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Abstract The dynamics of the torsion field is analyzed in
the framework of the Covariant Canonical Gauge Theory
of Gravity (CCGG), a De Donder–Weyl Hamiltonian for-
mulation of gauge gravity. The action is quadratic in both,
the torsion and the Riemann–Cartan tensor. Since the latter
adds the derivative of torsion to the equations of motion, tor-
sion is no longer identical to spin density, as in the Einstein–
Cartan theory, but an additional propagating degree of free-
dom. As torsion turns out to be totally anti-symmetric, it
can be parametrised via a single axial vector. It is shown in
this paper that, in the weak torsion limit, the axial vector
obeys a wave equation with an effective mass term which
is partially dependent on the scalar curvature. The source of
torsion is thereby given by the fermion axial current which is
the net fermionic spin density of the system. Possible mea-
surable effects and approaches to experimental analysis are
addressed. For example, neutron star mergers could act as a
dipoles or quadrupoles for torsional radiation, and an analy-
sis of radiation of pulsars could lead to a detection of torsion
wave background radiation.

1 Introduction

Over the years, with rising amounts of astronomical data,
discrepancies between observations and the theory of gravi-
tation and matter have led to increasing need to modify the
original ansatz by Einstein and Hilbert published in 1915
[1]. Albeit the latter is very accurate in describing physics on
the scale of the solar system, the life-cycles of stars, gravita-
tional waves and black holes, and is widely used for satellite
navigation and GPS, it fails when applied to systems the
size of galaxies or to the universe as a whole. A prelimi-
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nary remedy to align observations and theory was the ad hoc
introduction of dark matter and dark energy that provide a
phenomenological so-called Concordance Model of the uni-
verse. Unfortunately, the underlying physical nature of both,
dark matter and dark energy, is still mysterious despite of
intensive research.

An alternative avenue to modifications of the dynamics
of spacetime and matter is treating gravity as a gauge the-
ory à la Yang–Mills as pioneered by Sciama, Utiyama and
Kibble [2–4] and nowadays known under the tag of Poincaré
Gauge Theory [5]. Here we follow a similar philosophy but
rely on the rigorous formalism of the manifestly covariant
transformation theory which is a well-defined methodology
for implementing local symmetries in semi-classical systems
of relativistic fields [6]. That framework applied to matter
fields in curved spacetimes is known as Covariant Canoni-
cal Gauge Gravity (CCGG) [7,8]. Starting from the mani-
festly covariant De Donder–Weyl (DW) Hamiltonian formu-
lation, that framework unambiguously derives the coupling
of matter and gravity mediated by newly introduced gauge
fields [6,9]. Therein the Hamiltonian formalism demands the
action to be necessarily quadratic in the canonical momenta
[10], which leads to a term proportional to Rμ

ναβ Rν
μ

αβ in
the Lagrangian. In addition, the metric-affine (aka Palatini)
structure of the spacetime fields allows for a non-symmetric
connection, hence torsion of spacetime emerges as an addi-
tional degree of freedom.

In this paper we want to take a closer look at torsion as
it arises in the CCGG formalism. Specifically, we wish to
investigate small excitations that can be described by waves.
As shown in [11, p. 49] and reviewed below, any torsion
tensor that solves the field equations must be completely anti-
symmetric and can be expressed by an axial vector. This puts
it in close resemblance to vector (gauge) fields like photons
and gluons. Indeed, a wave equation for the torsion axial
vector in curved geometry will be deduced, formally similar
to the wave equation for a massive Proca field. Thereby net
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spin density of fermions, i.e. the difference between spin-up
and spin-down states, will be identified as the main source of
those torsion waves. Bosons, on the other hand, are shown
not to directly interact with torsion [11, eq. (144) and (145)].

The paper is structured as follows. In the first section the
basics of CCGG are reviewed, with details of the underly-
ing canonical transformation theory being summarized in
Appendix A. In the second section the field equation for the
connection is analyzed and recast into the form of a wave
equation for the torsion field. In the third section, the sources
of torsion are derived. The paper concludes with a discus-
sion of the key findings, and with an outlook on possible
applications and emerging research topics.

Throughout this work the conventions are natural units
h̄ = c = 1 and the metric signature (+−−−). The Riemann–
Cartan tensor is defined as

Rα
βγ δ = ∂γ �α

βδ − ∂δ�
α

βγ

+ �α
μγ �μ

βδ − �α
μδ�

μ
βγ , (1)

where �α
βγ is the asymmetric affine connection that is a

priori independent of the metric. Concerning the ordering of
indices, the covariant derivative is given by ∇μaν = ∂μaν +
�ν

αμaα .

2 The CCGG formalism

The outset of the CCGG framework is the manifestly covari-
ant De Donder–Weyl Hamiltonian formalism, in which the
canonical momenta are not only constructed from the time
derivatives of fields but by covariant field derivatives across
all space-time coordinates. This enables to deploy the covari-
ant field-theoretical version of the canonical transformation
theory. At its heart are the so-called generating functions
enforcing invariance of systems with respect to a selected
local symmetry transformations [6]. Restoring that invari-
ance requires the introduction of compensating gauge fields.
For internal symmetry groups like U(1) or SU(3), that gives
rise to Yang–Mills theories with vector gauge fields, photons
or gluons, respectively [12]. In the case of gravity, the gauge
group is Diff(M)×SO(1, 3), and the vierbeins (also known as
tetrads) and the spin connection emerge as the gauge fields for
the subgroups Diff(M) and SO(1, 3), respectively.1 (In order
to make the paper to some degree self-contained we include
details of the framework in Appendix A and refer to [11].)

A key assumption of this approach is, that the under-
lying Hamiltonian respectively Lagrangian must be non-

1 This corresponds formally to the Poincare gauge group. However, in
contrast to PGT, in CCGG the diffeomorphisms are passive local chart
transitions rather than active diffeomorphisms. Also the interpretation
of the vierbein as a gauge field of translation [4] is not necessary [3],
see also the discussion in [11].

degenerate since otherwise the Legendre transform would
not exist. This mathematical condition has now a signifi-
cant impact on the physical content of the theory as the DW
Hamiltonian must be at least quadratic in the involved canon-
ical momentum fields [10]. Consequently, the correspond-
ing Lagrangian of the gravitational system must extend the
Einstein–Hilbert ansatz by a term proportional to the square
of the Riemann–Cartan tensor, Rμ

ναβ Rν
μ

αβ , and in theories
with torsion by the square of the torsion tensor, Sαβγ Sαβγ .

Following these requirements, the simplest Hamiltonian
density that “deforms” the Einstein ansatz but retains its phe-
nomenology on the solar system scale, is [11, eq. 93]:

H̃Gr = 1

4εg1
q̃lmαβ q̃mlαβ + g2q̃l

mαβelαηmne
n
β

+ 1

2g3ε
k̃lαβ k̃lαβ, (2)

where ε is the determinant ε = det(eiα) of the vierbein facil-
itating an invariant volume element.2 A tilde above a sym-
bol denotes a tensor density, e.g. H̃Gr := εHGr. The gi are
free parameters of the theory, which have to be constrained
through comparison with experimental data.

In the following the generic action integral (53) will be
understood as a specific ansatz containing the DW Hamilto-
nian (2). Since scalar and vector fields do not directly inter-
act with torsion [11, p. 51], we can safely ignore them in
the action for the following weak-field limit analysis. The
fermion field, though, does couple to the gauge fields and
thus needs to be evaluated in detail. Here a non-degenerate
version of the Dirac Lagrangian is applied wielding quadratic
“velocity” terms:

LDG = i�

3

(
∂ψ̄

∂xα
− i

2�
ψ̄ γ i ei

α

)
σ kl ek

α el
β

×
(

∂ψ

∂xβ
+ i

2�
γ nen

βψ

)
−

(
m − �−1

)
ψ̄ψ . (3)

σ i j := i
2 [γ i , γ j ], ω j

iμ is the spin connection and � is
an emerging length parameter.3 This quadratic Lagrangian
has first been introduced by Gasiorowicz in [14, p. 90] in
the context of electromagnetism. He added the surface term
i�∂μψ̄σμν∂νψ to the linear Dirac Lagrangian that does not
modify the field equation of the free fermion. After gauging
the theory, though, an additional anomalous interaction term
arises with the coupling constant �. In the case of electro-
magnetism, this is the Pauli coupling e�Fαβσαβψ , which
can be used to restrict the parameter for the electron to

2 Note, that there is a relative minus sign in the definition of g2 with
respect to [11].
3 With respect to [11], the parameters are related via � = 1/3M . For a
more in-depth discussion see [13].
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�e− < 10−8 fm [15]. Gasiorowicz uses this to show, that
deducing the Lagrangian from the field equation is ambigu-
ous and has to be treated with care. Here, the quadratic term is
a necessary part of the Dirac Lagrangian, which is otherwise
degenerate and does not posses a Hamiltonian representation.
For the gauged Gasiorowicz Lagrangian, the Dirac equation
turns out to be [11, eq. 123f]:

i
(
γ β − �σ ξαSβ

ξα

)−→D βψ

−
(
m + �

8
σαβσ nm Rnmαβ

)
ψ = 0. (4)

with the covariant spinor derivative
−→D μ := ∂μ + i

4σ i
jω

j
iμ,

and the spacetime-dependent Dirac matrices that are built
from the standard Dirac matrices by multiplication with the
vierbeins. S j

μν := e jα�α [μν] is the torsion tensor (54b).
Now the variation of the action integral (53) with respect

to the momentum fields gives the canonical equations

Ri
jνμ = 2

∂H̃Gr

∂q̃i jμν
, Siμν = ∂H̃Gr

∂ k̃iμν
, (5)

relating the canonical momenta to the field strengths:

q̃ j
iμν = εg1(R

j
iμν − R̂ j

iμν), (6a)

k̃ j
μν = εg3S

j
μν. (6b)

R̂ j
iμν = g2(e jμgνλ − e j νgμλ)eiλ is the Riemann tensor of

maximally symmetric (de Sitter) spacetime.
The field dynamics is derived by combining the canon-

ical equations and considering their symmetric and anti-
symmetric portions. Thereby the torsion tensor turns out to
be totally anti-symmetric. It is found [11, eq. 134f, 141]

Sαβμ = S[αβμ], (7a)

Sα
νμ;α = − 1

2g1g2 + g3
TD[νμ]. (7b)

The term on the right-hand side of Eq.. (7b) is the anti-
symmetric part of the fermion stress-energy tensor

T νμ
D := −gναeiα

∂LDG

∂eiμ
, (8)

which evaluates to [11, eq. 110]:

TD[νβ] = i

4

(
ψ̄γβ

−→D νψ − ψ̄γν
−→D βψ − ψ̄

←−D νγβψ + ψ̄
←−D βγνψ

)

+ i�

2
ψ̄

←−D α

(
σβ

λδα
ν − σν

λδα
β − σβ

αδλ
ν + σν

αδλ
β

)−→D λψ.

(9)

At first, one may think, that Eq. (7b) suffices to derive the
dynamics of torsion. However, upon expressing torsion in
terms of an axial vector Sαβγ = εαβγ δsδ/6, the left hand

side reduces to 1
3!∇αεαμνκsκ = 1

12εμνακ(∂αsκ − ∂κsα) =
1

12εμνακds(∂α, ∂κ), where d is the exterior derivative. In a
vacuum, this means, that s is a closed 1-form and thus exact,
so it can be written as sμ = ∂μ�. The matter side gives an
additional non-conservative contribution, which is connected
to the angular momentum of the fermions. The key takeaway
however is, that this does not provide a sufficient dynamical
description of torsion but is merely an additional constraint.

For the dynamics of the curvature tensor, we get [11, eq.
146]:

− g1
(
Rνβμα;α − RνβξαSμ

ξα

) + (2g1g2 + g3) S
νβμ

= −�νβμ. (10)

The term on the right-hand side is the spin tensor [11, eq.
F.4]:

�i jβ := ηik
∂LDG

∂ωk
jβ

= 1

8
ψ̄

(
σ i jγ β + γ βσ i j

)
ψ

− �

4
ψ̄

(
σ i jσαβ−→D α − ←−D ασαβσ i j

)
ψ. (11)

Finally, we have the so called CCGG equation, extending
Einstein’s field equations by quadratic curvature and torsion
concomitants [11, eq. 137]:

−T (μν)
G := g1

(
Rαβγ

μRαβγ ν − 1
4g

μνRαβγ δR
αβγ δ

)
+ 1

8πG

(
R(μν) − 1

2g
μνR − λ0g

μν
)

− g3
(
Sαβ

μSαβν − 1
2g

μνSαβγ S
αβγ

) = T (μν)
D .

(12)

The free parameters gi in (2) have to satisfy 2g1g2 =
1/8πG = M2

P to comply with standard gravitation theory
in the weak field limit. The constant λ0 = 3g2 = 3M2

P/2g1

is a geometrical contribution to the cosmological constant
in addition to the vacuum contributions of matter and grav-
ity, and torsion facilitating a dark energy term in the form
of a running cosmological “constant” [16]. T (μν)

D is the sym-
metrized stress-energy tensor (8) of the Dirac field. The l.h.s.
of the field equation (12) is derived as the negative energy-
momentum tensor of gravity,

T νμ
G := −gναeiα

∂LG

∂eiμ
, (13)

giving formally a zero-energy-momentum condition for the
Universe [16]

T (μν)
G + T (μν)

D = 0. (14)

Moreover, Eqs. (10) and (12) show that since in this for-
mulation the action is necessarily quadratic in the curvature
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tensor, spacetime responds to matter dynamically with its
own inertia.

3 Torsion waves

In order to obtain a wave equation for the torsion, we start
with Eq. (10) and decompose the general connection into
the sum of the Levi-Civita connection and the contortion
tensor. In the present case of a totally anti-symmetric torsion,
contortion coincides with the torsion tensor:

�α
βγ = �̄α

βγ + Sα
βγ . (15)

(From now on, all entities with an overbar are defined with
respect to the Levi-Civita connection and do not include tor-
sion.) Since we wish to analyse wave-like behaviour, we
assume that all components of the torsion tensor are small
compared to its change, SβγμSμα

δ � ∇αSβγ δ . Then all
terms of quadratic and higher order can be neglected, and the
Riemann–Cartan tensor is approximated by

Rνβμα = R̄νβμα + ∇̄μSνβα − ∇̄αSνβμ + O(S2), (16)

where R̄νβμα is the torsion-free Riemann curvature tensor.
Then, in this limit, taking the divergence of Eq. (16) gives

Rνβμα;α = ∇̄α R̄
νβμα + gμγ ∇̄α∇̄γ S

νβα

− ∇̄α∇̄αSνβμ

+ Sν
ρα R̄

ρβμα + Sβ
ρα R̄

νρμα

+ Sμ
ρα R̄

νβρα + Sα
ρα R̄

νβμρ. (17)

Due to anti-symmetry of the torsion tensor, the last term van-
ishes. For the second term, we use the identity [∇̄α, ∇̄β ]Zγ =
R̄γ

δαβ Z δ , and its generalization to higher rank tensors. With
this, we obtain in first order in S

Rνβμα;α = ∇̄α R̄
νβμα + gμγ ∇̄γ ∇̄αS

νβα

− gαγ ∇̄α∇̄γ S
νβμ

+ gμγ
(
R̄ν

ραγ S
ρβα

−R̄β
ραγ S

ρνα + R̄α
ραγ S

νβρ
)

+ Sν
ρα R̄

ρβμα − Sβ
ρα R̄

ρνμα + Sμ
ρα R̄

νβρα

= ∇̄α R̄
νβμα − 1

M2
P + g3

∇̄μT [νβ]
D − ∇̄α∇̄αSνβμ

+ 2R̄ρβμαSν
ρα − 2R̄ρνμαSβ

ρα

+ R̄νβραSμ
ρα + R̄ρ

μSνβρ. (18)

Notice the anti-symmetry in νβ. At the second equal sign,
Eq. (7b) was inserted. Since the new term involving the

energy momentum tensor does not contain any dynamic tor-
sion dependence, it is to be interpreted as a source and we
will shift it to the right-hand side to deal with it later.
The left-hand side of Eq. (10) thus becomes (after dividing
by g1)

− ∇̄α∇̄αSνβμ + 2R̄ρβμαSν
ρα − 2R̄ρνμαSβ

ρα

+ R̄ρ
μSνβρ + ∇̄α R̄

νβμα − M2
P + g3

g1
Sνβμ. (19)

To proceed further, we explicitly use the anti-symmetry
of the torsion by expressing it in form of an equivalent axial
(co-)vector via

Sαβγ =: εαβγ δ sδ
3! .

Furthermore, all three free indices can be contracted with
another Levi-Civita tensor and the fact utilized that, due to
metric compatibility, the covariant derivative of the Levi-
Civita tensor vanishes. In particular, we use

εξνβμS
νβμ = sξ , (20a)

εξνβμ R̄
ν
ρα

μερβακsκ = R̄ν
ρα

μsκ
(
δ
ρ
ξ δα

ν δκ
μ + δκ

ξ δρ
ν δα

μ + δα
ξ δκ

ν δρ
μ

− δα
ξ δρ

ν δκ
μ − δκ

ξ δα
ν δρ

μ − δ
ρ
ξ δκ

ν δα
μ

)
/6

= (
R̄α

ξα
μsμ + R̄κ

ρξ
ρsκ − R̄α

μα
μsξ

)
/6

= (
2R̄ξ

μsμ − R̄sξ
)
/6, (20b)

εξνβμ R̄
μ
ρ ενβρκsκ = −2R̄μ

ρ sκ
(
δ
ρ
ξ δκ

μ − δκ
ξ δρ

μ

)
/6

= (
2R̄sξ − 2R̄ξ

μsμ
)
/6, (20c)

εξνβμ R̄
νβμα = 0. (20d)

For the first three equations, we used the well known iden-
tities for the contraction of two Levi-Civita tensors [17,
1.1.30], while the last one results from the Bianchi identity.
After dividing by g1, we obtain the following wave equation:

− ∇̄α∇̄αsξ + R̄ξ
μsμ −

(
R̄

3
+ M2

P + g3

g1

)
sξ

= 1

g1
εξνβμ�νβμ − 1

g1(M2
P + g3)

εξνβμ∇̄μT [νβ]
D . (21)

The first two terms on the left-hand side can be combined
into the so-called deRham Laplacian �̄(dR)vα = ∇̄β∇̄βvα −
R̄α

βvβ , which is the proper generalization of the Laplace
operator acting on d-forms in curved spacetimes [18,19].
Then the final form of the wave equation for a massive axial
torsion vector field sourced by fermion spin becomes:

�̄(dR)sξ +
(
M2

P + g3

g1
+ R̄

3

)
sξ

= − 1

g1
εξνβμ�νβμ + 1

g1(M2
P + g3)

εξνβμ∇̄μT [νβ]
D . (22)
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4 Sources of torsion waves

In order to understand the nature of the sources of torsion
we analyze the right-hand side of Eq. (22). In the weak-
torsion limit we assume no back-reaction of the torsion, hence
all torsion related terms are neglected here. To keep good
readability, we do not explicitly write out the over-bar on the
spinor covariant derivative.

The spin tensor is then approximated by

�νβμ = −1

4
ενβμκψ̄γ 5γκψ

− �

4

(
ψ̄σ νβσμκ−→D κψ + ψ̄

←−D κσμκσ νβψ
)

, (23)

where we have used the identity γ aσ cb + σ cbγ a =
−2εabcdγdγ

5 [20, eq. 4.201].
Since the parameter � is restricted to be very small by

particle physics related experiments [15], we will neglect all
contributions proportional to it at this point. For the sake of
completeness, the full computation can be found in Appendix
B.

Performing the contraction with the Levi-Civita tensor,
we obtain

εξνβμ�νβμ = −3

2
ψ̄γ 5γξψ (24)

The second contribution is the derivative of the anti-
symmetric part of the stress-energy tensor. Using the Leibniz
rule and once again neglecting terms of O(�), it is given by

∇̄μTD[νβ] = i

4
ψ̄

(←−D μγβ
−→D ν − γβ�̄ξ

νμ
−→D ξ + γβ

−→D μ
−→D ν

)
ψ

− i

4
ψ̄

(←−D μγν
−→D β − γν�̄

ξ
βμ

−→D ξ + γν
−→D μ

−→D β

)
ψ

+ i

4
ψ̄

(←−D β
←−D μγν − ←−D ξ �̄

ξ
βμγν + ←−D βγν

−→D μ

)
ψ

− i

4
ψ̄

(←−D ν
←−D μγβ − ←−D ξ �̄

ξ
νμγβ + ←−D νγβ

−→D μ

)
ψ.

(25)

An exemplary computation for the first term can be found
in Appendix C. When contracting with a Levi-Civita tensor,
the terms explicitly involving the Christoffel symbols vanish
due to their symmetry in the lower index pair. Rearranging
the remaining terms gives then

εξ
μνβ∇̄μTD[νβ] = εξ

μνβ i

2
ψ̄

(←−D β
←−D μγν + γβ

−→D μ
−→D ν

)
ψ

+ iεξ
μνβψ̄

←−D βγν
−→D μψ (26)

To simplify the first line, we can introduce the Clifford alge-
bra valued Riemann tensor defined by the commutator of the

spin covariant derivative:

[−→D β,
−→D μ

]
=

[←−D μ,
←−D β

]
= i

4
Ri

jβμσ j
i =: Rβμ. (27)

(The derivation can be found in Appendix D.) Contracting
with the Levi-Civita tensor gives

εξ
νβμ∇̄μTD[νβ]

= i

4
εξ

νβμψ̄
(
R̄μβγν − γνR̄μβ + 4

←−D βγν
−→D μ

)
ψ (28)

For the commutator of the Riemann tensor and the gamma
matrix we have

[R̄μβ, γk]ekν = i

4
R̄i

jμβe
k
ν[σ j

i , γk]

= i

4
R̄i

jμβe
k
ν2i(ηikγ

j − δ
j
k γi )

= −1

2

(
R̄ν jμβγ j − R̄i

νμβγi

)
= γi R̄

i
νμβ.

(29)

Because of the first Bianchi identity, this term vanishes upon
contraction with the permutation tensor.

The entire source of torsion waves is thus given by

Qξ = 3

2g1
ψ̄γ 5γξψ − i

g1(M2
P + g3)

εξ
βνμψ̄

←−D βγν
−→D μψ

(30)

In the second term, the numerator is of the order of the
energy of the particle squared, while the denominator is
O(M2

P) = (1019GeV)2, so that this term may safely be
neglected.

The only term remaining is the first one, the axial current
of the Dirac field.

Qξ = 3

2g1
ψ̄γ 5γξψ = 3

2g1
jA
ξ . (31)

The axial current denotes the net spin of a system, which
is effectively the difference between spin-up and spin-down
states.

The entire wave equation results as

�̄(dR)sξ +
(
R̄

3
+ M2

P + g3

g1

)
sξ = 3

2g1
jA
ξ . (32)

Before we come to the discussion, we should take a closer
look at the effective mass term. By taking the trace of the
CCGG equation (12), we obtain

R̄ = −8πG(TM + 6(g3 + M2
P)sξ s

ξ ) − 4λ0. (33)

123
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TM is the trace of the energy-momentum tensor of matter and
includes the vacuum energy contribution, TM = Tvac + T̃M.
Now due to the zero-energy condition Eq. (14), the vacuum
energy of matter is canceled by the vacuum energy of space-
time, giving Tvac = −3M4

P/(2g1), see [16]. Then

�̄(dR)sξ +
(
g3 + M2

P

g1
− 1

3M2
P

TM

)
sξ = 3

2g1
jA
ξ , (34)

and the torsion waves emerge with the effective mass

m2 = M2
P + g3

g1
− 1

3M2
P

T̃M. (35)

T̃M is the trace of the normal-ordered energy momentum
tensor of matter, i.e. without vacuum energy contributions.
In cosmology the trace of the energy-momentum tensor is
just the average (dark) matter density, TM = ρm, and the
second term thus gives a small contribution 1

3M2
P
ρm.

5 Discussion

The parameter g1 determines the mass as well as the strength
of the excitation of the torsion field. The value of this constant
remains uncertain, though, since not much research has been
put into restricting the constants of the theory yet. In cosmo-
logical studies [21], g1 has been estimated to be of the order
10120 yielding extremely weak excitations. That estimate,
however, has to be taken with a grain of salt since the param-
eters used in that paper are mainly educated guesses, and a
thorough analysis might require their substantial adjustment.

Demanding a real mass of the torsion field even in neutron
stars, where T̃M ≈ 1017kg/m3, we obtain, when assuming
g3 � M2

P, the upper bound g1 < M4
P/T̃M ≈ 1080. Notice

that for the naive estimate of the vacuum energy, Tvac ∼ M4
P

as suggested in [22], g1 is of the order of unity and negative,
leading to tachyonic torsion waves and implying an insta-
bility of the system in the low torsion regime. Nevertheless,
in that case the torsion field would obtain a quartic poten-
tial similar to the Higgs field, which would have an unstable
extremum at s = 0 and a minimum at a non-zero field value.
This value can also be obtained from the curvature dynamics
Eq. (10) upon neglecting all interactions of the torsion field
(including that with the curved background), and assuming
constant torsion. With these assumptions, the curvature equa-
tion becomes, after contracting with the Levi-Civita symbol,

0 =
(
s2

18
+ M2

P + g3

g1

)
sγ (36)

with the solution s2 = −18(M2
P + g3)/g1. This is of course

only relevant in the case g1 < 0 since otherwise, there is

no minimum in the potential. This leads, just like in the
Higgs case, to spontaneous symmetry breaking via a non-
vanishing vacuum expectation value sν

vac ≡ vν of torsion.
Such a solution raises many questions, though. On the one
hand, in general curved space times, there does not exist
a constant vector field with ∇̄μvν = 0, so even the exis-
tence of such a vacuum expectation value in curved spaces
is unclear. Additionally, such a solution would necessarily
break Lorentz invariance due to its orientation, which also
raises many questions including the existence of Goldstone
bosons. All this will be examined in a future paper.

A crucial aspect for generating and detecting torsion is the
interaction of torsion and spin. It remains an open question
for further research, how to measure torsion waves and what
might be a mechanism to create a net spin current that can
generate torsion waves with detectable intensity somewhere
in the universe (or even in a lab experiment).

A possible source of torsion waves could be neutron stars
exhibiting spin polarised states in their interior [23–25]. Two
such colliding neutron stars with opposing polarisation states
would cause oscillations of the axial current, and thus gener-
ate potentially observable torsion waves. On the other hand,
even with the polarization directions of the neutron stars
aligned, quadrupole radiation would be emitted, albeit signif-
icantly weaker. Inspiraling patterns of neutron star mergers
could allow to measure the influence of torsion waves indi-
rectly by calculating the impact of the energy radiated away
by torsion waves. Torsion waves could also be generated by
the strong magnetic fields of magnetars causing matter spin
to align and strong net spin currents to emerge.

Before being able to set up experiments for measuring
torsion directly, we have to understand how torsion waves
or torsion in general influence the behaviour of matter. This
requires, in the first place, an in-depth analysis of the modified
Dirac equation, e.g. by using the WKB approximation [26]
or a transport theory approach [27,28].

In order to detect torsion waves, one could for example
look at differences in the trajectories of neutrinos and photons
emitted by pulsars. Since fermions are affected by torsion but
bosons are not, this might lead to deviations in arrival times
or to apparently different locations of the source due to the
deflection by the torsion waves. Additionally, an experiment
similar to the pulsar timing array might be feasible. Focusing
on the neutrino radiation of pulsars, an analogous experiment
might lead to the detection of a torsion wave background. And
a further possible novel effect of torsion might be the inter-
action of neutrinos with the background radiation causing
anomalous flavour oscillations [29].
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6 Conclusion

In the course of this paper, we have shown that in the weak-
field limit torsion may exhibit wave-like behaviour upon
small excitations which are caused by fermionic axial cur-
rents, the net spin density 4-current of a system. This aligns
with the intuition that spin causes a “twisting” of spacetime.

Based on this, numerous possible mechanisms for gener-
ation and detection of torsion waves were discussed, poten-
tially facilitating a new field of torsion-based astronomy.
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A Canonical transformation theory in De Donder Weyl
Hamiltonian formulation

In this formulation [6,8,11,30] all four spacetime dimen-
sions are considered on equal footing, in contrast to stan-
dard field theory where the time direction is singled out. For-
mally the existence of a non-degenerate Lagrangian density
L̃ := √−gL is assumed such that the so called De Donder–
Weyl (DW) Hamiltonian can be constructed via a Legen-
dre transformation involving a covariant set of “momentum”
fields. The factor

√−g transforms the Lagrangian scalar into
a scalar density and converts the action into a world scalar.
For a real scalar field φ this means, for example, that the
canonical momentum field is defined as

π̃μ := ∂L̃(φ, φ,μ)

∂φ,μ

.

Comma denotes the partial derivative with respect to x . Now
Legendre transforming the Lagrangian density gives the De
Donder–Weyl (DW) Hamiltonian

H̃(φ, π̃μ) := π̃μ φ,μ − L̃, (37)

and the action integral becomes

S =
∫
V
L̃ d4x =

∫
V

(
π̃μ φ,μ − H̃

)
d4x . (38)

The variation of the action integral w.r.t. the now independent
conjugate fields φ and π̃μ leads to the canonical equations

φ,ν = ∂H̃
∂π̃ν

(39a)

π̃ ν
,ν = −∂H̃

∂φ
. (39b)

Curved spacetimes are described as principal bundles in
differential geometry, a manifold M . While elements of that
manifold, points or events, are considered physical entities,
their coordinates are mere labels that can be arbitrarily cho-
sen. That arbitrariness, coined Principle of General Relativity
by Einstein, corresponds to invariance of any physical theory
with respect to arbitrary (passive) diffeomorphisms. Matter
fields are sections on the tangent space of that bundle, and
the geometry of spacetime is represented by the vierbein (co-
vector) fields eiμ that determine the metric via

gμν ≡ ηi j e
i
μ e jν . (40)

Vierbeins build a basis of an inertial spacetime equipped
with the Minkowski metric ηi j = diag(1,−1,−1,−1) that
is attached at each point of the bundle. Those frames are
elements of a “fiber” w.r.t. (orthochonous) Lorentz transfor-
mations �I

i (x) ∈ SO(1, 3). Here Latin indices relate to the
inertial frame, while Greek indices are components in the
base manifold, both assuming values in {0, 1, 2, 3}. For a
scalar field embedded in curved spacetime the corresponding
dynamical system (ϕ(x), eiν (x)) is thus subject to a (gauge)
ambiguity with respect to transformations that are elements
of the symmetry group SO(1, 3)×Diff(M). Such a transfor-
mation from the original frame, denoted by lower-case letters
and indices, to the transformed system, denoted by capital
letters and indices, is:

ϕ(x) �→ �(X) = ϕ(x) (41a)

eiν (x) �→ E I
μ(X) = �I

i (x) e
i
ν (x)

∂xν

∂Xμ
. (41b)
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For the dynamics of the physical system to be “immune”
against such an ambiguity the action integral must be invari-
ant up to a boundary term on which the fields are fixed, which
for the Lagrangian density means:

L̃′
(

�,
∂�

∂Xν
, E I

μ,
∂E I

μ

∂Xν
, X

) ∣∣∣∣∂X∂x
∣∣∣∣

!= L̃
(

ϕ,
∂ϕ

∂xν
, eiμ,

∂eiμ
∂xν

, x

)
− ∂F̃ν

∂xν
. (42)

Thereby F̃ν is a vector density that facilitates the surface
term. Using the DW Hamiltonian (with the momentum field
k̃ μν
i conjugate to vierbein) this gives:

[
�̃ν ∂�

∂Xν
− K̃ μν

I

∂E I
μ

∂Xν

H̃′ (�, �̃ν, E I
μ, K̃ μν

I , X
) ] ∣∣∣∣∂X∂x

∣∣∣∣
!= π̃ ν ∂φ

∂xν
− k̃ μν

i

∂eiμ
∂xν

− H̃
(
φ, π̃ν, eiμ, k̃ μν

i , x
)

− ∂F̃ν

∂xν
. (43)

While the first two terms on both sides of this equation dis-
play the appropriate transformation property, the Hamilto-
nian density must obviously satisfy the so called canonical
transformation rule

H̃′ (�, �̃ν, E I
μ, K̃ μν

I , X
) ∣∣∣∣∂X∂x

∣∣∣∣
= H̃

(
φ, π̃ν, eiμ, k̃ μν

i , x
)

+ ∂F̃ν

∂xν

∣∣∣∣∣
expl

. (44)

The vector density F̃ν is the key lever for generating sys-
tem invariance against transformations of the involved mat-
ter fields with respect to a given local symmetry. For local
SO(1, 3)×Diff(M) field transformations we set F̃ν = F̃ν

3 .
Here F̃ν

3 is a generating function that depends on the orig-
inal momenta and on the transformed fields, reflecting that
the scalar field does not change upon the above symmetry
transformation while the vierbein transforms as a vector with
respect to both indices:

F̃ν
3

(
�, π̃ν, E I

μ, k̃ μν
i , x

)

= −π̃ ν � − k̃ βν
i �i

I E
I
α

∂Xα

∂xβ
. (45)

Obviously, the explicit derivative of that generating function
in Eq. (44) acts on the spacetime-dependent transformation

matrices ∂Xα

∂xβ and �i
I :

∂Fν
3

∂xν

∣∣∣∣
expl

= −k̃ βν
i

∂

∂xν

(
�i

I
∂Xα

∂xβ

)
E I

α

= −k̃ (βν)
i

∂

∂xν

(
�i

I
∂Xα

∂xβ

)
E I

α

− k̃ [βν]
i

∂�i
I

∂xν

∂Xα

∂xβ
E I

α . (46)

It does not vanish reflecting the lack of the required local
symmetry of the original Lagrangian and the correspond-
ing Hamiltonian densities. Using the partial derivative of

the transformation law, Eq. (41b), the terms −k̃ (βν)
i

∂e i
β

∂xν

and K̃ (βν)
I

∂E I
β

∂Xν

∣∣ ∂X
∂x

∣∣ can be combined with similar terms
in Eq. (44) to give

− ∂π̃α

∂xα
ϕ − ∂ k̃ [μα]

i

∂xα
e i
μ − H̃

(
ϕ, π̃ν, e i

μ , k̃ μν
i , x

)

−
[
�̃ν ∂�

∂Xν
+ K̃ [μν]

I

∂E I
μ

∂Xν

− H̃′ (�, �̃ν, E I
μ , K̃ μν

I , X
) ] ∣∣∣∣∂X∂x

∣∣∣∣
= k̃ [βν]

i �i
I

∂�I
j

∂xν
e j
β . (47)

The remaining term on the right-hand side of Eq. (47) con-
tains the spacetime-dependent Lorentz transformation coef-
ficients �I

j (x). The only way to re-establish the invariance
of the system dynamics is to introduce a “counter term”
whose transformation rule absorbs the symmetry-breaking
term proportional to ∂�I

j/∂x
ν . That new term called gauge

Hamiltonian must thus transform as

H̃′
Gau

∣∣∣∣∂X∂x
∣∣∣∣ − H̃Gau = k̃ [μν]

i �i
I

∂�I
j

∂xν
e j
μ . (48)

The gauge Hamiltonian is chosen such that the free indices
i, j, ν of �i

I ∂�I
j/∂x

ν are exactly matched:

H̃Gau = −k̃ [μν]
i ωi

jν e
j

μ . (49)

Thereby the newly introduced gauge field ωi
jν must retain

its form when transformed, hence:

H̃′
Gau = −K̃ [μν]

I �I
Jν E J

μ. (50)

�I
Jν is the transformed gauge field, and from the transfor-

mation relation (48) it follows that that transformation must
be inhomogeneous:

ωi
jν = �i

I �I
Jα �J

j
∂Xα

∂xν
+ �i

I

∂�I
j

∂xν
. (51)
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As this is exactly the transformation property of the spin
connection, the gauge field can be identified with the spin
connection.

The covariant canonical transformation theory thusderives
gravity as a Yang–Mills type gauge theory wielding four
independent dynamical gravitational fields: the vierbein, eiμ,
representing the geometry, the gauge field spin connection,
ωi

jν , defining parallel transport, and the respective conjugate

momentum fields, k̃ μν
i and q̃ jμν

i , defined as:

k̃ μν
i ≡ k μν

i ε := ∂L̃tot

∂eiμ,ν

q̃ jαβ
i ≡ q jαβ

i ε := ∂L̃tot

∂ωi
jα,β

(52)

with ε := det ekβ ≡ √− det gμν .
The resulting action integral [11, eq. 106] is a world scalar,

and the integrand is form-invariant under the transformation
group SO(1, 3)×Diff(M):

S0 =
∫
V
L̃tot d4x

=
∫
V

(
k̃ μν
i Siμν + 1

2 q̃ jμν
i Ri

jμν − H̃Gr + L̃matter

)
d4x .

(53)

Compared to Eq. (37), the field derivatives (“velocities”) of
the vierbein and the connection have in the gauging pro-
cedure miraculously morphed into covariant field strengths,
namely torsion of spacetime and Riemann–Cartan curvature,
respectively, defined as:

Siμν := 1
2

(
∂eiμ
∂xν

− ∂eiν
∂xμ

+ ωi
jν e

j
μ − ωi

jμ eiν

)

≡ eiλ Sλ
μν = eiλ γ λ[μν] (54a)

Ri
jμν := ∂ωi

jν

∂xμ
− ∂ωi

jμ

∂xν
+ ωi

nμ ωn
jν − ωi

nν ωn
jμ

≡ eiλ e
σ
j Rλ

σμν

= eiλ e
σ
j

(
∂γ λ

σν

∂xμ
−∂γ λ

σμ

∂xν
+γ λ

δμ γ δ
σν −γ λ

δν γ δ
σμ

)
.

(54b)

This identification is achieved as the expression

γ μ
αν := e μ

k

(
∂e k

α

∂xν
+ ωk

iν e
i

α

)
(55)

can be identified with the affine connection. The proof is
straightforward since the transformation law for the affine
connection,

�α
νβ = γ σ

ημ

∂xη

∂Xν

∂xμ

∂Xβ

∂Xα

∂xσ

− ∂xη

∂Xν

∂xμ

∂Xβ

∂2Xα

∂xμ∂xη
, (56)

derives from the transformation law (51) of the spin connec-
tion. Notice that here and in the following the affine connec-
tion coefficients are not independent fields but just a place-
holder for the right-hand side of the definition Eq. (55).

It is useful for a more compact notation to define a covari-
ant derivative on the frame bundle denoted by “;”, that acts
on both the Lorentz and coordinate indices. Then we can
re-write the definition (55) as

e i
μ ;ν = ∂e i

μ

∂xν
+ ωi

kν e
k

μ − γ α
μν e i

α ≡ 0. (57)

This is called the Vierbein Postulate, which ensures compat-
ibility between objects expressed in the basis of the curved
manifold or in the basis of the local inertial frame. Provided
the spin connection is anti-symmetric in i j , which we shall
assume henceforth, this also ensures metric compatibility,
i.e. the vanishing covariant derivative of the metric and thus
the preservation of lenghts and angles,

gμν;α(x) = −e i
μ e j

ν

(
ω j iα + ωi jα

)
= 0. (58)

The formally introduced gauge field remains an external
constraint unless its dynamics is specified via a (“kinetic”)
Hamiltonian fixing its vacuum dynamics. Hence in order to
close the system, a free gravity Hamiltonian density H̃Gr

was added in Eq. (53). However, it is important to stress here
that the action integral (53) is generic as it has been derived
exclusively from the transformation properties of the fields
without specifying any involved free field Lagrangians or
Hamiltonians!

B Computation with the Gasiorowicz parameter

We start by computing the additional contribution in the spin
tensor

l

2

(
ψ̄σ νβσμκ−→D κ + ←−D κσμκσ νβψ

)
.

Performing the contraction with the Levi-Civita tensor and
utilizing εabcdσ

bc = 2iσadγ 5 = −2γ 5(γaγd − gad) =
2(γdγa − gda)γ 5 [31, eq. 4.13], we obtain

l

2
εξνβμ

(
ψ̄σ νβσμκ−→D κ + ←−D κσμκσ νβψ

)

= �

2
ψ̄

[
γ 5(γξ γμ − gξμ)σμκ−→D κ

+ ←−D κσ κμ(γμγξ − gμξ )γ
5
]
ψ

= −i
�

2
ψ̄

[
γ 5(γξ γμ − gξμ)(γ μγ κ − gμκ)

−→D κ

+ ←−D κ (γ κγ μ − gμκ)(γμγ ξ − gμξ )γ
5
]
ψ

= −i
�

2
ψ̄

[
γ 5(2γξ γ

κ + δκ
ξ )

−→D κ + ←−D κ (2γ κγξ + δκ
ξ )γ 5

]
ψ
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=
(

�m + �2 R̄

4

)
ψ̄γξ γ

5ψ

− i
�

2
ψ̄

(
γ 5−→D ξ + ←−D ξ γ

5
)

ψ. (59)

In the last step, we substituted the modified Dirac equation
(4) and neglected all torsion-related terms.

The additional terms arising from the energy momentum
tensor are

i
�

2
ψ̄

←−D α

(
σβ

λδα
ν − σν

λδα
β − σβ

αδλ
ν + σν

αδλ
β

) −→D λψ. (60)

Using iσab = γaγb − gab and inserting the Dirac equation,
we obtain for the first term

ψ̄
←−D αδα

ν σβ
λ−→D λψ = −iψ̄

←−D ν(γβγ λ − δλ
β)

−→D λψ

= −ψ̄
←−D ν

[
γβ

(
m + �

4
R̄

)
− −→D β

]
ψ.

(61)

The second term follows immediately upon swapping β and
ν. For the third term, we obtain

ψ̄
←−D ασα

βδλ
ν

−→D λψ = −iψ̄
←−D α(γ αγβ − δα

β )
−→D νψ

= ψ̄

[(
m + �

4
R̄

)
γβ + ←−D β

] −→D νψ.

(62)

Upon adding all four expressions we see, that the terms
involving two derivatives cancel and the remaining ones can
be combined with the ones used in the main derivation. We
are thus left with

TD[νβ] = i

2

(
1

2
+ �m + �2

4
R̄

)

ψ̄
(←−D βγν − ←−D νγβ + γβ

−→D ν − γν
−→D β

)
ψ. (63)

The following computations are identical to the ones per-
formed in the main paper, so we will not repeat them here.
Only the pre factor changes and an additional term ∝ ∇̄μ R̄
arises.

Putting all this together, we arrive at the final expression
for the full source without any negligence:

g1Qξ =
(

3

2
+ �m + �2

4
R̄

)
j Aξ + i

�

2
ψ̄

(
γ 5−→D ξ + ←−D ξ γ

5
)

ψ

+ i(1 + 2�m + �2 R̄/2)

M2
P + g3

εξ
βνμψ̄

←−D βγν
−→D μψ

+ i
�2

8(M2
P − g3)

εξ
νβμ

(∇̄μ R̄
)
ψ̄

(←−D βγν − γν
−→D β

)
ψ

(64)

C Derivative of the stress-energy tensor

To bring the derivative of the fermionic stress-energy tensor
into a more insightful form, we just have to complete the
covariant derivatives by inserting appropriate spin connec-
tions.

∇μ(ψ̄γβ
−→D νψ)

= ∂μ(ψ̄γβ
−→D νψ)

− �α
βμψ̄γα

−→D νψ − �α
νμψ̄γβ

−→D αψ

= ∂μψ̄γβ
−→D νψ + ψ̄∂μγβ

−→D νψ + ψ̄γβ∂μ(
−→D νψ)

− ψ̄�α
βμγα

−→D νψ − ψ̄γβ�α
νμ

−→D αψ

= ψ̄
←−D μγβ

−→D νψ + ψ̄ωμγβ
−→D νψ + ψ̄∂μγβ

−→D νψ

+ ψ̄γβ
−→D μ

−→D νψ − ψ̄γβωμ
−→D νψ

− ψ̄�α
βμγα

−→D νψ − ψ̄γβ�α
νμ

−→D αψ

= ψ̄
(←−D μγβ

−→D ν − γβ�α
νμ

−→D α + γβ
−→D μ

−→D ν

)
ψ

+ ψ̄
(
∂μγβ + ωμγβ − γβωμ − �α

βμγα

)−→D νψ. (65)

It is easy to show that the bracketed term in the last line
combines to the covariant derivative of the tetrad times a
gamma matrix, so that it vanishes.

D Representations of the Riemann–Cartan tensor

We wish to derive the relation between the field strength ten-
sor of the spin covariant derivative resulting from its com-
mutator and the Riemann–Cartan tensor. We start by com-
puting the commutator of the spin covariant derivative, with
the Clifford algebra valued gauge field being related to the
scalar spin connection through

ωα = i

4
ωi

jασ j
i . (66)

It is obvious, that the linear terms in the Riemann–Cartan
tensor are related to the Clifford valued connection by

∂αωβ = i

4
∂αωi

jβσ j
i . (67)

Concerning the non linear terms, we can make use of the
well known identity for the commutator of two sigma matri-
ces [32, eq. 2.11]

[σ j
i , σ

l
k] = 2i

(
δ
j
k σi

l − ηikσ
jl + δi

lσ j
k − η jlσik

)
,

so that it follows
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ωβωα − ωαωβ

= − 1

16

(
ωi

jβσ j
iω

k
lασ l

k − ωk
lασ l

kω
i
jβσ j

i

)

= − 1

16
ωi

jβωk
lα[σ j

i , σ
l
k]

= − i

8
ωi

jβωk
lα

(
δ
j
k σi

l − ηikσ
jl + δi

lσ j
k − η jlσik

)

= − i

8

(
ωi

jβω j
lασi

l − ωk jβωk
lασ jl

+ ωi
jβωk

iασ j
k − ωi

jβωk j
ασik

)

= i

4

(
ωi

nβωn
jα − ωi

nαωn
jβ

)
σ j

i . (68)

It is now obvious, that

Rαβ := [−→D α,
−→D β ] = [←−D β,

←−D α]
= ∂αωβ − ∂βωα + ωαωβ − ωβωα

= i

4

(
∂αωi

jβ − ∂βωi
jα + ωi

nαωn
jβ − ωi

nβωn
jα

)
σ j

i

= i

4
Ri

jαβσ j
i . (69)
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