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ONLINE APPENDIX 

 

A. Gradient Derivation and Implementation 

Herein, we formally derive the gradient of EvoMap’s cost function to facilitate the implementation of our 

framework for different methods, optimization procedures, and various programming languages. We estimate 

the sequence of maps (𝑋̂𝑡)𝑡=1,…,𝑇
, 𝑋̂𝑡 ∈ ℝ𝑛×2 by optimizing the following cost function: 

 

𝐶𝑡𝑜𝑡𝑎𝑙(𝑋1, … , 𝑋𝑇) = ∑𝐶𝑠𝑡𝑎𝑡𝑖𝑐(𝑋𝑡)

𝑇

𝑡=1

+ 𝛼 ∙ 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑋1, … , 𝑋𝑇) 

(A-1) 

Therefore, the gradient grad 𝐶𝑡𝑜𝑡𝑎𝑙(𝑋1, … , 𝑋𝑇) consists of the two independent components 

grad 𝐶𝑠𝑡𝑎𝑡𝑖𝑐(𝑋𝑡) and grad 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑋1, … , 𝑋𝑇). The chosen mapping method provides grad 𝐶𝑠𝑡𝑎𝑡𝑖𝑐(𝑋𝑡). 

We derive grad 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑋1, … , 𝑋𝑇) subsequently. Recall that we defined the temporal cost function as 

𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑋1, … , 𝑋𝑇) = ∑𝑓𝑤(𝑖) ∑ ∑ 1[𝑖∈𝐼𝑡,𝑘] ‖∇𝑘𝑥𝑖,𝑡‖
2

𝑇

𝑡=𝑘+1

𝑝

𝑘=1

𝑛

𝑖=1

  
(A-2) 

Fix a period 𝜏 ∈ {1,… , 𝑇} and a firm 𝑗 ∈ {1, … , 𝑛} and let 𝑥𝑗,𝜏 ∈ ℝ2 denote firm j’s map position at time 

𝜏. grad 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 consists of all partial derivatives of 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 w.r.t. 𝑥𝑗,𝜏  ∀𝑗 ∈ {1,… , 𝑛}, 𝜏 ∈ {1, …𝑇}, 

expressed by 

𝜕𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

𝜕𝑥𝑗,𝜏
= 𝑓𝑤(𝑗) ∑ ∑ 1[𝑗∈𝐼𝑡,𝑘]  

𝜕‖∇𝑘𝑥𝑗,𝑡‖
2

𝜕𝑥𝑗,𝜏

𝑇

𝑡=𝑘+1

𝑝

𝑘=1

 
(A-3) 
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This partial derivative of the temporal component for firm j does not depend on any other firm’s position. 

Suppose that 𝑗 ∈ 𝐼𝑡,𝑘 (else, the respective term in the sum is zero). 𝑓𝑤(𝑗) only depends upon the input data 

and is thus a scalar independent of 𝑥𝑗,𝜏. The derivation of the partial derivative of 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 therefore consists 

of deriving the partial derivative of ‖∇𝑘𝑥𝑗,𝑡‖
2
w.r.t 𝑥𝑗,𝜏 for all 𝑘 ∈ {1, … , 𝑝} and 𝑡 ∈ {1,… , 𝑇}. The partial 

derivative of the outer norm depends on its choice. We implement EvoMap for the Euclidean norm, such that 

∂‖𝐯‖2

∂v
= 2𝐯 for any real-valued vector 𝐯. Therefore,  

𝜕‖∇𝑘𝑥𝑗,𝑡‖
2

𝜕𝑥𝑗,𝜏
= 2 ∙ ∇𝑘𝑥𝑗,𝑡 ∙

𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
 

(A-4) 

Recall that the inner part of the norm corresponds to the k-th order difference of firm j’s map position at 

time 𝑡, formally defined as  

∇𝑘𝑥𝑗,𝑡 ∶= {
(∇𝑘−1𝑥𝑗,𝑡 − ∇𝑘−1𝑥𝑗,𝑡−1)

𝑥𝑗,𝑡

0

 for 
 𝑘 ≥ 1 ∧ 𝑡 ≥ 𝑘 + 1

 𝑘 = 0
𝑒𝑙𝑠𝑒

 (A-5) 

Thus, we can derive the partial derivative of the inner part of the norm, 
𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
 as follows. Assume that 𝑘 ≥

1 ∧ 𝑡 ≥ 𝑘 + 1 (else, the partial evaluates to 1, if 𝑘 = 0, or 0). From the definition of ∇𝑘𝑥𝑗,𝑡 in (A-5), it follows 

that: 

𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
= (

𝜕∇𝑘−1𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
−

𝜕∇𝑘−1𝑥𝑗,𝑡−1

𝜕𝑥𝑗,𝜏
)  (A-6) 

such that we can derive 
𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
 recursively, starting with 𝑘 =  1: 

𝜕∇1𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
= (

𝜕∇0𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
−

𝜕∇0𝑥𝑗,𝑡−1

𝜕𝑥𝑗,𝜏
) (A-7) 

where 

𝜕∇0𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
=

𝜕𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
= {

1 𝑖𝑓 𝑡 = 𝜏
0  𝑒𝑙𝑠𝑒

 
(A-8) 

and 
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𝜕∇0𝑥𝑗,𝑡−1

𝜕𝑥𝑗,𝜏
=

𝜕𝑥𝑗,𝑡−1

𝜕𝑥𝑗,𝜏
= {

1 𝑖𝑓 𝑡 = 𝜏 + 1
0  𝑒𝑙𝑠𝑒

 (A-9) 

We derive the second term in (A-6) from the first term by shifting the time indices by one period: 

𝜕∇𝑘𝑥𝑗,𝑡−1

𝜕𝑥𝑗,𝜏
=

𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏+1
 

(A-10) 

By inserting (A-8) and (A-9), we can then express (A-7) as  

𝜕∇1𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
= {

1, if t = τ
−1, if t = τ + 1

0  else
  (A-11) 

which yields the partial 
𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
 for all t and 𝑘 =  1. From that, we derive the expressions for 𝑘 =  2  

analogously to (A-7): 

𝜕∇2𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
= (

𝜕∇1𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
−

𝜕∇1𝑥𝑗,𝑡−1

𝜕𝑥𝐼𝑗𝜏
) (A-12) 

Where we have already derived the first term in (A-11) and we can obtain the second term from (A-11) 

after shifting time indices by one period: 

𝜕∇2𝑥𝑗,𝑡−1

𝜕𝑥𝑗,𝜏
= {

1, 𝑖𝑓 𝑡 = 𝜏 + 1
−1, 𝑖𝑓 𝑡 = 𝜏 + 2

0  𝑒𝑙𝑠𝑒

 (A-13) 

Such that the partial 
𝜕∇𝑘𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏
 for all t and 𝑘 =  2 can be expressed as  

𝜕∇2𝑥𝑗,𝑡

𝜕𝑥𝑗,𝜏 
= {

1, 𝑖𝑓 𝑡 = 𝜏
−2, 𝑖𝑓 𝑡 = 𝜏 + 1
1, 𝑖𝑓 𝑡 = 𝜏 + 2

0, 𝑒𝑙𝑠𝑒

 (A-14) 

We can derive the remaining partials for k higher than two similarly by repeating the steps between (A-12) 

and (A-14). We obtain the final gradient by inserting all results into (A-4) and (A-3).  

Based on these derivations, researchers can implement EvoMap for a given static mapping method as 

follows. We assume that the chosen method has a non-negative cost function 𝐶𝑠𝑡𝑎𝑡𝑖𝑐 (i.e., lower values 

correspond to better solutions) and can be optimized iteratively via gradient-based methods. Provided that 

method, one needs to proceed as follows:  
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First, adopt (or derive) the static gradient grad 𝐶𝑠𝑡𝑎𝑡𝑖𝑐 entailing the partial derivatives 

[
 
 
 
∂𝐶𝑠𝑡𝑎𝑡𝑖𝑐

𝜕𝑥1,𝜏

⋮
∂𝐶𝑠𝑡𝑎𝑡𝑖𝑐

𝜕𝑥𝑛,𝜏 ]
 
 
 

 for any 

map layout 𝑋𝜏 ∈ (𝑋𝑡)𝑡=1,…,𝑇. If any firm is not present at time 𝜏, set its respective entry in the gradient to 

zero. Then, combine these gradients for all periods: grad ∑ 𝐶𝑠𝑡𝑎𝑡𝑖𝑐
𝑇
𝜏=1 = [

grad 𝐶𝑠𝑡𝑎𝑡𝑖𝑐(𝑋1)
⋮

grad 𝐶𝑠𝑡𝑎𝑡𝑖𝑐(𝑋𝑇)
]. Here, we 

simply stacked all map layouts in a temporal order.  

 

Second, derive the partial derivatives 

[
 
 
 
 
∂C𝑡𝑒𝑚𝑝

𝜕𝑥1,𝜏

⋮
𝜕𝐶𝑡𝑒𝑚𝑝

𝜕𝑥𝑛,𝜏 ]
 
 
 
 

 of 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 with respect to 𝑋𝜏 for any map layout 𝑋𝜏 ∈

(𝑋𝑡)𝑡=1,…,𝑇 using (A-3) and the expressions that follow it. Analogously to the static gradients, stack them in 

temporal order to obtain the final temporal gradient grad 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙.  

Finally, combine the two (stacked) gradients according to (A-1). One can then use iterative optimization 

techniques to find the cost-minimizing sequence of map layouts (e.g., using the same optimization routine 

commonly used for the given static mapping method). 

B. Numerical Examples for Penalty Derivations 

Herein, we provide a numerical example for the derivation of the penalty terms in EvoMap’s cost function. 

Specifically, we consider the same firm i under two hypothetical scenarios:  

• Scenario A: Firm i moves gradually (left graph in Online Appendix Figure B-1) 

• Scenario B: Firm i moves more erratically (right graph in Online Appendix Figure B-1) 

We use these hypothetical trajectories to demonstrate how our cost function penalizes the solution in 

scenario B stronger than in scenario A (assuming everything else is equal). For both scenarios, Online 

Appendix Table B-1 displays the positions 𝑥𝑖,𝑡, the resultant k-th order differences ∇𝑘𝑥𝑖,𝑡 for 𝑘 ∈ {1,2}, and 

the corresponding values of their norm ‖∇𝑘𝑥𝑖,𝑡‖
2 which enter the cost function. The numerical example 

demonstrates that the cost function will take higher values (≈ 13.00 vs. ≈ 9.75) under scenario B. Thus, all else 

being equal (for instance, the static cost function values), the cost function favors the solution in scenario A. 

The example also demonstrates the added value of incorporating higher-order differences: When considering 
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only ‖∇𝑘𝑥𝑖,𝑡‖
2 for 𝑘 = 1 both trajectories yield equivalent cost function values of 7.50. 

Online Appendix Figure B-1: Two Different Trajectories 

 
 Notes: Axes correspond to the two map dimensions.  
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Online Appendix Table B-1: Numerical Example for Penalty Derivations 

 Scenario A (gradual trajectory) Scenario B (more erratic trajectory) 

Symbolic 

Expression 

𝑥𝑖,𝑡 

(Positions) 

𝛻1𝑥𝑖,𝑡 

(1st-Order 

Differences) 

‖𝛻1𝑥𝑖,𝑡‖
2
 

(Sq. Eucl. 

Norm) 

𝛻2𝑥𝑖,𝑡 

(2nd-Order 

Differences) 

‖𝛻2𝑥𝑖,𝑡‖
2
 

(Sq. Eucl. 

Norm) 

𝑥𝑖,𝑡 

(Positions) 

𝛻1𝑥𝑖,𝑡 

(1st-Order 

Differences) 

‖𝛻1𝑥𝑖,𝑡‖
2
 

(Sq. Eucl. 

Norm) 

𝛻2𝑥𝑖,𝑡 

(2nd-Order 

Differences) 

‖𝛻2𝑥𝑖,𝑡‖
2
 

(Sq. Eucl. 

Norm) 

Time t = 1 [
1.00
1.00

] -- -- -- -- [
1.00
1.00

] -- -- -- -- 

Time t = 2 [2.25
1.25

] [1.25
0.25

] ≈ 1.63 -- -- [2.25
1.50

] [1.25
0.50

] ≈ 1.81 -- -- 

Time t = 3 [
3.00
2.00

] [0.75
0.75

] ≈ 1.13 [−0.50
0.50

] = 0.50 [
2.00
2.25

] [−0.25
0.75

] ≈ 0.63 [−1.50
0.25

] ≈ 2.31 

Time t = 4 [3.25
3.75

] [0.25
1.75

] ≈ 3.13 [−0.50
1.00

] = 1.25 [
3.00
3.25

] [
1.00
1.00

] = 2.00 [1.25
0.25

] ≈ 1.63 

Time t = 5 [
3.00
5.00

] [−0.25
1.25

] ≈ 1.63 [−0.50
−0.50

] = 0.50 [
3.00
5.00

] [
0.00
1.75

] ≈ 3.06 [
−1.00
0.75

] ≈ 1.56 

∑‖𝛻𝑘𝑥𝑖,𝑡‖

𝑡

 -- -- = 7.50 -- = 2.25 -- -- = 7.50 -- = 5.50 

∑∑‖𝛻𝑘𝑥𝑖,𝑡‖

𝑘𝑡

 -- = 𝟗. 𝟕𝟓 -- = 𝟏𝟑. 𝟎 

 

Notes: ‖∙‖2 denotes the Squared Euclidean Norm (Sq. Eucl. Norm). 

 



7 

 

C. Additional Simulation Results  

In what follows, we extend our simulation study to (1) investigate the benefits of EvoMap’s adaptive 

regularization and smoothing properties, (2) test alternative specifications of two dynamic mapping metrics, 

and (3) improve Dynamic t-SNE’s volatile performance by using EvoMap’s optimization procedure.  

Specifically, we introduce the following two variants of EvoMap to our simulation study: EvoMap 

(adaptive regularization only), which introduces firm-specific weights but ignores higher-order differences, 

and EvoMap (smoothing only), which considers higher-order differences but does not include any firm-

specific weights. Considering the goodness-of-fit measures (HIT-RATE and C-CORR), we find that adaptive 

regularization increases dynamic goodness-of-fit (C-CORR increases), while static goodness-of-fit remains 

similar (HIT-RATE does not change). Thereby, the descriptive metrics reveal that the resultant maps are 

slightly less aligned, and trajectories become slightly less gradual (PERS decreases).  

These findings show that adaptive regularization increases flexibility and allows EvoMap to recover actual 

market structure changes better. In contrast, smoothing results in more aligned positions (MIS-ALIGN 

decreases) and more gradual trajectories (PERS increases). Moreover, it also increases goodness-of-fit (recall 

that we evaluate goodness-of-fit against the simulated positions before adding any noise). Combining 

smoothing with adaptive regularization yields the highest goodness-of-fit of all alternatives.  

Next, we introduce two additional metrics to our simulation study to demonstrate that our results are robust 

to alternative specifications of the evaluation metrics. Specifically, we propose the following alternative 

metrics: 

• ALIGN (Alignment): An alternative measure to misalignment, using the average cosine similarity 

of successive positions across all periods and firms. Alignment varies between -1 and 1, where 

positive values indicate high alignment (and vice versa).  

• CPA (Change Prediction Accuracy): An alternative measure to change correlation. Rather than 

simply using the correlation of simulated vs. recovered movement path lengths, we estimate a 

logistic regression model with a binary dependent variable “change” (1 if a firm was affected by 

one of the evolution scenarios within the simulation, 0 else) and a single independent variable 

“trajectory length” (total length of the movement path on the estimated market structure map). We 

evaluate its predictive accuracy. Since our sample is imbalanced with a large fraction of static and 
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a small fraction of dynamic positions, we use the F1 score based on precision and recall as a 

measure of predictive accuracy. 

Consistent with MIS-ALIGN and C-CORR, EvoMap also outperforms extant dynamic mapping 

approaches on ALIGN (Alignment) and CPA (Change Prediction Accuracy). Naturally, as the ALIGN metric 

is bounded between -1 and 1, it varies less than the unbounded MIS-ALIGN metric across different methods. 

See Online Appendix Table C-1 for details. 

Finally, we improve the relatively poor performance of Dynamic t-SNE (Rauber et al. 2016), which they 

provide at https://github.com/paulorauber/thesne (latest version as of 03/22/2016), by using EvoMap’s 

optimization procedure. Specifically, we run EvoMap without its adaptive regularization and smoothing 

components (such that its cost function equals Dynamic t-SNE’s cost function up to a constant). Our 

optimization procedure improves all mapping quality metrics (see Online Appendix Table C-1). However, 

these improvements still fall short of EvoMap’s mapping quality. 

Online Appendix Table C-1: Simulation Results with Additional Evaluation Metrics 

Mapping Approach ALIGN 
MIS-

ALIGN 
PERS 

C-

CORR 
CPA 

HIT-

RATE 

(I) EvoMap (t-SNE) 0.997 

(0.004) 

0.155 

(0.079) 

0.875 

(0.079) 

0.835 

(0.145) 

0.750 

(0.288) 

0.665 

(0.105) 

(II) EvoMap (t-SNE) 

- smoothing only 
0.998 

(0.004) 

0.146 

(0.076) 

0.888 

(0.071) 

0.817 

(0.147) 

0.737 

(0.289) 

0.665 

(0.105) 

(III) EvoMap (t-SNE)  

- adaptive regularization only 
0.993 

(0.019) 

0.240 

(0.167) 

0.512 

(0.249) 

0.716 

(0.266) 

0.656 

(0.343) 

0.658 

(0.109) 

(IV) Dynamic t-SNE  

- via EvoMap  
0.994 

(0.018) 

0.224 

(0.166) 

0.539 

(0.247) 

0.693 

(0.266) 

0.637 

(0.338) 

0.659 

(0.109) 

(V) Dynamic t-SNE 

        - Rauber et al. (2016) 
0.935 

(0.100) 

20.636 

(33.605) 

0.370 

(0.310) 

0.291 

(0.299) 

0.228 

(0.361) 

0.401 

(0.152) 

(VI) Ex-post Alignment (t-SNE) 0.728 

(0.291) 

12.238 

(14.496) 

-0.379 

(0.191) 

0.129 

(0.305) 

0.069 

(0.218) 

0.642 

(0.120) 

(VII) Sequential Initialization (t-SNE) 0.965 

(0.043) 

2.474 

(1.857) 

0.044 

(0.275) 

0.287 

(0.292) 

0.214 

(0.287) 

0.634 

(0.123) 

(VIII) Fixed Initialization (t-SNE) 0.832 

(0.199) 

4.808 

(3.992) 

-0.317 

(0.186) 

0.078 

(0.247) 

0.064 

(0.194) 

0.643 

(0.120) 

(IX) Independent Mapping (t-SNE) 0.003 

(0.125) 

21.920 

(16.093) 

-0.484 

(0.098) 

-0.098 

(0.215) 

0.018 

(0.119) 

0.642 

(0.120) 

Notes: Reported metrics are averages over 2,187 simulation iterations corresponding to the parameter space reported in 

Appendix A. Standard deviation in parentheses. Dynamic t-SNE (Rauber et al. 2016): Dynamic t-SNE, as provided by 

its authors on GitHub. Dynamic t-SNE (via EvoMap): Dynamic t-SNE optimized via EvoMap’s optimization procedure. 

We set hyperparameters as described in Appendix A. Their distributions are similar to the ones reported in Appendix A. 

For Dynamic t-SNE (Rauber et al. 2016), we set its remaining parameters to the default values provided by its authors.  
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D. Sensitivity Analysis 

We investigate the sensitivity of EvoMap’s dynamic mapping quality to the various market structure 

characteristics. To do so, we regress the evaluation criteria on the simulation parameters listed in Appendix 

Table A-1 (using linear regression with dummy-coded independent variables). We exclude one level of each 

simulation parameter in each regression model as its reference point.  

Online Appendix Table D-1 reports the results for each of the four estimated regression models (1) to (4). 

Online Appendix Table D-1: Regression Results for Relationships between EvoMap’s 

Dynamic Mapping Quality and Simulation Parameters 

    (1) (2) (3) (3) 

Market 

structure 

characteristic 

Simulation 

parameter 

Value MIS-ALIGN C-CORR PERS HIT-RATE 

    Constant 
0.0965*** 

(0.0045) 

0.7719*** 

(0.0108) 

0.8195*** 

(0.0058) 

0.6417*** 

(0.0059) 

Evolution Scenario 
II (Shifts in 

positions) 
0.0505*** 

(0.0029) 

0.1075*** 

(0.0068) 

0.0028 

(0.0036) 

-0.0082** 

(0.0037) 

    
III (Market 

entry) 
0.0272*** 

(0.0029) 

0.0792*** 

(0.0068) 

0.0149*** 

(0.0036) 

-0.0168*** 

(0.0037) 

Number of 

firms 
 𝑛 100 

0.0449*** 

(0.0029) 

0.0398*** 

(0.0068) 

0.0341*** 

(0.0036) 

0.0602*** 

(0.0037) 

    250 
0.0681*** 

(0.0029) 

0.0336*** 

(0.0068) 

0.0629*** 

(0.0036) 

-0.0705*** 

(0.0037) 

Number of 

dimensions 
 𝑑 8 

-0.014*** 

(0.0029) 

0.0146** 

(0.0068) 

0.0175*** 

(0.0036) 

-0.0163*** 

(0.0037) 

    16 
-0.0271*** 

(0.0029) 

0.0357*** 

(0.0068) 

0.033*** 

(0.0036) 

-0.0296*** 

(0.0037) 

Number of 

submarkets 
 𝑘 8 

-0.0527*** 

(0.0029) 

-0.007 

(0.0068) 

0.0133*** 

(0.0036) 

0.0989*** 

(0.0037) 

    12 
-0.071*** 

(0.0029) 

-0.0283*** 

(0.0068) 

0.0037 

(0.0036) 

0.1177*** 

(0.0037) 

Within 

submarket 

standard 

deviation 

 𝜎𝑠𝑢𝑏 0.075 
-0.0056* 

(0.0029) 

-0.0114* 

(0.0068) 

-0.0006 

(0.0036) 

0.0092** 

(0.0037) 

    0.150 
-0.0142*** 

(0.0029) 

-0.0298*** 

(0.0068) 

-0.0026 

(0.0036) 

-0.0116*** 

(0.0037) 

Temporal 

noise 
 𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙  0.025 

0.0245*** 

(0.0029) 

-0.026*** 

(0.0068) 

-0.0168*** 

(0.0036) 

-0.0104*** 

(0.0037) 

    0.050 
0.0582*** 

(0.0029) 

-0.0769*** 

(0.0068) 

-0.0441*** 

(0.0036) 

-0.0413*** 

(0.0037) 

Share of firms 

affected 
 𝜌 0.100 

0.0331*** 

(0.0029) 

0.0227*** 

(0.0068) 

0.018*** 

(0.0036) 

-0.0043 

(0.0037) 

    0.150 
0.0524*** 

(0.0029) 

0.0364*** 

(0.0068) 

0.0296*** 

(0.0036) 

-0.0066* 

(0.0037) 

Observations     2,187 2,187 2,187 2,187 

R-squared     0.53 0.20 0.23 0.55 

Standard errors in parentheses        

*** p<0.01, ** p<0.05, * p <0.10., std.: standard deviation   
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E. Further Implementation Details and Simulation Runtime Estimates 

For this paper, we implement EvoMap using Python version 3.7.2. We use the following additional packages: 

Online Appendix Table E-1: Core Implementation Details 

Package Name Version Used Use-Case 

numpy 1.21.2 Numerical calculations 

scipy 1.7.1 Efficient calculation of Euclidean distances and norms  

numba 0.53.0 Just-in-time compilation for speed optimization 

Our results (not shown here) show that EvoMap’s runtime increases approximately quadratically with the 

number of firms and linearly with the number of periods1. Thus, running EvoMap once takes roughly the same 

time as running an existing mapping method independently for each period (assuming both implementations 

are equally efficient in their computations). The only difference is the more complex calculation of the 

gradient. Online Appendix Table E-2 presents the average runtime for all methods used in our simulations and 

shows that EvoMap’s more complex gradient does not substantially affect runtime in our simulations. 

Online Appendix Table E-2: Runtime Comparison across Methods 

Method Average Runtime in Seconds 

EvoMap (t-SNE) 140.17 (159.47)  

Dynamic t-SNE (via EvoMap) 128.79 (156.42) 

Dynamic t-SNE (Rauber et al. 2016) 250.32 (234.39) 

Independent t-SNE 130.88 (157.04) 

Notes: Averages across 2,187 simulation iterations. Standard deviation in parentheses. 

F. Extended TNIC Analysis using EvoMap with MDS 

The main article presents EvoMap’s dynamic market structure map for the full sample of 1,092 firms. For our 

analysis of the full sample, we paired EvoMap with t-SNE. Here, we aim to extend this analysis using EvoMap 

paired with an alternative mapping method (specifically, metric MDS). Our objective is twofold: First, to 

 
1 Our implementation of EvoMap, used throughout our simulations, uses the following default parameters: For t-

SNE, we set perplexity to 15, the initial learning rate to 20, initial momentum factor to .5, final momentum factor 

to .8, the switch iteration to 250, the early exaggeration factor to 4, and the maximum number of iterations to 

2000. For the Stress-based alternatives (MDS and Sammon), we set the initial learning rate to 0.1 and the 

maximum number of iterations to 2000. We automatically adjust the learning rate (via a factor of 0.1) for all 

methods in case the gradient diverges during optimization.  
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demonstrate the benefits of EvoMap’s ability to easily accommodate alternative static mapping methods for 

practical competitive analysis applications. And second, to test the robustness of our empirical findings 

towards the choice of mapping method. To do so, we generate a second dynamic market structure map using 

EvoMap paired with metric MDS. As metric MDS, however, does not scale well to many firms, we focus this 

analysis on a smaller sample of firms from the technology sector. We then test if the resultant (small) map for 

EvoMap paired with metric MDS resembles the same patterns as the corresponding area in the (large) map 

for EvoMap paired with t-SNE. 

We motivate the analysis of market structure evolution with two different static mapping methods (i.e., t-

SNE and metric MDS) as follows: Imagine a market analyst required a birds-eye view on how a market 

comprised of many firms and submarkets evolved. Because mapping quality tends to be superior with t-SNE 

in such large N settings, the analyst chooses to first pair EvoMap with t-SNE (similar to the analysis in the 

main article). Having identified some high-level trends and interesting firm trajectories, the analyst now wants 

to study a specific area of the dynamic market structure map more thoroughly (e.g., a specific submarket, a 

sector, or the set of a firm’s imminent competitors). Because metric MDS provides some advantages in smaller 

N settings over t-SNE (e.g., better interpretability of the resultant map distances), the analyst pairs EvoMap 

with metric MDS to generate a second dynamic market structure map for the subsample of firms in the area 

of interest.  

We replicate the above-outlined scenario for our empirical application as follows. We first select a small, 

technology-focused subsample of all firms. Our subsample includes the following 10 firms from the 

technology sector: AT&T, US Cellular, Comcast, Microsoft, Western Digital, HP, Oracle, eBay, Intuit, Apple. 

We then estimate a dynamic market structure map for this subsample using EvoMap paired with metric MDS 

(we set 𝛼 =  9.1 × 10−1 and 𝑝 = 2).  
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Online Appendix Figure F-1: Dynamic Market Structure Map for 10 Technology Firms  

1998 – 2017 (estimated using EvoMap paired with metric MDS) 

 
Notes: Trajectories correspond to 20 successive years between 1998 and 2017 (firm name labels last period). 

While the smaller map reveals additional nuances, the overall insights do not change much. For example, 

Apple’s trajectory diverges from Western Digital and converges with Intuit (as is the case in the larger dynamic 

market structure map in Figure 7). As such, our findings remain robust across two different samples and two 

different static mapping methods used with EvoMap.  


