. 2015, Puranam et al. 2017,
Zhong and Schweidel 2020), the dynamics of relation-
ships among market actors inherent in such data have
received less attention. We hope to open a new avenue
for further research in this direction.

Appendix A. Data-Generating Process and
Hyperparameter Selection for
Simulation Study
Ideally, the simulated competitive relationship matrices should
represent various market structures with different submar-
kets and a wide variety of possible inter- and intrasubmar-
ket relationships. To create such variety in our simulation
study, we formulate the following data-generating process
(DGP):

First, we assign each firm i € I with uniform probability to
one of k submarkets, where n =|I| and k€ N*. Then, for
each submarket m e {1,...,k}, we draw the positions in the
d-dimensional attribute space from a Gaussian distribution
N(u,,, 02,) centered at the submarket mean p, with stand-
ard deviation og,,. Within the attribute space, we place the
submarkets’ means with uniform probability within the
edges of a d-dimensional hypercube with unit length. We
thus generate pairs of closer and more distant submarkets
and obtain the simulated positions X, € R™ Such a proc-
ess is flexible enough to simulate competitive relationship
matrices for a broad class of potential market structures
(e.g., small/large markets with few/many strongly/weakly
connected submarkets). At the same time, the proposed DGP
is parsimonious because it requires only a small number of
meaningfully interpretable simulation parameters.

Next, we modify the simulated positions according to
one of the following scenarios:

Scenario I emergence of a new submarket: A fraction (p)
of firms are randomly assigned to a newly formed submarket
and, over T periods, change their positions toward the new
submarket.

Scenario II shifts in positioning: A fraction (p) of firms are
randomly assigned to a different yet existing submarket and,
over T periods, gradually shift their positions toward their
assigned submarket.

Scenario III market entry: A fraction (p) of firms enter the
market at random positions in the attribute space. Over T
periods, each new entrant gradually shifts toward its
assigned submarket.

To make our simulation more realistic, we implement
two other phenomena that occur in real-world empirical
data: nongradual evolution and noise. Our intuition is the
following. First, we do not expect changes in firm posi-
tions to occur gradually and simultaneously over time.
We, therefore, vary the speed at which each firm changes
its position during our simulation. Specifically, we draw T
(the number of periods over which a firm changes its
position) randomly for each firm from a zero-truncated
Poisson distribution. As a result, some firms will adjust
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Table A.1. Simulation Parameter Space

Simulation parameter Label Market structure characteristic Values
n Number of firms Market size 50 100 250
d Number of dimensions Market complexity 4 8 16
k Number of submarkets Market fragmentation 4 8 12
Osub Within submarket standard Degree of submarket 0.050 0.075 0.150
deviation separation (strong) (medium) (weak)
Ctemporal Temporal noise Smoothness of evolution 0.010 0.025 0.050
(low) (medium)  (high)
p Share of firms affected Market dynamism 0.050 0. 100 0.150
(low) (medium)  (high)
Number of 3% = 729
combinations
Number of 3
evolution
scenarios
Number of 729 x 3 = 2,187
simulation
iterations

Notes. The table lists all simulation parameters. We simulate each scenario for each combination. In total, we conduct 2,187
simulation iterations (729 combinations for each of the three evolution scenarios).

their positions within each simulation iteration over a few
periods (i.e., quickly and less gradually), and others over
more periods (i.e., slowly and more gradually). We set the
Poisson parameter to eight for all simulation iterations.
Second, empirical measurements of competitive relation-
ships can be subject to noise because of the nature of the
data source or the collection process. We, therefore, add
varying degrees of white noise drawn from A(0, otzempaml)
to each firm’s simulated position at each period before
taking distances. We estimate the maps using the noisy
relationship matrices but evaluate them against the simu-
lated positions without noise. Table A.1 provides an over-
view of simulation parameters, their underlying market
structure characteristic, the values assigned to the parame-
ters, and the total number of simulation iterations. We
chose the parameter space such that it covers a broad
spectrum of possible market structures.

As we outlined in Section 3.3, running EvoMap requires
setting two hyperparameters (¢ and p). According to our tun-
ing strategy, we would usually first evaluate several combi-
nations of these two hyperparameters and then manually
fine-tune them. Unfortunately, such an elaborate procedure is
not feasible for 2,187 simulation iterations. Therefore, we
adopt the following approach: In each simulation iteration,
we evaluate the following 3Xx5=15 hyperparameter
combinations for EvoMap: a € {10’5, 1074, 10’3}, pefl,...,
5}; and we pick the combination that yields the best result
across all metrics. To identify this best combination, we rank
the 15 combinations according to our four metrics and then
pick the one with the lowest (i.e., best) rank across all four
metrics.

Likewise, running dynamic t-SNE requires setting its
hyperparameter A, which performs a similar task as Evo-
Map’s hyperparameter a (i.e., both « and A balance the

Figure A.1. (Color online) Selected Hyperparameter Values in Simulation Study (t-SNE)
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Table B.1. Simulation Results for MDS and Sammon Mapping

Dynamic mapping approach MIS-ALGN PERS C-CORR HIT-RATE
Panel A: MDS
(I) EvoMap (MDS) 0.067 0.894 0.748 0.546
(0.078) (0.099) (0.318) (0.137)
(IT) Ex post aligned MDS 0.505 —-0.389 0.253 0.525
(0.548) (0.201) (0.373) (0.140)
(IIT) Independent MDS 2.428 -0.480 -0.130 0.525
(1.360) (0.102) (0.201) (0.140)
Panel B: Sammon mapping
(I) EvoMap (Sammon) 0.094 0.868 0.718 0.598
(0.155) (0.137) 0.317) (0.135)
(IT) Ex post aligned Sammon 5.023 -0.488 0.082 0.586
(11.320) (0.114) (0.298) (0.140)
(III) Independent Sammon 6.335 —-0.488 —-0.090 0.586
(11.647) (0.089) (0.209) (0.140)

Notes. Reported metrics are averages over 2,187 simulations as outlined in Table A.1 (729 combinations and three evolution
scenarios). Standard deviation in parentheses. Best result per metric marked in bold. MIS-ALGN (misalignment),
misalignment of successive maps, measured as the average length of all movement in positions; PERS (persistence),
persistence of identified trajectories, measured as the average Pearson correlation coefficient of successive changes in
positions; C-CORR (change correlation), average Pearson correlation coefficient of trajectory length on the map versus
trajectory length in the simulated positions; HIT-RATE (Hit-Rate), average 10-NN Hit-Rate of nearest neighbor recovery,

adjusted for random agreement.

static versus temporal component of the respective cost
functions). Thus, we also run dynamic t-SNE for the same
three values A € {1075, 1074, 10’3} and pick the best result
for each simulation iteration accordingly. For larger values
of A, we find that static goodness-of-fit (measured via Hit-
Rate) drops substantially for dynamic t-SNE.* We set the
remaining parameters of dynamic t-SNE (e.g., its optimi-
zation settings) to the default values suggested by its
authors.

Figure A.1 shows the hyperparameter distributions for
all 2,187 simulation iterations. Notably, for most cases
(>98%), the best solution is obtained with p greater than
one. In these cases, EvoMap’s additional smoothing penal-
ties lead to better solutions.

Appendix B. Simulation Results for Metric MDS
and Sammon Mapping

We also evaluate EvoMap in our simulation study paired
with alternative static mapping methods and present the
results in Table B.1. We exclude t-SNE-specific alternatives
in this comparison (i.e., Dynamic t-SNE, sequential and
fixed initialization). As for EvoMap paired with t-SNE, we
also run each additional alternative of EvoMap for multi-
ple hyperparameter combinations. Specifically, we run
EvoMap (with MDS/Sammon) for 3 X 3 =9 combinations:
ae{102,107",5x107"} and p€e{1,...,3}. Figure B.1 shows
the distribution of the selected hyperparameter values.
Note that the range of suitable values for EvoMap’s hyper-
parameters depends on the chosen mapping method (and its

Figure B.1. (Color online) Selected Hyperparameter Values in Simulation Study (MDS and Sammon)
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Table C.1. Hold-Out Validation Results

HIT-RATE HIT-RATE HIT-RATE

Dynamic mapping approach (estimation data) (hold-out data) % change
(1) EvoMap (t-SNE) 66.093 65.495 —-0.595
(10.588) (10.658) (1.955)
(2) Dynamic t-SNE (Rauber et al. 2016) 44.109 42.809 -1.296
(13.944) (14.083) (2.822)
(3) Ex post alignment (t-SNE) 63.780 60.447 -3.330
(12.039) (13.416) (3.179)
(4) Sequential initialization (t-SNE) 63.106 60.900 —2.202
(12.301) (13.414) (2.719)
(5) Fixed initialization (t-SNE) 63.795 60.366 —3.426
(12.032) (13.513) (2.970)
(6) Independent mapping (t-SNE) 63.780 58.443 -5.333
(12.039) (13.146) (3.354)

Notes. Average adjusted 10-NN Hit-Rate values in percentage points across 2,187 simulation iterations. Standard deviation

in parentheses.

static cost function). The results in Table B.1 show that in line
with our previous findings for EvoMap paired with t-SNE,
pairing EvoMap with MDS or Sammon Mapping also produ-
ces much better solutions than other approaches.

Appendix C. Assessing Overfitting

EvoMap seeks to identify underlying trends in the changes in
firms’ competitive positions. Doing so requires separating
trends from noise or, stated differently, avoiding overfitting
individual periods. Overfitting naturally arises when fitting
maps to each period independently, as the resultant maps will
adjust to all (even minor) changes in every period, including
temporary noise. For EvoMap, increasing the hyperparameter
p sets stronger constraints on the resultant trajectories, linking
the estimated positions across an increasing number of
successive periods. Thereby, the resultant maps should be less
sensitive to changes in individual periods, thus, preventing
overfitting.

To test this hypothesis, we randomly split the data in
each simulation iteration into two parts: estimation and
hold-out data. We split along the time axis, such that the
full relationship matrix in each period between the first
and last period either belongs to the hold-out or the esti-
mation data. We then estimate the sequence of maps
using only the relationship matrices in the estimation
data. To test for overfitting, we predict the positions on
the map for the hold-out data using the estimated trajecto-
ries. Specifically, to derive firm i’s position in any period
in the hold-out data, we use linear interpolation between
the nearest preceding and succeeding map position in the
estimation data. Doing so predicts the map position along
the estimated trajectories and tests the extent to which
these trajectories capture the underlying evolution trends.
For evaluation, we compute the average (adjusted) Hit-
Rates for the predicted and estimated maps, respectively
(see Table C.1). As expected, independent mapping (even
when aligned ex post via Procrustes analysis) overfits
most heavily. EvoMap, in contrast, exhibits no sign of
overfitting: The average difference between the Hit-Rate
on the estimation and hold-out data are below one per-
centage point.

Endnotes

" Note that there also exist alternatives to such relationship-based
methods, which use attribute ratings as input data (such as factor
analysis). These input data typically consist of customer judgements
on a set of known attributes. The data sources described in the
introduction and used in contemporary studies, however, typically
offer measures of relationships, rather than attributes. Therefore,
we limit our discussion to relationship-based methods.

2 The squared Euclidean norm is a natural choice because it is dif-
ferentiable everywhere. In principle, non-Euclidean metrics, such as
the £1-norm, could be chosen as well. Doing so would slightly alter
the gradient calculations; see Online Appendix A.

3 We downloaded the latest version as of 03/22/2016 from https://
github.com/paulorauber/thesne.

4 For A =107, the average (adjusted) Hit-Rate of dynamic t-SNE
drops to ~13% (based on a test run with 50 randomly selected simu-
lation iterations).
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