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Based on data samples collected with the BESIII detector at the BEPCII collider, the process ete™ —
¥+3¥" is studied at center-of-mass energies /s = 2.3960, 2.6454, and 2.9000 GeV. Using a fully
differential angular description of the final state particles, both the relative magnitude and phase
information of the X" electromagnetic form factors in the timelike region are extracted. The relative

phase between the electric and magnetic form factors is determined to be sin A® = —0.67 £ 0.29(stat) &
0.18(syst) at /s =2.3960 GeV, A® = 55° £ 19°(stat) & 14°(syst) at /s = 2.6454 GeV, and 78° £
22°(stat) = 9°(syst) at /s = 2.9000 GeV. For the first time, the phase of the hyperon electromagnetic form
factors is explored in a wide range of four-momentum transfer. The evolution of the phase along with four-

momentum transfer is an important input for understanding its asymptotic behavior and the dynamics of

baryons.

DOI: 10.1103/PhysRevLett.132.081904

Hyperons have a very similar quark composition to that
of nucleons, except that one or more of the up or down
quarks is replaced by strange quarks. Together with the
nucleons, they form a spin-1/2 baryon octet under SU(3)
symmetry [1,2]. As one of the fundamental physics
observables of the baryons, electromagnetic form factors
(EMFFs) provide a valuable perspective for understanding
baryon structure [3—5] by probing internal charge and
current distributions [6-9]. The EMFFs are analytic func-
tions of the four-momentum transfer squared (¢?), and they
can be divided into spacelike (¢*> <0) and timelike
(g> > 0) regions [10,11]. The former are often measured
using electron-baryon elastic scattering experiments, while
the latter use electron-positron annihilation into baryon
antibaryon pairs or the reverse reaction. However, owing to
the difficulties in producing stable and high-quality
hyperon beams, it is challenging to study the EMFFs of
hyperons in the spacelike region. Currently, only a few
experiments have measured the EMFFs of hyperon in the
spacelike region by elastic scattering of the hyperon beam
off atomic electrons, and the range of |g?| for exploring
EMFFs is limited due to kinematic constraints [12]. On the
other hand, hyperons can be readily produced in electron-
positron annihilation above their pair production thresh-
olds. Therefore, the hyperon EMFFs are usually studied in
the timelike region via ete” — y* — YY, where Y
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represents a hyperon with spin 1/2, and these can be
related to the spacelike region via dispersion relations [13].

A large number of measurements are available in the
literature for the effective form factors (G.y) of SU(3)
baryons, which are extracted from production cross sections
for ee™ — y* — BB under the assumption of the electric
form factor (|G|) equal to the magnetic form factor (|G, |)
[14-29]. Previous measurements also exist for the modulus
of EMFF ratios |Gg/Gy,|, which are obtained by analyzing
one-dimensional angular distributions [19,20,24,26].
However, according to the optical theorem, the form factors
at the lowest order for the spacelike region are real due to the
Hermiticity of the electromagnetic Hamiltonian, while in the
timelike region they are complex [30,31]. Thus, a complete
knowledge of EMFFs includes the relative phase A®
between electric and magnetic form factors, G and Gy,.
Since anonzero A® ensures a transverse polarization for the
produced baryons [32], A® can be extracted from the
polarization. The transverse hyperon polarization is self-
analyzed in their weak decays, while the polarization of
nucleons needs additional dedicated devices to be measured.

The only previous determination of the |G /G| and A®
for a baryon was performed at BESIII using the exclusive
process ete” — AA at /s =2.396 GeV. The relative
phase of the A EMFFs was extracted by fitting the angular
distributions [22]. Many theoretical activities [33-38] arose
after this measurement. In Ref. [34], the EMFF ratio and
their relative phase are also predicted for X hyperons, with a
different dependence on the center-of-mass (c.m.) energy
from the A case, reflecting complex dynamics. Though the
G and |G/ G| of the X hyperons have been measured by
various experiments [26,29,39,40], the extraction of A® for
> is still unavailable. Thus, measurements of > EMFFs can
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provide deeper insight into Y'Y dynamics. Moreover, ana-

lyticity implies that the EMFFs tend to be real at large four-
momentum transfer squared in the timelike region [35].
Since sin A®, has previously been found to be significantly
different from zero [22], this indicates that the asymptotic
threshold has not yet been reached for the g so far studied.
The phase measurement in a broader four-momentum
transfer squared range is thus important to ascertain the
asymptotic behavior of the hyperons and to investigate its
dynamical mechanisms [35].

In this Letter, we present a study of et e~ — T+ X at three
energy points, /s = 2.3960, 2.6454, and 2.9000 GeV, with
a total integrated luminosity of 239.84 pb~! collected with
the Beijing Spectrometer (BESIII) at the Beijing Electron
Positron Collider (BEPCII). The first energy point,
2.3960 GeV, is in close proximity to the production thresh-
old for X hyperon pairs 2Ms+ = 2.3788 GeV), where
My represents the nominal mass of the Tt [41]. Here
2.6454 GeV is a combined dataset of 2.6444 GeV and
2.6464 GeV. The |G/G,| ratio and the relative phase AD
are determined using a fully differential angular expression.
The formalism is described in Ref. [42].

The description of the design and performance of the
BESIII detector can be found in Ref. [43]. The Monte Carlo
(MC) samples used to optimize event selection criteria are
generated using a GEANT4-based [44] simulation software
package. The CONEXC [45] generator is used to generate
signal MC samples and includes higher order processes
with one radiative photon in the final state. The input
cross section of line shape for ete™ — XX~ is obtained
from Ref. [26]. The phase space (PHSP) model in
EvtGen [46,47] is used to generate six million MC events
to calculate the normalization factors in the multidimen-
sional fits. The inclusive MC sample is generated with a
HYBRID generator [48] for background analysis at each
energy point.

Two different reconstruction methods are used to
select ©+¥~ pairs, according to the c.m. energy. At
/s = 2.3960 GeV, due to the low tracking efficiency for

low-momentum tracks, a single-tag method is used to select
the process ete™ — ZtE~ — pa’ + X, where X denotes
inclusive decays of the =*. At higher c.m. energies, both
proton and antiproton are selected in the process ete™ —
¥ +Z~. To improve the detection efficiency, only one 7° is
reconstructed by two photons.

Charged tracks are reconstructed in the main drift
chamber (MDC) as in Ref. [49]. Combined information
of the specific ionization energy loss (d£/dx) in the MDC
and the time of flight (TOF) is used to calculate particle
identification (PID) probabilities for the pion, kaon, and
proton hypotheses. The particle type with the highest
probability is assigned for the track. At /s = 2.3960 GeV,
only the dE/dx is used for PID since the charged tracks
cannot reach the TOF detector due to low momenta. Photon
candidates are reconstructed from clusters of energy
deposited in the electromagnetic calorimeter (EMC) as
in Ref. [49]. To reject showers from charged tracks, the
angle between the shower direction and the track extra-
polated to the EMC must be greater than 20 degrees in the
single-tag reconstruction.

In the single-tag reconstruction at /s = 2.3960 GeV, at
least one good charged track, identified as an antiproton, is
required. At least two good photons are required in each
event. The ¥~ candidates are selected by looping over all
possible pyy combinations. Two variables, AE and M,
which reflect energy and momentum conservation, are
used to select £~ candidates. Here AE =E — E,,,, is
the energy difference, where E is the total measured

energy of the £~ and Ej.,,, is the beam energy, and My, =

\/ Egeyn/c* — P3_/c? is the beam-constrained mass and P

is the magnitude of measured total momentum of the
¥~ candidate. Further selection criteria on the yy invariant
mass (M,,) and AE, 0.126 <M,, < 0.139 GeV/c* and
—0.013 < AE < 0.005 GeV, are applied. After the above
selections, the distribution of My, at \/s = 2.3960 GeV is
shown in Fig. 1(a).
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The distributions of (a) M, at 2.3960 GeV, (b) My, at 2.6454 GeV, and (c) My, at 2.9000 GeV. The black dots with error bars

are data. The histograms filled with green diagonal lines represent the signal MC samples and the histograms filled with purple shading
represent the backgrounds estimated by the sidebands. The purple solid lines are the total fit result. The yellow dash-dotted and magenta
dotted lines are the signal and background shapes, respectively. The signal and background regions used for further angular analysis are
indicated by purple solid-line arrows and yellow dashed-line arrows, respectively.
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In the reconstruction with one missing z° at /s =
2.6454 and 2.9000 GeV, a good event must have at least
two good charged tracks identified to be one proton and one
antiproton. At least two good photons are selected, and 7°
candidates are reconstructed from pairs of photons as in
Ref. [49]. At least one good 7° candidate is required. To
further remove potential background and improve the mass
resolution, a two-constraint (2C) kinematic fit under the
ete™ — ppr’z° hypothesis is performed. The fit requires
total energy-momentum conservation, and the yy invariant
mass is constrained to the nominal z° mass, while the
other 7.  is treated as a missing particle with free three-
momentum. For events with more than one n(y)y candidate,
by looping over the ngy candidates in the kinematic fit, the
best 70, is selected with the minimum 3. which is further
required to be less than 15. The z, is then paired with
either the proton or antiproton depending on which
combination gives the minimum [M| pd, /pal) — Mz
and the best combination is denoted as X,. The signal
region in the invariant mass of X,, is chosen as
1.175 < Mzmg < 1.200 GeV/c?. The recoiling mass spec-
trum against X,, My _, after the previously described
selections, is shown in Figs. 1(b) and 1(c).

Both the inclusive MC sample and the data sideband are
used to study the potential background events. The main
background, found in the inclusive MC sample, includes
processes from e™ e~ annihilation events with the same final
states as the signal, with an additional photon, and with
intermediate states like A, X, and A baryons. The back-
ground in the inclusive MC sample is smooth. The sideband
|

k]

regions are defined as —0.040 < AE < —0.031 GeV
and 0.028 < AE < 0.037 GeV for /s = 2.3960 GeV,
and 1.135<Mj < 1.150GeV/c? and 1.225 <My, <

1.240GeV/c? for other energy points. As shown in
Fig. 1, the backgrounds in the sideband regions in both
My and Mz are smooth, so no further selection is applied.

To extract the signal yield, a simultaneous fit of M, and
My _ is applied. In the fit, the probability density functions
(PDF) of signal events are described by MC-simulated
shapes, extracted from the signal MC sample, convolved
with a Gaussian function. The PDFs of background
events are described by an Argus function [50] at /s =
2.3960 GeV and a linear function at /s = 2.6454 and
2.9000 GeV. The best fit results are shown in Fig. 1. The
numbers of signal events are 207 4+ 17, 364 4+ 21, and
168 £ 15 at 2.3960, 2.6454, and 2.9000 GeV, respectively,
and the corresponding MC selection efficiencies are
11.33%, 34.39%, and 33.58%, respectively. Furthermore,
a cross-check of the Born cross section with the previous
BESIII results [26] is performed to ensure the reliability of
the selection method. To ensure a pure sample for the
further angular distribution analysis, tighter selections are
applied on both My, and My _, requiring 1.185 < My, <
1.191 GeV/c? and 1.170 < My_ <1210 GeV/c? as
indicated with arrows in Fig. 1. The background fractions
are 12.7%, 7.7%, and 10.2% at 2.3960, 2.6454, and
2.9000 GeV, respectively.

Following Refs. [42,51], the joint angular distribu-
tion W(&) of ete™ = Xt (- pa’)X~(— pa°) can be
expressed as

W(E) & Fol&) +aFs(@) + man | F1() + V1 - o cos(A®) F (&) + aF(£)]

+ V1 —a?sin(A®) [—al.?’:g,(é) + a2.7:4(§)], (1)

where £ is a five-dimensional vector, &= (6x+,6,,
05, 1, ¢); Ox+ is the angle between the X hyperon and
positron beam; 8, (6,) and ¢; (¢, ) are the polar and azimuthal
angles of the proton (antiproton) with respect to the =+ and £~
helicity frame, respectively; and «a; and a, are the decay
asymmetry parameters of the £+ and ™. The set of angular
distribution functions F;(&) (i = 0, 1, ..., 6) are obtained in
Ref. [42]. Owing to limited statistics, we assume CP to be
conservedand a; = —a, = —0.980 [41]. The ar is the angular
distribution parameter describing the ratio of the two helicity
amplitudes in eTe™ — XTE~, and A® is their relative phase.
The « relates to |G/ Gy, | via [52]

s(1-a)

Ge/Gul =\ | o7
4M2. (1 + a)

(2)

|

Since only one hyperon is reconstructed at /s = 2.3960 GeV,

0, and ¢, are integrated at this energy point, and the angular

distribution becomes

W(E) x Fo(é) +aFs5(8) +V1-a?sin(A®)a, Fy(é).  (3)
The parameters a@ and A® can be extracted by a

multidimensional maximum likelihood fit to data. The

joint likelihood function for observing N events in the
data sample is

N N

L=]]P(:a.a0) =[OV (sa.ad)e(E),  (4)

i=1 =1

where P(&;; a, A®) is the probability density function of &;,
i is the corresponding event index, and e(¢;) is the
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TABLE L. Fit results for a, A®(°), sin(A®), and |G;/Gy,| at each energy point.

Vs (GeV) 2.3960 2.6454 2.9000

a —0.47 +£0.18 £ 0.09 0.41 £0.12 £0.06 0.35+0.17£0.15
AD(°) —42+22+ 14 (—138 +£22 £ 14) 55+£19+14 78 £22+9
sin A —0.67 £0.29 £0.18

|GE/Gyl 1.69 £ 0.38 £0.20 0.72 £0.11 £0.06 0.85£0.16 £0.15

efficiency of each event. The normalization factor C is
givenby ' = [W(& a, AD)e(&)dE and evaluated by the
PHSP signal MC sample. The parameters @ and A® are
extracted by minimizing the likelihood function

S=-In EData +1In ‘CBkgv (5)

where Lp,, is the corresponding likelihood value of data
and Ly, represents the background, estimated with data
events in the background region indicated in Fig. 1 and
normalized to the signal region. The best fit results for «,
A®, and (or) sin(A®) are summarized in Table I, where
only sin(A®) can be extracted at 2.3960 GeV due to the
application of a single-tag method and the lack of sufficient
angular distribution information.

Furthermore, the nonzero A® will lead to a dependence
of the polarization on the scattering angle of the £+ [32,51]:

p__V 1 — a? sinfz+ cos O+

Y 1 + acos?Oy+

sin(A®). (6)
Experimentally, the P, is determined by

+n,)
| —a)(1 4 acos?6i,)’

mak  (3+a)(n,

Fy= N4 (a 7)
i=1

where N is the total number of events in the dataset and

m = 8 is the number of bins in cosfs+; N, denotes

the number of events in the kth cos fy+ bin; and n, , (n, )

(b) 0 2.3960 GeV
1 2.6454 GeV
l ® 2.9000 GeV
[T a”o == _<F—'-*
-1+
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
coso coso

FIG. 2. The polarization P, as a function of the scattering angle
at 2.3960 GeV (a) and 2.6454 and 2.9000 GeV (b). The open
squares, solid squares, and dots are data. The histograms with
solid lines (dotted line at 2.6454 GeV) are signal MC samples
based on the fit results, and the histograms with the gray dashed
lines are the PHSP signal MC samples at each energy point.

is the projection of a proton (antiproton) perpendicular to
the scattering plane in the rest frame of * (7). To test the
goodness of the fit results, the signal MC sample is
generated using Egs. (1) and (3) and inputting the measured
parameters from the data. The angular-dependent trans-
verse polarization of X is obtained as shown in Fig. 2.
The sources of systematic uncertainties are summarized
in Table II. For the first four sources in Table II, uncer-
tainties are caused by the event selection and are evaluated
by varying the selection criteria. For the fifth to eighth
sources in Table II, the uncertainties from the fit procedure
are estimated with alternative fits by varying the signal
region, changing the sideband selections, and varying the
fixed decay parameters (a;,a,) by +1o, individually. The
maximum difference with the nominal value is taken as the
uncertainty. To estimate the systematic uncertainty of the fit
method, 500 sets of signal MC samples with the parameters
from Table I are generated and fitted to obtain the
distribution of the output parameters, and the difference
between the input and averaged output values is assigned as
the systematic uncertainty. Some inconsistencies between
the data and MC simulation are observed in the M,
distribution, as shown in Fig. 1(a). To estimate their effect
on the final results, the measurement of beam energy and
the calibration of the ¥~ momentum are investigated. For
the Epean calibration, we generate three MC samples with

TABLE II. The systematic uncertainties for @, A®(°), and
sin(A®) at each energy point (in GeV).

2.3960 2.6454 2.9000
Source a sin(A®) a ADd a AD
AFE cut 0.03  0.02
yy mass window 0.04  0.06
25c cut 004 5 008 5
Y, mass window 0.00 3 0.06 2
Signal region 005 0.16 004 9 0.05 4
Sideband region 0.02 006 002 9 0.09 5
a; 001 0 0.00 1
a 0.00 001 001 0 000 1
Fit method 0.00 001 002 2 0.03 2
E\cam calibration 0.03  0.00
Momentum calibration 0.04  0.01
Total 0.09 0.18 006 14 0.15 9
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Results for |Gz/Gy| (a) and the relative phase A® (b) from this work (purple dots). The yellow squares in (a) denote the

previous results from BESIII [26]. The open circle in (b) represents the second solution of A® at 2.3960 GeV. The vertical dashed lines
indicate the production threshold for e*e™ — T+%-, where |G/Gy,| = 1 and A® = 0° by definition.

different c.m. energies, defined around 2.3960 GeV in steps
of 1 MeV, that is, 2.3950, 2.3970, and 2.3980 GeV, and
choose the one that gives the best description of the data in
the fit procedure. For the £~ momentum calibration, ten
MC samples are generated, with different scale factors for
the three-momentum of antiproton in each sample. The
scale factors are defined in steps of 0.001 from 1.040 to
1.049, and we choose the one giving the best description of
the data in the fit procedure. The differences between the
updated and nominal results are taken as the systematic
uncertainties. In Table II, the individual uncertainties are
assumed to be uncorrelated and are added in quadrature.

In summary, the process e*e™ — ZtE™ is studied at
2.3960, 2.6454, and 2.9000 GeV. Using a joint angular
distribution analysis, the final results for |Gz/Gy|, the
relative phase A®, and sin A® are summarized in Table I
and plotted in Fig. 3, where the relative phase of the T+
hyperon is measured for the first time in a wide four-
momentum transfer range.

The precision of |Gz/Gy| is improved compared with
the previous measurement [26] at 2.6454 and 2.9000 GeV.
Since only the sine value of A® can be extracted at
2.3960 GeV, the two solutions are plotted as shown in
Fig. 3(b), and there is a significant discrepancy between our
experimental result for A® and the theoretical predictions
from the YY potential model [34]. On the other hand, in
Fig. 3(b), A® is less than zero at 2.3960 GeV and greater
than zero at 2.6454 GeV, which implies that there may be at
least one A® = 0° between these two energy points. Such
an evolution will be important input for understanding its
asymptotic behavior [35] and the dynamics of baryons.
Moreover, the fact that the relative phase is still increasing
at 2.9000 GeV indicates that the asymptotic threshold has
not yet been reached.
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