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We investigate the thermodynamic geometry of the quark-meson model at finite temperature, T, and
quark number chemical potential, μ. We extend previous works by the inclusion of fluctuations exploiting
the functional renormalization group approach. We use recent developments to recast the flow equation into
the form of an advection-diffusion equation. We adopt the local potential approximation for the effective
average action. We focus on the thermodynamic curvature, R, in the ðμ; TÞ plane, in proximity of the chiral
crossover, up to the critical point of the phase diagram. We find that the inclusion of fluctuations results in a
smoother behavior of R near the chiral crossover. Moreover, for small μ, R remains negative, signaling the
fact that bosonic fluctuations reduce the capability of the system to completely overcome the fermionic
statistical repulsion of the quarks. We investigate in more detail the small μ region by analyzing a system in
which we artificially lower the pion mass, thus approaching the chiral limit in which the crossover is
actually a second order phase transition. On the other hand, as μ is increased and the critical point is
approached, we find that R is enhanced and a sign change occurs, in agreement with mean field studies.
Hence, we completely support the picture that R is sensitive to a crossover and a phase transition, and
provides information about the effective behavior of the system at the phase transition.

DOI: 10.1103/PhysRevD.109.096017

I. INTRODUCTION

Within the theory of fluctuations among equilibrium
states, one of the most interesting ideas is given by the
thermodynamic curvature [1–26], which represents an
innovative perspective in the field of thermodynamics.
This employs non-Euclidean geometry to represent fluctua-
tions and interactions among thermodynamic variables. The
geometric approach sheds new light on understanding phase
transitions and emergent properties in complex systems,
providing an intriguing connection between geometry and
thermodynamics. In fact, in the grand canonical ensemble
one can consider any pair of intensive variables ðβ1; β2Þ:
given these, the probability of a fluctuation from the
state S1 ¼ ðβ1; β2Þ to S2 ¼ ðβ1 þ δβ1; β2 þ δβ2Þ is propor-
tional to

ffiffiffi
g

p
exp

�
−
dl2

2

�
: ð1Þ

Here,

dl2 ¼ gβ1β1dβ
1dβ1 þ 2gβ1β2dβ

1dβ2 þ gβ2β2dβ
2dβ2; ð2Þ

where

gij ¼
∂
2 logZ
∂βi∂βj

ð3Þ

is the metric tensor in the 2-dimensional manifold; Z is the
grand canonical partition function. Finally, g is the deter-
minant of the metric tensor. dl2 measures the distance
between the states S1 and S2. Equipped with the metric, we
introduce the thermodynamic curvature, R ¼ 2R1212=g,
where R1212 corresponds to the only independent compo-
nent of the Riemann tensor for a two dimensional manifold.
R depends on the second and third order moments of the
thermodynamic variables that are conjugated to ðβ1; β2Þ: it
thus carries information about the fluctuation of the physical
quantities.
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Within the context of thermodynamic geometry, inter-
esting and recent developments regard its applications to
effective models, in particular to the quark-meson (QM)
model [27,28]. The QM model is a well known low energy
effective model of quantum chromodynamics (QCD)
[29–32]; it has mostly been used because it could quali-
tatively capture the chiral phase transition of QCD, i.e., the
transition from chiral symmetry broken phase in QCD
vacuum, to a chiral symmetry restored phase at finite
temperature, T, and quark number chemical potential, μ. In
Fig. 1 we show a cartoon phase diagram of the QM model
in the ðμ; TÞ plane; the diagram is drawn assuming a finite
quark mass which explicitly breaks the chiral symmetry. In
the figure, the dashed line corresponds to a smooth cross-
over, while the solid line to a first order transition; in both
cases, chiral symmetry is spontaneously broken in the low
temperature phase while it is (approximately) restored in
the high temperature phase. The two lines meet at a point,
known as the critical endpoint (CP). At this point, the
crossover becomes a real second order phase transition with
a divergent correlation length. The purpose of the present
work is to study the thermodynamic curvature around the
crossover, both at small μ and in the proximity of CP.
One of the most viable uses of the QMmodel is related to

the study of the strongly interacting matter at finite T and/or
μ. Similarly to the already discussed phase diagram of the
QMmodel, first principle calculations performed in Lattice-
QCD (LQCD) [33–35] show that at μ ¼ 0, a smooth
crossover happens between a low-temperature phase, in
which chiral symmetry is spontaneously broken and the
relevant degrees of freedom are hadrons, to a quark-gluon
plasma phase at high temperature where chiral symmetry is
approximately restored and the relevant degrees of freedom
are quarks and gluons. In addition to this, it is commonly

believed that there should exist a critical endpoint in the
ðT; μÞ plane in full QCD, similar to the one found in the QM
model, see [36,37] for reviews. However, first principle
calculations are not feasible at finite μ due to the (in)famous
sign problem [33–35]. This is where effective models, like
the QM model, can help.
In this work, we study the QM model at finite T and μ,

focusing of its thermodynamic geometry; this is the natural
continuation of previous works on the same subject
[27,28,38]. The aspect of novelty of the study is the
inclusion of the quantum fluctuations via the functional
renormalization group approach (FRG) [39–62]; this is
based on the ideas introduced by Wilson [44–48] and
others, see, e.g., Refs. [49,50]. Since the FRG method
belongs to the class of non-perturbative approaches to
quantum field theories and it is built in such a way to link
different energy scales and the associated degrees of
freedom, it is a suitable tool to deal with second order
phase transitions and critical long wave length phenomena
in general, whose nature is highly nonperturbative.
The reason why the investigation of the critical behavior

of the QM model via the thermodynamic geometry is
worthy lies in the information one can extract from R on the
system. Particularly, it has been argued that the sign of R is
connected to the dominance of a fermionic or bosoniclike
behavior of the system [9,14,15,63]: a positive R corre-
sponds to a bosonlike behavior while a negative R to a
fermionlike behavior. This behavior has been understood as
attraction or repulsion in the phase space [9,14,15,63].
Therefore, the study of the sign of R near a second order
phase transition (and to some extent, around a crossover
[27,28,38]) can reveal information about the effective
dynamics which develops in the proximity of this tran-
sition. Another interesting feature of R, anticipated in
[27,28,38], is linked to the presence of a peak structure
close to the crossover temperature for small values of μ,
which eventually should turn into a divergence when the
critical point is reached. We complete the studies of
[27,28,38] by analyzing these aspects of R within the
FRG approach.
This article is structured as follows: In Sec. II, we briefly

introduce the thermodynamic geometry. In Sec. III, we
discuss the basic features of the quark-meson model. In
Sec. IV, we present a short introduction to the functional
renormalization group and how this can be specifically
applied to the quark-meson model. In Sec. V, we discuss the
results on the thermodynamic geometry for the quark-
meson model. Finally, in Sec. VI we draw our conclusions
and present an outlook. Within this article we use natural
units ℏ ¼ c ¼ kB ¼ 1.

II. THERMODYNAMIC CURVATURE

We consider a thermodynamic system in the grand-
canonical ensemble whose equilibrium state is character-
ized by the pair ðμ; TÞ, where T is the temperature and μ is

FIG. 1. Phase diagram of the quark-meson model at finite
temperature T and chemical potential μ. The chirally sponta-
neously (and explicitly) broken phase and the (approximately)
chirally symmetric phase are indicated in the plot. The dashed
line, indicating a crossover, and the 1st order phase transition
lines merge at the critical end point, labeled CP.
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the quark number chemical potential (conjugated to
quark number density). Thermodynamic geometry is
more conveniently defined in terms of the variables
ðβ ¼ 1=T; γ ¼ −μ=TÞ. A thermodynamic system at equi-
librium at the point ðβ; γÞ can fluctuate to another equi-
librium state ðβ0; γ0Þ, and the probability of this fluctuation
can be computed within the standard thermodynamic
fluctuation theory. In fact, as already mentioned in the
introduction, we firstly define a distance in the two-
dimensional manifold spanned by ðβ; γÞ,

dl2 ¼ gββdβdβ þ 2gβγdβdγ þ gγγdγdγ ð4Þ

where the metric tensor is

gij ¼
∂
2 logZ
∂βi∂βj

¼ ∂
2ϕ

∂βi∂βj
≡ ϕ;ij; ð5Þ

with ϕ ¼ βP, P ¼ −Ω, and Ω denotes the thermodynamic
potential density; moreover, we used the standard notation
β1 ¼ β and β2 ¼ γ. Given these, the fluctuation probabil-
ity is

dp
dβdγ

∝
ffiffiffi
g

p
exp

�
−
dl2

2

�
; ð6Þ

where

g ¼ gββgγγ − g2βγ ð7Þ

is the determinant of the metric. Large probability of a
fluctuation corresponds to small dl2. Therefore, a large
thermodynamic distance between two equilibrium states
means a small probability to fluctuate between the two
states. According to these considerations, Eq. (4) measures
the distance in the ðβ; γÞ plane between two thermodynamic
states in equilibrium.
Thermodynamic stability requires that gββ > 0 and

g > 0, while g ¼ 0 corresponds to a phase boundary and
regions with g < 0 are thermodynamically unstable: hence,
the stability conditions ensure that dl2 > 0. Furthermore,

Vϕ;ββ ¼ hðU − hUiÞ2i; ð8Þ

Vϕ;βγ ¼ hðU − hUiÞihðN − hNiÞi; ð9Þ

Vϕ;γγ ¼ hðN − hNiÞ2i; ð10Þ

where U and N denote the internal energy and the particle
number, respectively, while V stands for the volume of the
system.
Once the manifold has been provided with the metric

tensor, one can define the Riemann tensor as

Ri
klm ¼ ∂Γi

km

∂xl
−
∂Γi

kl

∂xm
þ Γi

nlΓn
km − Γi

nmΓn
kl; ð11Þ

with the Christoffel symbols

Γi
kl ¼

1

2
gim
�
∂gmk

∂xl
þ ∂gil

∂xk
−
∂gkl
∂xm

�
: ð12Þ

The standard contraction procedure gives the Ricci tensor
Rij ¼ Rk

ikj, and the scalar curvature R ¼ Ri
i: within thermo-

dynamic geometry, R is called the thermodynamic curva-
ture. For the two-dimensional manifold that we consider in
this study the expression of R considerably simplifies,
namely [12]

R ¼ −
1

2g2

��������
ϕ;ββ ϕ;βγ ϕ;γγ

ϕ;βββ ϕ;ββγ ϕ;βγγ

ϕ;ββγ ϕ;βγγ ϕ;γγγ

��������
; ð13Þ

where k indicates the determinant of the matrix. The
curvature diverges for g → 0, which corresponds to a phase
boundary, unless the numerator of Eq. (13) vanishes on the
same boundary.
Let ξ denote the correlation length of the order param-

eter: then, jRj ∝ ξ3 near a second-order phase transition [1],
which naturally results from hyperscaling. Theoretical
calculations based on different models confirm this hypoth-
esis [1,12,64–66]; therefore, the study of R in the ðμ; TÞ
plane allows to estimate the correlation volume based only
on the thermodynamic potential: this is one of the merits of
the thermodynamic geometry. It has also been suggested
that the sign of R conveys details about the nature of the
interaction, attractive or repulsive, at a mesoscopic level in
proximity of the phase transition.
Within our sign convention, R > 0 indicates an attractive

interaction while R < 0 corresponds to a repulsive one.
These interactions include not only real interactions
[17,19,24,67,68], but also the statistical attraction and
repulsion that ideal quantum gases feel in phase space
[69–73]: an ideal fermion gas has R < 0 due to the
statistical repulsion, while an ideal boson gas has R > 0
due to the statistical attraction. The thermodynamic curva-
ture is known to be identically zero only for the ideal
classical gas. Other fields of application of thermodynamic
geometry include Lennard-Jones fluids [17,67,68], ferro-
magnetic systems [74], black holes [17,63,75–89], strongly
interacting matter [27,90,91], and others [92,93].

III. THE QUARK-MESON MODEL

The quark-meson model (QM) can be understood as
arising from the well-known linear-sigma model coupled to
fermions ([29–32]). In particular, the Nf ¼ 2 QM model
uses as fundamental degrees of freedom four mesons, an
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isotriplet of pion fields π⃗ ¼ ðπ1; π2; π3Þ and an isosinglet
field σ, coupled to a massless isodoublet fermionic field ψ
representing up and down quarks. The Euclidean
Lagrangian density of the model then reads

LE
QM ¼ ψ̄ðγμ∂μ þ hðσ þ iγ5τ⃗ π⃗ÞÞψ

þ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2 þUðσ2 þ π⃗2Þ − cσ: ð14Þ

in which γμ and γ5 are the standard Euclidean Dirac
matrices in Dirac space, h is the strength of the Yukawa
coupling between quarks and mesons and τ⃗ ¼ ðτ1; τ2; τ3Þ
represents the vector of Pauli matrices in flavor space.
Uðσ2 þ π⃗2Þ indicates a generic interaction potential among
the mesons, and it constructed in order to be O(4)
symmetric, since it depends on the O(4) invariant mesonic
combination σ2 þ π⃗2. Anyway, if the potential develops a
finite minimum along one radial direction, the O(4)
symmetry is spontaneously broken into a O(3) symmetry.
Due to this residual symmetry, one is free to choose the
ground state in the vacuum as

hπ⃗i ¼ 0; hσi ¼ fπ ≠ 0; ð15Þ

where fπ ¼ 0.093 GeV is the pion decay constant.
Even though the Lagrangian does not contain an explicit

mass term for the fermions, when the symmetry is
spontaneously broken they acquire a dynamical constituent
mass given byM ¼ hhσi. Furthermore, the O(4) symmetry
is also explicitly broken by the term −cσ, which mimics the
presence of a finite current mass for quarks. In this way, the
pions turn into massive pseudo-Goldstone mesons, since
the spontaneous symmetry breaking pattern is not exact,
acquiring a finite mass M2

π ¼ c=fπ.

IV. THE FUNCTIONAL RENORMALIZATION
GROUP

In this section, we provide a brief introduction to the
FRG, following the interpretation provided by Wetterich
et al. [51–54], see [39–43] for reviews. When performing
an FRG study, one changes the focus from the usual
generating functional of the theory, or the partition func-
tion, to the effective action Γ½Φ�, which serves as the
generating functional of 1PI vertex functions. Within the
FRG formalism, similarly to Wilson’s approach to renorm-
alization, for the computation of Γ½Φ� one integrates out
the fluctuations by successive momentum shells; this is
achieved by introducing the effective average action, Γk½Φ�,
which depends on k that represents the momentum up to
which fluctuations have been effectively integrated out,
thus serving as a coarse-graining scale. In particular, the
effective average action interpolates between the bare
classical action, Sbare½Φ�, in the UV, i.e., at the cutoff scale
k ¼ Λ when no fluctuations have been taken into account,

and the full quantum effective action Γ½Φ� in the IR, i.e.,
k ¼ 0, when all quantum fluctuations have been integrated
out, namely

Γk→∞½Φ� ¼ Sbare½Φ�; Γk→0½Φ� ¼ Γ½Φ�: ð16Þ

The evolution of the effective average action from the UV
to the IR is described by the FRG flow equation, that is
[52,55,56]

∂kΓk½Φ� ¼ Tr

��
1

2
∂kRk

�
ðΓð2Þ

k ½Φ� þ RkÞ−1
�

ð17Þ

in which the trace is understood as the sum over internal
degrees of freedom of the theory, such as color, flavor, spin
etc, as well as an integral over Fourier momenta. Rk in
Eq. (17) is a regulator which effectively defines the support
of the momentum integral in the UVand acts as a screening
term in the IR. Rk must be chosen in order for Γk to fulfill
the conditions (16). In particular, in order to recover the full
quantum effective action in the IR, it has to vanish for
k → 0. Moreover, Rk has to diverge for large k in order to
ensure that the bare action represents a stationary point for
the path integral through which Γk is introduced.

Gk½Φ�≡ ðΓð2Þ
k ½Φ� þ RkÞ−1 in Eq. (17) indicates the exact,

scale dependent propagator, thus the FRG flow equation
has a one-loop structure. Despite this apparent simplicity,
it still consists of a hard-to-solve functional integro-
differential equation; hence, except for very special cases
(see for example [57–59]), one has to rely on approximations
in order to solve it. A first possibility is called the vertex-
expansion [53,60], in which Γk½Φ� is expanded in powers
of the fields Φ around a certain field configuration Φ0,
and the expansion coefficients are the vertex functions

ΓðnÞ
k ðx1;…;xnÞ¼δnΓk½Φ�=δΦðx1Þ���δΦðxnÞjΦ¼Φ0

. Plugging
the vertex expansion into the FRG flow equation, one
obtains a system of infinite coupled integro-differential
equations which are then truncated at certain finite order.
Another approximation scheme, which is the one we

adopt in the present work, is called the derivative expansion
[43,62], which approximates Γk½Φ� in terms of powers of
space-time derivatives of the fields. Also in this case one
would obtain an infinite system of coupled equations, one
per each operator compatible with the symmetries of the
theory, and thus for a practical solution one has to choose a
order of space-time derivatives of the fields to which the
action is truncated. One of the main advantages of the
derivative expansion is that one does not need to assume an
analytic behavior in field space of the effective action
during the flow evolution, which on the other hand is
required by the vertex expansion.
In this work, we focus on critical phenomena which

involve second order phase transitions (in the chiral limit),
crossovers and critical endpoints in the phase diagram. It is
known that, under these conditions, the free energy is not
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arbitrarily differentiable (see for example [41,94–96]);
furthermore, the effective action can develop discontinu-
ities, or in general singular points, when dealing with such a
kind of phenomena [97–100]. This suggests us to take
advantage of the properties of the derivative expansion, also
at the lowest order called local potential approximation
(LPA) [100]. Particularly, we adopt the LPA ansatz for the
QM model at finite temperature and quark number density

Γk½Ψ̄;Ψ;ϕ� ¼
Z

1=T

0

dx4

Z
d3x

�
ψ̄ðγμ∂μ þ hðσ þ iγ5τ⃗ π⃗Þ

− μγ0Þψ þ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2

þ Ukðσ2 þ π⃗2Þ − cσ

	
: ð18Þ

Using the three-dimensional Litim regulator [101,102] for
both fermions and bosons,

Rk;BðpÞ ¼ ðk2 − p2ÞΘðk2 − p2Þ ð19Þ

Rk;FðpÞ ¼ i=p

 ffiffiffiffiffi
k2

p2

s
− 1

!
Θðk2 − p2Þ; ð20Þ

we get the flow equation for the effective potential, that is

∂tUkðσÞ ¼ −
k5

12π2

��
1

Ek;σ
coth

�
Ek;σ

2T

�
þ 3

Ek;π
coth

�
Ek;π

2T

��

− 4Nc
1

Eψ

�
tanh

�
Eψ − μ

2T

�
þ tanh

�
Eψ þ μ

2T

��	
;

ð21Þ

with t ¼ − ln k=Λ and

Ek;σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ∂

2
σUkðσÞ

q
; Ek;π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ∂σUkðσÞ

σ

r
: ð22Þ

Moreover,

Eψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
; ð23Þ

withM ¼ hhσi denoting the previously defined constituent
quark mass.
Analogously to, e.g., [100,103,104], we introduce the

following variables

ukðσÞ ¼ ∂σUkðσÞ; u0kðσÞ ¼ ∂σukðσÞ: ð24Þ

Taking the derivative of Eq. (21) with respect to σwe are able
to cast the FRG flow equation into an advection-diffusion
equation with a source term [98,99], thus obtaining

∂tukðσÞþ∂σfkðσ;ukðσÞÞ¼∂σgkðu0kðσÞÞþNc∂σSkðσÞ ð25Þ

where we defined the advection flux as

fkðσ; ukðσÞÞ ¼
k5

4π2
1

Ek;π
coth

�
Ek;π

2T

�
; ð26Þ

the diffusion flux, namely

gkðu0kðσÞÞ ¼ −
k5

12π2
1

Ek;σ
coth

�
Ek;σ

2T

�
; ð27Þ

and finally the source term

NcSkðσÞ ¼
Nck5

3π2
1

Eψ

�
tanh

�
Eψ − μ

2T

�
þ tanh

�
Eψ þ μ

2T

��
:

ð28Þ

In this framework, the derivative of the potential ukðσÞ plays
the role of a conserved quantity, in the sense that it satisfies a
generalized conservation law [57,97,105]. Each of the
previously defined contributions arises from the various
particle species involved in the model. The advection flux,
which is responsible of the bulk motion of the conserved
quantity u, is originated from the pions. Indeed, there is a
factor 3 that appears in Eq. (21) and multiplying the
advection term. Furthermore, as it can be seen from the
definition of the energy Ek;π, the mass term for the pions,
ukðσÞ=σ, vanishes at the minimum of the effective potential,
in agreement with the nature of the pions as Goldstone
bosons (since the explicit symmetry breaking term is linear in
the sigma field, it does not contribute to the flow equation and
is just added to the IRpotential).One canverify that the speed
of characteristics ∂ufkðσ; ukðσÞÞ is positive if σ < 0 and
negative if σ > 0, implying that the conserved quantityukðσÞ
and the minimum of the potential are always transported
toward smaller values of σ by the advection.
On the other hand, the one radial sigma mode produces

the diffusion term, which depends on the curvature mass
u0kðσÞ. The diffusion has no specific direction since it
depends on the local gradients of the conserved quantity,
meaning that smears out peaks and discontinuities.
The fermionic loop gives rise to a time and σ dependent

source term, which we identify as such since it is inde-
pendent of the conserved quantity ukðσÞ.
In order to compute thermodynamic quantities we need

the effective potential, but solving the flow equation (25)
we obtain its derivative with respect to σ. This means that
we need to integrate the solution in σ, and so the effective
potential would be defined up to an arbitrary integration
constant, which is σ-independent but in principle T and
μ-dependent. Thus to obtain the correct thermodynamic
properties we need to calculate this constant using directly
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the flow equation (21), evaluated in a generic point (that for
us is σ ¼ 0). Thus, together with Eq. (25) we also solve

∂tUkð0Þ ¼ −
k5

12π2

��
4

Ek;σðσ ¼ 0Þ coth
�
Ek;σðσ ¼ 0Þ

2T

��

− 4Nc
1

k

�
tanh

�
k − μ

2T

�
þ tanh

�
kþ μ

2T

��	
:

V. RESULTS

Throughout this section we compare the results obtained
within the mean field approximation, obtained by neglect-
ing the bosonic fluctuations, with the calculation that takes
into account the fluctuations by solving the full FRG flow
equation for the average effective action. In the mean field
approximation we first introduce the rescaling σ →

ffiffiffiffiffiffi
Nc

p
σ,

UkðσÞ → NcUkðσÞ and ukðσÞ →
ffiffiffiffiffiffi
Nc

p
ukðσÞ, then we get

the rescaled flow equation

∂tukðσÞ þ
1ffiffiffiffiffiffi
Nc

p ∂ukfkðσ; ukðσÞÞu0kðσÞ

¼ 1ffiffiffiffiffiffi
Nc

p ∂σgkðu0kðσÞÞ þ ∂σSkðσÞ: ð29Þ

The mean field flow equation is obtained in the Nc → ∞
limit, that is

∂tukðσÞ ¼ ∂σSkðσÞ: ð30Þ

As initial condition in the UV (k ¼ Λ or t ¼ 0) for the
flow equation we choose a quartic potential

UΛðσÞ ¼
m2

UV

2
σ2 þ λUV

4
σ4: ð31Þ

Due to the presence of a finite cutoffΛ, when performing the
Matsubara sum, thermal modes with 2πT > Λ are factually
excluded. This is a serious problem especially for the
calculation of thermodynamic quantities at high temper-
atures. This issue can be fixed including the missing high-
momentum modes in the effective potential. Since one
expects the fermionic degrees of freedom to be relevant at
higher temperature, a standard procedure consists of inte-
grating the fermionic part of Eq. (21) from k → ∞ to k ¼ Λ
and add it to the effective potential. So we calculate

U∞
Λ ðσÞ ¼

Z
Λ

∞
SkðσÞdk ð32Þ

and then add it to the effective potential at the UV scale Λ

UΛðσÞ → UΛðσÞ þ U∞
Λ ðσÞ ð33Þ

Our set of parameters is Λ¼1.0GeV, fπ ¼ 0.093 GeV,
h ¼ 3.6, c ¼ 1.78 × 10−3 GeV3. The initial condition

parameters are mUV ¼ 0.762 GeV and λUV ¼ 1.05 for
MF calculations, and mUV ¼ 0.812 GeV and λUV ¼ 3.08
in the FRG case. These parameters are chosen such that in
the vacuum we get hσi ¼ fπ and ∂

2
σσUðhσiÞ ¼ M2

σ ¼
0.36 GeV2.
In Fig. 2 we show the constituent quark mass,M ¼ hhσi,

versus temperature, for μ ¼ 0 and μ ¼ 0.3 GeV; hσi
corresponds to the value of σ that minimizes the effective
action. We note that there is a range of temperatures in
which the condensate decreases from its zero temperature
value to a smaller one, signaling the crossover from the low
temperature phase in which chiral symmetry is sponta-
neously broken to the high temperature phase in which the
symmetry is (approximately) restored. The picture remains
qualitatively the same also after fluctuations are included;
quantitatively, fluctuations lower the temperature range in
which the chiral crossover takes place. We also note that
increasing the chemical potential results in the hardening of
the crossover, since changes in hσi occur in a smaller range
of temperature.
The results shown in Fig. 2 allow us to define a (pseudo)

critical temperature, Tc, as the temperature at which the
highest change of hσi occurs. In Fig. 3 we plot Tc versus μ
for both the mean field case and the full FRG calculation.
Below the critical lines the chiral symmetry is sponta-
neously broken, while above the lines chiral symmetry is
approximately restored. For both cases the lines are stopped
at the critical endpoint, where the crossover changes into a
real second order phase transition where the chiral suscep-
tibility diverges; for larger values of μ the phase transition is
of the first order: in this case the effective potential exhibits
two separate finite minima which become degenerate at the
phase transition.
Next we turn to the main focus of this work, namely the

thermodynamic geometry. First, we show in Fig. 4 the
determinant of the thermodynamic metric, g, versus μ,
computed at T ¼ Tc. We present the results obtained within

FIG. 2. Constituent quark mass,M ¼ hhσi, versus temperature,
for μ ¼ 0 and μ ¼ 0.3 GeV. MF and FRG stand for mean field
and functional renormalization group respectively.
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the mean field approximation and within the FRG. The
results are in qualitative agreement with [28], where
fluctuations were introduced within a gaussian approxi-
mation. g ¼ 0 corresponds to the thermodynamic insta-
bility of the system, that is to a phase transition. We do not
find g ¼ 0 because in this model chiral symmetry is
explicitly, albeit softly, broken by the finite quark mass,
hence a phase transition is replaced by a smooth crossover.
However, gðTcÞ decreases with μ, signaling that the system
is approaching criticality, that is the critical endpoint.
Moreover, we note that including fluctuations results in
the lowering of g, in agreement with previous findings [28].
We now discuss the thermodynamic curvature, R. It is

expected that R diverges at a second order phase transition,
while it is not obvious the behavior of R near a smooth
crossover. In order to better understand the results on R
obtained within the FRG, we preliminarily analyze the
curvature versus T at μ ¼ 0, with and without fluctuations,
for several values of the parameter c that regulates the

explicit breaking of chiral symmetry. In fact, in the limit
c ¼ 0, chiral symmetry is not explicitly broken and
restoration of chiral symmetry at μ ¼ 0 happens by a
second order phase transition. Performing calculations of R
in the chiral limit is numerically demanding near the phase
transition, hence we limit ourselves to analyze cases in
which c is small but nonzero. In order to avoid confusion,
from now on with c we denote solely the value of the
parameter at the physical point, namely c ¼ M2

πfπ; we then
artificially lower the value of this parameter.
In Fig. 5, we plot R versus T at μ ¼ 0 within the mean

field approximation (upper panel) and with fluctuations
included (lower panel); we show results for several values
of the symmetry breaking parameter in Eq. (14), namely the
physical value, then c=200, c=250 and c=500. We note in
both panels of Fig. 5 that as the chiral limit is approached,
the curvature is enhanced in the pseudocritical region,
while the peak of R becomes smoother as c approaches the
one in the physical limit. Moreover, including fluctuations
results in the lowering of the peaks of R in the pseudoc-
ritical region. Within the mean field approximation, R
changes sign around Tc, in agreement with previous

FIG. 3. Critical temperature, Tc, versus μ, for the mean field
(dashed line) and the full FRG (solid line) calculations.

FIG. 4. Determinant of the thermodynamic metric, g, versus μ
computed at T ¼ Tc, within the mean field approximation
(dashed line) and FRG (solid line).

FIG. 5. Thermodynamic curvature, R, versus T, for several
values of c. Upper panel corresponds to the mean field approxi-
mation, while the lower panel to the calculations within the FRG.
c ¼ M2

πfπ denotes the physical value of the symmetry breaking
parameter in Eq. (14).
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results [27,28,38]: this was interpreted as the emergence of
a bosonlike behavior of the system around Tc, namely of a
statistical attraction in phase space due to long range
correlations that develop around Tc that overcomes the
statistical fermionic repulsion. This behavior of R is also
found when fluctuations are included (lower panel of
Fig. 5). However, we note that fluctuations lower the
overall magnitude of R, in agreement with [28]. We also
note that the peaks of R become more prominent as the
chiral limit is approached, and changes its sign, as in the
mean field calculations. Hence, it is likely that the quali-
tative behavior of R is independent on the approximation
used (mean field versus FRG), at the physical point, and so
does the change of nature from fermionlike to bosonlike in
proximity of the crossover. The results shown in Fig. 5 will
be useful to interpret the behavior of R we discuss below.
As a final remark, we note that the peak of Rmoves toward
smaller temperatures as the chiral limit is approached. This
is in agreement with the fact that the critical temperature is
lower in the chiral limit. Wewill see that as the critical point
is approached, the change of sign of R appears both in the
mean field and in the FRG cases.
In Fig. 6 we plot R versus T for several values of μ,

obtained within the mean field approximation and the full
FRG calculation at the physical point c ¼ M2

πfπ . In both
the MF and FRG panels of Fig. 6, we multiplied the results
by 100 in all but the μ ¼ 0.3 GeV cases to make the results
more readable. Firstly, we note that the trend of R is
qualitatively similar in both calculations. Within the mean
field approximation, at μ ¼ 0 the curvature locally devel-
ops a peak in correspondence of the chiral crossover,
signaling that R is capable to capture the pseudocritical
behavior of the quark condensate. Increasing the chemical
potential, R maintains its local peak structure, but as the
critical endpoint is approached, the peaks become more
pronounced. This is in agreement with the general under-
standing on R which is expected to diverge at a second
order phase transition. Moreover, we note that at large μ
the thermodynamic curvature develops several peaks in the
temperature range of the chiral crossover, although the
most pronounced peak does not necessarily show up at
the critical temperature. This behavior, already noticed in
[27], shows that R is not necessarily as sensitive as other
quantities, like the chiral susceptibility or jdM=dTj, at the
changes of the quark condensate at T ¼ Tc, but it is still
capable to measure sensible deviations in the pressure
around the chiral crossover.
Including fluctuations does not change the qualitative

behavior of R. Therefore, we conclude that the fact that R is
sensitive to the chiral crossover is not an artifact of the
mean field approximation, rather it is a quite solid state-
ment. However, as already remarked in Fig. 5, the inclusion
of fluctuations lowers the value of R around the chiral
crossover; particularly, when μ is small, R remains neg-
ative also around the crossover, while in the mean field

approximation it changes sign. Therefore, it is likely that
the change of nature of the interaction at the mesoscopic
level, from fermionlike to bosonlike, depends on the
approximation used in the calculation when the system
is far from criticality. Hence, this implies that, at small μ,
the fluctuations substantially change the geometry of the
manifold.
On the other hand, when the critical endpoint is

approached at large μ, we find that R changes sign also
in the FRG calculation, and the mean field results do not
qualitatively differ from the those obtained within the FRG.
Hence, we conclude that when this system approaches
criticality, R changes sign and locally develops a marked
peak: this conclusion was anticipated in previous mean
field calculations [27,38] and stands also in case fluctua-
tions are taken into account via FRG.

VI. CONCLUSIONS AND OUTLOOK

We studied the thermodynamic geometry, and in par-
ticular computed the thermodynamic curvature R, of the
chiral phase transition of quantum chromodynamics, within
the quark-meson model and the functional renormalization

FIG. 6. Thermodynamic curvature, R, versus T, for several
values of μ. Calculations correspond to the mean field approxi-
mation (upper panel) and the FRG scheme (lower panel).

MURGANA, GRECO, RUGGIERI, and ZAPPALÀ PHYS. REV. D 109, 096017 (2024)

096017-8



groupmethod. The advantage of this method is that it allows
to exactly include fluctuations, differently from previous
approaches [28] in which fluctuations were introduced only
within a Gaussian approximation. As a matter of fact, the
inclusion of quantum fluctuations via the functional renorm-
alization group represents a remarkable improvement com-
pared to previous mean field calculations. We found that the
qualitative behavior of R is not very different from the one
previously computed within mean field calculations, as well
as within calculation schemes that include fluctuations by a
Gaussian approximation. In particular, R seems to keep its
local peak structure in proximity of the chiral crossover at
small chemical potential; moreover, it is enhanced at the
critical point, signaling that when the system approaches
criticality R could diverge, supporting the arguments of
hyperscaling [1].
We also found that the change of sign of R near the

chiral crossover, discussed previously in the literature
[27,28,38,90,91], also happens when fluctuations are taken
into account within the functional renormalization group
approach; furthermore, as the system approaches criticality,
the change of sign from negative (fermionlike behavior) to
positive (bosonlike behavior) takes also place. Hence, we
conclude that the change of sign of R near the critical
endpoint seems to be quite a robust prediction of the chiral
effective models.
It will be interesting to analyze if the behavior of R we

highlighted in this article does not change when the
truncation adopted in the functional renormalization group

approach is improved; for example, the inclusion of the
scale-dependent wave function renormalization factors of
the boson and the quark fields is worth of further inves-
tigation, due to the possible link of this to the formation of
inhomogeneous phases at large chemical potential. Another
possible improvement is the introduction of other con-
densation channels, which could include diquarks or meson
condensates. A potential application would be the QM
model with a finite isospin chemical potential, μI, at
vanishing (or small) μ. This would be extremely interesting,
due to the opportunity to directly compare the obtained
results with lattice QCD calculations, since a finite μI does
not lead to a sign problem, and would give the opportunity
to study R in presence of potentially two condensates,
namely a pion condensate beside the chiral condensate. We
plan to address these issues in the near future.
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