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Abstract
Correlative dynamic imaging of cellular landmarks, such as nuclei and nucleoli, cell
membranes, nuclear envelope and lipid droplets is critical for systems cell biology and
drug discovery, but challenging to achieve with molecular labels. Virtual staining of
label-free images with deep neural networks is an emerging solution for correlative
dynamic imaging. Multiplexed imaging of cellular landmarks from scattered light and
subsequent demultiplexing with virtual staining leaves the light spectrum for imaging
additional molecular reporters, photomanipulation, or other tasks. Current approaches
for virtual staining of landmark organelles are fragile in the presence of nuisance
variations in imaging, culture conditions, and cell types. We report training protocols for
virtual staining of nuclei and membranes robust to variations in imaging parameters, cell
states, and cell types. We describe a flexible and scalable convolutional architecture,
UNeXt2, for supervised training and self-supervised pre-training. The strategies we
report here enable robust virtual staining of nuclei and cell membranes in multiple cell
types, including human cell lines, neuromasts of zebrafish and stem cell (iPSC)-derived
neurons, across a range of imaging conditions. We assess the models by comparing
the intensity, segmentations, and application-specific measurements obtained from
virtually stained and experimentally stained nuclei and cell membranes. The models
rescue missing labels, non-uniform expression of labels, and photobleaching. We share
three pre-trained models (VSCyto3D, VSNeuromast, and VSCyto2D) and a
PyTorch-based pipeline (VisCy) for training, inference, and deployment that leverages
current community standards for image data and metadata.

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.05.31.596901doi: bioRxiv preprint 

mailto:shalin.mehta@czbiohub.org
https://doi.org/10.1101/2024.05.31.596901
http://creativecommons.org/licenses/by-nc/4.0/


Introduction
Building predictive models of complex biological systems requires correlative analysis of
the dynamics of cells and organelles (1–6). Genetic tagging with multiple fluorescent
proteins is a current gold standard for multiplexed imaging of organelle dynamics(7, 8).
Despite advances in gene editing technologies fueled by CRISPR, labeling multiple
organelles with fluorescent proteins is labor-intensive, particularly in cell models that
recapitulate the native processes of an organism, such as development and neuronal
differentiation. For example, analyzing the emergence and homeostasis of cell types
during the development of the zebrafish neuromast (9, 10), requires tracking individual
cell types and developmental signals. However, engineering embryos to express
fluorescent reporters for developmental signaling, cell type, nuclei, and membranes is
time-consuming. Fluorescent tags themselves, as well as phototoxicity caused by
imaging multiple fluorescent channels, often compromise cell health. These trade-offs
are compounded in high-throughput experiments that incorporate diverse perturbations
and cell types. Multiplexed imaging of organelles and cell membranes over time and
across perturbations is slowed down by sequential multispectral fluorescence imaging.
In all of these cases, photobleaching of fluorophores limits the temporal resolution and
the duration of experiments.

Virtual staining of quantitative label-free imaging data is a promising and pragmatic
solution to the challenges mentioned above. 3D quantitative phase imaging methods
(11–16) consistently visualize several landmark organelles - including nuclei, cell
membrane, nucleoli, nuclear envelope, and lipid droplets - in a single image by
measuring their dry mass. Quantitative polarization imaging methods measure the
alignment and orientation of ordered organelles such as cytoskeleton, and can be
multiplexed with quantitative phase imaging (11, 13, 17, 18). Raman microscopy also
reports several organelles based on relative concentrations of nucleic acids, amino
acids, and lipids (19, 20). If the distribution of these physical and chemical properties is
correlated with the distribution of fluorescent labels, deep learning models can
demultiplex organelles observed simultaneously by label-free contrast (11, 18, 21–24).
Virtual staining also circumvents the need for laborious and error-prone human
annotations of organelles in 3D volumes and movies. Beyond the analysis of cell
dynamics, virtual staining is now widely used for rapid 3D histology from
autofluorescence, optical coherence tomography, and Raman microscopy (25–28). If
the organelles, cells, or tissue architecture of interest are consistently encoded by
label-free contrast, virtual stains are more reproducible than experimental stains that
rely on genetic engineering or tissue fixation (18) and chemical stains (27).

Above work on virtual staining suggests that it can indeed relax the longstanding
multiplexing bottleneck in dynamic imaging. Then, why is this approach not used more
widely? One of the outstanding challenges (24, 29) is that current virtual staining
models, like most deep neural networks, do not generalize to imaging parameters, cell
states, and cell types beyond the distribution represented by the training data. In this
paper, we tackle this challenge by reporting strategies to train generalist virtual staining
models that jointly predict nuclei and cell bodies across imaging conditions, cell states,
and cell types.
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Segmentation of nuclei and cells is a common first step in image-based phenotyping,
given the heterogeneity of cellular responses. Several generalist segmentation models
have been reported with diverse architectures (30–33) to segment nuclei and cells from
fluorescence images. The majority of these models were not trained with high-resolution
quantitative label-free imaging data and do not generalize to these datasets. Fine-tuning
these models for quantitative label-free images requires expensive human annotation.
We show that the combination of generalist virtual staining with off-the-shelf generalist
fluorescence segmentation models enables reliable single-cell analysis.

This paper makes the following specific contributions: a) physics-based deconvolution
and data augmentation strategies that make the virtual staining models invariant to
nuisance changes in imaging parameters, and generalize them to a different phase
contrast without requiring experimental training data, b) training protocols that
generalize virtual staining models to cell states observed during development and
differentiation, c) training protocols that generalize the virtual staining models to multiple
cell types with minimal training data, d) a scalable convolutional image translation
architecture (UNeXt2), and e) trained models for virtual staining of nuclei and
membrane from widely deployable Zernike phase contrast or quantitative phase
contrast data. Additionally, we provide a permissively licensed pythonic pipeline, named
VisCy (34), for model training, inference, and evaluation that implements these
strategies. We assess the gains in performance due to architectural refinement,
augmentation strategies, and training protocols using a suite of metrics that include
regression metrics, instance segmentation metrics, and application-specific metrics.

Results
Data, architecture, and metrics
Virtual staining models are trained using paired label-free and fluorescence images
(Figure 1A, orange and blue arrows). Once a model is trained, only the label-free input
is needed for inference (Figure 1A, orange arrows). We focus on training the models
with an inexpensive quantitative phase imaging (QPI) method of “phase from defocus”
(11, 35, 36), which can be implemented on any motorized widefield microscope. This
straightforward QPI method consists of acquiring a z-stack in transmission and
deconvolving phase density (Methods-Preprocessing) using an optical transfer function
that maps the specimen’s 3D phase density (i.e., local dry mass) to the 3D contrast
variations.

With the primary goal of accelerating single-cell phenotyping, we developed models for
joint virtual staining of nuclei and cell membranes (Figure 1B) that address distinct use
cases: 3D virtual staining of HEK293T from the OpenCell library of
endogenously-tagged human cells lines (VSCyto3D), 3D virtual staining of zebrafish
neuromasts for analyzing cell growth and death during development (VSNeuromast),
and 2D virtual staining for high throughput screens across multiple cell types, HEK293T,
A549, BJ-5ta, and induced neurons (iNeurons) (VSCyto2D). In all of these applications,
virtual staining and generalist segmentation models are used in tandem to segment the
nuclei and cells from label-free images. Combination of QPI and complementary
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fluorescence sensors then enable phenotyping of functional states with single-cell
resolution (Figure 1A, single-cell phenotyping).

We use a purely convolutional architecture that draws on the design principles of
transformer models. A variety of convolution and attention-based architectures have
been reported for image translation and cell segmentation. There is an active debate
whether transformer models that use attention operation (31–33, 37) fundamentally
outperform convolutional neural networks that rely on the inductive bias of shift
equivariance. Systematic comparisons suggest that convolutional models perform as
well as transformer models (37, 38) when large compute budget is spent, and
outperform the transformer models when moderate compute budget is spent.
Therefore, we integrate the design choices from UNet (39), convNeXt v2 (40), and
SparK (41) architectures to develop an efficient and scalable architecture, named
UNeXt2 (Figure 1A).

UNeXt2 architecture can be used for 2D, 3D, or 2.5D (11) image translation. The
module in the network that enables flexible choice of number of slices in the input
stacks and output stacks is a projection module in the stem and head of the network.
The body of the network is a UNet-like hierarchical encoder and decoder with skip
connections that learns a high-resolution mapping between input and output. The
choice of layers, blocks, and the loss function are described in Methods-Model
architecture and Table 2. The UNeXt2 architecture provides 15x more learnable
parameters for 3D image translation than our previously published 2.5D UNet at the
same computational cost (Table 1). The efficiency gains are even more significant when
compared to 3D UNet. This approach enables the allocation of the available computing
budget to train moderate-sized models faster or to train more expressive models that
generalize to new imaging conditions and cell types. Interestingly, the models trained for
joint prediction of nuclei and membrane are slightly more accurate than models trained
for prediction of nuclei alone (compare metrics shown in Table 1).

We use Cellpose(30) (see Methods-Model Evaluation, Figure S1) for segmenting the
virtually stained nuclei and membrane. Joint virtual staining of nuclei and membranes
enables more accurate cell segmentation (30). The Cellpose model requires significant
fine-tuning with QPI images but works well with virtually stained images of nuclei and
cell membrane, primarily because the training set of Cellpose included only classical
Zernike phase contrast (42) and fluorescence data. As seen in Figure 1B, virtually
stained images are intrinsically denoised because the models cannot learn to predict
random noise. This feature obviates the need to train models that are robust to noise,
such as Cellpose3 (31).

We assess the performance of the models using regression metrics (Pearson
correlation), instance segmentation metrics (average precision), and application-specific
metrics (e.g., cell count, cell area). Due to the variations in experimental labeling and
the need to fine-tune Cellpose models to new cell shapes, we cannot rely on
experimental fluorescence images and segmentations obtained with Cellpose as
absolute ground truth. For example, boundaries of BJ-5ta cells at low magnifications
(Figure 1B, Figure S1) are challenging to segment, because they have diverse shapes
and grow on top of each other. Therefore, this paper first compares the experimental
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and virtually stained images and their segmentations, followed by quantifying the
observations with metrics. The instance segmentations are compared using average
precision (AP) between segmented nuclei (or cell membranes) from fluorescence
density images and from virtually stained images. An instance of a cell is considered
true positive if the intersection over union (IoU) of both segmentations reaches a
threshold. We compute AP at IoU of 0.5 (AP@0.5) to evaluate correspondence between
instance segmentations at the coarse spatial scale and mean AP (mAP) across IoU of
0.5-0.95 to evaluate the correspondence between instance segmentations at the finer
spatial scales. Model refinement and hyperparameter optimization are guided by
application-driven metrics such as cell size of cultured cells and nuclei count in
neuromasts (Figure 1C), in addition to regression and segmentation metrics.

VSCyto3D and VSNeuromast are trained in a supervised fashion using UNeXt2
architecture and mixed loss. VSNeuromast is fine-tuned to new developmental stages
using sparsely sampled time series of label-free and fluorescence volumes. VSCyto2D
model is trained with a pre-training/fine-tuning paradigm common for language and
vision transformers. Subsequent results describe each of these training protocols and
our findings on the regime of generalization of the resulting models.

Robustness to imaging parameters
Nuisance variations in label-free images, such as change in the type of phase contrast
and optical aberrations, degrade the performance of virtual staining models. Common
strategies to improve the robustness of the models is to include more training data,
either by acquiring data under diverse conditions and by synthesizing training data by
augmentation of the existing training data. Generating well-registered experimental
training data for image translation across a variety of imaging conditions is onerous.
Since the image formation process of microscopes can be modeled accurately, we
reasoned that deconvolution of raw data and the augmentation of deconvolved data
informed by the image formation process of microscopes can lead to virtual staining
models robust to variations in imaging parameters. These computational experiments
led to the VSCyto3D model.

The effect of deconvolution on performance of virtual staining models is evaluated by
training four virtual staining models that translate between combinations of raw and
deconvolved images using UNeXt2 architecture (Figure S2) as shown in Figure 2A.
Deconvolution of raw intensities at the preprocessing stage (Methods-Preprocessing)
can remove nuisance variations due to imperfect imaging conditions and improve
contrast of biological structures in the image data. Deconvolution removes slowly
varying intensity and phase variations that typically arise due to non-uniform illumination
or meniscus of fluid that forms in imaging chambers. As shown in Figure 2A,
deconvolution of phase density (Phase) from brightfield (BF) data (11, 35) and
deconvolution of fluorescence density (FL density) from raw fluorescence (FL) improves
the contrast for organelles. The visualization of organelles is improved because spatial
frequencies that represent organelle texture are typically within the middle of the
passband of optical microscopes. These spatial frequencies are transmitted to the
image, but also suppressed. The deconvolution corrects this imbalance. The
deconvolved phase density also reports the local dry mass of the cells more
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consistently. In brightfield images, dense structures are transparent in focus, and
brighter or darker relative to the background when out of focus. In the deconvolved
phase density images, the contrast is more uniform (Figure 2A). The model trained to
predict fluorescence density from phase density leads to the sharpest predictions of
nuclei and membrane. This is reflected in higher average precision (AP) and higher AP
at the IoU (Intersection over Union) threshold of 0.5 (AP@0.5) between the instance
segmentations of nuclei from fluorescence density images and from virtually stained
images (Figure S3).

Interestingly, the deconvolution causes a drop in Pearson correlation coefficient (PCC)
between virtually stained and fluorescence density images, because the virtually stained
fluorescence is inherently smooth (Figure S3). The smoothing enables robust
segmentation of landmark organelles in the presence of noise, but is detrimental for
virtual staining of structures close to the resolution limit of the microscope. The
improvement in segmentation metric, but worsening of regression metric due to
deconvolution of data illustrates the need for nuanced interpretation of the metrics.

Data augmentations that account for the formation of natural and medical images have
been important for robust representation learning (43) and segmentation (44). We
reasoned that training data should be augmented with spatial and intensity filters
inspired by the image formation of microscopes to make the predictions of our models
invariant to exposure, noise, the size of the illumination aperture, and similar nuisance
variations in imaging parameters. Figure 2B illustrates the images without and with such
spatial and intensity augmentations (Methods-Data Augmentations). The predictions
(Figure 2B, virtual staining with augmentations) and segmentations (Figure S4) across
the test dataset become invariant to variations in imaging parameters as we incorporate
spatial and intensity augmentations inspired by image formation. As expected, the
scaling augmentations make the model equivariant to magnification.

Fluorescent labeling is stochastic, especially when cells are engineered to express
multiple fluorescent tags (7). Sampling the patches from the training data in proportion
to the degree of labeling makes the models robust to partial and uneven labeling as
shown in Figure 2B (white box). In fact, the VSCyto3D model rescued the nuclear stain
in the fields of view from the test dataset (Figure S5) where many cells were missing the
nuclear stain. Comparison of the 3D distribution of experimentally and virtually stained
nuclei and membrane in a through focus movie (Video 1) shows that virtual staining
improves the uniformity of labeling of cell membrane.

We also explore if the label-free input images can be simulated to mimic acquisition with
a different light path that transfers less information than the light path with which the
training data was acquired. Filters informed by the image formation process were
included in the augmentation pipeline for input data to simulate the data acquisition with
Zernike phase contrast (PhC). This strategy enabled generalization of the VSCyto3D
model to PhC images (Figure 2C) not seen during the training. The raw fluorescence
images of labeled nuclei and membranes acquired with the PhC objective were
significantly blurrier and noisier (Figure 2C, raw fluorescence) than those acquired with
the widefield objective, due to the phase ring specific to the PhC objective that absorbs
and filters fluorescence emission. Interestingly, virtually stained nuclei and membranes
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are sharper (Figure 2C, virtual staining with augmentation), and therefore lead to
sharper instance segmentations of nuclei and membranes (Figure S6). In other words,
the augmentations we devised expanded the input image space to include Zernike
phase contrast-like images, while constraining the space of possible output images to
sharp fluorescence density images. This strategy also enabled synthesis of training
datasets at 20x magnification for training VSCyto2D model (Figure 1B, Methods-Model
Training).

The degree of perturbation to which the model is robust was assessed by simulating the
blur and contrast stretch in the input image. The VSCyto3D model performs well, even
when the images show significant blur and contrast variation (Figure S7). This implies
that the model is robust to variations in numerical aperture that modulate the resolution
and contrast of a phase image. In order to spot-check that the VSCyto3D model learns
a meaningful mapping between imaging modalities, we visualize the feature maps
(Methods - Model visualization) at each level of encoder and decoder (Figure S8) for a
randomly chosen test image. The boundaries of cells and nuclei can be identified at
higher levels of abstraction in the encoder and the decoder.

These results demonstrate a training protocol for robust virtual staining that consists of
acquiring training data at the highest possible resolution, deconvolving it with an image
formation model, augmenting with filters to mimic the changes in contrast and
resolution, and sampling it in proportion to the degree of labeling.

Virtual staining of evolving 3D organs
Another key challenge in virtual staining is to accurately predict landmark organelles
during morphological changes associated with development and differentiation. One
such example are the neuromasts of the zebrafish lateral line, whose three-dimensional
shapes and textures change throughout their development (9, 10). Using zebrafish
neuromasts as a model system, we explore an economical strategy to generalize 3D
virtual staining models (VSNeuromast) to different developmental stages. Moreover, the
training protocol provides robustness to imaging challenges characteristic of in-vivo
time-lapse experiments.

We trained a baseline VSNeuromast model with UNeXt2 architecture with 21 z-slices as
input and output (Figure 1, Figure S9) following the training protocol described for the
VSCyto3D model, using data acquired on the widefield fluorescence microscope at two
developmental stages (3dpf and 6.5dpf, dpf = days post fertilization). When this model
was used to predict nuclei and membrane at 4 dpf and compared with confocal images
of nuclei and membrane, no hallucinations were noticed, but the predictions were blurry
(Figure 3A, row: virtual staining without fine-tuning). Images at 4dpf are slightly out of
the distribution of the training data acquired at 3dpf and 6.5dpf.

An economical strategy for generalization of virtual staining across developmental time
without the risk of hallucinations is to fine-tune a pre-trained model with coarsely
sampled pairs of label-free and fluorescence data. With this strategy, nuclei and cells
can be tracked at high temporal resolution with phase imaging and the model’s
accuracy can be continuously calibrated. This approach can reduce the photodamage,
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enabling faster and longer imaging of developmental dynamics. To assess the viability
of this approach, the movie of neuromasts imaged at 4dpf is subsampled by the factor
of 1/12 to create a fine-tuning training set. The fine-tuning workflow is described in
Methods-Model Training and Figure S10. Visualization of predictions on a neuromast
from the validation set (Video 2) illustrates how blurry predictions of the pre-trained
model are sharpened during fine-tuning.

The fine-tuned model is more accurate (Figure 3A, row: fine-tuned virtual staining). As
shown in Figure 3B, fine-tuning improves the PCC between the virtually stained nuclei
and membrane and experimentally stained nuclei and membrane. The fine-tuned model
enables robust virtual staining of nuclei and membrane in 3D and over time as seen
from the comparison of experimental and virtually stained neuromast in Video 3.

The virtually stained nuclei show a more uniform intensity distribution than the
experimentally stained nuclei as seen from Figure 3A and Figure 3C. The dimmer
nuclei in the fluorescence density image are missed by the segmentation model but are
rescued by virtual staining (Video 4). A comparison of the mean cell count over time
obtained from fluorescently labeled and virtually stained nuclei of five lateral line
neuromasts corroborates the rescue (Figure 3B, cell count, green curve vs blue curve)
of dim nuclei seen in Video 4 and Figure 3C. A comparison of instance segmentation
from experimentally and virtually stained membrane shows less pronounced, yet
measurable, rescue of cells by virtual staining (Figure 3B, cell count, magenta curve vs
orange curve). In both experimental and virtually stained neuromasts, we notice
extraneous cell segmentations at the edge of neuromasts. These extraneous
segmentations can be filtered via tracking.

The mean intensity of each segmented cell’s nuclei and membrane were compared
(Figure 3D) to assess whether the model can rescue photobleaching. The experimental
membrane channel shows clear photobleaching. On the other hand, the photobleaching
is measurably, but not fully, corrected by the fine-tuned virtual staining model. After
further refinement, we anticipate that virtual stain can substitute the experimental stain
and reduce photobleaching/photodamage.

Interestingly, the VSNeuromast model virtually stains cells around the yolk, because the
size and texture of these cells resemble cells of neuromast. These cells can be easily
filtered in post-processing as shown in Figure S11. This data, however, suggests a
possibility of training a model that virtually stains all nuclei in zebrafish if the phase
images are acquired with sufficient resolution.

The features learned by the VSNeuromast model were interpreted by visualizing the
feature maps learned by the encoder and decoder (Methods-Model Visualization). The
model indeed represents shapes of nuclei, membrane, and neuromast as seen from the
principal components of the feature maps shown in Figure S12 for an example input
image of neuromast. These results show that the fine-tuning of a virtual staining model
on subsampled pairs of phase and fluorescence volumes enables generalization across
developmental stages and can mitigate the photodamage caused by high-temporal
fluorescence imaging.
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Few-shot generalization to new cell types
Next, we report generalization of robust virtual staining models to new cell types with
minimal new training data using a pre-training/fine-tuning paradigm common in
language and vision modeling. Collecting large amounts of paired label-free and
fluorescence images with sufficient diversity of cell morphology is often difficult. For
example, consistent labeling of cell membranes requires genetically expressed peptides
(e.g., CAAX) that localize to cell membranes. Engineering cells to express genetic
labels is time-consuming and challenging in cells that are not immortalized. Since the
landmark organelles exhibit common morphological features across cell types, we
reasoned that adapting the pre-training/fine-tuning protocol developed for image
classification (40) to image translation can enable few-shot generalization of virtual
staining models to a new cell type.

We explore generalization of the models for virtual staining of nuclei and cell
membranes in HEK293T and A549 to two new cell types: BJ-5ta, immortalized
fibroblast cells used in toxicology research, and iNeurons derived from KOLF2.1J-NGN2
human induced pluripotent stem cells (iPSCs), used in neurobiology research. Virtual
staining of BJ-5ta cells will be used for image-based screening of cellular impacts of
viral infection. Virtual staining of iNeurons will be used for label-free quality control (QC)
of the differentiation process. Maintenance and differentiation of iPSCs takes weeks and
requires diligent care. Due to high batch-to-batch variability, robust QC is essential to
ensure reproducible differentiations and measurements. QC of iNeurons involves
evaluating the morphology of the cells to ensure they exhibit the expected neuronal
phenotype, including the presence of cell bodies, neurites, and axons. The neuronal
phenotype is typically evaluated with the following morphological features: 1) cell bodies
exhibit a characteristic round or polygonal shape with prototypical size and a centrally
located nucleus; 2) Mature neurons exhibit neurites, including axons and dendrites,
projecting from the cell body.

The computational experiments described next use 2D images at lower magnification
(see Method-Model Training for details) common in image-based screens and result in
the VSCyto2D model.

Figure 4A illustrates a self-supervised pre-training and supervised fine-tuning protocol,
which uses images of HEK293T and A549 cells for pre-training virtual staining models
that are fine-tuned for virtual staining of BJ-5ta and iNeuron cells. During
self-supervised pre-training (Figure 4B), the phase images are randomly masked, and
the unmasked pixels are used to predict the masked pixels in each training patch
(Methods-Model Training), following the fully convolutional masked autoencoder
(FCMAE) protocol reported for image classification (40). The model is pre-trained in
two steps: 1) The encoder and decoder weights are optimized with just phase images of
HEK293T and A549 cells using the masked autoencoding task shown in Figure 4B, 2)
The weights are transferred to a virtual staining model that is pre-trained to predict
fluorescent nuclei and cell membranes using HEK293T and A549 cells. Video 5 shows
that the model pre-trained with HEK293T and A549 datasets generalizes well to diverse
cell shapes of A549 cells observed throughout the cell cycle. After the pre-training, the
model is fine-tuned with data acquired with a new cell type (BJ-5ta or iNeuron) that has
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a distinct morphology. The computational graphs of the models used for pre-training and
fine-tuning are shown in Figure S13.

When using data from just one cell type (HEK293T), the pre-training/fine-tuning protocol
slightly improves the visual sharpness of predicted images as shown in Figure S14. As
shown earlier (Figure S5), some of the fields of view had missing nuclei labels. These
fields of view were proofread, and segmentation and regression metrics (Figure S14)
were computed from virtually stained and experimental fluorescence images. These
metrics show that the models pre-trained on label-free images with masked
autoencoder, and fine-tuned on paired data are as accurate as models trained from
scratch.

Figure 4C reports few-shot generalization to BJ5-ta cells. The images (Figure 4C) and
segmentations (Figure S15) show that the pre-trained model after being fine-tuned with
6 fields-of-views (FOVs) performs as well as the model trained from scratch on with
~100 FOVs. Visualization of the evolution of the predictions from the validation set
(Video 6) for the models trained with different training protocols show that pre-trained
models produce useful predictions from the first epoch. Comparing the segmentation
metrics for nuclei and membrane as a function of the number of training FOVs (Figure
4D) confirms that pre-trained/fine-tuned models scale better, i.e., generate more
accurate predictions, relative to the models trained from scratch.

The effect of different training protocols on features learned by the models is illustrated
by visualizing the feature maps of the models (Methods-Model Visualization). We find
that the model pre-trained on phase images (Figure S16 , column 3, rows: encoder
stages) learns a more regular representation of cell boundaries than the models trained
on just the virtual staining task (Figure S16, columns 1 and 2, rows: encoder stages).

Figure 4E reports fine-tuning of the VSCyto2D model to predict the soma and neurites
of iNeurons from phase images. The images acquired with vital dyes (Figure 4E, raw
fluorescence) that stain nuclei and live cells were pre-processed (Methods-VSCyto2D)
to suppress the dead cells. In this case, the cells that didn't attach to the substrate at the
start of differentiation died. The pre-processing step synthesizes clearer contrast for
neurites (Figure 4E, pre-processed, magenta) and for soma (Figure 4E, pre-processed,
green). The synthesized fluorescence channels were used as a target for fine-tuning the
VSCyto2D model. The fine-tuned model enables detection of soma and neurites (Figure
4E, virtual staining) even in the presence of dead cells in the field of view (Figure 4E,
phase). The utility of the virtual staining model for QC of differentiation is assessed by
segmenting the soma and neurite from pre-processed fluorescence images or virtually
stained images, and computing the following metrics of neuronal phenotype (Figure 4F):
number of live soma per field of view, total length of neurites within a field of view, and
the number of neurites/soma. The features retrieved from virtually stained images
corroborate the features retrieved from pre-processed fluorescence images. The model
achieved this robustness with a training and validation set consisting of ~500 iNeurons,
in contrast to ~11000 HEK293T and A549 cells used during pre-training.

Taken together, the above results establish a training protocol for generalizing virtual
staining models to new cell types.
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Discussion
Above results demonstrate several new strategies for virtual staining of cellular
landmarks across imaging conditions, cell states, and cell types. The physics-informed
data augmentations enabled zero-shot generalization of the VSCyto3D model to
Zernike phase contrast without the need to acquire training data with this modality.
These augmentations also made the model robust to nuisance factors such as
non-uniform illumination and changes in numerical aperture. This robustness is
particularly critical for practical image-based screens that integrate data from diverse
microscopes with varying imaging conditions and optical aberrations. The fine-tuning of
the model using subsampled time series led to generalization of the VSNeuromast
model to different developmental stages. Lastly, the pre-training/fine-tuning protocol
enabled few shot generalization of the VSCyto2D model to new cell types. This strategy
leverages the consistency of organelle shapes across different cell types, significantly
reducing the data requirements for training robust virtual staining models. The
performance improvement achieved by pre-training with a masked autoencoding task
followed by fine-tuning suggests a viable strategy for scaling virtual staining models to a
broader range of biological samples.

We report a diverse set of evaluation metrics, including regression metrics, instance
segmentation metrics, and application-specific measurements to evaluate the models’
performance for real-world biological research. Inspection of learned features confirms
that the data augmentation strategies and training protocols described guide the model
in learning a semantic mapping of cell structures between input and target imaging
modalities. This capability is fundamental for the accurate virtual staining of cellular
structures. We also illustrate failure modes and regime of validity of each of the three
models reported here.

This work paves the way for the following developments in virtual staining and its
applications. First, simulations with image formation models may further generalize the
models to other phase imaging modalities without the need to acquire new data.
Second, the test-time augmentations may make predictions of our models even more
robust. Third, the pre-training/fine-tuning strategy may be extended to train decoders for
landmark organelles other than nuclei and cell membranes, such as nucleoli and lipid
droplets. Fourth, the pre-training strategy can be used across developmental stages of
zebrafish, enabling label-free tracking of cells across developing embryos. Finally, the
training protocols developed for virtual staining can be adapted for segmentation
models, potentially leading to joint virtual staining and segmentation models that offer
even greater generalizability and accuracy.

We share the above models and the pipeline for training, evaluating, and deploying the
models via our GitHub repository, VisCy and anticipate that our work will accelerate the
mapping and understanding of dynamic cell systems.
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Methods
Image acquisition and dataset curation
Human cell lines (HEK293T, A549, BJ-5ta, and iNeuron)
HEK293T cells are labeled with H2B-mIFP and CAAX-mScarlet following the OpenCell
protocol (45). Brightfield and fluorescence volumes of live HEK293T cells cultured in a
24-well plate are acquired on a wide-field fluorescence microscope (Leica Dmi8) with a
63x magnification, 1.3 NA glycerol-immersion objective to collect training data. For
testing robustness to different imaging conditions shown in Figure 2, additional volumes
are imaged with a 40x magnification, 1.1 NA water-immersion objective, and a 100x
magnification, 1.47 NA oil-immersion objective, at 0.25 µm Z-steps, for 96 Z-slices. For
testing generalization to the Zernike phase contrast modality, image volumes are
acquired with a 40x magnification, 0.6 NA Ph2 air objective, at 0.4 µm Z-steps, for 58
Z-slices. The images are sampled on a camera with 6.5 µm pixel size and 2048x2048
sensor For training, the Z-slice corresponding to the coverslip is determined by
maximizing the transverse mid-band power of the mScarlet fluorescence density
channel, and the Z-slices ranging from -2 µm to +12.5 µm relative to the coverslip were
kept. Volumes that do not contain this range are excluded from the training dataset. The
training dataset contains 291 volumes. For testing robustness to imaging conditions,
images were acquired on a different day with new cell cultures, and 12 volumes were
acquired for each condition.

A549 and BJ-5ta cells were cultured in 12-well plates and stained with Hoechst for
nuclei and CellMask for plasma membrane. The A549 cells were cultured in Dulbecco’s
modified eagle medium (DMEM). The cells were seeded at 1.3 ⨉105 cells/well in a 12
well glass bottom plate and imaged after 31 hours. DMEM was replaced with imaging
media right before imaging.

Human KOLF2.1J-NGN2 iPSC cells were differentiated into iNeurons following (46),
seeded in a 24-well plate in differentiation media, and imaged at 7 days post
differentiation. To determine whether our virtual staining pipeline can be used for QC of
iNeurons, we stained iNeurons with Hoechst and Calcein, a non-invasive fluorescent
dye, to assess cell viability and neuronal health. Calcein was chosen because it
specifically labels live cells, allowing for easy monitoring of viability across the neuronal
culture. Labeling depends on enzymatic activity, serving as an indicator of cell health
and metabolic function, critical for efficient differentiation. Furthermore, Calcein reports
cell morphology, which is commonly used to assess neuronal differentiations. Healthy
neurons should exhibit morphological features e.g. neurite outgrowth and network
formation, which are easily visualized by Calcein. In our hands, Calcein started to affect
the health of iNeurons within 6 hours of staining. We used only healthy cells for training
the virtual staining models.

Brightfield and fluorescence volumes of live cells were acquired on a wide-field
fluorescence microscope (Leica Dmi8) with a 20x magnification, 0.55 NA objective. The
images were sampled on a camera with 6.5 µm pixel size and 2048 by 2048 pixel
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sensor size, at 1 µm Z-steps. Each dataset was split into a training and validation
subset and a testing subset as shown in the following table:

Cell type Training and validation FOVs Testing FOVs

A549 24 7

BJ-5ta 138 12

iNeuron 70 11
An additional A549 dataset (Video 5) was acquired to test the generalization of the
VSCyto2D model to dynamic cell states. Time-lapse imaging was performed at a time
interval of 1 hour, for a total of 17 hours.

Zebrafish neuromasts
Following the approved IACUC protocols, this study utilizes transgenic zebrafish lines
expressing she:H2B-EGFP and cldnb:lyn-mScarlet (47) to label the nucleus and cell
membrane, respectively, of the neuromasts. The VSNeuromast model utilizes
neuromasts collected from three developmental stages: 3, 6 and 6.5 dpf (days
post-fertilization: dpf). The datasets are composed primarily of lateral line neuromasts
resulting in a dataset with 273 total volumes (160 volumes from 3dpf, 57 from 6dpf and
56 from 6.5dpf) with ZYX shape (107, 2048, 2048) or (35.3µm, 237.6µm, 237.6µm). The
dataset was split 80/20 for training and validation respectively. Additionally, 6
neuromasts from an acquisition from a different fish and day are used as a test dataset.
For each neuromast, a brightfield and two fluorescence channel stacks were acquired at
Nikon PlanApo VC x63 1.2NA objective on an ASI Rapid Automated Modular
Microscope System (RAMM) through the same optical path using a Andor
ZYLA-4.2P-USB3-W-2V4 sCMOS camera. Channels were well registered because they
shared the same imaging path. The fluorescence stacks of labeled nuclei and cell
membrane were used as target channels.

The VSNeuromast model is fine-tuned for Figure 3 using the same transgenic line. Five
lateral line neuromasts are imaged with an Olympus IX83 dual turret microscope system
using a 63x objective for fluorescence and label-free imaging every 5 minutes over a
total of 12hrs. The VT-iSIM system with a Hamamatsu Quest v1 C15550-20UP qCMOS
camera with 4.6 µm pixel size is used for the fluorescence imaging. The label-free
imaging uses a custom imaging path built on the first level of the microscope body using
a 200mm tube lens (Thorlabs TTL-200A MP) resulting in 66x effective magnification
using a machine vision camera (BFS-U3-51S5M-C). The test dataset was acquired with
a temporal interval of 5 minutes and the fine-tuning dataset is created by subsampling
the timelapse by using the volumes acquired every hour. The fine-tuning datasets are
split 80/20 into training and validation datasets.

Data conversion
All internal datasets are acquired in uncompressed lossless formats (i,e OME-TIFF and
ND-TIFF) and converted to OME-Zarr (48) using iohub (49), a unified python library to
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convert from common bio-formats (i.e OME-TIFF, ND-TIFF, Micro-Manager TIFF
sequences) and custom data formats to OME-Zarr.

Preprocessing
Deconvolution of phase density and fluorescence density
The reconstruction from brightfield and fluorescence stacks to phase density and
fluorescence density is performed with the recOrder library (11, 35, 50). Briefly, the
acquired brightfield and fluorescence stacks are modeled as filtered versions of the
unknown specimen properties, phase density and fluorescence density, respectively.
This blur is represented by a low pass optical transfer function (OTF) in Fourier space
and a point spread function in the real space, which are simulated using properly
calibrated parameters of the imaging system (numerical apertures of imaging and
illumination, wavelength of illumination, and pixel size at the specimen plane). The
simulated OTFs are used to restore phase density and fluorescence density,
respectively, from the brightfield and fluorescence stakes using a Tikhonov-regularized
inverse filter.

Registration
The label-free and fluorescence channels are registered with shrimPy (51). The
resulting volumes are cropped to ZYX shape of (50, 2044, 2005) for the HEK293T
Zernike phase contrast test dataset, (9, 2048, 2048) for A549, (12, 2048, 2009) for
BJ-5ta, and (26, 2048, 2007) for iNeuron. The neuromast datasets acquired with the
wide-field fluorescence microscope are registered to the phase density channel and
cropped to (107, 1024, 1024). The datasets acquired in the iSIM setup are cropped to
(81, 1024, 1024).

Additional preprocessing (iNeuron)
The fluorescence signal in iNeuron cells was further processed to improve contrast for
virtual staining and segmentation.

For the Calcein channel, the soma is much brighter than the neurites. Mean projection
along the axial dimension and natural logarithm of one plus the input (‘log1p’) are
applied to compress the dynamic range. The result is normalized so that the 99th
percentile is 0, and the 99.99th percentile is 1, and then clipped to a range of 0 to 5.

To suppress fluorescence from dead cells in the Hoechst channel, the max projection of
Hoechst volumes is multiplied with the mean projection of the raw Calcein channel. The
result is normalized so that the median is 0, and the 99.99th percentile is 1, and then
clipped to a range of 0 to 5.

To match the shape of the fluorescence channels, a single Z-slice (at 8 µm from the
bottom of the volumes) is taken from the phase channel as the input to virtual staining
models.
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Model architecture
We use an asymmetric U-Net model with ConvNext v2 (40) blocks for both virtual
staining and FCMAE pre-training. The original ConvNext v2 explored an asymmetric
U-Net configuration for FCMAE pre-training and showed that it has identical fine-tuning
performance on an image classification task. In the meantime, SparK (41) used
ConvNext v1 blocks in the encoder and plain U-Net blocks in the decoder for its masked
image modeling pre-training task. We use the ‘Tiny’ ConvNext v2 backbone in the
encoder. For FCMAE pre-training, 1 ConvNext v2 block is employed per decoder stage.
For virtual staining models, each decoder stage consists of 2 ConvNext v2 blocks.

Model training
Intensity statistics, including the mean, standard deviation, and median were calculated
at the resolution of FOVs and at the resolution of the whole dataset by subsampling
each FOV using square grid spacings of 32 pixels in each camera frame. These
pre-computed metrics are then used to apply normalization transforms by subtracting
the choice of median or mean and dividing by the interquartile range or standard
deviation respectively. This enables z-scoring of the training data at the level of the
whole dataset, at the level of each FOV, and at the level of each patch (11), depending
on the use case.

Training objectives
The mixed image reconstruction loss (52) is adapted as the training objective of virtual
staining models: . is the multi-scale
structural similarity index (53) measured without downsampling along the depth
dimension, and is the L1 distance (mean absolute error). The virtual staining
performance of different loss functions is compared in Table 2.

The mean square error (MSE) loss is used to pre-train the FCMAE models on label-free
images, following the original FCMAE implementation (40).

Data Augmentations
The data augmentations are performed with transformations from MONAI (44).

Spatial augmentation

MONAI transformation Parameters

Random scaling ±0.3 or ±0.5 in XY, and ±0.2 in Z.

Random rotation ±π around the Z axis.

Random shearing ±0.05 in XY
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Random XY flip only used for VSCyto2D

Intensity augmentations

MONAI transformation Parameters

Random contrast adjustment gamma range (0.8, 1.2)

Random intensity scaling ±0.5

Random Gaussian blur: sigma range (0.25, 0.75) in XY

Random Gaussian additive noise strength determined per dataset (sigma 0.3-5).

VSCyto3D
Normalization
For each channel in the HEK293T dataset, the image volume is subtracted by its
dataset level median and divided by the dataset level interquartile range.

Training
Models are trained with a warmup-cosine-annealing schedule on 4 GPUs with the
distributed data parallel (DDP) strategy. A mini-batch size of 32 and learning rate of
0.0002 is used. Training and validation patch ZYX size is (5, 384, 384). For testing the
effect of deconvolution (Figure 2B), models are trained for 100 epochs. For testing
robustness to imaging conditions (Figure 2D), models are trained for 50 epochs.

VSNeuromast
Data pooling
The data used in our methods is pooled from four OME-Zarr stores, which contain
neuromasts from 3dpf, 6dpf, and 6.5dpf stages. These stores include both the whole
field of view (FOV) and a center-cropped version focused on the neuromast. For the
cropped FOVs, a weighted cropping technique is applied to ensure the inclusion of
training patches containing the neuromast. Conversely, the uncropped dataset employs
an unweighted cropping method to incorporate additional contextual information. A high
content screening (HCS) dataloader was developed to sample equally from the multiple
datasets with variable length.

In the fine-tuning step, the experimental fluorescence channels were registered to the
phase density channel and required downsampling of the data by the factor of 2.1 to
match the pixel size between the datasets used for pre-training and fine-tuning.
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Normalization
This model normalizes the label-free channel per FOV by subtracting the median and
interquartile range.

Training
The models are trained with a warmup-cosine-annealing schedule on 4 GPUs with the
distributed data-parallel (DDP) strategy. This model uses datasets from 3dpf and
6-6.5dpf using mini-batch size of 6 from each dataset and learning rate of 0.002.

The VSNeuromast model is initially trained using ZYX patch size of (15,384,384) for 150
epoch. The weights from this model are loaded to train a model that takes ZYX patch
size of (21,384,384) to improve the Z prediction accuracy. Training and validation patch
ZYX size is (21, 384, 384). This model is trained for 30 epochs.

Fine-tuning
The expression of nuclei and cell membrane labels in neuromast was equalized using a
contrast adaptive histogram equalization (CLAHE) with a kernel size of [5,32,32] (z,y,x).
The model is fine-tuned using the model’s checkpoint
(‘neuromast_3n6dpf_21plane_v1_mixedloss_weightedcrop_hotstart_v1’) using prior
patch sizes (21,384,384), learning rate 2e-4 with a warmup-cosine-annealing schedule
on 4 GPUs with DDP strategy. The model is trained with 45 epochs.

The fine-tuned model is used to generate predictions shown in figures. The fine-tuned
model generalizes to datasets using the same imaging setup the VSNeuromast model
is trained on (Figure 1) and datasets acquired on iSIM setup described in Methods
(Figure 3).

VSCyto2D
Data pooling
Image volumes of HEK293T cells are downsampled from the 63x dataset with ZYX
average pooling ratios of (9, 3, 3). For the VSCyto2D model reported in Figure 1,
training data are sampled from the downsampled HEK293T dataset, the A549 dataset,
and the BJ-5ta dataset with equal weights.

Normalization
Each image volume is independently normalized before being used for model input. The
phase channel is normalized to zero mean and unit standard deviation, and the
fluorescence channels are normalized to zero median and unit interquartile range. For
the iNeuron dataset, normalization is only applied for the phase channel.

Pre-training
FCMAE pre-training with phase images is performed with a warmup-cosine-annealing
schedule for 800 epochs on 4 GPUs with the DDP strategy and automatic mixed
precision (AMP). A mini-batch size of 32 and learning rate of 0.0002 was used. Mask
patch size is 32, and masking ratio is 0.5. Training and validation patch ZYX size is (5,
256, 256).

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.05.31.596901doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.31.596901
http://creativecommons.org/licenses/by-nc/4.0/


Fine-tuning
For fine-tuning, the encoder weights are loaded from FCMAE pre-trained models when
applicable. The models are then trained for the virtual staining task with the encoder
weights frozen or trainable. Models are trained on 4 GPUs with the DDP strategy and
AMP. Training and validation patch ZYX size is (5, 256, 256). For testing data scaling
with BJ-5ta, models are trained with a constant learning rate of 0.0002. 6-FOV models
are trained for 6400 epochs, 27-FOV models are trained for 1600 epochs, and 117-FOV
models are trained for 400 epochs. For fine-tuning the VSCyto2D model for virtual
staining of iNeurons, all parameters of the model are trained, using a
warmup-cosine-annealing schedule for 1600 epochs.

Datasets used for model training

Model Reported
results in

Phase data for
FCMAE pre-training

Phase and
fluorescence data
for virtual staining
pre-training

Phase and
fluorescence
data for
fine-tuning

VSCyto2D Figure 1 HEK293T, A549,
BJ5-ta

HEK293T, A549,
BJ5-ta

-

VSCyto2D-
BJ5-ta

Figure 4 HEK293T, A549 HEK293T, A549 BJ5-ta

VSCyto2D-
iNeuron

Figure 4 HEK293T, A549 HEK293T, A549 iNeuron

Inference using trained models
For the 2D virtual staining model VSCyto2D, each slice is predicted separately in a
sliding window fashion.

For the 3D virtual staining models (ie. VSCyto3D and VSNeuromast), a Z-sliding
window of the model’s output depth and step size of 1 is used. The predictions from the
overlapping windows are then average-blended.

Model evaluation
The correspondence between fluorescence and virtually stained nuclei and plasma
membrane channels are measured with regression and segmentation metrics. We
describe the segmentation models for each use case below. All segmentation models
are also shared with the release of our pipeline, VisCy (Code and Model Availability).

VSCyto3D
Segmentation of H2B-mIFP fluorescence density and virtually stained nuclei is
performed with a fine-tuned Cellpose ‘nuclei’ model (‘CP_20220902_NuclFL’). The
nuclei segmentation masks are corrected by a human annotator. Segmentation of cells
from CAAX-mScarlet fluorescence density and virtually stained plasma membrane is
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performed with the Cellpose ‘cyto3’ model. Due to loss of CAAX-mScarlet expression in
some cells, positive phase density was blended with the CAAX-mScarlet fluorescence
density to generate test segmentation targets. For the Zernike phase contrast test
dataset, nuclei and cells are also segmented from the phase image using the Cellpose
‘nuclei’ and ‘cyto3’ models, in addition to segmentation from experimental fluorescence
images.

PCC is computed between the virtual staining prediction and fluorescence density
images. AP@0.5 and mean average precision of IoU thresholds from 0.5 to 0.95 at 0.05
interval (AP) is computed between segmentation masks generated from virtual staining
images and segmentation masks generated from fluorescence density images.

VSNeuromast
The nuclei and cell segmentations of fluorescence images are generated with fine-tuned
3D Cellpose ‘nuclei’ model and from scratch using 19 manually corrected
segmentations. The segmentations are human-corrected by using the napari-annotator
plugin (https://github.com/bauerdavid/napari-nD-annotator) and morphological operators
such as opening, closing, and dilation to remove artifacts. The nuclei segmentation
model 'cellpose_Slices_decon_nuclei_nuclei_v7_2023_06_28_16_54' and the cell
membrane segmentation model
‘'cellpose_2Chan_scratch_membrane_2024_04_01_17_12_00’ are used for neuromast
segmentation across all figures.

The virtual staining models are evaluated by comparing the segmentations for
fluorescence density and virtual staining predictions using Jaccard, Dice, and mean
average precision (mAP) metrics at IoU thresholds of 0.5, 0.75, and 0.95. Additionally,
PCC was computed between the prediction and the fluorescence density datasets.

VSCyto2D
For HEK293T and A549, segmentation of fluorescence density images as well as virtual
staining prediction is performed with the ‘nuclei’ (nuclei) and ‘cyto3’ (cells) models in
Cellpose. For BJ-5ta, the ‘nuclei’ model in Cellpose is used for nuclei segmentation, and
a fine-tuned ‘cyto3’ model (‘CP_20240530_060854‘) was used for cell segmentation.
The nuclei segmentation target is corrected by a human annotator. Pearson correlation
coefficient (PCC) is computed between the virtual staining prediction and fluorescence
density images. Average precision at IoU threshold of 0.5 (AP@0.5) is computed
between segmentation masks generated from virtual staining images and segmentation
masks generated from fluorescence density images.

For iNeuron, the soma segmentation is performed with the ‘cyto3’ model in Cellpose.
The neurites are traced from Calcein fluorescence or virtual staining with scikit-image
(54), by multiplying the image with its Meijering-ridge-filtered (55) signal, applying Otsu
thresholding (56), removing small objects, and skeletonizing (57). The total neurite
length in each FOV is approximated by taking the sum of foreground pixels in the
neurite traces. To count the number of neurites connected to each soma, the following
steps were taken: 1) the soma foreground mask is first subtracted from the neurite
traces, 2) the soma labels are then expanded for 6 pixels (~2 µm) without overlapping,
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3) the number of neurite segments intersecting with these expanded rings that are more
than 100 pixels long, are counted as belonging to the respective soma instances.

Cellpose Segmentation Parameters
The following parameters are used for segmenting the experimental fluorescence and
virtual staining to evaluate the respective models.

VSCyto3D

Target Nuclei Cell body

Cellpose model ‘CP_20220902_NuclFL’ ‘cyto3’

Diameter 0.0 200.0

Flow Threshold 0.4 0.4

Cell probability
threshold

0.0 0.4

min_size 15 15

VSNeuromast

Target Nuclei Cell body

Cellpose model ‘cellpose_Slices_decon_nucl
ei_nuclei_v7_2023_06_28_1
6_54’

‘cellpose_2Chan_scratch_
2024_04_30_11_12_00’

Diameter 60.0 65.0

Flow Threshold 0.0 0.4

Cell probability
threshold

0.0 0.0

min_size 8000 8000

VSCyto2D

Cell type HEK293T, A549,
BJ-5ta

HEK293T,
A549

BJ-5ta iNeuron

Target Nuclei Cell body Cell body Cell body

Cellpose
model

‘nuclei’ ‘cyto3’ ‘CP_20240530
_060854’

‘cyto3’
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Diameter 0.0 0.0 150.0 25

Flow
Threshold

0.4 0.4 0.4 0.4

Cell
probability
threshold

0.0 0.0 0.0 0.0

min_size 15 15 15 800

Model visualization
Principal component analysis of learned features
Each XY pixel in the output of a convolutional stage is treated as a sample with channel
dimensions and decomposed into 8 principal components. The top-3 principal
components are normalized individually and rendered as RGB values for visualization.

Code and Model Availability
The virtual staining pipeline is implemented as part of an open-source Python package
for single-cell phenotyping, named VisCy (a contraction of words ‘vision’ and ‘cell’). We
use PyTorch (58) and PyTorch Lightning (59) as the training framework, MONAI (44) for
data augmentation, and PyTorch Image Models (timm) (60) for building blocks.
Additionally, we implement custom I/O modules for reading and writing OME-Zarr stores
during training and inference. The models referenced in the methods above are shared
with releases and on the wiki of VisCy via GitHub (34).

Data Availability
Illustrative test datasets are accessible from scripts in released versions of VisCy. We
will share the training datasets via public archive as the review of this work progresses.
Some of the datasets are already available from our server.
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Figures
Figure 1
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Robust virtual staining:

(A) Schematic illustrating the training (blue arrows) and inference (orange arrows)
processes of robust virtual staining models using UNeXt2 with physically informed data
augmentations to enhance performance and generalizability. The models virtually stain
nuclei and membranes, allowing for single-cell phenotyping without experimental
staining. We utilize generalist segmentation models to segment virtually stained nuclei
and membranes.

(B) Input phase images (top row), experimental fluorescence images of nuclei and
membrane (middle row), and virtually stained nuclei and membrane (bottom row) using
VSCyto3D (HEK293T cells), fine-tuned VSNeuromast (zebrafish neuromasts), and
VSCyto2D (A549 and BJ-5ta cells). Virtually and experimentally stained nuclei and
membranes are segmented using the same Cellpose model. The instance
segmentations are compared using the average precision at IoU of 0.5 (AP@0.5). Scale
bars: 25 µm.

(C) We rank and refine models based on application-specific metrics, in addition to
instance segmentation metrics. (1) Morphological Measurements: We compare cell area
in HEK293T cells measured with segmentation of experimentally and virtually stained
membranes. (2) Nuclei Count: We compare the number of nuclei in neuromasts
identified from experimentally and virtually stained nuclei over short and long
developmental time windows. The plot shows the number of nuclei over one hour,
measured every 5 minutes on 3 dpf fish.
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Figure 2

Deconvolution and data augmentation strategies make the VSCyto3D model
robust to label-free imaging parameters:

(A) Physics-based reconstructions enhance contrast for virtual staining. Top to bottom:
label free input, fluorescence target, and virtual staining prediction. Models are trained
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on pairs of raw or reconstructed label free and fluorescence contrast modes. Scale
bars: 50 µm.

(B) Predictions of nuclei and membrane from phase image (1st row) using models
trained without augmentations (3rd row) are inconsistent with experimental ground truth
(2nd row), especially in the presence of noise (center column) or at a different
magnification (right column). The predictions using the models trained using spatial and
intensity augmentations (see text for details) are invariant to noise and equivariant with
magnification. The white box in the in-distribution column highlights the rescue of the
lost fluorescence label. The white box in the higher magnification column shows that the
model with augmentations correctly predicts one large nucleus whereas the model
trained without augmentation predicts two smaller nuclei. Scale bars: 50 µm.

(C) Data augmentation improves generalization to unseen modality. Virtual staining
models were trained to predict fluorescence density from phase density and then used
to predict nuclei and plasma membrane from Zernike phase contrast image (top left).
The correlative raw fluorescence image (top right) shows low signal-to-noise ratio due to
light loss in the phase contrast objective. Scale bars: 50 µm.
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Figure 3
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Generalizing the VSNeuromast model across zebrafish development:

(A) Phase (1st row), experimentally stained nuclei and membrane (2nd row), and
virtually stained nuclei and membrane using a model that was not fine-tuned (3rd row)
and using a model that was fine-tuned on the subsampled movie (4th row) are shown.
We show 3 samples from a 12-hour movie starting at 4 days post-fertilization (4 dpf) and
microscope. The VSNeuromast model was fine-tuned with subsampled 4dpf movie
(1/12 timepoints). Virtual staining rescues missing nuclei and provides a more accurate
read-out of the cell count and their locations than experimental staining. (Scale bar
25um)

(B) Comparison of nuclear and membrane 3D segmentations predicted using the
fine-tuned VSNeuromast Cellpose model. The same segmentation model was applied
consistently to fluorescence density and virtual staining volumes. The VSNeuromast
and Cellpose segmentation combination predicts the cell counts with high accuracy. The
model's performance was quantitatively assessed using Pearson correlation plots
across five neuromasts from the lateral line, comparing both fluorescence density and
virtual staining results for nuclei and membranes to highlight the precision of the
fine-tuned model.

(C) Segmentation of nuclei and membranes using fine-tuned Cellpose model on
experimental fluorescence and virtual staining. Virtual staining reduces over- and
under-segmentations, enhancing accuracy compared to experimental fluorescence.

(D) Mean photobleaching curves across five neuromasts showing experimental
fluorescence (left) and virtual staining (right) nuclei and membrane pairs. The shaded
region indicates the variation in the mean intensity of nuclei in a given frame.
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Figure 4

Few-shot generalization of the VSCyto2D model to new cell types:

(A) The encoder of UNeXt2 is pre-trained with a fully convolutional masked autoencoder
(FCMAE) recipe to enable generalized feature encoding without paired data. The model
can then be fine-tuned for virtual staining on a specific cell type.

(B) Flow chart of 3 training strategies to generalize the virtual staining model pre-trained
with A549 and HEK293T cells to the BJ-5ta cell type with limited training samples. The
bounding boxes indicate strategies: (blue) virtual staining pre-training from scratch with
paired images of BJ-5ta; (orange) pre-training with paired images of HEK293T and
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A549, and fine-tuning with paired images of BJ-5ta; and (green) FCMAE pre-training
with only the phase images of HEK293T and A549, virtual staining pre-training with
images of HEK293T and A549, and fine-tuning with paired images of BJ-5ta. The
pre-training steps initialize model weights in the encoder (FCMAE) and decoder (virtual
staining) of UNeXt2.

(C) Virtual staining images of nuclei and membrane in BJ-5ta using 3 models described
in D. Performance scales with the increasing number of BJ-5ta FOVs used for
fine-tuning. Scale bar: 50 µm.

(D) Pearson correlation coefficient (PCC) between experimental and virtually-stained
nuclei and plasma membrane as a function of the number of fields of view used for the
test dataset used for training strategies shown in B. The pre-trained models show
superior performance scaling relative to the number of BJ-5ta FOVs used for
fine-tuning. Pre-trained models fine-tuned with less data can match or outperform
models trained with more data from scratch.

(E) Virtual staining of iNeuron cells recovers contrast needed for soma segmentation
and neurite tracing. Soma segmentation is shown in color-filled labels, neurite tracing is
shown in white lines. Scale bars: 100 µm.

(F) Quantitative analysis of iNeuron segmentations. Similar number of soma per FOV,
total neurite length, and number of neurites per soma can be identified from virtual
staining compared to experimental staining.
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Tables
Table 1

Model-
Z(in, out)

Prediction
target

Training
XY

patch
size
(pixel)

Training
epochs

Multiply
-Adds
(G)

Params
(M)

PCC
(nuclei)

AP@0.5
(nuclei)

2.5D
UNet-
Z(5, 1)

Nuclei 512 100 1005.51 2.01 0.721 0.804

2.5D
UNet-
Z(5, 1)

Nuclei and
plasma

membrane

512 100 1006.12 2.01 0.720 0.829

2.5D
UNet-
Z(5, 1)

Nuclei and
plasma

membrane

384 50 1006.12 2.01 0.720 0.733

UNeXt2-
Z(5, 5)

Nuclei and
plasma

membrane

384 50 723.62 32.04 0.714 0.854

Comparison of the computational complexity, capacity, and performance of
UNeXt2 models with previously published 2.5D UNet model: We compare metrics
of accuracy of regression (Pearson correlation coefficient, PCC) and instance
segmentation (average precision at IoU threshold of 0.5, AP@0.5) of nuclei on the
central slice of HEK293T images. The computational complexity is measured with the
number of multiply-add operations during inference on ZYX input size (5, 2048, 2048)
with batch size 1. The model capacity is measured with the number of learnable
parameters. Predicting both nuclei and membrane targets improves nuclei prediction
with 2.5D UNet. UNeXt2 architecture provides higher learning capacity than 2.5D UNet
architecture at similar computational complexity. Predictions with UNeXt2-Z(5,5) are
shown in Figure 1.
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Table 2

Model-Z(in, out) Loss MSE 2D-SSIM mIOU AP AR

2.5D UNet-Z(5, 1) MSE 4.16 0.373 0.752 0.441 0.629

2.5D UNet-Z(5, 1) Mixed 3.86 0.513 0.794 0.533 0.655

UNeXt2-Z(5, 5) MSE 4.00 0.432 0.775 0.494 0.613

UNeXt2-Z(5, 5) Mixed 3.77 0.620 0.799 0.537 0.645

Comparison of the performance of models trained with 2 loss functions on the center
slice of the HEK293T test dataset. The models trained with the mixed loss also have
lower test MSE than models trained with the MSE loss.
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Supplementary Materials
Figure S1

Examples of nuclei and cell segmentation from virtual stained images overlaid on
the corresponding phase images.
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Figure S2

The model architecture used to train VSCyto3D
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Figure S3

Deconvolution improves contrast of fine features for virtual staining:

(A) Comparison of contrast in brightfield (BF) and fluorescence (FL) images with the
corresponding deconvolution of the phase density and fluorescence density. We trained
four virtual staining models that translate between raw and deconvolved versions of
label-free and fluorescence contrasts (indicated by arrows).   Scale bars: 10 µm.

(B) The average precision (AP) and average precision at IoU =0.5 (AP@0.5) for nuclei
segmented from experimentally and virtual stained images are shown. Virtually stained
images were predicted with four models indicated on the y-axis. Instance segmentations
of experimentally stained nuclei were proofread manually. Deconvolution of BF and FL
volumes leads to more accurate segmentation of nuclei. We also assess how the phase
and fluorescence density, deconvolved from brightfield (BF) and fluorescence (FL)
volumes, respectively, affect the Pearson cross-correlation (PCC).
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Figure S4

Augmentation-induced robustness in virtual staining improves segmentation of
nuclei and cells:

(A) Segmentations from virtual staining predictions of VSCyto3D models trained without
augmentation are inaccurate when noise is added to the phase image or when phase
image at a different magnification is used for inference. The segmentations are more
reliable when using augmentations as described in Methods. Scale bars: 50 µm.

(B) Test FOVs were acquired with diverse imaging parameters (see the legend). Virtual
staining models trained without augmentation (group: none), with spatial augmentation
(group: spatial), and with spatial and intensity augmentations (group: all) were used to
virtually stain nuclei and membranes in test FOVs. We compare the AP@0.5 between
instance segmentations from virtually stained nuclei and proofread instance
segmentations from experimentally acquired nuclei images. The solid lines in the box
plot indicate the median and interquartile ranges of AP@0.5 across all FOVs in the test
set. The predictions of models become invariant to changes in the imaging parameters
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as more data augmentations are used during training. AP@0.5 for membrane
segmentation also indicates that the augmentations make the membrane predictions
invariant to imaging parameters.

(C) AP@0.5 for test FOVs acquired at the same (63x), higher (100x), and lower (40x)
magnifications relative to the training dataset, when no scaling augmentation (group:
none), and increasing scaling augmentation (groups: ±30%, ±50%) is used when
training models for joint virtual staining of nuclei and membrane. The metrics for both
nuclei and membranes indicate that the scaling augmentations make the predictions
equivariant to magnification.
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Figure S5

Virtual staining from phase rescues missing fluorescence labels: Experimentally
and virtually stained in HEK293T cells nuclei and membrane for 75% aperture and
corresponding segmentations. Scale bars: 50 µm.
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Figure S6

Cell and nuclei segmentation from Zernike phase contrast, raw fluorescence, and virtual
staining images. Augmentation improves the virtual staining prediction for segmentation.
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Figure S7

VSCyto3D model’s robustness to perturbations in input: Simulated image
perturbations are applied to the input phase image. The virtual staining prediction is
robust to a certain range of input perturbation and fails when the deviation is too large
(σ=10 pixels). For example, when a very strong Gaussian blur is applied to the input,
the model cannot differentiate the in-focus slice from a defocus slice of the imaging
volume, and predicts a blurry image. Scale bars: 50 µm.
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Figure S8

Visualization of features learned by VSCyto3D: Input, prediction, and intermediate
feature maps of the 3DVSCyto (Figure 2B ‘deconvolved -> deconvolved’) model trained
on HEK293T cells. The first 3 principal components of the feature map from each
ConvNext stage are rendered as RGB values for an illustrative input image patch. Scale
bar: 10 µm.
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Figure S9

The model architecture used to train VSNeuromast
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Figure S10

Illustration of the workflow for fine-tuning the VSNeuromast model: The model is
fine-tuned to generate accurate predictions and segmentations by subsampling the
timelapse and using these time points as training data. Images of neuromasts during
preprocessing (denoising, deconvolution, registration) and postprocessing
(segmentation) steps are also shown.
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Figure S11

Post-processing is needed to distinguish virtually stained neuromast cells from
non-neuromast cells:

A. Phase, fluorescence and virtual staining pairs of the central and ventral slices
depicting how the model generalizes to other cell types with similar morphology.

B. Processing pipeline to isolate the neuromasts from the whole FOV. The pipeline
is used for generating the instance segmentations and performance metrics.
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Figure S12

Visualization of features learned by VSNeuromast: Input, prediction, and
intermediate feature maps of the 3DVSNeuromast model trained on zebrafish
neuromasts. The first 3 principal components of the feature map from each ConvNext
stage are rendered as RGB values for an illustrative input image patch. Scale bar: 10
µm.
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Figure S13

Model architectures used for training VSCyto2D
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Figure S14

Performance of virtual staining models of HEK293T cells trained from scratch or
with pre-training

(A) Virtual staining of nuclei and membrane in HEK293T using models trained from
scratch or pre-trained (FCMAE) and then fine-tuned on HEK293T data. pre-training
improves the high-frequency features in predictions. Scale bar: 50 µm. (B) The
pre-training protocol has similar segmentation and regression performance for a single
cell type. PCC: Pearson correlation coefficient. AP@0.5: average precision at IoU =0.5.
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Figure S15

Segmentation performance of virtual staining models of BJ5-ta cells trained from
scratch and with pre-training.

(A) Nuclei and cell segmentation of BJ5-ta cells are shown for the 6-FOVs and
110-FOVs models according to the training strategy described in Figure 4A. (B)
Segmentation performance from virtual staining in BJ-5ta cells. Pre-training with
FCMAE and virtual staining tasks improves segmentation performance. AP@0.5 =
average precision at IoU=0.5.

52

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.05.31.596901doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.31.596901
http://creativecommons.org/licenses/by-nc/4.0/


Figure S16

Visualization of features learned by VSCyto2D: Input, prediction, and intermediate
feature maps of the 2DVSCyto and FCMAE models. The first 3 principal components of
the feature map from each ConvNext stage are rendered as RGB values for an
illustrative input image patch. (1) model trained from scratch on BJ-5ta; (2) model
pre-trained on virtual staining of HEK-293T and A549, and then fine-tuned on BJ-5ta;
(3) model pre-trained with FCMAE and virtual staining of HEK-293T and A549, and then
fine-tuned on BJ-5ta; (4) FCMAE model of HEK-293T and A549, not trained for virtual
staining. Scale bar: 50 µm.
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Video 1

Through-focus movie of HEK293T cells: phase, experimentally stained nuclei (green)
and membrane (magenta), virtually stained nuclei and membrane with VSCyto3D.
(scale bar 25µm)
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Video 2

Evolution of neuromast predictions during fine-tuning. The first three columns
depict the 2D source (phase) and target (nuclei and membrane) pairs of three different
fields of view (FOVs) from the validation dataset. The last two columns feature the
virtual staining predictions of nuclei and membrane respectively.
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Video 3

Axial and temporal fly-through of fluorescence and virtually stained landmarks.
Displayed are the phase image in gray, fluorescence nuclei in green, and membrane in
magenta, along with virtually stained nuclei in blue and membrane in orange, predicted
using the fine-tuned VSNeuromast. (Scale bar: 25µm)

56

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.05.31.596901doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.31.596901
http://creativecommons.org/licenses/by-nc/4.0/


Video 4

Comparison of neuromast nuclei and membrane fluorescence density and virtual
staining 3D segmentations over time. The video shows the 3D instance
segmentations at t=0 using the fine-tuned Cellpose model for nuclei and membrane
respectively applied to both the fluorescence density and virtual stained and plays over
time at the middle z-plane of the neuromast. Virtual staining rescues the uneven
expression of nuclei and segments allowing for better segmentation (Scale bar= 25µm)
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Video 5

Phase time-lapse images virtually stained with VSCyto2D. Blue: nuclei; Orange:
membrane. Every 30 minutes for 24 hours. Scale bar: 100 µm.
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Video 6

Validation VSCyto2D predictions during fine-tuning on BJ-5ta cells. Each step is 4
training epochs. Left to right: Phase input patch, nuclei fluorescence (Hoechst),
membrane fluorescence (CellMask), nuclei prediction, membrane prediction.
Pre-trained models start to produce correct predictions faster. Each image patch is 83.2
µm by 83.2 µm (256 pixels by 256 pixels).
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