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We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au
collisions at √sNN = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of
rapidity (y) and transverse momentum (pT) within −0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. In
the most central 0–5% collisions, a proton cumulant ratio is measured to be C4/C2 = −0.85 ±
0.09 (stat.)±0.82 (syst.), which is 2σ below the Poisson baseline with respect to both the statistical
and systematic uncertainties. The hadronic transport UrQMD model reproduces our C4/C2 in the
measured acceptance. Compared to higher energy results and the transport model calculations,
the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and
indicates an energy regime dominated by hadronic interactions. These data imply that the QCD
critical region, if created in heavy-ion collisions, could only exist at energies higher than 3GeV.

With the discovery of the quark-gluon plasma (QGP)
at the Relativistic Heavy Ion Collider (RHIC) [1–4],
physicists are starting to investigate the phase structure
of the QCD matter, especially in the high baryon density
region. The stark differences between the properties of
QGP and lower energy nuclear matter draw interest to
the thermodynamic processes, specifically those related
to the nature of phase transitions [5]. Experimenters can
access the QCD phase diagram, expressed in temperature
(T ) and baryonic chemical potential (µB), and search for
phase boundaries by varying the heavy-ion collision en-
ergy. At regions of equal baryon and anti-baryon density,
µB = 0, theoretical approaches work well, with lattice
QCD calculations predicting a smooth cross-over transi-
tion from hadronic matter to a QGP [6, 7]. At finite µB ,
where the baryon density is larger than the anti-baryon
density, the existence and nature of the phase transition
are not well understood.

The event-by-event fluctuations of conserved quan-
tities such as net charge, net-baryon number, and
net strangeness are predicted to depend on the non-
equilibrium correlation length, ξ, and thus serve as in-
dicators of critical behavior [8]. Ideally, near the singular
critical point, the correlation length could grow as large
as the size of the system under study, provided sufficient
time for the development. In heavy-ion collisions, how-
ever, effects from the finite size and limited lifetime of
the hot nuclear system will limit the significance of sig-
nals [9]. A theoretical calculation suggests that ξ may rise
from ∼0.5 to 3 fm in heavy-ion collisions, constrained by
the size of the system [10]. Experimentally, compared
to other baryons, protons and anti-protons are measured
with high efficiency [11] and have been shown to be reli-
able proxies for baryons and anti-baryons [8]. Despite
computational challenges at finite µB [12, 13], lattice
QCD calculations have predicted a positive cumulant ra-
tio of net-proton (proton minus anti-proton) C4/C2 for
the formation of QGP matter at µB ≤ 200 MeV.

Recent reports on net-proton fluctuation measure-

ments from RHIC’s first phase of the Beam Energy Scan
program (BES-I) [14, 15] have demonstrated the po-
tential sensitivity of the cumulant ratios of C3/C2 and
C4/C2 of the net-proton multiplicity distribution to the
collision energy. Due to baryon number conservation, cal-
culations from both hadron resonance gas models (HRG)
of the canonical ensemble [16, 17] and the Ultrarelativis-
tic Quantum Molecular Dynamics (UrQMD) [17] trans-
port model, which do not contain critical dynamics, pro-
duce a smooth energy dependence. Above a center of
mass energy (√sNN

) of 27 GeV, the Solenoidal Tracker
at RHIC (STAR) collaboration’s BES-I results agree well
with the HRG and UrQMD models [14, 15]. However, in
the energy range 7.7 < √sNN < 27 GeV from the top 5%
central Au+Au collisions at RHIC, STAR’s results show
a non-monotonic behavior as a function of √s

NN
with

a significance of 3.1σ [14, 15]. Here, the centrality is a
measure of the geometric overlap of two colliding nuclei
and is defined by a charged particle multiplicity. At col-
lision energies below √sNN = 7.7 GeV, where net baryon
densities are high, UrQMD predicts a suppression with
respect to unity of C4/C2 for central events. For all ener-
gies, a gas of classical free particles (Poisson distribution)
has a C4/C2 of 1. A remaining question is how the non-
monotonic behavior continues in a higher baryon density
region below √sNN =7.7 GeV.

In this paper, we report the cumulant ratios of proton
multiplicity distributions in Au+Au collisions at √s

NN
=

3.0 GeV. For the top 5% central collisions, the depen-
dence of cumulant ratios on the particle rapidity (y) and
transverse momentum (pT) is presented along with com-
parisons to model calculations. At this energy, the anti-
proton production is negligible (p/p ∼ exp(−2µB/Tch) <
10−6) [18], therefore only the proton multiplicity distri-
bution is used in the analysis.

The AGS-RHIC accelerator complex provided a gold
beam with an energy of 3.85 GeV, incident on a gold tar-
get, corresponding to √sNN

= 3.0 GeV for Au+Au fixed-
target collisions. At this energy, STAR’s fixed-target
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mode (FXT) [19, 20] covered the mid-rapidity for protons
in the center-of-mass frame. The proton multiplicities are
determined using the Time Projection Chamber (TPC)
and Time of Flight detector (TOF) of the STAR [21].
The target was located 200.7 cm from the center of the
TPC and of thickness 1.93 g/cm2 (0.25 mm) correspond-
ing to a 1% interaction probability. The TPC measures
both the trajectory and the energy loss (dE/dx) of a par-
ticle. The TPC is placed within a solenoidal magnetic
field (0.5 Tesla) and the particle momenta are calculated
from their curvatures. For these data, RHIC was con-
figured to circulate twelve bunches of 7 × 109 gold ions,
which grazed the top of the gold target. To remove colli-
sions between the beam and the beam pipe, event vertices
are required to be less than 1.3 cm from the Au target
along the beam line and less than 1.5 cm from the target
radially from the mean collision vertex. The analysis is
performed with 1.4× 108 events.

The collisions are characterized by their centrality, in-
ferred from reconstructed particle multiplicities (refer-
ence multiplicity). For this analysis, the reference multi-
plicity is the total number of tracks in the TPC uncor-
rected for efficiency loss, excluding baryons via dE/dx.
The TPC covered all azimuthal angles and the pseudo-
rapidity η of 0 < η < 2, in which η ≡ − ln[tan(θ/2)]
and θ is the angle between the particle three-momentum
and the beam axis in the lab frame. Proton tracks are
excluded from the reference multiplicity to avoid self-
correlations [14, 15, 22]. The reference multiplicity distri-
bution shown in Fig. 1 is fit with a Monte Carlo Glauber
model (GM) coupled with a two component particle pro-
duction model [23, 24]. By integrating the GM fit, events
are categorized into seven centrality classes: 0–5, 5–10,
10–20, ..., 50–60%. At reference multiplicities below 10,
the experimental data and the GM disagree due to ineffi-
ciency in the experimental trigger system. At multiplici-
ties above 80, double collision (pile-up) events dominate
the multiplicity distribution. In addition to a pile-up
correction discussed below, events above the reference
multiplicity of 80 are removed from the 0–5% centrality
class.

In the FXT collisions, due to finite target thickness,
the pile-up is clearly present, see Fig. 1. The cumulants
are corrected for the effect of pile-up using an unfolding
method [25, 26]. As a result, the single and double col-
lisions are separated statistically. Figure 1 shows the
input GM fit (red curve) and the unfolded pile-up dis-
tribution (green dashed curve). The single collision dis-
tribution is extracted (blue points) from the measured
distribution (black dots) and the unfolded pile-up distri-
bution. The event-averaged pile-up probability, or total
pile-up fraction, is determined to be (0.46±0.09)% of all
events and (2.10± 0.40)% in the 0–5% centrality class.

Figure 2(a) shows dE/dx versus the particle rigidity for
all positively charged tracks in the STAR TPC. The pion,
kaon, proton, and deuteron bands are labeled and a theo-

FIG. 1. Reference multiplicity distributions obtained from√
sNN = 3.0 GeV data (black markers), GM (red histogram),

and single and pile-up contributions from unfolding. Vertical
lines on markers represent statistical uncertainties. Single,
pile-up and single+pile-up collisions are shown in solid blue
markers, dashed green and dashed magenta curves, respec-
tively. Analysis is performed on 0–5% central events, indi-
cated by a black arrow.

retical prediction [27] for the proton energy loss is shown
in red. Below rigidities of 2.0 GeV/c, the proton dE/dx
band is well separated and the TPC provides sufficient
particle identification. To improve the particle identifi-
cation for tracks with momenta above 2.0 GeV/c, TPC
tracks are matched with TOF hits and a mass-squared
cut of 0.6 < m2 < 1.2 (GeV/c2)2 is placed. The TOF
requirement introduces a 60% matching efficiency. The
proton purity is required to be higher than 95% at all ra-
pidities and momenta for the subsequent cumulant anal-
ysis.

Figure 2(b) displays the pT−y acceptance in the
center-of-mass frame for protons in fixed-target collisions
at √s

NN
= 3.0 GeV. The black box in Fig. 2(b) indicates

the acceptance window (−0.5 < y < 0, 0.4 < pT < 2.0
GeV/c) used. The red dashed box shows the maximum
symmetric rapidity window (|y| < 0.1) for the selected
pT region (0.4 < pT < 2.0 GeV/c). The target, depicted
by a black arrow, is at rapidity y = −1.05. The diagonal
discontinuity in Fig. 2(b) is caused by the mass-squared
cut above total momenta of 2.0 GeV/c in the lab frame.
The vertical line structure above 2.0 GeV/c, most promi-
nent within −1.0 < y < −0.2, results from the geometry
of the TOF modules.

Experimentally measured proton multiplicity distribu-
tions are described by the central moments, i.e., 〈(δN)2〉,
〈(δN)3〉 and so on. The symbol 〈...〉 indicates the average
over all the events, N is the proton multiplicity in a given
event, and δN = N −〈N〉 is the deviation. The relations
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FIG. 2. Left panel (a): dE/dx versus particle rigidity mea-
sured in the TPC; pion, kaon, proton, deuteron, and triton
bands are labeled. The theory prediction for protons is plot-
ted in red. The electron peak is in between the pion and
kaon bands. Right panel (b): Analysis acceptance in trans-
verse momentum versus proton rapidity (y) in the center-of-
mass frame of Au+Au collisions at √sNN = 3.0 GeV. The
black box indicates the acceptance within −0.5 < y < 0 and
0.4 < pT < 2.0 GeV/c. The red dashed box indicates a nar-
rower rapidity window |y| < 0.1, the largest possible symmet-
ric rapidity window from this data set. In both panels, the
yellow-to-blue color scale indicates the intensity.

between the cumulants Cn and the central moments are
defined as:

mean : M = 〈N〉 = C1,

variance : σ2 = 〈(δN)2〉 = C2,

skewness : S = 〈(δN)3〉/σ3 = C3/C
3/2
2 ,

kurtosis : κ = 〈(δN)4〉/σ4 − 3 = C4/C
2
2 .

(1)

Ratios of the cumulants are often used to reduce vol-
ume dependence: C2/C1 = σ2/M , C3/C2 = Sσ, and
C4/C2 = κσ2. An additional advantage is that the ra-
tios of these cumulants can be readily compared with
theoretical calculations of susceptibility [28–34] ratios
σ2/M = χ2/χ1, Sσ = χ3/χ2, and κσ2 = χ4/χ2.

The proton cumulants and ratios are corrected for de-
tector inefficiency and background from pile-up collisions.
The potential background from spallation in the beam
pipe is reduced by the lower transverse momentum cut
(pT > 0.4 GeV/c). Detector efficiency corrections are
performed on a “track-by-track” basis [35, 36], where the
proton reconstruction efficiency as a function of pT and
rapidity is applied as a weight to each track. The in-
tegrated proton track efficiency for the TPC detector is
95% in the selected kinematic windows and centrality
class (0–5%).

All cumulant ratios are compared to the Poisson base-
line for which cumulants of all orders are the same Cn=M
and the cumulant ratios are equal to one. To suppress the
spectator protons from entering the analysis, the maxi-
mum rapidity range is restricted to −0.5 < y < 0. For
the rapidity dependence measurement (ymin < y < 0),
the minimum rapidity (ymin) is varied from −0.5 to −0.2

within 0.4 < pT < 2.0 GeV/c. For the transverse momen-
tum dependence (0.4 < pT < pmax

T ), pmax
T is varied from

0.8 to 2.0 GeV/c within −0.5 < y < 0. The proton cu-
mulants C1 through C4 are provided in the supplemental
material [37].

The statistical uncertainties are obtained using a Boot-
strap approach [38, 39]. They are smaller than the
marker size in the following figures. The systematic un-
certainties are calculated from the uncertainty associated
with the detector efficiency, the track selection criteria,
and the pile-up correction. To estimate the uncertainties
in the track selection criteria, the mass-squared window,
the number of TPC space points required, and the dis-
tance of closest approach (DCA) in 3-dimensions of the
reconstructed track’s trajectory to the primary vertex po-
sition was varied. The DCA was varied from 1–3 cm.
The analysis used a DCA < 3 cm cut. The uncertainty
in the pile-up correction method is estimated by varying
the pile-up fraction by its statistical uncertainty. For the
top 5% central collisions, the largest contributions to the
systematic uncertainty for C4/C2 are from the pile-up
correction (±0.24) and the DCA variation (±0.78).

In a heavy-ion collision, the presence of non-critical
fluctuations of the collision volume, [40] also known as
volume fluctuations (VF), may lead to an artificial en-
hancement in the measured cumulants [38, 41]. As men-
tioned earlier, the information of collision centrality, ex-
pressed either in the fraction of total interaction cross
section or in the averaged number of participating nu-
cleons 〈Npart〉, is extracted from the measured charged
particle multiplicity distributions, see Fig. 1. To achieve
results properly weighted by the event statistics, a cen-
trality bin width correction (CBWC) [15] is applied to all
cumulants data discussed below. In comparison to BES-
I, however, the centrality resolution in Au+Au collisions
at √sNN = 3.0 GeV is lower due to a decrease in the
particle multiplicity. Therefore, volume fluctuation cor-
rections (VFC) [40, 42] are tested with both the hadronic
transport model UrQMD [17] and Glauber model [23].

Figure 3 depicts the cumulant ratios as a function of
the average number of participating nucleons 〈Npart〉.
The data with VFC, using Npart distributions extracted
from UrQMD and Glauber models, and without VFC
are shown as triangles, circles, and open squares, respec-
tively. It is clear that the volume fluctuation correction
shows a strong model dependence and affects the dis-
tribution, particularly in peripheral collisions. The re-
spective dynamics in the UrQMD and Glauber model for
charged hadron production lead to two different map-
pings from the measured final charged hadron multiplic-
ity distributions to the initial geometry. This difference
is likely the dominant source of the model dependence in
the VFC. On the other hand, one can see in the figure
that the difference between results with and without the
VFC is small for higher order ratios C3/C2 and C4/C2

in the most central bin. As discussed in Refs. [43, 44],
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the maximum number of participants, Nmax
part (394 for

Au+Au collisions), suppresses the initial volume fluctu-
ations. The trends in the centrality dependence of the
cumulant ratios, C2/C1, C3/C2, and C4/C2, are well re-
produced by the hadronic transport model UrQMD cal-
culations, see gold dashed lines in Fig. 3.
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FIG. 3. Centrality dependence of the proton cumulant ra-
tios for Au+Au collisions at √sNN = 3.0 GeV. Protons are
from −0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. Systematic
uncertainties are represented by gray bars. Statistical uncer-
tainties are smaller than marker size. CBWC is applied to
all cumulant ratios. While open squares represent the data
without the VFC correction, blue triangles and red circles are
the results with VFC using the 〈Npart〉 distributions from the
UrQMD and Glauber models, respectively. UrQMD model
results are represented as gold dashed line.

Figure 4 depicts the cumulant ratios as a function of
rapidity y and transverse momentum pT in 0–5% central
collisions without and with the VFC. It is expected [45–
47] that the cumulant ratios approach the Poisson base-
line in the limit of small acceptance. For C3/C2, the ra-
tios with the VFC (UrQMD) and without the VFC devi-
ate from the Poisson baseline at the narrow rapidity win-
dows. The VFC (Glauber) ratio approaches unity as the
acceptance is decreased. For the C4/C2 ratio, the VFC
has a negligible effect in the most central bin. Therefore,
C4/C2 is reported without VFC in the discussions below.
In the central 0–5% collisions, as shown in Fig. 4, one ob-
tains C4/C2 = −0.85 ± 0.09 (stat.) ± 0.82 (syst.) in the
kinematic acceptance of−0.5 < y < 0 and 0.4 < pT < 2.0
GeV/c. The UrQMD model qualitatively reproduces the
acceptance dependence of the data, see Fig. 6 in the sup-
plemental material [37].

A non-monotonic energy dependence of the net-proton
C4/C2 was reported for 0–5% central Au+Au collisions
at √sNN = 7.7–200 GeV [14, 15]. A similar energy de-
pendence of the C4/C2 of protons is also evident (open
squares in Fig. 5). Though a minimum appears around
20 GeV, both the C4/C2 ratio of protons and net-protons
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FIG. 4. Similar to Fig. 3: Rapidity and transverse mo-
mentum dependence of the proton cumulant ratios for 0–5%
central collisions. Black-squares, red-dots and blue-triangles
stand for data without and with the VFC using Glauber and
UrQMD, respectively.

at 7.7 GeV are close to unity, albeit the large statistical
uncertainties. Meanwhile, the C4/C2 value for Au+Au
collisions at √s

NN
= 3.0 GeV is around −1. The nega-

tive value of the proton C4/C2 is reasonably reproduced
by the transport model UrQMD [17, 49]. The HADES
result of Au+Au at √sNN = 2.4 GeV in top 10% cen-
tral collisions [48] is shown in the figure as filled square.
Overall, our ratio of C4/C2 (also C2/C1 and C3/C2) is
consistent with the HADES data within uncertainties al-
though detailed comparison should be done within same
acceptance. It is worthy to note that we do not observe
the large variations in the rapidity width as reported by
HADES [48].

The study of cumulant ratios in heavy-ion colli-
sions has motivated several QCD inspired model cal-
culations [5], which report a similar oscillation pattern
around the critical point due to the symmetry of the
medium [50–55]. However, due to the stochastic nature
of heavy-ion collisions, the finite lifetime and size of the
system [56], and dynamical effects such as the critical
slowing will smear the “critical point” to a region in col-
lision energy [57, 58].

Poisson statistics and the Grand Canonical Ensem-
ble (GCE) model predict that C4/C2 is 1. Because of
baryon number conservation, calculations from models
without critical dynamics such as the Canonical Ensem-
ble (CE) [16] and UrQMD [49] show a characteristic sup-
pression with respect to the Poisson baseline in the net-
proton C4/C2 when the collision energy is decreased, as
seen in Fig. 5. The same experimental cuts on event
centrality, rapidity, and transverse momentum have been



7

Central Au + Au CollisionsCentral Au + Au Collisions

STAR (0 - 5%)
net-proton

proton
(GeV/c) < 2.0 )

T
( |y| < 0.5,  0.4 < p

HRG

UrQMD

GCE
CE

net-proton

proton
(-0.5 < y < 0)

(GeV/c) < 2.0)
T

(0.4 < p

H
A

D
E

S
 (

0 
- 

10
%

)
(|

y|
 <

 0
.4

) (G
eV

/c
) 

<
 1

.6
)

T
(0

.4
 <

 p

2 5 10 20 50 100 200

-1

0

1

2

3

4

2
/C 4

R
at

io
 C

 (GeV)NNsCollision Energy 

FIG. 5. Collision energy dependence of the ratios of cumu-
lants, C4/C2, for proton (squares) and net-proton (red circles)
from top 0–5% Au+Au collisions at RHIC [14, 15]. The points
for protons are shifted horizontally for clarity. The new re-
sult for proton from √sNN = 3.0 GeV collisions is shown as a
filled square. HADES data of √sNN = 2.4 GeV 0–10% colli-
sions [48] is also shown. The vertical black and gray bars are
the statistical and systematic uncertainties, respectively. In
addition, results from the HRG model, based on both Canon-
ical Ensemble (CE) and Grand-Canonical Ensemble (GCE),
and transport model UrQMD are presented.

applied to these calculations. It is worth noting that if
the rapidity window is extended to |y| < 0.5, the UrQMD
model predicts a value of C4/C2 ≈ −4 for proton in cen-
tral Au+Au collisions at √sNN = 3.0 GeV. Compared to
results from higher energy collisions, the suppression of
the C4/C2 ratio in central Au+Au collisions at 3.0 GeV
is stronger due to baryon stopping and conservation. Re-
cently, a hadronic equation of state for 3.0 GeV Au+Au
collisions was shown to be applicable, using the measure-
ment of collective flow parameters [59]. While the low
C4/C2 value observed at the energy can be explained by
fluctuations driven by baryon number conservation in a
region of high baryon density where hadronic interactions
are dominant, the non-monotonic variation [14, 15, 60]
observed at higher collision energies is not demonstrated
by the dynamics in non-critical models such as UrQMD.
Precision data from the energy window of 3 < √sNN <
20 GeV are needed in order to explore the possibility of
critical phenomena.

In summary, cumulant ratios of proton multiplicity dis-
tribution from √s

NN
= 3.0 GeV Au+Au collisions are re-

ported. The new data are measured by the STAR exper-
iment configured in fixed-target mode. At this collision
energy, large effects due to the initial volume fluctuation
are observed in the cumulant ratios except in the most
central 0–5% bin. The protons are measured with the ac-
ceptance −0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. The

rapidity and transverse momentum dependencies of the
cumulant ratios C2/C1, C3/C2, and C4/C2 are presented.
A suppression with respect to the Poisson baseline is ob-
served in proton C4/C2 = −0.85±0.09 (stat)±0.82 (syst)
in the most central 0–5% collisions at 3 GeV and and
the UrQMD model reproduces the observed trend in the
centrality dependence of the cumulant ratios including
C2/C1, C3/C2, and C4/C2. This new result is consistent
with fluctuations driven by baryon number conservation
at the high baryon density region.
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