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Abstract

The ALICE Collaboration reports three measurements in ultra-peripheral proton–lead collisions at
forward rapidity. The exclusive two-photon process γγ → µ+µ− and the exclusive photoproduction
of J/ψ are studied. J/ψ photoproduction with proton dissociation is measured for the first time at
a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass
range from 1 to 2.5 GeV/c2 agrees with leading order quantum electrodynamics calculations. The
exclusive and dissociative cross sections for J/ψ photoproductions are measured for photon–proton
centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
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1 Introduction

The strong electromagnetic fields present in ultra-peripheral collisions (UPCs) offer a unique opportunity
to study a variety of phenomena, such as photonuclear and two-photon processes [1–3]. These interac-
tions are mediated by quasireal photons and characterised by an impact parameter larger than the sum of
the radii of the colliding nuclei.

Two-photon interactions can give rise to exclusive non-resonant dimuon production. Precise measure-
ments of this process can be used to test quantum electrodynamics (QED) calculations, such as light-
by-light scattering [4, 5] recently measured by ATLAS [6–8] and CMS [9], and higher-order QED ef-
fects [10]. The latter are expected to be sizeable, since the photon couples to nuclei with a large coupling
Zα where Z is the charge number and α the fine structure constant [10]. Various theoretical calculations
predict a different strength of higher-order effects in heavy-ion collisions [10–12]. The use of asymmetric
p–Pb collisions may provide additional insight on higher-order corrections from multi-photon exchange
with a single ion [1].

Measurements of cross sections of dilepton production using UPC samples, performed by ALICE in
Pb–Pb [13] and p–Pb [14], CMS [15] and ATLAS [16] in Pb–Pb, and PHENIX [17] and STAR [18–
20] in Au–Au, are consistent with leading-order (LO) QED calculations. However, latest precision
measurements by ATLAS [21] revealed a significant discrepancy with LO QED predictions from the
STARlight event generator [22], up to 20% at large rapidities. This discrepancy is discussed by the
authors of the SuperChic event generator in Ref. [23]. They argue that STARlight does not take into
account contributions from dilepton–nucleus impact parameters smaller than the nuclear radii, expected
to be significant at high photon energies. Accounting for photons emitted at such impact parameters is
also discussed in Refs. [10, 24, 25]. However, this effect alone does not allow the SuperChic authors to
resolve the discrepancy with the ATLAS data [24]. The inclusion of higher-order corrections to the LO
QED calculation could explain the ATLAS results, as suggested in Ref. [10]. Dilepton measurements
were also performed in pp collisions by ATLAS [26, 27] and CMS [28], and in pp collisions by CDF [29,
30]. These measurements did not explore the low invariant mass region at forward rapidities.

Dimuons can also be produced in photonuclear reactions, from the decay of a vector meson. In particular,
dimuons can be produced from the decay of a J/ψ meson in the elastic process γ +p → J/ψ +p, or with
proton dissociation in the reaction γ +p → J/ψ +p(∗). The use of p–Pb collisions offers the possibility
of assigning the photon to its source: the lead ion is in most of the cases the photon emitter due to
its large charge number. The γ p centre-of-mass energy Wγ p is a function of the J/ψ rapidity: W 2

γ p =
2EpMJ/ψ exp(−y), where MJ/ψ is the J/ψ mass, y is the J/ψ rapidity measured in the laboratory frame
with respect to the proton beam direction, and Ep = 6.5 TeV is the proton beam energy, corresponding to a
centre-of-mass energy in the p–Pb system of

√
sNN = 8.16 TeV. The energy range studied is 27 <Wγ p <

57 GeV, which corresponds to a longitudinal momentum fraction of the participating partons, Bjorken-x
scale, in the range 5× 10−3 < x < 2× 10−2, where the conversion is performed as x = (MJ/ψ/Wγ p)

2.
This is a similar kinematic domain as studied at HERA [31].

Exclusive J/ψ photoproduction is sensitive to the gluon distribution in protons, since its cross section
scales with the square of the gluon parton density function (PDF) in the target proton, according to LO
QCD calculations [32]. This picture may change at next-to-leading order (NLO) according to the recent
studies in Ref. [33]. At high Wγ p, a reduction in the growth rate of the exclusive J/ψ photoproduction
cross section would indicate that non-linear QCD dynamics are present. These non-linearities may arise
from gluon recombination, which tame the growth of the gluon distribution, leading in the high energy
limit to the gluon saturation phenomenon [34].

On the other hand, J/ψ photoproduction off protons with proton dissociation is a scattering event that
produces a J/ψ vector meson and, accompanied by a large rapidity gap, remnants of the dissociated
proton. This process might serve as an experimental signature of subnucleonic fluctuations of initial
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state configurations in the proton target [35–37]. At high energies, the ratio of dissociative to exclusive
cross sections is predicted to vanish, owing to the onset of gluon saturation at sufficiently small x [36, 37].

At HERA, ZEUS and H1 have measured both the exclusive [38–40] and dissociative [40, 41] J/ψ pho-
toproduction off protons at γ p centre-of-mass energies ranging from 20 to 305 GeV. CDF has measured
the exclusive process in pp collisions at

√
s = 1.96 TeV [30]. At the LHC, the exclusive process was

studied in p–Pb at
√

sNN = 5.02 TeV by ALICE [14, 42], and in pp at
√

s = 7 TeV and
√

s = 13 TeV
by LHCb [43–45]. The dissociative process has never been measured before at a hadron collider.

In this article, the measurement of exclusive dimuon continuum production in two-photon interactions
in p–Pb UPCs at

√
sNN = 8.16 TeV is presented. It is performed in three intervals of dimuon invariant

mass, in the range 1.0 < Mµµ < 2.5 GeV/c2, and two intervals of rapidity, in the range 2.5 < y < 4.0.
The measurement of exclusive J/ψ photoproduction off protons is also presented along with the mea-
surement of J/ψ photoproduction with proton dissociation. These three measurements are carried out
in the forward rapidity region with respect to the proton beam direction, namely 2.5 < y < 4.0, and at
low dimuon transverse momentum, pT < 3 GeV/c. This corresponds to a range in the square of the
momentum transferred at the proton vertex |t|. 9 GeV2, where t ≈−p2

T.

2 Experimental set-up and trigger

The ALICE detector is described in Ref. [46] and its performance is detailed in Ref. [47]. The main
ALICE tracking detector used in this analysis is the single-arm muon spectrometer, covering the pseudo-
rapidity interval −4.0 < η <−2.5. 1. The analysis also uses other detector systems, namely the Silicon
Pixel Detector (SPD), VZERO (V0), Zero Degree Calorimeters (ZDCs) and ALICE Diffractive (AD)
detectors.

The muon spectrometer consists of a ten hadronic interaction length absorber, followed by five tracking
stations, each made of two planes of cathode pad chambers. The third station is placed inside a dipole
magnet with a 3 T×m integrated magnetic field. Muon tracks are reconstructed by the tracking algorithm
described in Ref. [48] using the five tracking stations. The muon trigger system, downstream of the
tracking chambers, consists of four planes of resistive plate chambers placed behind a 7.2 interaction
length iron wall. The muon tracks detected in these planes are used in the trigger and matched offline to
the muon tracks reconstructed in the five tracking stations.

The central region |η |< 1.4 is covered by the SPD consisting of two cylindrical layers of silicon pixels,
from which tracklets are reconstructed. Tracklets are track fragments created from the primary vertex
and two reconstructed points in the SPD, one in each layer.

The V0 detector is composed of two arrays of scintillator counters, namely the V0C and V0A detectors.
Each array consists of thirty-two cells forming four concentric rings with eight sectors each. V0C,
placed at the longitudinal coordinate z = −90 cm, covers the interval −3.7 < η < −1.7, while V0A,
z = 330 cm, covers the pseudorapidity interval 2.8 < η < 5.1. The AD detector [49, 50] is composed of
two scintillator tile arrays, the ADC and ADA subdetectors, located at z = −19.5 m and z = +16.9 m
and covering the pseudorapidity ranges −7.0 < η < −4.9 and 4.7 < η < 6.3, respectively. The time
resolution of V0 and AD detectors is better than 1 ns, which makes it possible to discriminate between
beam–beam and beam–gas events, in which beam particles interact with residual gas inside the beam
pipe. The raw signals of the V0 and AD detectors are used in the trigger. Offline, these detectors are
used to differentiate beam–beam and beam–gas interactions.

The two ZDCs are located at 112.5 m from the nominal interaction point along the beam axis on either
side of the ALICE detector. They are used to detect neutrons emitted in the very forward region and

1In the ALICE convention, the muon spectrometer lies at negative longitudinal coordinate z, where z = 0 is the nominal
interaction point position. therefore at negative pseudorapidity.
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measure timing information of signals, thus making possible the discrimination of background signals
such as beam–satellite events described in Ref. [51].

Exclusive dimuon production from the decay of a J/ψ or from two-photon interactions has a clear experi-
mental signature: the µ+µ− pair in an otherwise empty detector. On the other hand, the study of J/ψ
photoproduction with a dissociative proton implies that the detector might not be empty on the proton
side. The trigger used in these analyses required to have at least one track with a low transverse momen-
tum threshold (pT ∼ 0.5 GeV/c) in the muon spectrometer trigger system, and vetoes on V0A and ADA
which are located in the flight direction of the outgoing Pb ion.

The measurements presented here use a sample of events collected during the 2016 p–Pb data taking
period, at

√
sNN = 8.16 TeV, corresponding to an integrated luminosity of L = 7.90±0.14 nb−1 [52].

In these collisions the incoming proton beam travelled towards the muon spectrometer.

3 Data sample

3.1 Event selection

Besides the trigger selection, events have to fulfill additional criteria. First, there must be exactly two
tracks with opposite electric charge reconstructed in the muon spectrometer. Both tracks are required to
match muon trigger tracks with a pT threshold above 0.5 GeV/c. Each track pseudorapidity is required to
be within the acceptance of the muon spectrometer −4.0 < η <−2.5. To reject tracks crossing the high-
density section of the front absorber, where multiple scattering and energy loss effects are large, the muon
tracks are required to exit the front absorber at a radial distance from the beam axis 17.6 < Rabs < 89.5
cm. The product of the total track momentum p and the distance of closest approach (DCA), defined as
the distance in the transverse plane between the extrapolated position of the reconstructed track in the
tracking stations and the position of the nominal interaction point, is required to be smaller than 6 times
the standard deviation of the dispersion due to multiple scattering and detector resolution. This ensures
that the selected muons come from the interaction vertex without rejecting signal events. The dimuon
rapidity has to be in the range 2.5 < y < 4.0, and the dimuon pT must be less than 3 GeV/c.

To ensure that the Pb ion remains intact, the V0A and ADA are required to have no signal at the offline
level. The neutron ZDC on the Pb side (ZNA) must have no activity within ±2 ns of the expected time of
the collision. In order to suppress hadronic interactions producing particles at midrapidity, events with
more than two tracklets in the SPD layers are rejected.

Finally, the number of cells with a signal over threshold in V0C must be smaller than or equal to the
sum of the number of fired V0C cells matched to a muon and two additional fired cells. The matching
of a muon to a fired V0C cell is performed by using the (η ,ϕ) coordinates of each track, where ϕ is
the azimuthal coordinate. Studies with the RAPGAP 3.3 event generator [53], a Monte Carlo program
used to simulate dissociative J/ψ photoproduction in electron–proton collisions, show that the proton
remnants do not leave a signal in the acceptance of the V0C detector. The requirement on the number of
fired V0C cells prevents contamination from hadronic interactions at forward rapidity.

Allowing two midrapidity tracklets in the SPD layers and two additional fired V0C cells prevents detec-
tors from vetoing events of interest due to an additional activity, such as muon bremsstrahlung or pile-up
events. Pile-up events are induced mainly by independent hadronic or electromagnetic processes, e.g.
dielectron production in the γγ → e+e− process, accompanying the process of interest.

3.2 Event selection with exclusivity in the proton side

The exclusive-dominated sample is obtained by applying the following additional criteria on the proton
side. The ADC is required to have no signal and the neutron ZDC on the proton side must have no
activity within ±6 ns of the expected time of the collision. This selection is more restrictive than in the
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Figure 1: Transverse momentum distribution of opposite-sign dimuons with 1.5 < Mµµ < 2.0 GeV/c2 and 2.5 <

y < 4.0. The data are represented by full circles with vertical bars for the statistical uncertainties and horizontal
bars for the interval width. The solid line represents the fit to the data, and the dashed and dot-dashed lines the fit
components.

Pb side, due to an observed asymmetry of time distributions between both sides. Furthermore, since
exclusive events are expected to be dominant at low pT, dimuons are required to have pT < 1.2 GeV/c.

4 Monte Carlo samples

The STARlight 2.2.0 Monte Carlo generator [22, 54] is used to generate the following processes: ex-
clusive J/ψ production in γ p interactions, production of J/ψ in γ Pb interactions, production of J/ψ

events from decays of ψ(2S) in γ p interactions, and exclusive dimuon continuum production. The decay
muons are propagated through a model of the apparatus implemented in GEANT 3.21 [55], and events
pass through a simulation of the detector matching the data taking conditions. For exclusive J/ψ pro-
duction, the t-distribution is modelled in STARlight by a function of the form exp(−bt), where b is set
to 3.75 GeV−2 to better describe the J/ψ pT distribution in data.

5 Data analysis

5.1 Signal extraction for the two-photon process at low masses

The yields of dimuons from exclusive two-photon interactions, Nγγ , are measured by performing an
unbinned log-likelihood fit of the pT distribution up to pT = 3 GeV/c of the selected dimuons in the
invariant mass range 1.0 < Mµµ < 2.5 GeV/c2, where no contamination is expected from the J/ψ peak.
The measurements are performed as a function of the dimuon invariant mass, in the three intervals
1.0 < Mµµ < 1.5 GeV/c2, 1.5 < Mµµ < 2.0 GeV/c2 and 2.0 < Mµµ < 2.5 GeV/c2. They are presented
in the rapidity interval 2.5 < y < 4.0, and for 2.5 < y < 3.25 and 3.25 < y < 4.0, where the rapidity is
measured in the laboratory frame with respect to the proton beam direction.

Figure 1 shows the pT distribution of the dimuon candidates that satisfy the selections for 1.5 < Mµµ <
2.0 GeV/c2. The data contains a mixture of exclusive and non-exclusive two-photon interactions, which
are distinguished by their characteristic pT distribution. While exclusive events dominate in the data at
low pT, the tail extending up to higher pT is mostly due to non-exclusive interactions.

Exclusive γγ → µ+µ− events are described with a Landau distribution, which is found to describe
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well the Monte Carlo data up to pT = 0.38 GeV/c. A single-component fit of a Landau distribu-
tion is performed to the data requiring exclusivity on the proton side, as described in Sec. 3.2, up to
pT = 0.38 GeV/c. In this selection, non-exclusive events are expected to be negligible. The mean and
standard deviation parameters of the Landau distribution are extracted and used when fitting the data that
passed the standard selection, which includes both exclusive and non-exclusive components. Changing
the maximum pT value of the fitting interval or using a two-component model to account for exclusive
and non-exclusive events instead of a single-component description might impact the mean and standard
deviation parameters obtained from the fit of the exclusive-dominated sample. This is taken into account
in the “signal extraction” systematic uncertainty (see Sec 5.3.2).

Non-exclusive events are modelled according to a parameterisation by H1 for dissociative events [40]
with a function of the form dN/dpT ∝ pT ×

(

1+ p2
T × (binc/ninc)

)−ninc , where binc and ninc are free pa-
rameters. Non-exclusive dimuons represent 47% of events in the whole data sample.

The Nγγ yields extracted from the fit are then corrected for the acceptance and reconstruction efficiency
(A × ε)γγ . The yields, the correction factors and the cross sections are presented in Table 2 for the
different mass and rapidity intervals. The correction factors are evaluated by means of the Monte Carlo
simulations introduced in Sec. 4.

Additional activity in the V0A, ADA, ZNA, or SPD detectors results in event rejection and a correspond-
ing correction needs to be applied. Such events mainly originate from independent hadronic and electro-
magnetic pile-up processes. The probability of event rejection due to pile-up of each veto is defined as the
probability of detecting activity using events selected with an unbiased trigger based only on the timing
of bunches crossing the interaction region. It is found to scale linearly with the expected number of col-
lisions per bunch crossing. By varying the event selection in the analysis, the average pile-up probability
varied from 3.7% to 4.1%. Therefore, the pile-up probability is estimated as ppu = (3.9±0.2)% where
most of the pile-up rejection (3.7%) is from V0A. The average pile-up correction factor is calculated
using εveto = exp(−ppu), and is found to be εveto = (96.2±0.2)%.

5.2 Signal extraction for J/ψ photoproduction candidates

The yields of exclusive and dissociative J/ψ are obtained by performing an unbinned log-likelihood
fit to dimuon invariant mass Mµµ and transverse momentum pT distributions simultaneously. Events
are selected in 2.5 < Mµµ < 3.5 GeV/c2 and pT < 3 GeV/c intervals. The dimuon invariant mass and pT

spectra after these selections are shown in Fig. 2. For the invariant mass distribution, the J/ψ peak is well
described by a double-sided Crystal Ball parameterisation, which has a non-Gaussian tail at both sides of
the resonance peak [56, 57]. The J/ψ mass and its width at the pole position are free parameters of the fit,
while the tail parameters in the Crystal Ball function are fixed to values obtained from fits to the Monte
Carlo sample corresponding to the exclusive J/ψ photoproduction. The invariant mass distribution of
the dimuon continuum is described by dN/dMµµ ∝ exp(−aMµµ), where a is a free parameter.

J/ψ events can be divided into three categories: exclusive photoproduction off protons, dissociative
photoproduction off protons, and exclusive photoproduction off Pb nuclei. Dissociative photoproduction
off Pb nuclei is vetoed by the ZDC selection, as described in Sec. 3.1. The events contained in the dimuon
continuum below the J/ψ peak can either be exclusive or non-exclusive two-photon interactions. The
various physics processes in the J/ψ peak and in the dimuon continuum can be distinguished by their
different pT distributions.

The pT distribution for γγ → µ+µ− events below the J/ψ peak is modelled with a Landau distribution
for which the mean and standard deviation are fixed, similarly as in Sec. 5.1. Their values are obtained
using the sample described in Sec. 3.2. In order to factorise the pT distribution of J/ψ and continuum
dimuon events, the numerical tool sPlot is used [58]. Based on an extended maximum likelihood fit to
the mass distribution of the sample (left panel of Fig. 3), the sPlot procedure assigns weights denoted
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Figure 2: Projections of the two-dimensional fit on the dimuon invariant mass (left) and pT (right).

as swn on an event-by-event basis. Assuming these weights can be computed as a linear combination of
conditional probabilities, they are given by the following formula for the category n = 1,2 of events in
the sample (J/ψ signal or γγ → µ+µ−):

swn(Mµµ) =
∑

Ns

i=1Vni fi(Mµµ)

∑
Ns

j=1 N j f j(Mµµ)
, (1)

where f is the probability density function (PDF) of the fit, Mµµ denotes the mass used as the discrimi-
nating variable for each event, i and j are the indices indicating a sum over the Ns = 2 categories, and V

is the covariance matrix of the yields N j which is evaluated in a separate fit, in which all shape-related
parameters are fixed. The pT distribution for two-photon interactions extracted with the sPlot technique
is shown in the right panel of Fig. 3 and is fitted up to pT = 0.38 GeV/c with a single-component fit
parametrised with a Landau distribution, from which the mean and standard deviation are extracted. The
small correlation between the mass and pT of dimuons produced in two-photon interactions were found
to have a negligible impact on the sPlot procedure. In addition, the extracted number of γγ → µ+µ−

events in the J/ψ peak range (2.5 < Mµµ < 3.5 GeV/c2) is compared with STARlight and an agree-
ment within 1σ is found (accounting for the statistical uncertainties only). This number is also in good
agreement with the number of continuum dimuon events extracted from the final two-dimensional fit.

The shape of the pT distribution for the exclusive J/ψ events in γ p interactions is given by the H1 param-
eterisation [40] dN/dpT ∝ pT×exp(−bexc p2

T), where bexc is a fixed parameter. J/ψ mesons coming from
ψ(2S) decays are also included in this contribution. The bexc value is determined using the sample de-
scribed in Sec. 3.2, by fitting simultaneously the dimuon invariant mass and pT without the contribution
of dissociative J/ψ events. Studies conducted with the RAPGAP Monte Carlo program in the kinematic
range of the present measurement show that more than 99% of dissociative J/ψ events are removed by the
selection requiring exclusivity on the proton side. The values obtained are bexc = 3.62±0.14 [GeV/c ]−2

for 2.5 < yµµ < 4.0, bexc = 3.38 ± 0.17 [GeV/c ]−2 for 3.25 < yµµ < 4.0 (27 < Wγ p < 39 GeV) and
bexc = 3.86±0.20 [GeV/c ]−2 for 2.5 < yµµ < 3.25 (39 <Wγ p < 57 GeV). The pT resolution of the muon
spectrometer is the main limitation in unfolding these values and comparing them with the H1 measure-
ment of the t-slope, bexc = (4.3±0.2) [GeV ]−2 for 25 <Wγ p < 80 GeV [40]. As an alternative method to
extract the bexc value, the J/ψ pT distribution obtained with sPlot was fitted with a two-component model
including J/ψ events from γ p interactions and from γ Pb interactions. The bias induced by the method
used to extract bexc is accounted for in the “signal extraction” systematic uncertainty (see Sec. 5.3.3).

The pT distribution for coherent J/ψ photoproduction in γ Pb interactions is obtained using the corre-
sponding reconstructed Monte Carlo sample within the specified mass and pT ranges. The pT distribu-
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Figure 3: Left: dimuon invariant mass distribution using the selection given in Sec. 3.2, fitted with a two-
component model to separate J/ψ events from two-photon interactions in the continuum. Right: pT distribution of
the exclusive γγ → µ+µ− continuum extracted using the sPlot technique. The distribution is fitted with a Landau
distribution.

tions for dissociative J/ψ events and non-exclusive two-photon interactions are modelled by functions
of the form dN/dpT ∝ pT ×

(

1+ p2
T × (binc/ninc)

)−ninc where binc and ninc are free parameters.

Five parameterisations for exclusive J/ψ photoproduction off protons, dissociative J/ψ photoproduction
off protons, J/ψ photoproduction off Pb nuclei, exclusive, and non-exclusive γγ → µ+µ−, are defined as
products of each corresponding mass and pT distributions. The normalisation for the component corre-
sponding to J/ψ produced in γ Pb interactions is fixed to the expected number according to a computation
based on the measurement from Ref. [59] under the assumption that the fraction of low and high energy
photon contributions to the forward rapidity measurement is the same as predicted by STARlight. The
normalisation for all other components are free parameters of the fit.

The extracted yields of exclusive and dissociative J/ψ from γ p interactions are corrected for acceptance
and reconstruction efficiency (A× ε)J/ψ , which are obtained from the Monte Carlo simulation samples
described in Sec. 4, having values ranging from 18% to 21%. Table 3 presents the correction factors for
the various rapidity intervals.

The extracted yields are corrected for the feed-down contribution of J/ψ mesons coming from ψ(2S)
decays, denoted fD. Following the procedure described in Ref. [13], fD is given by

fD =
σ (ψ(2S))×BR(ψ(2S)→ J/ψ +X)× (A× ε)FD

J/ψ

σ(J/ψ)× (A× ε)J/ψ
, (2)

where σ(J/ψ) and σ (ψ(2S)) are the cross sections of J/ψ and ψ(2S) productions, respectively, at
a given rapidity, the branching ratio for the decay of a ψ(2S) to J/ψ is BR(ψ(2S) → J/ψ + X) =
(61.4±0.6)% [60], (A×ε)J/ψ and (A×ε)FD

J/ψ are the acceptance and reconstruction efficiency for events
with a J/ψ produced directly from γ p interactions and from ψ(2S) decays, respectively. In order to
compute fD, the ratio σ (ψ(2S))/σ(J/ψ) = 0.150± 0.013 (stat.)± 0.011 (syst.) is taken from the H1
measurement for 40 < Wγ p < 70 GeV [61]. The (A× ε)FD

J/ψ -values are evaluated under the assumption
that feed-down J/ψ mesons inherit the transverse polarisation of their ψ(2S) parents, as indicated by
previous measurements [62]. The obtained fD values range between (9.1± 1.2)% and (9.3 ± 1.2)%
depending on the rapidity interval. The uncertainties are obtained by summing the statistical and sys-
tematic uncertainties of the H1 measurement and branching ratio uncertainties in quadrature. Finally, the
numbers are corrected for pile-up, as discussed in Sec. 5.1.

8



Dimuon continuum, and exclusive and dissociative J/ψ production in UPCs ALICE Collaboration

5.3 Systematic uncertainties

The experimental systematic uncertainties for the exclusive dimuon production from two-photon inter-
actions and for the photoproduced J/ψ are listed in Table 1. The systematic sources can be divided into
three types: those common to both measurements and those affecting one or the other.

5.3.1 Systematic uncertainties common to both measurements

The uncertainty on the integrated luminosity is discussed in Sec. 2, and amounts to 1.8%. The system-
atic uncertainties on muon trigger efficiency, tracking efficiency, and muon matching efficiency were
obtained as described in Ref. [63]. The single-muon trigger response functions evaluated in data and
Monte Carlo simulations are incorporated in the acceptance and efficiency (A× ε) calculations for the
reconstruction of the dimuons. The differences between (A× ε) calculations when incorporating the
response functions either from data or Monte Carlo range from 0.1% to 4.9% depending on the stud-
ied process and rapidity interval. The total uncertainty is obtained by combining this contribution in
quadrature with the uncertainty on the intrinsic efficiency of muon-trigger detectors, which amounts to
1%.

The uncertainty on the tracking efficiency was calculated by comparing the efficiencies evaluated in data
and Monte Carlo simulations. These efficiencies are calculated according to the tracking algorithm by
combining the efficiency of each tracking plane measured using the redundancy of the system. The
estimated value of the systematic uncertainty related to the tracking efficiency is 1% in this data sample.
The muon matching efficiency is the efficiency of associating a muon track candidate to a trigger track
above the 0.5 GeV/c pT threshold in the trigger chambers of the muon spectrometer. Its uncertainty is
estimated by varying the χ2 cutoff applied to the pairing of the reconstructed tracks in the muon tracking
and triggering systems, and it is found to be 1%.

The pile-up correction factor, discussed in Sec. 5.1, has a relative uncertainty of 0.2%.

The uncertainty on the veto efficiency of the V0C is calculated by varying the number of allowed cells
with a signal over the threshold in the offline selection. When increasing this number, the numbers of
exclusive J/ψ and γγ → µ+µ− events are found to be stable, while the number of dissociative J/ψ events
increases, as the sample is more sensitive to contamination from inclusive photoproduction or hadronic
production of J/ψ mesons which have a similar behaviour in pT. The expected number of dissociative
J/ψ events is computed as the number of exclusive J/ψ events multiplied by the ratio of dissociative-
to-exclusive J/ψ events when all the fired cells in V0C are required to be matched to a muon. The
systematic uncertainty on the number of dissociative J/ψ events is computed as the relative difference
between the expected and extracted numbers of dissociative J/ψ events and is found to be 12.7%, while
the systematic uncertainty on the number of exclusive J/ψ events is obtained by varying the condition on
V0C and the obtained value is 2.6%. Similarly, the uncertainty on the number of exclusive γγ → µ+µ−

events is obtained by varying the condition on V0C (see line “V0C veto” in Table 1) and the obtained
values vary between 0.5% and 1.7%.

5.3.2 Uncertainties associated to the dimuon continuum production

The main source of systematic uncertainty on the γγ → µ+µ− signal extraction is obtained by varying
both parameters of the Landau distribution within their statistical uncertainties obtained from fitting the
purely exclusive sample described in Sec. 3.2 and taking into account their correlation (see line “signal
extraction” in Table 1).

In the lowest invariant mass interval studied, 1.0 < Mµµ < 1.5 GeV/c2, the production of φ mesons
decaying to dimuons might contaminate the sample. The expected number of φ → µ+µ− events in
the sample at low mass, Nφ , is computed. The calculation is based on the cross section ratio of φ
photoproduction with respect to J/ψ production based on STARlight and their branching ratios provided

9



Dimuon continuum, and exclusive and dissociative J/ψ production in UPCs ALICE Collaboration

by the PDG [60], detector acceptance and efficiency factors, and the number of J/ψ mesons measured in
the muon spectrometer. The uncertainty induced by this contamination is estimated by comparing Nφ to
the number of γγ → µ+µ− events. It is found to be 1.5%.

5.3.3 Uncertainties associated to the J/ψ photoproduction only

The main source of systematic uncertainty on the J/ψ signal extraction is obtained by varying the bexc

parameter within its statistical uncertainty determined from fitting the purely exclusive sample described
in Sec. 3.2 (see line “signal extraction” in Table 1). It ranges between 3.2% and 7.6%. Changing the pT

model for the exclusive γγ → µ+µ− component and varying the number of J/ψ events produced in γ Pb
interactions were found to have a negligible impact on signal extraction.

The photon flux, which enters in the computation of the cross section presented in Sec. 6.2, is computed
using STARlight. Its uncertainty is obtained by varying the nuclear radii and the nuclear density ρ0 of the
Pb nucleus, assuming that the latter has a cubic dependence on the radius. The radius of the lead nucleus
is changed by ±0.5 fm, which corresponds to the nuclear skin thickness. This uncertainty is evaluated to
be 2%. The branching ratio of J/ψ decaying into dimuons and its uncertainty (0.55%) are given by the
Particle Data Group [60].

For the measured ratio of dissociative-to-exclusive cross sections, σ diss/σ exc, most of the systematic un-
certainties cancel out. The remaining sources of uncertainty are due to the variation of the bexc parameter,
and the variation on the number of allowed fired V0C cells. The systematic uncertainties on the ratio
given in Table 1 are then computed as the quadratic sum of these two components only.

6 Results

6.1 Cross sections for the dimuon continuum in two-photon interactions

The cross section corresponding to the exclusive γγ → µ+µ− process is measured using

dσ γγ

dMµµ
(p+Pb → p+Pb+µ++µ−) =

Nγγ

(A× ε)γγ ×L × εveto ×∆Mµµ
, (3)

where Nγγ is the number of reconstructed γγ → µ+µ− events, (A×ε)γγ is the corresponding factor which
takes into account acceptance and reconstruction efficiency in the mass and rapidity interval studied, εveto

is the pile-up correction factor and ∆Mµµ is the width of the invariant mass interval.

The rapidity range of the experimental results corresponds to a high-energy photon emitted from the
proton (corresponding to small impact parameters with respect to the proton) and a low-energy photon
emitted from the nucleus (corresponding to large impact parameters with respect to the nucleus). The
differential cross sections, dσ γγ/dMµµ , are presented in Table 2 in two rapidity intervals and integrated
over rapidity along with the predictions from STARlight 2.2.0 and SuperChic 4.15 [64] for comparison.

The STARlight generator simulates UPCs at colliders based on the equivalent photon approximation.
SuperChic was designed for exclusive production in proton–proton collisions and has been extended
to collisions involving nuclei starting from Ref. [65]. For γγ-induced dilepton production, SuperChic
provides calculations on amplitude level to treat the probability of no hadronic interaction within the
same collision. Both generators implement LO QED calculations, neglecting final-state radiation.

The measured cross sections and predictions from STARlight and SuperChic are shown in Fig. 4. Both
predictions agree within 3 standard deviations, depending on the mass and rapidity intervals. In the
two lowest mass intervals, the central values of the measured cross sections are larger compared with
STARlight and SuperChic, while the opposite behaviour is seen in the highest mass interval. For the
kinematic intervals studied, SuperChic predicts larger cross sections than STARlight. The difference

10
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Table 1: Summary of systematic uncertainties on the measured cross sections. The value ranges correspond to
different rapidity intervals. Uncertainties on signal extraction, tracking, trigger, and muon matching efficiencies are
considered as uncorrelated across y. All other components are taken as fully correlated across the rapidity y. The
final uncertainties for γγ and J/ψ , labeled “Total”, are obtained as the sum in quadrature of common uncertainties
and those affecting one signal or the other.

Signal Source Mass range (GeV/c2) Value (%)

All

Luminosity 1.8%
Tracking efficiency 1%
Matching efficiency 1%
Pile-up correction 0.2%
Total common 2.3%

γγ only

(1.0, 1.5) from 2.1% to 3.4%
Muon trigger efficiency (1.5, 2.0) from 2.5% to 5.0%

(2.0, 2.5) from 1.6% to 3.3%
φ → µ+µ− contamination (1.0, 1.5) 1.5%

(1.0, 1.5) 1.2%
V0C veto (1.5, 2.0) 1.7%

(2.0, 2.5) 0.5%
(1.0, 1.5) from 3.2% to 3.9%

Signal extraction (1.5, 2.0) from 3.3% to 4.4%
(2.0, 2.5) from 4.9% to 7.6%
(1.0, 1.5) from 4.9% to 6.0%

Total (1.5, 2.0) from 5.5% to 7.1%

(2.0, 2.5) from 6.0% to 8.6%

J/ψ only

Muon trigger efficiency 1.1%
Branching ratio 0.55%
Photon flux 2%
δ (1+ fD) 1.1%
V0C veto 2.6% (excl.), 12.7% (diss.)

Signal extraction (2.5, 3.5)
from 3.6% to 5.5% (excl.),
from 2.9% to 4.4% (diss.)

Total
from 5.6% to 7.0% (excl.),

from 13.5% to 13.9% (diss.)

σ diss

σ exc

V0C veto 12.7%
Signal extraction from 6.2% to 7.6%
Total from 14.1% to 14.8%

between STARlight and SuperChic discussed in Ref. [23], related to the sharp cut-off on the impact
parameter between the produced dilepton and the nucleus, is found not to be the primary source of
discrepancy observed here.

The relative uncertainties on the measurements vary from 7% to 17%. This is significantly larger than the
2% uncertainty for the photon flux used in the calculation of the photoproduction cross section presented
in Sec. 6.2. Thus, with the current experimental precision, it is not possible to constrain the photon fluxes
via the γγ → µ+µ− measurement.
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Table 2: Differential cross sections dσ γγ/dMµµ for exclusive γγ → µ+µ− production in p–Pb UPCs at√
sNN = 8.16 TeV for each mass and rapidity interval, measured by ALICE and computed with STARlight

and SuperChic. The first uncertainty is the statistical one and the second uncertainty is the systematic one. The
corresponding number of exclusive γγ → µ+µ− events with their statistical uncertainties and factors of acceptance
times reconstruction efficiency are given.

Mass range
(GeV/c2)

Rapidity range Nγγ (A× ε)
dσ γγ/dMµµ

(µb c2/GeV)

dσ γγ/dMµµ

(µb c2/GeV)
(STARlight)

dσ γγ/dMµµ

(µb c2/GeV)
(SuperChic)

(1.0, 1.5)
(2.5, 4) 618± 33 1.66% 9.84± 0.52± 0.49 8.45 8.98

(3.25, 4) 522± 31 3.23% 4.26± 0.25± 0.20 4.05 4.33
(2.5, 3.25) 99± 11 0.45% 5.75± 0.67± 0.34 4.39 4.65

(1.5, 2.0)
(2.5, 4) 437± 26 3.04% 3.79± 0.22± 0.20 3.00 3.22

(3.25, 4) 283± 19 4.74% 1.58± 0.12± 0.09 1.44 1.55
(2.5, 3.25) 150± 14 1.82% 2.17± 0.20± 0.15 1.56 1.67

(2.0, 2.5)
(2.5, 4) 191± 18 4.09% 1.23± 0.12± 0.07 1.42 1.52

(3.25, 4) 103± 13 5.32% 0.511± 0.065±0.034 0.673 0.724
(2.5, 3.25) 85± 13 3.25% 0.692± 0.101±0.060 0.744 0.794
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Figure 4: Differential cross sections for exclusive γγ → µ+µ− production measured by ALICE in p–Pb UPCs at√
sNN = 8.16 TeV, as a function of Mµµ , for 2.5 < y < 3.25 (left) and 3.25 < y < 4 (right). The vertical error

bars represent the statistical and systematic uncertainties summed in quadrature. The results are compared with
the prediction from STARlight [22, 54] and from SuperChic [64].

6.2 Cross sections for J/ψ photoproduction off protons

The cross sections corresponding to exclusive and dissociative J/ψ photoproduction off protons are
measured using

dσ

dy
(p+Pb → p(∗)+Pb+ J/ψ) =

NJ/ψ

(A× ε)J/ψ × (1+ fD)×L × εveto ×BR×∆y
, (4)

where NJ/ψ is the number of reconstructed exclusive or dissociative J/ψ in the dimuon decay chan-
nel, (A× ε)J/ψ is the corresponding factor of acceptance times reconstruction efficiency in the rapidity
interval studied, and BR = (5.961±0.033)% is the branching ratio for the decay into a muon pair [60].

The cross section dσ/dy(p+Pb → p(∗)+Pb+ J/ψ) is related to the γ p cross section, σ(γ +p → J/ψ +
p(∗)), through the photon flux, dn/dk:

dσ

dy
(p+Pb → p(∗)+Pb+ J/ψ) = k

dn

dk
σ(γ +p → J/ψ +p(∗)). (5)

Here, k is the photon energy, which is determined by the J/ψ mass and rapidity, k = (1/2)MJ/ψ exp(−y).
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Table 3: Rapidity differential cross sections dσ exc
J/ψ/dy and dσdiss

J/ψ/dy and the corresponding cross sections σ(γ +

p → J/ψ + p) and σ(γ + p → J/ψ + p(∗)) for exclusive and dissociative J/ψ photoproduction off protons in p–Pb
UPCs at

√
sNN = 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second

uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical
uncertainties, Nexc

J/ψ and Ndiss
J/ψ , the photon flux, and the range and the mean of Wγ p are also presented.

Rapidity range
Nexc

J/ψ , dσ exc
J/ψ/dy,

kdn/dk
Wγ p

(GeV)
〈Wγ p〉
(GeV)

σ(γ + p → J/ψ + p) (nb),

Ndiss
J/ψ dσdiss

J/ψ/dy (µb) σ(γ + p → J/ψ + p(∗)) (nb)

(2.5, 4)
1180± 84 8.13± 0.58± 0.43

209 (27, 57) 39.9
39.0± 2.8± 2.2

1515± 83 10.43± 0.57± 1.39 50.0± 2.7± 6.7

(3.25, 4)
564± 53 7.16± 0.67± 0.48

220 (27, 39) 32.8
32.51± 3.0± 2.3

733± 52 9.31± 0.66± 1.28 42.3± 3.0± 5.9

(2.5, 3.25)
629± 54 9.21± 0.80± 0.51

197 (39, 57) 47.7
46.8± 4.1± 2.8

768± 55 11.26± 0.80± 1.53 57.2± 4.1± 7.8

The photon flux is calculated using STARlight in impact parameter space and convoluted with the prob-
ability of no hadronic interaction. The average photon flux values for the different rapidity intervals are
listed in Table 3, together with the extracted cross sections σ(γ+p→ J/ψ+p) and σ(γ+p→ J/ψ+p(∗))
and the corresponding 〈Wγ p〉. The latter is computed as the average of Wγ p weighted by the cross section
σ(γ p) from STARlight.

6.2.1 Exclusive J/ψ photoproduction

Figure 5 shows the exclusive J/ψ photoproduction cross section σ(γ +p → J/ψ +p) reported in Table 3
as a function of Wγ p, covering the range 27 <Wγ p < 57 GeV. Comparisons with previous measurements
and with several theoretical models are also shown.

Measurements at low Wγ p were performed by fixed target experiments, such as those reported by the
E401 [66], E516 [67] and E687 [68] collaborations. Recently, measurements were performed near
threshold by the GlueX collaboration [69] and by the E12-16-007 experiment [70] which are not shown
in Figure 5 since they fall outside of the power-law applicability discussed below.

The cross sections are also compared with previous ALICE results in p–Pb at
√

sNN = 5.02 TeV [14, 71],
at forward, mid- and backward-rapidity, covering the energy range 21 <Wγ p < 952 GeV.

In this analysis, a χ2-fit of a power-law function, N(Wγ p/W0)
δ , is performed to the two ALICE data

sets at
√

sNN = 8.16 TeV and
√

sNN = 5.02 TeV together, with W0 = 90.0 GeV, as done in HERA
analyses [38–40] and for previous ALICE measurements [14]. The technique follows what was done by
the H1 collaboration [72] and the fit takes into account the statistical and systematic uncertainties. The
parameters obtained from the fit are N = 71.6±3.7 nb and δ = 0.70±0.04 with a correlation of +0.16
between the two parameters. The quality of the fit is χ2/ndf = 1.62 for 9 degrees of freedom. The value
of the exponent is the same as in previous ALICE measurements [14]. The H1 and ZEUS measurements,
performed over an energy range Wγ p that encompasses the new ALICE measurements, are also shown
in the same figure. They respectively found δ = 0.69± 0.02 (stat.)± 0.03 (syst.), and δ = 0.67± 0.03
(tot.) [38–40]. Thus the measurements by ALICE are compatible with the values measured by HERA
experiments, and no deviation from a power law is observed up to about 700 GeV.

LHCb measured the exclusive J/ψ photoproduction cross sections in pp collisions, at
√

sNN = 7 TeV [43,
44] and 13 TeV [45]. The LHCb analyses use data from a symmetric system, and thus suffer from
the ambiguity in identifying the photon emitter and the photon target. Since the non-exclusive J/ψ

photoproduction depends on Wγ p, these processes are difficult to subtract and make the extraction of
the underlying σ(Wγ p) strongly model dependent. Moreover, the uncertainty in the hadronic survival
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Figure 5: Exclusive J/ψ photoproduction cross section off protons measured as a function of the centre-of-mass
energy of the photon–proton system Wγ p by ALICE in p–Pb UPCs and compared with previous measurements [14,
38–40, 43–45, 66–68, 71] and with next-to-leading-order JMRT [73–75] and CCT [37] models. The power law fit
to the ALICE data is also shown. The uncertainties of the data points are the quadratic sum of the statistical and
systematic uncertainties.

probability in pp collisions is much larger than in p–Pb collisions, and samples of pp collisions can
contain a contamination of J/ψ production through Odderon–Pomeron fusion [30, 76]. For each dσ/dy

measurement, LHCb reported two solutions, one for low Wγ p and one for high Wγ p. Despite these
ambiguities and assumptions, the LHCb solutions are found to be compatible with ALICE measurements
within the current uncertainties.

ALICE measurements are also compared with the JMRT calculation. Two calculations are available from
the JMRT group [73–75]. The first one, referred to as LO, is based on a power law description of the
process from the result in Ref. [32], while the second one, labeled as NLO, includes contributions which
mimic effects expected from the dominant NLO corrections. At high Wγ p, they deviate from a simple
power-law shape. Both models are fitted to the same data and their energy dependence is rather similar,
so only the NLO version is shown. ALICE measurements at

√
sNN = 5.02 TeV and

√
sNN = 8.16 TeV

support their extracted gluon distribution down to x ∼ 2×10−5. A more recent NLO computation of this
process suggests a stronger sensitivity to quark contributions than previously considered [33].

Figure 5 also shows predictions from the CCT model [37] based on the colour dipole approach. This
model incorporates a fluctuating hot spot structure of the proton in the impact parameter plane, with
the number of hot spots growing with decreasing x. It is compatible with ALICE measurements at√

sNN = 5.02 TeV and
√

sNN = 8.16 TeV.

6.2.2 Dissociative J/ψ photoproduction

Figure 6 shows the ALICE measurement of the dissociative J/ψ photoproduction cross section σ(γ +
p → J/ψ +p(∗)) as a function of Wγ p, covering the range 27 <Wγ p < 57 GeV. The cross sections are also
reported in Table 3. A previous measurement at similar energies by H1 [40] is also shown and is in good
agreement with the ALICE measurement. In addition, the experimental results are compared with the
CCT model [37] discussed in the previous section. In the framework of this model, the exclusive cross
section is sensitive to the average interaction of the colour dipole qq with the proton, and the dissociative
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Figure 6: Dissociative J/ψ photoproduction cross section off protons measured by ALICE in p–Pb UPCs at√
sNN = 8.16 TeV and compared with H1 data [40]. A comparison with the CCT model [37] is shown. The

uncertainties of the data points are the quadratic sum of the statistical and systematic uncertainties.

Table 4: Ratio of dissociative-to-exclusive J/ψ photoproduction cross sections in p–Pb UPCs at√
sNN = 8.16 TeV. The first uncertainty is the statistical one. Its size is strongly impacted by the anti-correlation

between exclusive and dissociative J/ψ components in the 2-dimensional fit. The second uncertainty is the sys-
tematic one. It is computed as the quadratic sum of the signal extraction ratio uncertainty, and the uncertainty on
the V0C veto.

Rapidity range
Wγ p

(GeV)
〈Wγ p〉
(GeV)

σ(γ + p → J/ψ + p(∗))
σ(γ + p → J/ψ + p)

(2.5,4) (27,57) 39.9 1.27± 0.15± 0.18
(3.25,4) (27,39) 32.8 1.29± 0.23± 0.19
(2.5,3.25) (39,57) 47.7 1.21± 0.18± 0.18

cross section is sensitive to the fluctuations in the qq–proton interaction between the different colour field
configurations of the proton. The model describes correctly the energy evolution of the dissociative cross
section both for H1 and ALICE measurements, and predicts that the cross section will reach a maximum
at Wγ p ≃ 500 GeV, then decrease at higher energies. This behaviour is expected due to the hot spots
saturating the proton area.

6.2.3 Ratio of dissociative to exclusive J/ψ photoproduction

ALICE measurements for the ratio of dissociative-to-exclusive J/ψ photoproduction cross sections,
σ(γ+p→ J/ψ +p(∗))/σ(γ +p→ J/ψ +p), are given in Table 4. These measurements are also shown in
Fig. 7 as a function of Wγ p, together with the measurements by H1 [40] at similar energies. Two models
are compared with the measurements: the CCT model [37], and a model calculation by Mäntysaari–
Schenke (MS) [77]. The MS model is based on the perturbative JIMWLK (Jalilian-Iancu-McLerran-
Weigert-Leonidov-Kovner) evolution [78, 79], with initial parameters constrained from fits to H1 data
starting from x ∼ 10−3. At high Wγ p, where the gluon saturation regime is expected, the models predict
that the ratio of dissociative to exclusive cross sections vanishes.
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Figure 7: Ratio of dissociative to exclusive J/ψ photoproduction cross sections measured by ALICE in p–Pb
UPCs at

√
sNN = 8.16 TeV and compared with H1 measurements [40]. The uncertainties of the data points are

the quadratic sum of the statistical and systematic uncertainties. The experimental uncertainties for the H1 data
are computed assuming completely independent uncertainties for the exclusive and dissociative cross sections.
The measurements are compared with the CCT model [37] and a model by Mäntysaari–Schenke (MS) [77]. The
uncertainty band of the MS model corresponds to the statistical uncertainty of the calculation.

7 Summary

This article presents three different measurements carried out by the ALICE Collaboration in ultra-
peripheral p–Pb collisions at

√
sNN = 8.16 TeV. The exclusive dimuon continuum production from

two-photon interactions in the invariant mass range from 1 to 2.5 GeV/c2 is presented. It is compared
with STARlight and SuperChic and found to be compatible within three standard deviations. Since these
models are based on LO QED calculations, this measurement can be used to provide a limit on higher
order corrections for this process. Furthermore, the exclusive and dissociative J/ψ photoproductions off
protons were measured. The measurement of exclusive J/ψ photoproduction cross section is compared
with those previously performed by ALICE, LHCb, H1 and ZEUS collaborations. The ALICE mea-
surements are consistent with a power-law dependence on Wγ p of σ(γ p → J/ψp), with the power found
to be δ = 0.70± 0.04. The measurement of the cross section of dissociative photoproduction of J/ψ

mesons is the first of its kind at the LHC and a first measurement of this type at a hadron collider. It is in
good agreement with H1 measurements. This is the first step to probe the fluctuation of the subnucleonic
structure in protons in ultra-peripheral collisions at high energies.
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