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● We use quantitative MRI to implement myelin-informed forward models for M/EEG 
● Local myelin density was modelled by adapting the local leadfields 
● Myelin-informed forward models can improve source reconstruction accuracy  
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● We apply our approach to MEG data from a visuo-motor experiment 
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Abstract  

Magnetoencephalography (MEG) and Electroencephalography (EEG) provide direct electrophysiological measures at an 
excellent temporal resolution, but the spatial resolution of source-reconstructed current activity is limited to several 
millimetres. Here we show, using simulations of MEG signals and Bayesian model comparison, that non-invasive myelin 
estimates from high-resolution quantitative magnetic resonance imaging (MRI) can enhance MEG/EEG source 
reconstruction. Our approach assumes that MEG/EEG signals primarily arise from the synchronised activity of pyramidal 
cells, and since most of the myelin in the cortical sheet originates from these cells, myelin density can predict the 
strength of cortical sources measured by MEG/EEG. Leveraging recent advances in quantitative MRI, we exploit this 
structure-function relationship and scale the leadfields of the forward model according to the local myelin density 
estimates from in vivo quantitative MRI to inform MEG/EEG source reconstruction. Using Bayesian model comparison 
and dipole localisation errors (DLEs), we demonstrate that adapting local forward fields to reflect increased local 
myelination at the site of a simulated source explains the simulated data better than models without such leadfield 
scaling. Our model comparison framework proves sensitive to myelin changes in simulations with exact coregistration 
and moderate-to-high sensor-level signal-to-noise ratios (≥10 dB) for the multiple sparse priors (MSP) and empirical 
Bayesian beamformer (EBB) approaches. Furthermore, we sought to infer the microstructure giving rise to specific 
functional activation patterns by comparing the myelin-informed model which was used to generate the activation with 
a set of test forward models incorporating different myelination patterns. We found that the direction of myelin changes, 
however not their magnitude, can be inferred by Bayesian model comparison. Finally, we apply myelin-informed forward 
models to MEG data from a visuo-motor experiment. We demonstrate improved source reconstruction accuracy using 
myelin estimates from a quantitative longitudinal relaxation (R1) map and discuss the limitations of our approach.  
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Introduction  
Magnetoencephalography (MEG) and EEG (Electroencephalography) provide direct electrophysiological measures of 
synchronous neural activity primarily involving cortical pyramidal cells at an excellent temporal resolution. However, 
estimating the spatial distribution of neural sources in the brain from MEG/EEG sensor data outside the head is an ill-
posed inverse problem. It is widely recognised that inverse solutions of MEG/EEG data for cortical activity are not 
unique1. 
 
To address the ill-posed nature of the inverse problem, prior assumptions on the distribution of neural sources must be 
incorporated. Various assumptions regarding the current source distribution can be implemented by introducing priors 
on the source covariance. For instance, these priors can specify whether the current sources are expected to be 
uniformly distributed across the cortical surface (Minimum Norm Estimates; MNE2) or exhibit sparsity (Multiple Sparse 
Priors; MSP3). Additionally, anatomical priors can be applied, e.g., by restricting the source space to the cortical surface 
and constraining sources to be oriented perpendicular to the local cortical surface4. Anatomical information has also 
been incorporated to differentiate between current sources originating from deep or superficial laminae or to 
distinguish hippocampal from cortical sources5–9. 
 
In this study, we propose a novel anatomical approach that uses myelin estimates derived from high-resolution 
quantitative MRI (qMRI) to enhance MEG/EEG source reconstruction accuracy. Quantitative MRI combines traditional 
‘weighted’ MR images in a model-based manner to produce reproducible and standardised measures in physical units, 
which are less dependent on the acquisition scheme10–14. Crucially, qMRI is sensitive to microstructural properties of 
brain tissue such as axon, myelin, iron and water concentration14–20 and thus presents an opportunity to move beyond 
classical histology to qMRI-based in vivo characterisation of brain microstructure10,14. Of particular interest for our 
study, several qMRI maps enable non-invasive estimation of myelin content throughout the cortex21–23. Specifically, we 
will focus on longitudinal relaxation rate (R1) maps from a multi-parameter map protocol24 when applying our approach 
to experimental data. R1 maps have been validated as a marker for myelin20,25,26, showing high test-retest reliability and 
good inter-site reliability24,27,28.  
 

While myelin is important for fast propagation of action potentials, axon protection, trophic support and learning29–32,  
our focus here is on using myelin as a proxy for cell density, as we assume that cell density is predictive of MEG signal 
strength. Myelin-sensitive qMRI measures in the cortex are expected to correlate positively with local cell density due 
to the close relationship between cyto- and myeloarchitecture33–35. Direct links between qMRI and cytoarchitecture 
have been further demonstrated by positive correlations between R2* measures at 7T and cell counts from the von 
Economo atlas36, as well as cell type-specific gene enrichment analyses showing significant associations between R1 
and R2* maps with genes enriched in GABA- and glutamatergic neurons37. As M/EEG signals are predominantly 
generated by cortical pyramidal cells, we expect qMRI measures to predict MEG signal strength. Importantly, we have 
previously demonstrated a positive correlation between MEG responses and cortical grey matter myelin estimates from 
quantitative MRI across participants38. This association renders myelin estimates from qMRI useful as a structural prior 
to improve MEG source reconstruction accuracy.  
 
Here we propose a novel approach that uses this myelin information as a histological constraint to improve M/EEG 
source reconstruction. This is done by scaling the leadfields of the forward model based on the qMRI-derived local 
myelination. More precisely, we increase the leadfield strength at areas with higher local myelination and decrease it in 
areas with lower local myelination. We thus introduce a prior at the level of the forward model that reflects our 
expectation of a higher current source density at more strongly myelinated cortical regions.  
 
The outline of this paper is the following: We introduce a novel approach to improve M/EEG source reconstruction using 
myelin-informed forward models and aim to investigate the conditions under which myelin-informed generative models 
can enhance M/EEG source reconstruction. We systematically test different source reconstruction priors, signal-to-noise 
ratios (SNRs), myelin scaling factors and co-registration errors to determine the impact of these factors. Additionally, 
we assess the potential of comparing different myelin-informed generative models to infer the underlying 
microstructure. We then apply our approach to experimental data from a visuo-motor paradigm and demonstrate that 
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myelin-informed generative models have the potential to improve the accuracy of M/EEG source reconstructions for 
experimental MEG data. 
 

Methods 
We conduct simulations of MEG activity to investigate whether integrating MRI-based histology into MEG generative 
models can improve source reconstruction accuracy. To this aim, we adapted the leadfields of the MEG forward model 
to mimic changes in local myeloarchitecture and evaluated dipole localisation errors (DLEs) and Bayesian model 
evidence of the source reconstructed data in dependence of myelination patterns. When using Bayesian model 
evidence, our guiding assumption is that incorporating true structural information into the forward model would result 
in lower model complexity and, consequently, lower model evidence5,8,39–41. 
Simulations and data analyses were implemented using the SPM12 software package 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and in-house code in Matlab (The Mathworks Inc., Natick, MA, USA). 
The code necessary to replicate the simulations presented in this paper is available via GitHub 
(http://github.com/sashel/myelin_sim) 

Single dipole simulations 

We first ask whether modelling increased myelination at the location of a simulated source by scaling the local leadfields 
can improve source reconstruction accuracy. This was tested across a range of popular source reconstruction 
approaches, signal-to-noise ratios (SNRs), and levels of co-registration errors to determine the constraints under which 
myelin-informed forward models lead to a significant improvement in source reconstruction accuracy. 

We based our simulations on a single dataset acquired with a CTF 275-channel system. This experimental MEG dataset 
was used to define head positions and channel locations, while structural MRIs of the same participant (see subsection 
“MRI data acquisition”) were used to define the forward model. Synthetic datasets with single patches of activated 
cortex were generated by simulating a sinusoidal dipolar source of 20 Hz for 300 ms (6 cycles) with a total effective 
dipole moment of 20 nAm, similar to previous simulation studies5,8. Each simulated single-trial dataset had a duration 
of 800 ms, epoched from -200 to 600 ms, with the dipolar source modelled between 100 and 400 ms.  

We used 60 locations based on 30 out of 50 randomly selected bilateral patch pairs as cortical source locations. 
Gaussian source patches are defined within SPM12 as follows42: 

𝑄! = 𝑒"!!  (Eq 1), 

where 𝜎 determines the spatial extent of the activated patch and 𝐺# denotes the graph Laplacian 𝐺# 	 ∈ 	ℝ$"×$" , with 
𝑁& current dipoles distributed through the cortical surface.  

The graph Laplacian is based on an adjacency matrix 𝐴	 ∈ 	ℝ$"×$" , with 𝐴'( 	= 	1 if there is face connectivity, and zero 

otherwise, and is defined as: 

𝐺##$ =	,
−∑ 𝐴'(

$"
)*+ ,			for	𝑖 = 𝑗,	with	𝐴'∙	the	𝑖-th	row	of	𝐴

𝐴'( ,	for	𝑖 ≠ 𝑗
   (Eq 2). 

 

The full width at half maximum of each simulated patch was set to 6 mm, and patches spanned on average 14.0667 ± 
3.349 vertices. 
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We simulated single trial data of averaged evoked activity instead of datasets with multiple trials to reduce the 
computational load of our simulations. Random Gaussian white noise was added to the sensor level data at different 
SNRs (0, -5, -10, -15, -20 dB) for each of these single trial datasets. 

Source Reconstruction 

The leadfield matrix describing the sensitivity of the MEG sensors to the cortical sources was computed using the Nolte 
Single Shell forward model43. We generated 60 synthetic datasets, one for each dipole location, with standard, non-
adapted leadfields. For source reconstruction, we scaled the leadfields to mimic increased or decreased myelination at 
the location of the simulated dipole patch. These adapted forward models reflect our expectation that regions of higher 
myelination will have higher cortical current densities by weighting the leadfields accordingly. Scaling factors were 5, 3, 
and 3/2, and their reciprocals 1/5, 1/3, and 2/3 to simulate increases or decreases in myelination compared to the 
overall myelination across the cortex. Note that we applied a weighting such that the leadfield adaptation followed the 
Gaussian shape of the simulated dipole moment, i.e., the leadfield scaling was further weighted by the simulated signal 
magnitude at each vertex with the strongest scaling occurring at the peak vertex:  

𝐺 = 𝐺 + 𝐺 ∙ (𝑓- − 1) ∙ 𝑄!    (Eq 3). 

With an average patch weighting of about 0.2 at the peak vertex of patches, a myelin scaling factor of 5 translates to 
an adapted leadfield that is 1.8 times larger than the original leadfield.  

Source reconstruction for each simulated dataset was applied to a Hanning windowed time window of 300 ms, covering 
the whole duration of the simulated cortical activation from 100 to 400 ms. Data were low-pass filtered at 80 Hz before 
inversion. Source inversion was performed using Bayesian source reconstruction with three popular priors within SPM12: 
minimum norm estimate2 (MNE), empirical Bayesian beamformer42,44 (EBB) and multiple sparse priors (MSP3) to 
estimate the underlying current sources from the simulated sensor data. We used the classic Bayesian source inversion 
scheme in SPM12 without any of the re-scaling factors that are implemented in SPM to allow for mixing of different 
imaging modalities or group imaging45. 

Bayesian model comparison was used to determine if adapting the forward model to incorporate information on cortical 
myelination led to improved source reconstruction accuracy compared to a standard forward model. Log model evidence 
across source reconstruction solutions based on the different myelin-informed and standard forward models was 
approximated using Variational Free energy. Free energy is a parametric metric that rewards accuracy and penalises 
model complexity42,46, providing a lower bound for the log model evidence value47. A difference in log model evidence 
greater than 3 suggests that one model is approximately 20 times more likely than another. 

Dipole localization errors were also used as a metric to investigate source reconstruction accuracy and were defined as 
the Euclidean distance between the true source location of the simulated activation and the maximum of the estimated 
source distribution. Significance of DLE differences were evaluated for each source reconstruction approach, SNR and 
scaling factor by comparing the DLEs obtained for the myelin-informed forward model with the DLEs of the standard 
null model without leadfield scaling using a paired t-test. 

To evaluate the spatial specificity of myelin-informed generative models, we ran an additional set of control simulations 
where we simulated single patches of activated cortex at the same 60 locations but adapted the leadfields at the patch 
location at the opposite hemisphere. 

In addition, to investigate the impact of co-registration errors, we ran a further set of simulations where we added 
random errors of 1 to 5 mm in 1 mm increments to each of the three fiducial locations before inverting the model. This 
changes the affine transformation matrix that aligns the fiducials of the MEG sensor array and the structural MRI and 
hence the cortical source locations that are based on the MRI-derived cortical surface relative to the MEG sensors. For 
each dataset with added random co-registration error, we thus calculated a new gain matrix, whose leadfields were then 
adapted and used for source reconstruction.  
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Inferring underlying myelination patterns 

In a next set of simulations, we aimed to infer the underlying myelination pattern from the simulated sensor activity 
alone. To model myelination patterns, we simulated cortical activity at both patch locations of the 30 bilateral pairs 
simultaneously, increasing the leadfield strength at one and decreasing it at the opposite location. Unlike as in the 
single dipole simulations where leadfields were only adapted at the level of source reconstruction, when modelling 
myelination patterns, we adapted the leadfields prior to the generation of sensor data, i.e., source locations with 
increased (decreased) leadfield strength would have a stronger (weaker) impact on the sensor level data. We combined 
the six scaling factors used for the single dipole simulations into scaling pairs to construct six myelin-informed forward 
models with different scaling strengths and directions (5 – 1/5,3 – 1/3, 3/2	– 	2/3 as well as 1/5 – 5, 1/3 – 3 and 
2/3	– 	3/2), along with a null model without leadfield modifications (1 – 1). Each dataset was then source reconstructed 
using the EBB approach and variational free energy was obtained across the same set of standard and myelin-informed 
forward models. Bayesian model comparison was used to select the best model based on these log model evidence 
estimates46.  

As correlated sources can lead to the reduction of the estimated source strength when using beamformers, we used 
bandlimited white noise waveforms between 1-80 Hz for 300 ms instead of sinusoidal sources for the paired source 
patches in the myelination pattern simulations. The effective dipole moments were set to 20 nAm, as in the single 
dipole simulations. All myelination pattern simulations were performed without added coregistration errors. 

Application to experimental MEG data from a visuo-motor paradigm 

We next applied myelin-informed generative models to MEG data from a visuo-motor experiment to demonstrate that 
our approach can improve source reconstruction accuracy for experimentally measured MEG data. The MEG data were 
acquired from 14 participants (mean age 27.2 years, std: 4.0 y, 5 females, 9 males) as part of the MEG UK Normative 
database project at WCNC, UCL, London. In addition, quantitative MRIs from a multi-parameter maps protocol were 
acquired for each participant as part of the project. In each trial of the experiment, a vertical, stationary, square-wave 
grating with a frequency of 3 cycles per degree and covering approximately 4 x 4° on a mean luminance grey background 
was shown for 1.5 to 2 seconds in the lower visual field of the left or the right hemisphere, followed randomly by a short 
or a long inter-stimulus interval (ISI, 4 or 8 sec). Grating displays were generated using the Psychophysics Toolbox48 
in Matlab. Participants were instructed to fixate a central white cross while covertly attending the gratings and to perform 
an abduction movement with their left index finger each time the grating stimulus disappeared. We presented 200 
trials in two blocks of approximately 13 min duration each, with the presentation site randomised across trials. The study 
was approved by the University College London ethics committee (reference number 3090/001), and written informed 
consent was obtained from all participants prior to scanning. 

MEG data acquisition and preprocessing 

The MEG data acquisition and preprocessing were performed using a 275-channel whole-head MEG setup with synthetic 
third-order gradiometers (CTF systems) at a 1200 Hz sampling rate. The MEG was located inside a magnetically shielded 
room to minimise external electromagnetic noise. Subjects wore custom-made 3D-printed headcasts during scanning 
to minimise head movements and increase co-registration accuracy, as described in previous studies49,50. Head 
location was continuously determined during each run using head coils at three fiducial positions, the nasion and left 
and right preauricular points. Head coils were placed inside indentations of the headcasts for highly accurate co-
registration with the structural MRI. An electromyogram (EMG) was recorded using three electrodes at the left hand to 
determine the onset of finger abduction movements. Data were converted for analysis in SPM12, downsampled to 300 
Hz and epoched into trials of 3.2 seconds ([-0.60 2.60] sec with respect to the grating onset). We analysed only correct 
responses in which participants responded with a finger abduction movement between 100 and 900 ms after the 
grating offset. Any epochs containing peak-to-peak amplitude signals greater than 5×10-12 T were classified as artefacts 
and removed from the analysis. Independent component analysis (ICA) using the Extended Infomax algorithm was 
applied to the concatenated MEG data of the remaining epochs to remove eye movement and heartbeat artefacts. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.30.601378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.30.601378
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

MRI data acquisition 

Prior to the MEG measurement, participants underwent two MRI scanning protocols during the same visit. Subjects 
were scanned on a 3T whole body MR system (Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany). The first 
protocol was used to generate an accurate image of the scalp for headcast construction as described in Meyer et al., 
2017. Special care was taken to prevent distortions in the image due to skin displacement on the face, head, or neck, 
as any such errors could compromise the fit of the headcast. Accordingly, a more spacious 12 channel head coil than 
the standard 32 channel head coil was used for the headcast scan. Acquisition time was 3 min 42 sec. 

In a second protocol, multi-parameter mapping was performed using spoiled multi-echo 3D fast low angle shot (FLASH) 
acquisitions with predominantly proton density (PD), T1 or magnetization transfer (MT) weighting according to the MPM 
protocol24. A 32-channel head coil was used to increase SNR. The MPM data were acquired with whole-brain coverage 
at an isotropic resolution of 800 μm using a FoV of 256 mm (H-F), 224 mm (A-P), and 179 mm (R-L). The flip angle was 
6 degrees for the PD- and MT-weighted volumes and 21 degrees for the T1-weighted acquisition. MT-weighting was 
achieved through the application of a Gaussian RF pulse 2kHz off resonance with 4 ms duration and a nominal flip 
angle of 220°. 

Gradient echoes were acquired with alternating readout gradient polarity at eight equidistant echo times ranging from 
2.34 to 18.44 ms in steps of 2.30 ms using a readout bandwidth of 488 Hz/pixel. Only six echoes were acquired for the 
MT-weighted acquisition to incorporate the RF pulse and to maintain a repetition time (TR) of 25 ms for all FLASH 
volumes. To accelerate the data acquisition, partial parallel imaging using the GRAPPA algorithm was employed in each 
phase-encoded direction (AP and RL) with a speed-up factor of two. 

To maximise the accuracy of the measurements, inhomogeneity in the RF transmit field was mapped using a 3D echo 
(EPI) acquisition of spin and stimulated echoes with 15 different refocusing flip angles (TE/TM/TR = 39.38/33.24/500 
ms; matrix = 64 x 48 x 48 pixels; FoV = 256 x 192 x 192 mm) following the approach described in 51. A B0 field-map 
was acquired using a double-echo gradient echo sequence (TE1 = 10 ms, TE2 = 12.46 ms, TR=1020 ms, 3 x 3 x 2 mm 
resolution, 1 mm gap; matrix size = 64 x 64 pixels; FoV = 192 x 192 x 191 mm) to allow for post-processing correction 
of geometric distortions of the EPI data due to B0 field inhomogeneity. Total acquisition time for all MRI scans was 
less than 30 min. 

Estimation of qMRI parameter maps  

Quantitative maps were calculated using the hMRI toolbox for quantitative MRI and in vivo histology using MRI52 within 
the SPM12 framework. Maps of the effective transverse relaxation rate R2* were estimated from the gradient echoes of 
all contrasts using the ordinary least squares ESTATICS approach53. The proton-density weighted (PDw), T1-weighted 
(T1w), and magnetisation transfer-weighted (MTw) data were averaged over the first six echoes to increase the SNR54, 
and the three resulting volumes were used to calculate MT, R1, and effective proton density (PD*) maps as previously 
described24,55. For myelin mapping, we focused on the R1 maps. The effective proton density map PD* was also used, 
together with the R1 map, for cortical surface reconstruction within the Freesurfer pipeline. 

Cortical surface reconstruction 

We run a bespoken Freesurfer56 (version 6.0.0) pipeline tailored to MPM-based input images to generate cortical 
surfaces for the white matter - grey matter (“white” surface) and the grey matter-pial (“pial” surface) boundaries. First, 
a small number of negative and very high values were pruned to 0 in the R1 and PD maps using AFNI, such that T1 (= 
1/R1) was bounded between [0, 8000] ms and PD between [0, 150] %. Then, the PD and T1 maps were used as input to 
FreeSurfer’s mri_synthesize routine to create a synthetic FLASH volume with optimal white matter (WM)/grey matter 
(GM) contrast (TR 20 ms, FA 30°, TE 2.5 ms). 
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This synthesised image was provided as input to the initial part of the Freesurfer pipeline, autorecon-1, but with the 
skull-stripping flag set to -no. Skull stripping was performed using SPM_segment to construct a combined 
GM/WM/cerebrospinal fluid (CSF) brain mask (threshold for each tissue class: tissue probability > 0). The skull-stripped 
image was then used as input for the remaining steps of the recon-all pipeline to reconstruct cortical surfaces. 

A mid-cortical surface was generated by expanding the white matter surface to 50% of the local cortical depth for each 
hemisphere. Mid-cortical surfaces of both hemispheres were aligned to the headcast scan, converted to GIfTI file 
format, and combined into a single surface for each participant. Each of these combined surfaces was downsampled 
by a factor of 10 using Freesurfer’s mris_decimate function, resulting in cortical surface meshes with on average 29.536 
vertices. 

Myelin-informed M/EEG forward models visuo-motor paradigm 

The leadfields of the forward model were computed using the Nolte corrected-sphere approach43 with a template-
derived canonical surface for the inner skull surface57 and a subject-specific mid-cortical surface that defined the 
source space. Leadfields were oriented normally to the cortical surface mesh. Note that while we constructed the cortical 
surfaces from the MPM scans, both the MPMs and their cortical surfaces were transformed to headcast space via co-
registration to the headcast scan before calculating the forward model. This approach was chosen to exploit the 
excellent co-registration accuracy between MEG sensors and the headcast scan, which is due to the precise knowledge 
of the fiducial locations for the latter.  

For the experimental data, myelin-informed forward models were constructed by scaling the leadfields by the myelin 
density values estimated from the R1 maps. Myelin estimates at 50% cortical depth were smoothed across the cortical 
surface with a full-width half maximum (FWHM) of 3 mm using Freesurfer. Subsequently, myelin estimates at a given 
vertex were normalised by subtracting the mean and dividing by the standard deviation of all myelin estimates sampled 
across the cortical surface. Each leadfield was then scaled by the product of these normalised myelin estimates 𝑓./01 
with a scaling factor 𝑓- that ranged from 0.02, 0.05, 0.2 to 5 resp. -0.02, -0.05, -0.2 to -5 in the following way: 

𝐺 = 𝐺 ∙ 22%&'(∙2)   (Eq 4). 

Scaling factors 𝑓-  could be positive or negative, corresponding to the hypotheses that increased myelination leads to 
a weaker or stronger current source density, respectively. As an example, at a scaling factor 𝑓- of 0.2, a normalised 
myelin estimate 𝑓./01 of 2 at a given vertex translates to a leadfield that is approximately 132% as large as the original 
one, while at a negative scaling factor 𝑓- of -0.2 the same 𝑓./01 translates to a leadfield of about 76% of the strength 
of the original leadfield. 

As the mid-cortical layer is not well-defined in non-isocortical areas, non-isocortical areas were omitted from the scaling 
procedure and leadfields at those areas were not adapted by myelin density estimates. Non-isocortical areas included 
retrosplenial Complex (RSC), anterior cingulate and medial prefrontal cortex area 33 prime (33pr), piriform cortex (Pir), 
anterior agranular insula complex (AAIC), Entorhinal Cortex (EC), presubiculum (PreS) and hippocampus (H) as defined 
by the HCP-MMP1.0 parcellation58 based on the multi-modal atlas described by Glasser et al. (2016)59. 

Myelin-informed source reconstruction visuo-motor paradigm 

The resulting myelin-informed forward models were then used to solve the inverse problem for broadband visual 
oscillatory activity (0-80 Hz) within the time window of 0-200 ms following the onset of gratings. We restricted our 
analysis to trials where gratings were presented in the left hemifield after the 8 seconds inter-stimulus interval. In all 
source reconstructions, a data complexity reduction step was performed by projecting the MEG data onto 16 temporal 
modes. For the MSP approach, we used the default standard library of 256 patches with a patch width of 6 mm full-
width of half maximum. As for the simulated data, we used the classic Bayesian source inversion scheme in SPM12 
across source reconstruction approaches to enable a fair comparison of generative models. 
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Results 

Single dipole simulations 

We first perform single dipole simulations to test our fundamental assumption that increasing local leadfields to account 
for the expected increased current source density at sites of increased local myelin density can significantly improve 
source reconstruction accuracy. Hereby, we investigate the impact of the chosen leadfield scaling and SNRs on source 
reconstruction accuracy, evaluated by using DLEs and log model evidence with respect to a null model without leadfield 
scaling, across three popular source reconstruction approaches. Results are summarised in Figure 1. For the EBB and 
MSP approaches, DLEs tended to increase with decreasing SNR for the null model without any leadfield scaling as 
expected. Dipole localisation errors were highest for the MNE approach and remained relatively stable across the SNRs 
tested, while DLEs were comparatively small for the MSP approach, but showed a larger variability.  

DLEs decreased for simulations with locally increased leadfields at the simulation patch site and increased for locally 
diminished leadfields for the MNE and EBB approach (Fig. 1 A and B, middle column). Those differences were significant 
at scaling factors 𝑓- of 5 and 3 for both MNE and EBB source reconstruction approaches and additionally at a smaller 
scaling factor of 1.5 for the EBB approach. We also found increases in DLE at scaling factors that resulted in decreased 
local leadfields (𝑓- = 0.2 for MNE and 𝑓- =  0.2 and 0.33 for EBB). We did not find any significant differences between 
DLEs of myelin-informed forward model and the null model without leadfield scaling for the MSP approach, an 
observation we ascribe to the larger variance of DLEs when using multiple sparse priors in source reconstruction. 

We find that the Bayesian model comparison framework is sensitive to changes in myelin for the MSP and EBB source 
reconstruction approaches at moderate-to-large sensor-level SNRs (≥10 dB) (Fig.1, right column). For the EBB approach, 
differentiating between myelin-informed forward models and the null model was only feasible at a scaling factor of 5. 
For the MSP source reconstruction approach, we were able to distinguish a myelin-informed forward model from the 
null model at a smaller scaling of 1.5. For the MNE approach, the relative log model evidence for the myelin-informed 
forward models was similarly positive for increases and negative for decreases in leadfield strength. However, these log 
model evidence differences were not significantly different from the null model across all scalings and SNRs tested. 
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Fig. 1 Dipole localisation errors (DLEs) and Bayesian log model evidence differences for locally increased or decreased myelin estimates. For 
A Minimum Norm Estimates, B Empirical Bayesian Beamformer and C Multiple Sparse Priors source reconstruction approaches. Left row panels show 
mean DLEs across signal-to-noise ratios for a null model without leadfield scaling. Middle row panels show relative DLEs in mm across varying leadfield 
scaling factors with either locally increased or decreased leadfields at the simulated cortical patch relative to the null model. Right row panels show log 
model evidence differences across SNRs and leadfield scaling parameters relative to the null model. Asterisks indicate significant differences from the 
null model for DLEs and Free Energy values. All results are based on 60 simulations per scaling factor and SNR for each source reconstruction approach.  

We next tested whether the effect of myelin-informed leadfields is spatially specific (Fig. 2). Relative log model evidence 
for a control condition where we changed the myelination at a patch at the opposite hemisphere indicates that this is 
indeed the case: We did not observe any significant model evidence differences between the null model and myelin-
informed control models. Minute systematic changes in log model evidence at larger myelin scalings for the MNE and 
EBB approaches (Fig. 2A, B) may be due to less source strength being needed to explain sensor noise which can be 
modelled using a current dipole at this patch. 
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Fig. 2 Relative dipole localisation errors (DLEs) and Bayesian log model evidence differences for locally increased or decreased leadfields at 
control sites at the opposite hemisphere. For A Minimum Norm Estimates, B Empirical Bayesian Beamformer and C Multiple Sparse Priors source 
reconstruction approaches. Left row panels show DLEs across varying leadfield scaling factors with either locally increased or decreased leadfields at a 
patch opposite to the cortical patch where the current dipole source was simulated. Right row panels show log model evidence differences across SNRs 
and leadfield scaling parameters for the same control models. No significant differences from the null model were observed for DLEs and Free Energy 
values. All results are based on 60 simulations per scaling factor and SNR for each source reconstruction approach.  

We further examined the impact of leadfield strength at the adapted simulated source patch locations on our ability to 
distinguish myelin-informed forward models from the null model. This investigation was motivated by previous studies 
that demonstrated that discrimination accuracy is affected by leadfield strength5,6. We observed that differences in 
model evidence strongly vary with the leadfield norm at the peak vertices of simulated patches: At source locations with 
larger leadfields, and thus a strong impact on the sensor data, applying myelin-informed leadfield adaptation had a 
more pronounced effect than at locations where sources had a lesser impact on the sensor data (Fig. 3B, C). We found 
that a quadratic model explained this relationship significantly better than a linear fit (𝑅345&056'78  = 0.5696, 𝑅9'.:508  = 

0.5216; F-statistic: 11.5152, p <.01). 
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Fig. 3 Impact of leadfield strength on the relative log model evidence differences for myelin-informed source reconstruction using the EBB 
approach at an SNR of 0 dB.  A Shades of blue indicate the leadfield norm at each vertex across the mid cortical surface. Centre locations of the 
patches used as source locations are indicated by red spheres. B Correlation between peak vertex leadfield norm and log model evidence difference 
across the 60 simulation patches for a leadfield scaling of 110%. C The same correlation for a leadfield scaling of 91%. Fitting curves are based on a 
quadratic polynomial fit.  

The benefit of using myelin-informed leadfields decreases with increasing 
co-registration error 

Next, we examined the impact of co-registration errors on our myelin-informed source reconstructions across a set of 
simulations with a leadfield scaling factor 𝑓-  of 5 at an SNR of 0 dB. We found that the benefit of using myelin-informed 
leadfields, as measured by the relative log model evidence, diminishes with increasing co-registration error for all tested 
source reconstruction approaches (Fig. 4). Differences in log model evidence did not significantly differentiate between 
myelin-informed and null forward models at co-registration errors exceeding 3 mm and 4 mm for the EBB and MSP 
source reconstruction methods, respectively. As previously shown in Fig. 1, for the MNE approach, differences in log 
model evidence from the null model were smaller than 3 and thus non-significant, even in the absence of co-registration 
errors. 

Paired t-tests showed that DLEs were significantly smaller than those for the null model at co-registration errors less 
than 5 mm for the MNE and EBB source reconstruction approaches. For the MSP approach, in contrast, DLEs did not 
differ significantly from the null model without leadfield scaling, regardless of the co-registration error applied. 

 

 

Fig. 4 Impact of co-registration errors on the relative log model evidence differences for myelin-informed source reconstruction. Results are 
displayed for the EBB approach at an SNR of 0 dB and with a leadfield scaling factor of 5. A Mean relative log model evidence across co-registration 
errors for the three source reconstruction approaches tested. Log model evidence differences greater than 3 indicate that the myelin-informed forward 
model could significantly better explain the data than the null model without leadfield scaling B Mean relative dipole localisation errors across co-
registration errors.  
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Inferring myelination patterns from MEG data using myelin-informed forward 
models 

In a next step, we aimed to infer myelination patterns, consisting of two bilateral patches with opposite scaling 
directions, which underlie our simulated sensor data. Results are summarised in Fig. 5. Using the EBB source 
reconstruction approach, we found that employing a forward model with the same myelin scaling pattern as the one 
used to generate the sensor data increased the relative log model evidence compared to the null model at large scaling 
factors. This was observed for source reconstructions of simulated data generated using bilateral scaling patterns of 10 
- 0.1 and 0.1 - 10.  

However, for weaker scaling patterns, we found that the largest log model evidence differences typically occurred at the 
highest scaling factors, regardless of the scaling strength used to generate the data. For example, when a pattern of 
scaling factors of 5 – 0.2 was used to generate the sensor data, applying the myelin-informed forward model with a 
more pronounced scaling pattern of 10 – 0.1 resulted in a larger model evidence difference than applying the myelination 
pattern 5 – 0.2 that was used to generate the sensor data. Similar results can be observed for the scaling pattern in the 
opposite direction, as shown in the bottom row of Fig. 5. Furthermore, for data generated using a smaller myelin scaling 
pattern of 3 – 0.33, the winning model was the scaling pattern 0.1 – 10, i.e., a myelination pattern in the opposite 
direction. We attribute this to a bias present already in the non-adapted forward model (scaling pattern 1 – 1, right-most 
panel in Fig. 5).  

In summary, while we were able to successfully infer the directionality of the underlying myelination pattern in most 
cases, the strength of the applied scaling could not be inferred successfully by comparing the source reconstruction 
model evidence across different myelin-informed forward models. Additionally, biases present in the null model without 
adapted leadfields may interfere with our ability to correctly infer the underlying myelination pattern. 

 

 

Fig. 5 Inferring cortical myelination pattern using myelin-informed generative models. Each panel displays the relative log model evidence 
differences across various scaling patterns for sensor data generated by the myelination pattern indicated by the head inlays. Source reconstructions 
were conducted using the EBB approach at an SNR of 0 dB. Asterisks indicate log model evidence differences greater than 3 from the null model without 
leadfield scaling.  
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Application to empirical MEG data from a visuo-motor experiment 

Finally, we applied myelin-informed forward models to MEG data from a visuo-motor experiment and investigated how 
this affected the log model evidence for source-reconstructed visual activity in response to the grating onset for all 
three source reconstruction approaches tested. Fig. 6A displays the MNE source reconstructed oscillatory activity of a 
single participant using a subject-specific forward model without myelin-informed leadfield scaling. The broadband 
source-reconstructed activity, up to 80 Hz, shows a maximum at right early visual areas, as expected for gratings 
displayed at the left hemifield. Figure 6B shows the group-average myelin map derived from quantitative R1 maps, 
revealing higher myelination estimates at primary sensory and motor areas, in accordance with known cortical 
myeloarchitecture. To incorporate the myelin information into the source reconstruction of the experimental data, we 
scaled the leadfields in the forward model for each participant by the subject-specific normalised R1 values, multiplied 
by a set of scaling factors. 

For the MNE and EEB source reconstruction approaches, we find that adapting the forward model by scaling the 
leadfields with subject-specific myelin estimates based on the R1 maps and a positive scaling factor increased log 
model evidence compared to the null model (Fig. 6C-D). This increase in relative log model evidence grew with 
increasing scaling factors and continued to do so even at biologically implausible high myelin scaling factors (Suppl. 
Fig. S1). For negative scaling factors - which correspond to the hypothesis that increased myelination reflects a lower 
cortical current density - we observed a decrease in relative log model evidence, which again increased with decreasing 
scaling factors (Fig. 6C-D). We found this pattern of relative model evidence across positive and negative scalings to 
be consistent across subjects (for 12 and 13 out of 14 participants for the MNE and EBB source reconstruction 
approaches, respectively, as shown in supplementary Figs. S2 and S3). 

For the MSP approach, the winning model was the forward model with the scaling factor 0.2 (Fig. 6E). However, this 
finding was not consistent across participants, where the same model was the winning model only for half of the 
participants (7 out of 14 participants, Fig. S4). 
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Fig. 6 Myelin-informed source reconstruction of gradient-induced visual activity. A Broad-band MNE source reconstructed activity 0-200 ms after 
visual grating onsets for an exemplary participant. B Average normalised myelination across participants projected onto Freesurfer’s fsaverage mid 
surface. C-E Relative log model evidence across a set of positive and negative scaling factors for the three source reconstruction approaches.  

Discussion 

We demonstrate using simulated and empirical data that myelin-informed generative models can be used to improve 
M/EEG source reconstruction accuracy. Myelin-informed forward models with positive leadfield scalings at the location 
of the simulated cortical patch significantly improved source reconstruction accuracy at high and moderate SNRs. 
Further, we were able to infer the directionality of the scaling pattern for two dipole simulations. However, the model 
with the strongest scaling was generally the best model, irrespective of the magnitude of the original scaling. 
Additionally, biases present already in the null model further limit our ability to infer cortical myelination patterns from 
MEG data. For the visuo-motor MEG data, informing the forward model by subject-specific myelin estimates improved 
source reconstruction accuracy of visual responses. In the following, we discuss our results in more detail. 
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Single dipole simulations 

For the simulated data involving single dipole activity, we found that the model comparison framework is sensitive to 
changes in myelin in simulations at high to moderate sensor-level SNRs (> =10 dB) for the MSP and EBB source 
reconstruction approaches. We thus provide evidence that adapting leadfields to incorporate information about cortical 
myelination into forward models can significantly affect source reconstruction accuracy. Relative log model evidences 
were not significant for the MSP approach. We assume that the source covariance prior of the MNE approach is not 
well-suited for explaining the focal activations simulated in our study, which may compromise our ability to discriminate 
between different myelin-informed models.  

 
For the EBB approach, we only found significant log model evidence differences for a scaling factor 𝑓- of 5. As mentioned 
previously, a scaling parameter of 5 translates, on average, to an approximately 1.8-fold increase in leadfield strength 
at the peak vertex compared to the null model. Assuming a direct correspondence between leadfield adaptation and 
cell density, this implies that we can distinguish between cell density differences that conform to the known variability 
of cell density across cortical areas60,61, albeit they are relatively large. Note that for the MSP approach, we also found 
significant changes with respect to the null model for a forward model that reflects smaller changes in myelination and 
hence cell density (𝑓- = 1.5, corresponding to an approximately 10% increase in leadfield strength at the peak vertex). 

The benefit of using myelin-informed forward models we observed for the EBB and MSP approaches was spatially 
specific. Forward models where the leadfields were adapted at locations opposite to those where the cortical activity 
was simulated did not differ significantly from the null model. 

We found that adapting leadfields with a higher leadfield norm had a stronger impact on relative model evidence than 
those with a lower norm. While this correlation between leadfield norm and relative model evidence may seem trivial 
(as we scale the leadfields by a multiplicative factor), it highlights the fact that differences in myelination at sources 
close to the sensors will have a greater impact on the expected current density than myelin changes at deeper sources 
that are farther from the sensors. 

Impact of co-registration errors 

We found that the benefits of incorporating myelin-informed leadfields diminished with increasing co-registration 
errors, with no significant improvement over the null model at a co-registration error of 5 mm. As expected, the added 
uncertainty about head location from increased co-registration errors compromises our ability to discriminate between 
models. With increasing co-registration error, we are less able to explain the sensor data accurately and incorporating 
the myelin priors is rendered less efficient. Fortunately, we now have the tools to achieve high-precision measurements. 
In cryogenic MEG using subject-specific headcasts can provide the necessary co-registration accuracy49,50, while the 
use of rigid helmets62 combined with high-accuracy optical scanning devices are expected to provide sufficient co-
registration accuracy in OPM-MEG systems63,64. 

Inferring myelination pattern from MEG data 

We were able to infer the directionality, but not the scaling strength of the myelination patterns used for MEG data 
generation. We presume that this is because current dipole sources at locations of increased myelination (increased 
leadfield strength) have a stronger impact on the sensor level patterns than current dipole sources at locations of 
decreased myelination (decreased leadfield strength). Therefore, less source power is needed to explain the sensor 
pattern arising from the stronger dipole source, which introduces a bias towards explaining the dipole with the stronger 
impact (at the expense of modelling the weaker dipole). This reasoning can also explain the bias we observed for the 
null model: since the bilateral source locations were defined on a cortical surface derived from experimental data, dipole 
locations were not perfectly symmetric across the two hemisphere and could differ in the leadfield strengths. The 
resulting asymmetry in simulated current dipole strengths in turn may render it more favourable to use one of the scaled 
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forward models than the null model for source reconstruction. We were able to further corroborate this explanation by 
showing a significant negative correlation between the difference in leadfield norm between bilateral patch pairs and 
the relative log model evidence differences for the forward model with the 0.1 – 10 scaling across simulations (Spearman 
correlation coefficient: -0.7935, p <.0.00001). 

While we expected a cut-off where increasingly large scaling factors would again lead to a decrease in model evidence 
(as neglecting the weaker dipole entirely makes it increasingly more difficult to represent the sensor level pattern 
accurately), we found that even extreme and biologically implausible scaling pairs yielded large positive log model 
evidence differences. We speculate that this observation can be explained by the decrease in source power needed to 
explain the stronger current source surpassed the disadvantage of having to model the sensor activity due to the weaker 
current source, as the latter can still be approximated by neighbouring vertices, albeit at the cost of increased model 
complexity65.  
 
Our ability to infer the true underlying myelin density by means of myelin-informed forward models and Bayesian model 
comparison is thus limited. 

Application to MEG data from a visuo-motor experiment  

For the visuo-motor MEG data, we were able to demonstrate that informing the forward model using subject-specific 
myelin estimates can improve source reconstruction accuracy across participants when using the MNE and EBB source 
reconstruction approaches.  

It is important to note that our approach is situated in a Bayesian framework and results need to be interpreted as such. 
Here we used MEG data from a visuo-motor task where the oscillatory responses to visual gratings are known to be 
generated in primary visual areas66. Myelin estimates from the R1 maps showed the expected pattern of more strongly 
myelinated primary sensory and motor areas and less heavily myelinated association areas67,68, which means that the 
leadfields corresponding to the primary visual areas were increased in the myelin-informed forward models for positive 
scalings. This is expected to result in an advantage of the myelin-informed over the null model. However, if our estimated 
source activity would have originated from a less myelinated area, using such a myelin-informed forward model would 
have been disadvantageous compared to the null model without leadfield scaling. Consequently, if we anticipate sources 
to originate from less myelinated regions, this knowledge should be incorporated as an additional prior42,69.  

Using the MSP approach, we were unable to differentiate between the different myelin-informed forward models. In 
contrast to the simulated data, for the experimental data, patch centres do not necessarily match the current source 
locations. This reduced ability to accurately represent the experimental data may have compromised our capability to 
distinguish between myelin-informed forward models. The higher variability in relative model evidence due to the higher 
number of hyperparameters that need to be estimated for source inversions with MSP priors may also have contributed 
to the inconsistent results. 

We note that the empirical data was acquired using headcasts, with improved SNR and reduced co-registration errors 
in comparison to conventional MEG, and thus represent data from favourable measurement conditions. Other studies 
aiming to apply myelin-informed forward models in MEG source reconstruction, should be aware of the requirements 
on SNR and co-registration errors when acquiring the data. 

With a data acquisition time of below half an hour, MPMs can be easily acquired next to M/EEG data, where they can 
also be used instead of a standard T1w structural scan to set up the forward model70. Furthermore, advances in ultra-
high-field qMRI techniques, with resolutions reaching 500 μm or higher, hold great promise for extending our approach 
to laminar-specific myelin-informed models5,7 and may enhance the reliability of inferring the laminar origin of MEG 
signals. 
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Limitations 

There are several caveats and limitations to this study. Although existing studies have established a link between neural 
activity and cortical myelination29,30,71, and our previous work has demonstrated that cortical myelin density estimates 
from qMRI predict the strength of neurophysiological responses38, direct empirical evidence confirming that cortical 
current density varies systematically across the cortex in accordance with myeloarchitecture is still lacking. We would 
also like to highlight that Murakami and Okada (2015)72 emphasise the invariance in maximal current dipole moment 
density across a wide range of brain structures and species. Nevertheless, the range of current densities they report 
across human neocortex - from 0.16–0.77 nAm/mm2, representing nearly a five-fold difference between the minimum 
and maximum observed values - is substantial enough to account for the variability in myelin density across cortical 
areas that we have assumed in our study. 

It is also possible that myeloarchitecture is more closely associated with brain connectivity36,71,73 or the temporal and 
spectral features of neurophysiological activity rather than with dipole moment strength. For example, Hunt et al. (2016) 
identified a significant correlation between the structural covariance of cortical myelination and electrophysiological 
networks of neural oscillatory activity. In another study, Shafiei et al. (2023)74 found that the dominant spatial gradient 
of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of 
the signal, and covaries with several micro-architectural features, including the cortical myelination gradient from early 
sensory and motor areas to associative areas. Relatedly, Mahjoory et al., 202075 reported in resting-state MEG that the 
dominant peak frequency in a brain area decreases significantly along the cortical hierarchy.  

Assuming for now that cortical myelin density is predictive of MEG signal strength, we must further appreciate that R1 
maps (like other qMRI measures) can only serve as a proxy for myelin content. Quantitative MRI parameter maps are 
sensitive to multiple tissue components to a varying extent76 and thus lack the specificity to directly infer the abundance 
of any single microstructural tissue component.  

In the present study, we assumed a linear relationship between myelin estimates from quantitative MRI and the strength 
of MEG signals. Future research could investigate more complex models that link qMRI-based myelin estimates and 
functional MEG or EEG signals. Validating these models by comparing their ability to explain experimentally measured 
data may provide valuable insights into microstructure-function relationships in the living human brain. However, our 
observation that we were only able to infer the directionality, and not the strength, of a simple bilateral myelination 
pattern in our simulations warrants caution. Finally, we note that microstructural and functional gradients have been 
reported to be increasingly dissociated in transmodal cortices77 and that the link between myelination and MEG 
measures may thus vary across cortical regions, adding an additional layer of complexity. 
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