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Generating tensor polarization from shear stress
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We derive an expression for the tensor polarization of a system of massive spin-1 particles in a hydrodynamic
framework. Starting from quantum kinetic theory based on the Wigner-function formalism, we employ a
modified method of moments which also takes into account all spin degrees of freedom. It is shown that the
tensor polarization of an uncharged fluid is determined by the shear-stress tensor. In order to quantify this novel
polarization effect, we provide a formula which can be used for numerical calculations of vector-meson spin
alignment in relativistic heavy-ion collisions.
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I. INTRODUCTION

The observation of polarization phenomena in relativistic
heavy-ion collisions has opened a new direction of research
in the physics of the hot and dense nuclear matter [1,2].
The STAR Collaboration showed that �-baryons emitted in
noncentral nuclear collisions are spin polarized along the di-
rection of the global angular momentum [3,4]. This finding
provides the evidence that in the quark-gluon plasma parti-
cle spin polarization is triggered by rotation (as suggested
in Refs. [5–8]) in a way which resembles the time-honored
Barnett effect [9]. Despite early success in describing global
polarization data [8,10–16], discrepancies between theory
and experiment triggered big theoretical efforts both at the
phenomenological [17–30] and more formal level with the
formulation of relativistic spin hydrodynamics [31–68]. More
recently, experimental studies of the so-called spin alignment
of massive spin-1 particles such as φ and K�0 mesons have
been also carried out [69–71]. The data shows that the spin
alignment is much larger compared to theoretical predictions
given by models based on the assumption of local equilibrium
[8]. This poses a new puzzle which is currently the subject
of intense work [72–80] for which, however, an established
solution is still missing.

In heavy-ion experiments, the spin vector polarization of
�-baryons can be directly extracted from the angular distri-
bution of their weak decay [3,4]. The case of massive spin-1
particles is different. First, it is important to note that the
polarization state of a vector meson is fully specified by
three parameters corresponding to the conventional vector
polarization and by additional five parameters called tensor

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

polarization [81]. In fact, tensor polarization is a property
which characterizes only particles with spin higher than 1/2.
In general, vector and tensor polarization are independent
quantities and, therefore, one can have a spin-1 particle which
is tensor polarized and not vector polarized, and vice versa
[81]. In experiments, since for vector mesons only parity-
conserving decays are studied [69,70], the spin alignment only
gives information on the tensor polarization state.

In Refs. [82,83] it was shown that vector mesons emitted
from a thermalized medium are in general tensor polarized
even if the system is in global equilibrium without rotation.
Such tensor polarization is due to the imbalance between
transverse and longitudinal spectral functions [82,83]. In
this paper, we propose a different mechanism. We consider
an uncharged fluid composed of massive spin-1 particles
near local thermodynamic equilibrium. In our framework,
tensor polarization arises due the presence of shear stress
in the fluid. An intuitive explanation can be given only
based on parity arguments. Since tensor polarization is a
parity-even rank-2 traceless and symmetric tensor [81], in a
hydrodynamic framework it can only be proportional to the
shear stress tensor of the fluid at first order in deviations
from equilibrium. In this work we derive the expression for
the tensor polarization starting from quantum kinetic the-
ory for massive spin-1 particles. In order to calculate the
dissipative corrections, we use the method of moments. In
particular, we define new rank-2 spin moments which extend
the previous formulations for the spin-0 [84] and spin-1/2
cases [64].

Our notation and conventions are: a · b := aμbμ,
a[μbν] := aμbν − aνbμ, a(μbν) := aμbν + aνbμ, gμν :=
diag(+,−,−,−), ε0123 = −ε0123 := 1. The �th rank
projector onto the subspace of traceless symmetric
tensors orthogonal to the fluid 4-velocity uμ [85] is
denoted as �μ1···μ�

ν1···ν�
, and we write a projected tensor A as

A〈μ1···μ�〉 := �μ1···μ�
ν1···ν�

Aν1···ν� .
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II. KINETIC THEORY FOR VECTOR PARTICLES

Let us consider the Lagrangian for a Proca field V μ of
mass m,

L = −h̄

(
1

2
V †μνVμν − m2

h̄2 V †μVμ

)
+ Lint, (1)

where Lint is a general interaction Lagrangian. The fundamen-
tal object of quantum kinetic theory is the Wigner function
defined as [65,86–90]

W μν (x, k) := − 2

(2π h̄)4h̄

∫
d4y e−ik·y/h̄

× 〈: V †μ(x + y/2)V ν (x − y/2) :〉, (2)

where 〈: · · · :〉 denotes the normal-ordered ensemble average.
This Wigner transform of the two-point function defines a
quantum analog of the distribution function known from clas-
sical kinetic theory. Assuming that quantum effects are small
(meaning that the Compton wavelength of the particles has to
be small compared to a typical macroscopic length scale), one
can perform a so-called h̄ expansion, i.e., write

W μν (x, k) = W (0),μν (x, k) + h̄W (1),μν (x, k) + · · · , (3)

where the Planck constant acts as a bookkeeping parameter.
In the following, all results are derived from employing such
an expansion up to first order in h̄. Note that in Eq. (2) the
momentum variable k is not necessarily on the mass shell.
However, one can show [44,91,92] that, to first order in
the h̄ expansion, the off-shell terms cancel in the evolution
equation of the Wigner function, such that it is sufficient to
consider the part that is on shell. Considering the fact that
a charged vector field has 3 (complex) independent compo-
nents [93], it is evident that the Wigner function must have
nine independent degrees of freedom, while the remaining
seven components can be expressed in terms of these [65].
These degrees of freedom can be shown to consist of a scalar
(one component), a pseudovector (three components), and
a traceless symmetric tensor (five components). As shown
in Appendix A, the pseudovector degree of freedom can be
related to the vector polarization of the particles, while the
traceless symmetric tensor corresponds to the tensor polar-
ization. A convenient way to treat these nine independent
components in a compact fashion is to enlarge the phase space
by introducing an additional “spin” variable sμ [37], together
with a respective measure

dS(k) := 3m

2σπ
d4s δ(s2 + σ 2)δ(k · s), σ 2 := 2. (4)

Note that we have the following identities,∫
dS(k) = 3,

∫
dS(k)sμsν = −2Kμν,∫

dS(k)Kμν
αβ s

αsβsρsσ = 8

5
Kμν

ρσ , (5)

while the integral over any odd number of spin vectors van-
ishes. Here, Kμν := gμν − kμkν/m2 and Kμν

ρσ := 1/2Kμ
(ρKν

σ ) −
1/3KμνKρσ denote the projectors onto subspaces irreducible
with respect to the little group of kμ. We can then define a
scalar distribution function [65]

f (x, k, s) := Hνμ(k, s)W on−shell
μν (x, k),

Hμν (k, s) := 1

3
Kμν + i

2
εμναβ kα

m
sβ + 5

8
Kμν

αβ s
αsβ,

(6)

where W on−shell
μν denotes the part of the Wigner function pro-

portional to δ(k2 − m2). It is important to note that, to first
order in the h̄ expansion, the distribution function f (x, k, s)
contains the complete information necessary to reconstruct
the full Wigner function. In the noninteracting case, the fol-
lowing inverse relation also holds:

W on-shell
μν (x, k) =

∫
dS(k)hμν (k, s) f (x, k, s),

hμν (k, s) := 1

3
Kμν + i

2
εμναβ

kα

m
sβ + Kαβ

μν sαsβ.

(7)

Starting from the equations of motion for the vector field
that follow from the Lagrangian (1), it can be shown that
the evolution equation of the phase-space distribution function
reads [92]

k · ∂ f (x, k, s) = C[ f ], (8)

where

C[ f ] := 1

2

∫
d�1 d�2 d�′ dS̄(k)(2π h̄)4δ(4)(k + k′ − k1 − k2)

× W[ f (x + �1 − �, k1, s1) f (x + �2 − �, k2, s2)

− f (x + �′ − �, k′, s′) f (x, k, s̄)] (9)

and we introduced the (x, k, s)-phase-space measures

d� := dKdS(k), dK := 2

(2π h̄)3
d4k δ(k2 − m2). (10)

The transition rate is given by

W := (2π h̄)3

32
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 h1,γ1η1 h2,γ2η2 h′

ζ2δ2

×(Hζ1
α h̄αδ1 + h̄ζ1

αHαδ1 ), (11)

while the vectors �1, �2, �′, and � read

�
μ
1 := 2

3

1

W
(2π h̄)3

64

ih̄

2m2
Mγ1γ2δ1δ2 Mζ1ζ2η1η2

(
hμ

1 η1 k1,γ1 − k1,η1 h1,γ1
μ
)
h2,γ2η2 h′

ζ2δ2
Hζ1δ1 , (12a)

�
μ
2 := 2

3

1

W
(2π h̄)3

64

ih̄

2m2
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 h1,γ1η1

(
hμ

2 η2 k2,γ2 − k2,η2 h2,γ2
μ
)
h′

ζ2δ2
Hζ1δ1 , (12b)

�′μ := 2

3

1

W
(2π h̄)3

64

ih̄

2m2
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 h1,γ1η1 h2,γ2η2

(
h′μ

δ2 k′
ζ2

− k′
δ2

h′
ζ2

μ
)
Hζ1δ1 , (12c)
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�μ := 2

3

1

W
(2π h̄)3

64

ih̄

2m2
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 h1,γ1η1 h2,γ2η2 h′

ζ2δ2

(
Hμ

δ1 kζ1 − kδ1 Hζ1
μ
)
, (12d)

where we abbreviated h1 := h(k1, s1) (and analogously for h2,
h′, h̄, and H). The vectors (12) denote shifts in the particle
position from the point x, characterizing the nonlocality of the
collision. It has been shown in Refs. [37,91] that this nonlocal-
ity is essential to explain the spin polarization of particles, as it
introduces a nonvanishing orbital angular momentum into the
collision that can then be converted into spin, since the total
angular momentum is conserved. However, it will become
clear in Sec. IV that the tensor polarization of vector particles
does not depend on these nonlocalities, but arises from purely
local effects. In Eqs. (11) and (12), M is the tree-level vertex
of the theory, and is related to the transfer matrix elements via

〈k, k′; λ, λ′| t̂ |k1, k2; λ1, λ2〉
= ε∗(λ)

μ (k)ε∗(λ′ )
ν (k′)ε (λ1 )

α (k1)ε (λ2 )
β (k2)Mμναβ, (13)

where, e.g., |k1, k2; λ1, λ2〉 denotes a two-particle state with
momenta (k1, k2) and spins (λ1, λ2), while ε (λ)

μ (k) is the po-
larization vector of a vector particle with momentum k and
spin λ. Note that the form of the Boltzmann equation [Eqs. (8)
and (9)] for binary elastic collisions closely resembles the
formulation presented in Refs. [37,91,94].

III. RELATIVISTIC HYDRODYNAMICS AND TENSOR
POLARIZATION

We consider an uncharged fluid with spin degrees of free-
dom and tensor polarization governed by the conservation
equations

∂μT μν = 0, h̄∂λSλ,μν = T [νμ], (14)

where T μν is the energy-momentum tensor and Sλ,μν is
the spin tensor. In this work we choose the Hilgevoord-
Wouthuysen (HW) pseudogauge up to first order in h̄ [39,65],

T μν :=
∫

d� kμkν f (x, k, s),

Sλ,μν :=
∫

d� kλ

(
�μν

s − h̄

3m2
k[μ∂ν]

)
f (x, k, s),

(15)

where we defined �
μν
s := −(1/m)εμναβkαsβ . The

(momentum-dependent) tensor polarization is given by

�μν (k) = 1

2

√
3

2

1

N (k)

∫
d�λkλ

∫
dS(k)Kμν

αβ s
αsβ f (x, k, s),

(16)

where the prefactor is defined in accordance with Ref. [81],
N (k) := ∫

d�λkλKαβW αβ and d�λ denotes integration over
a spacelike hypersurface, which, for example, can be taken

to be the freeze-out hypersurface. As will be shown later,
this quantity is related to the spin alignment measured in
experiments [69–71]. A derivation of Eq. (16) is provided in
Appendix A.

A. Moment expansion

In order to determine the dissipative corrections to the
tensor polarization, we extend the formalism developed in
Ref. [84] for spin-0 particles and in Ref. [64] for spin-1/2 par-
ticles to the case of spin 1. We split the distribution function
f (x, k, s) into a local-equilibrium and a dissipative contribu-
tion

f (x, k, s) = feq(x, k, s) + δ fks, (17)

with the local-equilibrium part [91]

feq(x, k, s) := exp

(
−β0Ek − h̄

2m
εμναβ�μνkαsβ

)
, (18)

where Ek := k · u. Note again that Eq. (18) as well as all
calculations in this paper are valid up to first order in h̄. The
Lagrange multipliers for the four-momentum and total angular
momentum are given by β0uμ and �μν , respectively, with β0

being the inverse temperature, uμ the fluid four-velocity and
�μν the spin potential. Since the tensor polarization is not
related to any conserved quantity, it does not appear in the
local-equilibrium distribution function. The deviation from
local equilibrium δ fks is first expanded in the spin variable
sμ, where it is at most bilinear, cf. Eq. (6). Thus we can write

δ fks = f0k
(
φk − sμζ

μ

k + sαsβKαβ
μν ξ

μν

k

)
, (19)

where f0k := exp(−β0Ek ) is the zeroth-order equilibrium
distribution function. Here we assumed ζ

μ

k and ξ
μν

k to be
orthogonal to the four-momentum and (in the case of ξ

μν

k )
traceless, which can be done without loss of generality due
to the symmetries of sμ and Kμν

αβ s
αsβ [64]. Then, it is possible

to explicitly use these properties to eliminate the components
of ζ

μ

k and ξ
μν

k that are parallel to the fluid four-velocity uμ,
obtaining

δ fks = f0k
(
φk − sν�νμζ

μ

k + sαsβKαβ
μν �μν

ρσ ξ
ρσ

k

)
, (20)

where we defined the tensors

�μν := �μν + k〈μ〉k〈ν〉
E2

k

,

�μν,αβ := 1

2
(�μα�νβ + �μβ�να ) − 1

�2
�μγ � γ

ν �δα�δ
β

(21)

with �2 := �μν�μν = 2 + m4/E4
k . Expanding φk, ζμ

k and ξ
μν

k
terms of irreducible moments, we find

δ fks = f0k

∞∑
�=0

k〈μ1 · · · kμ�〉

⎛
⎜⎝ ∑

n∈S(0)
�

H(0,�)
kn ρμ1···μ�

n − sν�νμ

∑
n∈S(1)

�

H(1,�)
kn τ 〈μ〉,μ1···μ�

n + sαsβKαβ
μν �μν

ρσ

∑
n∈S(2)

�

H(2,�)
kn ψ 〈ρσ 〉,μ1···μ�

n

⎞
⎟⎠. (22)
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Here S(n)
� denotes the set of moments of tensor-rank � in

momentum and n in spin that are included in the theory, and
the irreducible moments are given by

ρμ1···μ�

r :=
∫

d�Er
kk〈μ1 · · · kμ�〉δ fks, (23a)

τμ,μ1···μ�

r :=
∫

d�Er
ks

μk〈μ1 · · · kμ�〉δ fks, (23b)

ψμν,μ1···μ�

r :=
∫

d�Er
kKμν

αβ s
αsβk〈μ1 · · · kμ�〉δ fks. (23c)

Note that, as was the case in Ref. [64], due to the explicit
removal of redundant degrees of freedom [cf. Eq. (20)] only
moments orthogonal to the four-velocity in all indices enter
the expansion (22). Furthermore, we introduced the polyno-
mials

H( j,�)
kn := (2 j + 1)!!

2 j j!

W (�)

�!

∑
m∈S( j)

�

m∑
q=0

a(�)
mna(�)

mqEq
k , (24)

where the coefficients a(�)
mn are constructed via Gram-Schmidt

orthogonalization, cf. Ref. [84]. The normalization reads
W (�) := (−1)�/I2�,�, where we defined the standard thermo-
dynamic integrals

Inq := 1

(2q + 1)!!

∫
d�En−2q

k

(
E2

k − m2
)q

f0k. (25)

The rank-(2+�) tensors in Eq. (23c) are new compared to
the previously developed hydrodynamic framework for spin-0
and spin-1/2 particles [64,84] and correspond to dissipative
degrees of freedom associated with tensor polarization, cf.
Sec. IV. Inserting Eq. (17) into Eq. (8), the Boltzmann equa-
tion takes the form

δ ḟks + ḟ0k + E−1
k k · ∇ f0k + E−1

k k · ∇δ fks = E−1
k C[ f ],

(26)

which is the starting point for the derivation of the equations of
motion for the irreducible moments. For the purpose of this
paper the full set of coupled equations of motion is not needed
and we will only focus on the tensor-polarization moments
ψμν,μ1···μ�

r . Integrating Eq. (26) over
∫

dS(k)Kμν
αβ s

αsβ , we ob-
tain equations of motion of the form

ψ̇ 〈μν〉,〈μ1···μ�〉
r − C〈μν〉,〈μ1···μ�〉

r−1 = O(Re−1∂ )〈μν〉,μ1···μ� . (27)

Here we used that
∫

dS(k)Kμν
αβ s

αsβ feq(x, k, s) = 0, which
follows from Eq. (18). This implies that tensor polarization
vanishes in equilibrium up to first order in h̄. The contribu-
tions from the last term on the left-hand side of Eq. (26)
to Eq. (27), denoted by O(Re−1∂ ), correspond to quantities
linear in gradients of dissipative quantities, i.e., of first order
in the so-called inverse Reynolds numbers Re−1. Note that
the first term on the left-hand side of Eq. (27) is also of order
O(Re−1∂ ). Furthermore, we defined the generalized collision
integrals

Cμν,〈μ1···μ�〉
r :=

∫
d�Er

kKμν
αβ s

αsβk〈μ1 · · · kμ�〉C[ f ]. (28)

The explicit form of the right-hand side of Eq. (27) is of no
importance for the following discussion, since we will as-

sume that the tensor-polarization moments are given by their
Navier-Stokes values, which are determined by neglecting
contributions of order O(Re−1∂ ) in Eq. (27). This is justified
since, in contrast to the components of the energy-momentum
tensor or spin tensor, the tensor-polarization moments are
not part of the conserved quantities (15). Therefore, it is not
necessary to treat them dynamically in second-order hydrody-
namics, and it is reasonable to expect that the Navier-Stokes
values will constitute the leading-order contribution, while
possible second-order terms would lead to small corrections.

B. Truncation

Since we expect the conserved quantities (15) to dominate
the evolution of the system on long time scales, it is reason-
able to take the irreducible moments appearing there as the
dynamical degrees of freedom of our theory. Decomposing the
energy-momentum tensor with respect to the fluid velocity uμ

as

T μν = εuμuν − �μν (P0 + �) + πμν, (29)

where ε is the energy density, P0 is the isotropic pressure, �

is the bulk-viscous pressure, πμν denotes the shear-stress ten-
sor, and imposing the Landau frame condition T μνuν = εuμ

as well as the matching condition uμuνT μν = uμuνT μν
eq , we

identify the dynamical moments ρ0 ≡ −(3/m2)� and ρ
μν
0 ≡

πμν , while ρ1 = ρ2 = 0, ρ
μ
1 = 0 [84]. Therefore, we have

S(0)
0 = S(0)

2 = {0} and S(0)
1 = ∅1, while S(n)

� = ∅ for n > 2.
In principle, the transport coefficients in the equations of
motion for ρ0 and ρ

μν
0 are modified through the coupling to

the tensor-polarization moments, known in the nonrelativistic
case as the Senftleben effect [95]. However, it is expected
that the modifications of both the conventional transport co-
efficients and the tensor polarization due to this effect are
small [95]. Furthermore, although the components of the spin
tensor should also be treated dynamically [64], we will not
consider them in this work since they do not couple to the
tensor-polarization moments.

The tensor polarization in Eq. (16), when integrated over
momentum space, can be expressed in terms of the irreducible
moments as

�̄μν :=
∫

dKN (k)�μν (k) = 1

2

√
3

2

∫
d�λ

(
uλψ

μν
1 + ψ

μν,λ
0

)
.

(30)

In order to keep the degrees of freedom which enter the ex-
pression for the tensor polarization (30), we choose S(2)

0 = {1}
and S(2)

1 = {0} in the moment expansion.

IV. TENSOR POLARIZATION FROM SHEAR STRESS

Using the truncation procedure outlined in the previous
section, the Navier-Stokes limits of Eq. (27) for r ∈ S(2)

� sim-
ply become

C〈μν〉
0 = 0, C〈μν〉,〈λ〉

−1 = 0. (31)

1Due to the restriction to an uncharged fluid, we do not need to
consider the moment ρ

μ

0 related to charge diffusion.
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FIG. 1. The coefficient ξ for the case of a four-point interaction,
Lint ∼ (V † · V )2.

When expressing these collision terms through the irreducible
moments, we note that, since in this work we only consider

parity-conserving interactions, all integrals over W contain-
ing an odd number of spin vectors vanish [64]. This implies
that there is no coupling between the moments τμ,μ1···μ�

r and
ψμν,μ1···μ�

r . The second equation in (31) immediately implies
ψ

〈μν〉,λ
0 = 0 since there are no tensor structures with the ap-

propriate symmetries. On the other hand, the first equation in
(31) yields

∑
n∈S(2)

0

C (0)
1n ψ 〈μν〉

n +
∑

n∈S(0)
2

D(2)
1n ρμν

n = 0, (32)

where we linearized the collision term (9), plugged it
into (28) and used the expansion for the distribution
function (22). Furthermore, we introduced the collision
integrals

C (0)
1n := 1

5

∫
[dK] f0k f0k′�μν,αβ

(
Mμν,αβ

(ks)(k1s1 )H
(2,0)
k1n + Mμν,αβ

(ks)(k2s2 )H
(2,0)
k2n − Mμν,αβ

(ks)(k′s′ )H
(2,0)
k′n − Mμν,αβ

(ks)(ks̄)H
(2,0)
kn

)
, (33a)

D(2)
1n := 1

5

∫
[dK] f0k f0k′Mμν

(ks)

(
H(0,2)

k1n k1,〈μk1,ν〉 + H(0,2)
k2n k2,〈μk2,ν〉 − H(0,2)

k′n k′
〈μk′

ν〉 − H(0,2)
kn k〈μkν〉

)
, (33b)

with [dK] := dK1dK2dK ′dK and

Mμν

(ks) := 1

2
(2π h̄)4δ(4)(k + k′ − k1 − k2)

∫
[dS]dS̄(k)WKμν

αβ s
αsβ, (34a)

Mμν,αβ

(kisi )(k js j )
:= 1

2
(2π h̄)4δ(4)(k + k′ − k1 − k2)�γδ,αβ

j

∫
[dS]dS̄(k)WKμν

i,ρσ s
ρ
i s

σ
i Kζη

j,γ δs j,ζ s j,η. (34b)

Here, we defined [dS] := dS1(k1)dS2(k2)dS′(k′)dS(k), and
Kμν

i,αβ denotes the symmetric traceless projector onto the sub-

space orthogonal to ki ∈ {k1, k2, k′, k}. Similarly, �
αβ

j,γ δ is the
tensor introduced in Eq. (21) with the momentum k replaced
by ki. A more detailed derivation of Eq. (32) is provided in
Appendix B.

Employing the truncation introduced in Sec III B in
Eq. (32) and using that ρ

μν
0 = πμν yields

ψ
〈μν〉
1 = ξ β0π

μν, (35)

where

ξ := − 1

β0

D(2)
10

C (0)
11

(36)

denotes a coefficient that can only depend on the ratio of mass
over temperature mβ0. With details relegated to Appendix C,
we plot the value of ξ in Fig. 1 for the case of a simple four-
point interaction.

Equation (35) is one of the main results of this work,
showing that the Navier-Stokes values of the moments re-
lated to the tensor polarization are determined from collisions.
Furthermore, the value of the coefficient ξ is determined
solely by local collisions, i.e., the nonlocality of the colli-
sion term (9) has no influence on the tensor polarization,
provided that the interactions conserve parity. Note that, ne-
glecting the moments of first order in spin, the deviation of the
single-particle distribution function from local equilibrium

reads at this point

δ fks = f0k

(
− 3

m2
H(0,0)

k0 � + H(0,2)
k0 k〈μkν〉πμν

+ ξβ0H(2,0)
k1 sαsβKαβ

μν �μν
ρσπρσ

)
. (37)

V. SPIN ALIGNMENT IN HEAVY-ION COLLISIONS

We now connect these results to the spin alignment
measured in experiments which, in turn, is related to the
00-element of the spin-density matrix ρλλ′ [71]. In analogy
with Ref. [96], one obtains

ρλλ′ (k) =
∫

d�αkαε (λ)μWμνε
∗(λ′ )ν∑3

σ=1

∫
d�αkαε (σ )μWμνε∗(σ )ν

. (38)

The derivation of Eq. (38) is provided in Appendix A. Since
we are interested in a diagonal element of the spin-density
matrix, with the corresponding polarization vector ε (0)μ :=
(0, 0, 0, 1) being real, the antisymmetric part of the Wigner
function does not contribute. One can verify with the aid of
Eq. (16) that the 00-element of Eq. (38) is given by

ρ00(k) = 1

3
−

√
2

3
ε (0)
μ ε (0)

ν �μν (k). (39)
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Using Eq. (37), we arrive at the final expression

ρ00(k) = 1

3
− 4

15

∫
d�αkαξ β0 f0kH(2,0)

k1 ε (0)
α ε

(0)
β Kαβ

μν �μν
ρσπρσ∫

d�αkα f0k
(
1 − 3H(0,0)

k0 �/m2 + H(0,2)
k0 πμνk〈μkν〉

) , (40)

where we used that there is no tensor polarization in local
equilibrium which follows from Eq. (18). The polynomials H
appearing in Eq. (40) read [84]

H(0,0)
k0 = 1

I00
, H(0,2)

k0 = 1

2I42
, H(2,0)

k1 = 15

8

I00Ek − I10

I20I00 − I2
10

.

(41)

Equation (40) is the main result of our work which shows
how vector particles can become tensor polarized due to the
presence of shear stress. Since this effect is independent of
vorticity, one may choose a quantization axis different from
the global angular-momentum direction [69–71], where the
strength might be larger.

It is important to note that the expression (40) depends on
the details of the interaction between particles only through
the coefficient ξ .

VI. CONCLUSIONS

In this work, starting from quantum kinetic theory and
using the method of moments, we have shown that shear
stress can induce tensor polarization in an uncharged fluid.
This novel polarization mechanism is purely related to out-
of-equilibrium properties of the system and it is independent
of fluid rotation. Thus, one does not need to include nonlocal
collisions [37] since such an effect is not determined by the
conservation of total angular momentum. Our main result is
a formula which can be used for quantitative predictions for
vector-meson spin alignment in heavy-ion collisions using
hydrodynamic simulations. The present work can be extended
by relaxing the assumption of charge neutrality of the fluid.
In fact, particle diffusion will also contribute to the tensor
polarization. Furthermore, the method of moments discussed
here can be used to derive relativistic dissipative spin-1 hydro-
dynamics with dynamical spin degrees of freedom.

Note added. Recently, we became aware of a related study
[97].
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APPENDIX A: RELATIONS BETWEEN THE WIGNER
FUNCTION AND POLARIZATION OBSERVABLES

In this Appendix, we prove the relation of the spin-density
matrix to the Wigner function, following the same steps as
outlined in Ref. [96] for spin-1/2 particles. Furthermore, we
prove the relation between tensor polarization and the Wigner
function reported in the main text.

The spin-density matrix is defined as

ρλλ′ (k) := 〈â†
λ(k)âλ′ (k)〉∑

σ 〈â†
σ (k)âσ (k)〉 . (A1)

The goal is to relate the Wigner function

W μν (x, k) := − 2

(2π h̄)4h̄

∫
d4ye−ik·y/h̄

× 〈: V †μ(x + y/2)V ν (x − y/2) :〉 (A2)

to the averages over creation and annihilation operators ap-
pearing in Eq. (A1). Expressing the fields in terms of creation
and annihilation operators

V μ(x) :=
√

h̄
∑

σ

∫
d3k

(2π h̄)32k0

× [e− i
h̄ k·xε (σ )μ(k)âσ (k) + e

i
h̄ k·xε∗(σ )μ(k)b̂†

σ (k)]

(A3)

and inserting them into the Wigner function, we obtain
W μν = W μν

+ + W μν
− + W μν

S , where W μν
± denote the particle

and antiparticle contributions, respectively (i.e., their associ-
ated momenta are timelike with k0 > 0 or k0 < 0), while W μν

S
denotes the Wigner function whose momentum is spacelike.
These three quantities read explicitly

W μν
+ (x, k) = −2

∑
σ,σ ′

∫
d3 p

(2π h̄)32p0

∫
d3 p′

(2π h̄)32p′0

× δ(4)[k − (p + p′)/2]ei(p−p′ )·x/h̄ε∗(σ )μ(p)

× ε (σ ′ )ν (p′)〈â†
σ (p)âσ ′ (p′)〉, (A4a)

W μν
− (x, k) = −2

∑
σ,σ ′

∫
d3 p

(2π h̄)32p0

∫
d3 p′

(2π h̄)32p′0

× δ(4)[k + (p + p′)/2]ei(p−p′ )·x/h̄

× ε (σ )μ(p)ε∗(σ ′ )ν (p′)〈b̂†
σ (p′)b̂†

σ ′ (p)〉, (A4b)

W μν
S (x, k) = −2

∑
σ,σ ′

∫
d3 p

(2π h̄)32p0

∫
d3 p′

(2π h̄)32p′0

× δ(4)[k − (p − p′)/2][ei(p+p′ )·x/h̄ε∗(σ )μ(p)

× ε∗(σ ′ )ν (p′)〈â†
σ (p)b̂†

σ ′ (p′)〉+e−i(p+p′ )·x/h̄ε (σ )μ(p′)

× ε (σ ′ )ν (p)〈âσ (p′)b̂σ ′ (p)〉], (A4c)
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where we employed that 〈: âσ (p)â†
σ ′ (p′) :〉 = 〈â†

σ ′ (p′)âσ (p)〉
due to the bosonic nature of the particles. Using now that∫

d�αkαW μν
+ (x, k) ≡ k0

∫
d3xW μν

+ (x, k)

=
∑
σ,σ ′

δ(k2 − m2)�(k0)ε∗(σ )μ(p)ε (σ ′ )ν (p′)〈â†
σ (p)âσ ′ (p′)〉

(A5)

as well as the completeness and orthogonality relations of the
polarization vectors

ε∗(λ)μ(k)ε (λ′ )
μ (k) = −δλλ′ ,

∑
λ

ε∗(λ)μ(k)ε (λ)ν (k) = −Kμν,

(A6)

we find the sought-after relation

〈â†
λ(k)âλ′ (k)〉 =

∫
d�αkαε (λ)

μ (k)W μν
+ (x, k)ε∗(λ′ )

ν (k), (A7)

which lets us express the spin-density matrix of the
particles as

ρλλ′ (k) =
∫

d�αkαε (λ)
μ (k)W μν

+ (x, k)ε∗(λ′ )
ν (k)∑

σ

∫
d�αkαε

(σ )
μ (k)W μν

+ (x, k)ε∗(σ )
ν (k)

. (A8)

Note that a similar relation holds also for the antiparticles.
In the next step we will relate the traceless symmetric

components of the Wigner function to the tensor polarization,
which is defined as [81]

�μν (k) := 1

2

√
3

2
Tr

[(
Ŝ(μŜν) + 4

3
Kμν

)
ρ̂(k)

]
, (A9)

where ρ̂(k) is the spin-density operator restricted to the four-
momentum kμ, and

Ŝμ := − 1

2m
εμναβ ĴναP̂β (A10)

denotes the Pauli-Lubanski operator divided by the particle
mass [39,96]. Here, Ĵμν is the generator of Lorentz transfor-
mations, while P̂μ generates space-time translations. From,
e.g., Eq. (14) in Ref. [96] we know that we can represent the
matrix elements of the operator Ŝμ as

〈k, λ| Ŝμ |k, λ′〉 = − 1

2m
εμναβkνDS ([k])−1DS (Jαβ )DS ([k]),

(A11)

where DS (Jμν ) and DS ([k]) are the spin-S representation
of the total angular-momentum operator and the standard
Lorentz boost to the four-momentum kμ, respectively. From
this relation we can infer

�μν (k) = 1

2

√
3

2

{
1

2
εμαβγ ενρσλ kαkλ

m2
Tr
[
DS ([k])−1DS (Jβγ )DS (Jρσ )DS ([k])ρ(k)

] + 4

3
Kμν

}
. (A12)

For massive spin-1 particles, we work in the (1/2,1/2) representation of the Lorentz group, where

DS (Jβγ )μν = i(gμ

βgν
γ − gμ

γ gν
β ), (DS (Jβγ )DS (Jρσ ))μν = gμ

βgν
ρgγ σ + gμ

γ gν
σ gβρ − gμ

βgν
σ gγ ρ − gμ

γ gν
ρgβσ . (A13)

In a basis where the polarization vectors in the particle rest frame [i.e., the frame where k�μ = (m, 0, 0, 0)] coincide with the
cartesian axes ε (λ)μ(k�) = −gλμ, we can express the standard Lorentz transformation as

DS ([k])μλ = ε (λ)μ(k). (A14)

Inserting this into Eq. (A12) and using the spin-density matrix (A8) as well as the completeness relation (A6), we find

�μν (k) = 1

2

√
3

2

[
2εμαβγ ενρσλ kαkλ

m2
gγ σ KβηKρζ

∫
d�εkεW ηζ

+ (x, k)∫
d�εkεKφψW φψ

+ (x, k)
+ 4

3
Kμν

]

=
√

3

2

[
(Kμ

α Kν
β − KμνKαβ )

∫
d�γ kγW αβ

+ (x, k)∫
d�γ kγ KρσW ρσ

+ (x, k)
+ 2

3
Kμν

]

=
√

3

2
Kμν

αβ

∫
d�γ kγW αβ

+ (x, k)∫
d�γ kγ KρσW ρσ

+ (x, k)
. (A15)

Translating this expression into integrals over spin space and abbreviating∫
d�γ kγ KρσW ρσ

+ (x, k) =
∫

d�γ kγ

∫
dS(k) f (x, k, s) =: N (k), (A16)

we have

�μν (k) = 1

2

√
3

2

1

N (k)

∫
d�γ kγ

∫
dS(k)Kμν

αβ s
αsβ f (x, k, s).

(A17)

For completeness, we furthermore list the expression for
the vector polarization of spin-1 particles, which is defined as

Sμ(k) := Tr[Ŝμρ̂(k)]. (A18)
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Inserting the representation of the total angular momentum
operator (A13), we obtain

Sμ(k) = i

2
εμναβ kν

m

∫
d�γ kγW+,αβ (x, k)∫

d�γ kγ KρσW ρσ
+ (x, k)

, (A19)

which in extended phase space becomes

Sμ(k) = 1

N (k)

∫
d�γ kγ

∫
dS(k)sμ f (x, k, s). (A20)

APPENDIX B: DERIVATION OF EQ. (32)

Considering the definition of the irreducible moments of
the collision integrals (28), Eq. (31) reads explicitly

0 = C〈μν〉
0 =

∫
d� K 〈μν〉

αβ sαsβC

= 1

2

∫
[d�]dS̄(k)(2π h̄)4δ(4)(k + k′ − k1 − k2)

× W K 〈μν〉
αβ sαsβ[ f (x + �1 − �, k1, s1)

× f (x + �2 − �, k2, s2)

− f (x + �′ − �, k′, s′) f (x, k, s̄)], (B1)

where we abbreviated [d�] := d�1d�2d�′d�. Due to our
assumption that the interaction conserves parity, all integrals
over W weighted with an odd number of spin vectors vanish
[64], i.e.,

∫
[dS]dS̄(k)W s

μ
i = 0, (B2a)∫

[dS]dS̄(k)W Kμν

i,αβs
α
i s

β
i s

λ
j = 0. (B2b)

From these identities we see that only the components
of the distribution functions which are proportional to either
zero or two spin vectors contribute to Eq. (B1). The nonlocal
shifts �1, �2, �′, and � however are linear in the spin
vector sμ [94], which follows from Eq. (12) by considering
the symmetries of M together with the assumption that spin
effects are at least of order O(h̄). This implies that neither
the nonlocal part of the collision term nor the spin-dependent
part of the local-equilibrium distribution function (18) give
a nonvanishing contribution to Eq. (B1). Linearizing the col-
lision term in the deviations from equilibrium, inserting the
moment expansion (22), and using the conservation of linear
momentum, Eq. (B1) becomes

0 = 1

2

∫
[d�]dS̄(k)(2π h̄)4δ(4)(k + k′ − k1 − k2)W K 〈μν〉

αβ sαsβ f0k f0k′

×
∞∑

�=0

[ ∑
n∈S(0)

�

(
H(0,�)

k1n k〈1,μ1 · · · k1,μ�〉 + H(0,�)
k1n k〈2,μ1 · · · k2,μ�〉 − H(0,�)

k′n k′
〈μ1

· · · k′
μ�〉 − H(0,�)

kn k〈μ1 · · · kμ�〉
)
ρμ1···μ�

n

+
∑

n∈S(2)
�

(
s1,γ s1,δKγ δ

1,ζη�
ζη

1,ρσH
(2,�)
k1n k〈1,μ1 · · · k1,μ�〉 + s2,γ s2,δKγ δ

2,ζη�
ζη

2,ρσH
(2,�)
k2n k〈2,μ1 · · · k2,μ�〉

− s′
γ s

′
δK ′γ δ

ζη �′ζη
ρσ H

(2,�)
k′n k′

〈μ1
· · · k′

μ�〉 − s̄γ s̄δKγ δ

ζη �ζη
ρσH

(2,�)
kn k〈μ1 · · · kμ�〉

)
ψ 〈ρσ 〉,μ1···μ�

n

]

≡
∞∑

�=0

⎡
⎢⎣ ∑

n∈S(0)
�

(
D(�)

1n

)μν

μ1···μ�
ρμ1···μ�

n +
∑

n∈S(2)
�

(
C(�)

1n

)μν

ρσ,μ1···μ�
ψ 〈ρσ 〉,〈μ1···μ�〉

n

⎤
⎥⎦. (B3)

Here we defined

(
D(�)

1n

)μν

μ1···μ�
:= 1

2

∫
[d�]dS̄(k)(2π h̄)4δ(4)(k + k′ − k1 − k2)W K 〈μν〉

αβ sαsβ f0k f0k′

× (
H(0,�)

k1n k〈1,μ1 · · · k1,μ�〉 + H(0,�)
k1n k〈2,μ1 · · · k2,μ�〉 − H(0,�)

k′n k′
〈μ1

· · · k′
μ�〉 − H(0,�)

kn k〈μ1 · · · kμ�〉
)
, (B4a)

(
C(�)

1n

)μν

ρσ,μ1···μ�
:= 1

2

∫
[d�]dS̄(k)(2π h̄)4δ(4)(k + k′ − k1 − k2)W K 〈μν〉

αβ sαsβ f0k f0k′

× (
s1,γ s1,δKγ δ

1,ζη�
ζη

1,ρσH
(2,�)
k1n k〈1,μ1 · · · k1,μ�〉 + s2,γ s2,δKγ δ

2,ζη�
ζη

2,ρσH
(2,�)
k2n k〈2,μ1 · · · k2,μ�〉

− s′
γ s

′
δK ′γ δ

ζη �′ζη
ρσ H

(2,�)
k′n k′

〈μ1
· · · k′

μ�〉 − s̄γ s̄δKγ δ

ζη �ζη
ρσH

(2,�)
kn k〈μ1 · · · kμ�〉

)
. (B4b)

Taking into account that in our truncation S(2)
� = ∅ for � � 2, it follows that the tensors defined above must take the following

form,

(
D(�)

1n

)μν

μ1···μ�
≡ D(2)

1n �μν
μ1μ2

δ�2,
(
C(�)

1n

)μν

ρσμ1···μ�
≡ C (0)

1n �μν
ρσ δ�0, (B5)
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where we introduced the scalar coefficients

D(2)
1n := 1

5
�μ1μ2

μν

(
D(2)

1n

)μν

μ1μ2
, C (0)

1n := 1

5
�ρσ

μν

(
C(0)

1n

)μν

ρσ
. (B6)

The form of the coefficients in Eq. (B5) follows from the fact that the tensors (D(�)
1n )μν

μ1···μ�
and (C(�)

1n )μν
ρσ,μ1···μ�

have to be orthogonal
to uμ, symmetric and traceless in the indices (μν), (μ1 · · ·μ�), and (in the latter case) (ρσ ). The only tensor structures made
from gμν and uμ that fulfill these requirements are given by the irreducible projectors of second rank as shown in Eq. (B5).
Inserting Eqs. (B5) and (B6) into Eq. (B3), we arrive at Eq. (32) in the main text.

APPENDIX C: CALCULATIONS FOR A FOUR-POINT INTERACTION

Considering a simple four-point interaction characterized by a dimensionless coupling strength G,

Lint := h̄G(V † · V )2, (C1)

we compute the transfer-matrix elements at leading order [85,94]

〈k, k′; λ, λ′| t̂ |k1, k2; λ1, λ2〉 = 1

h̄
〈k, k′; λ, λ′| : Lint(0) : |k1, k2; λ1, λ2〉

= 2h̄2G
{[

ε∗(λ′ )
α (k′)ε (λ1 )α (k1)

][
ε

∗(λ)
β (k)ε (λ2 )β (k2)

] + [
ε∗(λ′ )
α (k′)ε (λ2 )α (k2)

][
ε

∗(λ)
β (k)ε (λ1 )β (k1)

]}
, (C2)

where we used the free-field representation of the vector fields

V μ(0) =
√

h̄
∑
σ ′

∫
d3k′

(2π h̄)32k′0 â(k′, σ ′)ε (σ ′ )μ(k′). (C3)

Recalling the relationship (13) between the vertices M and the transfer-matrix elements, we find

Mμναβ = 2h̄2G(gμαgνβ + gμβgνα ). (C4)

Using the identities ∫
dS(k)hμν (k, s) = Kμν, (C5a)∫

dS(k)Hμν (k, s) = Kμν, (C5b)∫
dS(k)Kρσ

αβ sρsσ hμν (k, s) = 8

5
Kμν

αβ , (C5c)∫
dS(k)Kρσ

αβ sρsσ Hμν (k, s) = Kμν
αβ , (C5d)

we are able to perform the integrals over spin space in Eq. (34), obtaining∫
[dS]dS̄(k)WKμν

αβ s
αsβ = (2π h̄)3

16
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 K1,γ1η1 K2,γ2η2 K ′

ζ2δ2
Kμν

ζ1δ1
, (C6a)

∫
[dS]dS̄(k)WKμν

ρσ s
ρsσ Kγ δ

1,ζηs
ζ
1s

η

1 = 8

5

(2π h̄)3

16
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 Kγ δ

1,γ1η1
K2,γ2η2 K ′

ζ2δ2
Kμν

ζ1δ1
, (C6b)

∫
[dS]dS̄(k)WKμν

ρσ s
ρsσ Kγ δ

2,ζηs
ζ
2s

η

2 = 8

5

(2π h̄)3

16
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 K1,γ1η1 Kγ δ

2,γ2η2
K ′

ζ2δ2
Kμν

ζ1δ1
, (C6c)

∫
[dS]dS̄(k)WKμν

ρσ s
ρsσ K ′γ δ

ζη s′ζ s′η = 8

5

(2π h̄)3

16
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 K1,γ1η1 K2,γ2η2 K ′γ δ

ζ2δ2
Kμν

ζ1δ1
, (C6d)

∫
[dS]dS̄(k)WKμν

ρσ s
ρsσ Kγ δ

ζη s̄
ζ s̄η = 8

5

(2π h̄)3

16
Mγ1γ2δ1δ2 Mζ1ζ2η1η2 K1,γ1η1 K2,γ2η2 K ′

ζ2δ2
Kμν

ζ1ρ
gρσ Kγ δ

σδ1
. (C6e)

Inserting the vertices given in Eq. (C4) into Eq. (C6), we perform the remaining momentum integrals (33) via slightly modifying
a method outlined in Chapter XIII of Ref. [85], which we now briefly outline.

The basic idea consists in separating the integrals in Eq. (33) into a sum of elementary collision integrals

J (a,b,d,e, f ) :=
∫

[dK]e−βPT ·u(P2
T )a(PT · u)b(Q · u)d (Q′ · u)e(−Q · Q′) f δ(4)(k + k′ − k1 − k2), (C7)

013187-9
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where the momenta k, k′, k1, and k2 can be expressed in terms of the total momentum PT and the relative momenta Q, Q′ via

kμ = 1

2

(
Pμ

T + Qμ
)
, (C8a)

k′μ = 1

2

(
Pμ

T − Qμ
)
, (C8b)

kμ
1 = 1

2

(
Pμ

T + Q′μ), (C8c)

kμ
2 = 1

2

(
Pμ

T − Q′μ). (C8d)

Next we follow the steps in Ref. [85] and make use of the integral∫ ∞

z
dy

(
y2 − z2

)b−1/2
yae−y = za+2b

b∑
j=0

(−1) j

(
b

j

)
Ki2 j−2b−a(z), (C9)

where Kir (z) denotes the Bickley-Naylor function of order r [98]. The result for the basic integral (C7) then reads

J (a,b,d,e, f ) = β−4−2a−b−d−e−2 f 16π3

(2π h̄)12

min(d,e)∑
g=0

K (d, e, g)σ ( f ,g)

d+e
2 +1∑
h=0

( d+e
2 + 1

h

)
(−1)h

×
∫ ∞

2z
dv[v2 − (2z)2](d+e)/2+ f +1v2(a−1)+b+3Ki−b−d−e−2+2h(v), (C10)

where we introduced the following factors:

K (d, e, g) :=
{ d!e!

(d−g)!!(d+g+1)!!(e−g)!!(e+g+1)!! if (d − g), (e − g) even,

0, otherwise
(C11a)

σ ( f ,g) :=
{

(2g + 1) f ! 2g

( f +g+1)!
( f +g

2 )!

( f −g
2 )!

if ( f − g) even,

0, otherwise.
(C11b)

The remaining task then consists in expanding the integrals
(33) as sums of the basic integrals (C10). Note that the tensors
�μν , �

μν
αβ do not allow for a straightforward expression in

terms of polynomials of PT , Q, and Q′. This is the case
because of the factors of energy appearing in the denominator,
leading to

�μν = �μν +
(
P〈μ〉

T + Q〈μ〉)(P〈ν〉
T + Q〈ν〉)

(PT · u + Q · u)2
, (C12)

and similarly for �
μν

αβ . In order to bring these terms into the
form required by Eq. (C7) as well, we expand them around the
nonrelativistic limit (formally equivalent to taking the limit
kμ 
 (m, 0)μ), leading to

�μν 
 �μν, �
μν

αβ 
 �
μν

αβ. (C13)

The plot 1 is generated with this leading-order approximation,
which our tests suggest is reasonable for the covered values of
z, with accuracy increasing towards larger values of z.
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