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Abstract

The ALICE experiment has measured the inclusive J/ψ production in Pb-Pb collisions at
√

sNN =
2.76 TeV down to zero transverse momentum in the rapidity range2.5< y < 4. A suppression of
the inclusive J/ψ yield in Pb-Pb is observed with respect to the one measured inpp collisions scaled
by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over
the 0%–80% most central collisions, is 0.545± 0.032(stat.)± 0.083(syst.) and does not exhibit a
significant dependence on the collision centrality. These features appear significantly different from
measurements at lower collision energies. Models including J/ψ production from charm quarks in a
deconfined partonic phase can describe our data.
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Ultra-relativistic collisions of heavy nuclei aim at producing nuclear matter at high temperature and
pressure. Under such conditions Quantum Chromodynamics predicts the existence of a deconfined state
of partonic matter, the quark-gluon plasma (QGP). Among thepossible probes of the QGP, heavy quarks
are of particular interest since they are expected to be produced in the primary partonic scatterings and
to coexist with the surrounding medium. Therefore, the measurement of quarkonium states and hadrons
with open heavy flavor is expected to provide essential information on the properties of the strongly-
interacting system formed in the early stages of heavy-ion collisions [1]. In particular, according to the
color-screening model [2], measuring the in-medium dissociation probability of the different quarkonium
states is expected to provide an estimate of the initial temperature of the system. In the past two decades,
J/ψ production in heavy-ion collisions was intensively studied at the Super Proton Synchrotron (SPS)
and at the Relativistic Heavy Ion Collider (RHIC), from approximately 20 to 200 GeV center of mass
energy per nucleon pair (

√
sNN). At the SPS, a strong J/ψ suppression was found in the most central

Pb-Pb collisions [3]. The observed suppression is larger than the one expected from Cold Nuclear Matter
(CNM) effects, which include nuclear absorption and (anti-) shadowing. The dissociation of excited cc
states likeχc andψ(2S), which in pp collisions constitute about 40% of the inclusive J/ψ yield [1], is one
possible interpretation of the observed suppression. A J/ψ suppression was also observed at RHIC, in
central Au-Au collisions [4, 5], at a level similar to the oneobserved at the SPS when measured at mid-
rapidity although it is larger at forward rapidity. Severalmodels [6, 7, 8, 9] attempt to reproduce the RHIC
data by adding to the direct J/ψ production a regeneration component from deconfined charm quarks in
the medium, which counteracts the J/ψ dissociation in a QGP. A quantitative description of these final-
state effects is however difficult at the present time because of the lack of precision in the CNM effects
and in the open charm cross section determination. The measurement of charmonium production is
especially promising at the Large Hadron Collider (LHC) where the high-energy density of the medium
and the large number of c c̄ pairs produced in central Pb-Pb collisions should help to disentangle between
the different suppression and regeneration scenarios. At the LHC, a suppression of inclusive J/ψ with
high transverse momentum was observed in central Pb-Pb collisions at

√
sNN = 2.76 TeV with respect

to peripheral collisions or pp collisions at the same energyby ATLAS [10] and CMS [11], respectively.

In this Letter, we report ALICE results on inclusive J/ψ production in Pb-Pb collisions at
√

sNN = 2.76
TeV at forward rapidity, measured via theµ+µ− decay channel. Our measurement encloses the low
transverse momentum region that is not accessible to other LHC experiments and thus complements
their observations. The J/ψ corrected yield in Pb-Pb collisions is combined with the onemeasured in pp
collisions at the same center-of-mass energy [12] to form the J/ψ nuclear modification factorRAA . The
results are presented as a function of collision centralityand rapidity (y), and in intervals of transverse
momentum (pt).

The ALICE detector is described in [13]. At forward rapidity(2.5< y< 4) the production of quarkonium
states is measured in the muon spectrometer1 down to pt = 0. The spectrometer consists of a ten
interaction length thick absorber filtering the muons in front of five tracking stations comprising two
planes of cathode pad chambers each, with the third station inside a dipole magnet with a 3 Tm field
integral. The tracking apparatus is completed by a triggering system made of four planes of resistive plate
chambers downstream of a 1.2 m thick iron wall, which absorbssecondary hadrons escaping from the
front absorber and low momentum muons coming mainly fromπ and K decays. In addition, the silicon
pixel detector (SPD) and scintillator arrays (VZERO) were used in this analysis. The VZERO counters,
two arrays of 32 scintillator tiles each, cover 2.8≤ η ≤ 5.1 (VZERO-A) and−3.7≤ η ≤−1.7 (VZERO-
C). The SPD consists of two cylindrical layers covering|η | ≤ 2.0 and|η | ≤ 1.4 for the inner and outer
layers, respectively. All these detectors have full azimuthal coverage. The minimum bias (MB) trigger
requirement used for this analysis consists of a logical ANDof the three following conditions: (i) a signal
in two readout chips in the outer layer of the SPD, (ii) a signal in VZERO-A, (iii) a signal in VZERO-

1In the ALICE reference frame, the muon spectrometer covers anegativeη range and consequently a negativey range. We
have chosen to present our results with a positivey notation.
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Fig. 1: (Color online) Invariant mass spectrum ofµ+µ− pairs (solid black circles) withpt ≥ 0 and 2.5< y < 4 in
the 0%–80% most central Pb-Pb collisions.

C, providing a high triggering efficiency for hadronic interactions. The beam induced background was
further reduced by timing cuts on the signals from the VZERO and from the zero degree calorimeters
(ZDC). The contribution from electromagnetic processes was removed with a cut on the energy deposited
in the neutron ZDCs. The centrality determination is based on a fit of the VZERO amplitude distribution
as described in [14]. A cut corresponding to the most central80% of the nuclear cross section was
applied; for these events the MB trigger is fully efficient. Adata sample of 17.7× 106 Pb-Pb collisions
collected in 2010 satisfying all the above conditions is used in the following analysis. It corresponds
to an integrated luminosityLint ≈ 2.9 µb−1. This data sample was further divided into five centrality
classes from 0%–10% (central collisions) to 50%–80% (peripheral collisions).

J/ψ candidates are formed by combining pairs of opposite-sign (OS) tracks reconstructed in the geomet-
rical acceptance of the muon spectrometer. To reduce the combinatorial background, the reconstructed
tracks in the muon tracking chambers are required to match a track segment in the muon trigger system.
The resulting invariant mass distribution of OS muon pairs for the 0%–80% most central Pb-Pb collisions
is shown in Fig. 1, where a J/ψ signal above the combinatorial background is clearly visible. The J/ψ
raw yield was extracted by using two different methods. The OS dimuon invariant mass distribution was
fitted with a Crystal Ball (CB) function to reproduce the J/ψ line shape, and a sum of two exponentials to
describe the underlying continuum. The CB function connects a Gaussian core with a power-law tail [15]
at low mass to account for energy loss fluctuations and radiative decays. At high transverse momenta
(pt ≥ 3 GeV/c), the sum of two exponentials does not describe correctly the underlying continuum; it
was replaced by a third order polynomial. Alternatively, the combinatorial background was subtracted
using an event-mixing technique. The resulting mass distribution was fitted with a CB function and an
exponential or a first order polynomial to describe the remaining background. The event mixing was
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preferred to the like-sign subtraction technique since it is less sensitive to correlated signal pairs present
in the like-sign spectra and gives better statistical precision. Theψ(2S) was not included in the signal
line shape since its contribution is negligible. The width of the J/ψ mass peak depends on the resolution
of the spectrometer which can be affected by the detector occupancy that increases with centrality. This
effect, evaluated by embedding simulated J/ψ → µ+µ− decays into real events, was found to be less than
2%. This conclusion was confirmed by a direct measurement of the tracking chamber resolution versus
centrality using reconstructed tracks. Therefore, the same CB line shape can be used for all centrality
classes. The parameters of the CB tails were fixed to the values obtained either in simulations or in pp
collisions where the signal to background ratio is much higher. For each of these choices, the mean and
width of the CB Gaussian part were fixed to the value obtained by fitting the mass distribution in the
centrality range 0%–80%. In addition, a variation of the width of ± 1 standard deviation was applied
to account for uncertainties (varying the mean has turned out to have a negligible effect in compari-
son). The raw J/ψ yield in each centrality class was determined as the averageof the results obtained
with the two fitting approaches and the various CB parametrizations, while the corresponding system-
atic uncertainties were defined as the RMS of these results. It was also checked that every individual
result differs from the mean value by less than three RMS. Theraw J/ψ yield in our Pb-Pb sample is
2350±139(stat.)±189(syst.). The invariant mass resolution is around 78 MeV/c2, in very good agree-
ment with the embedded J/ψ simulations. The signal to background ratio integrated over ± 3 σ of the
mass resolution varies from 0.1 for central collisions to 1.5 for peripheral collisions.

The measured number of J/ψ (N i
J/ψ ) was normalized to the number of events in the correspondingcen-

trality class (N i
events) and further corrected for the branching ratio (BR) of the dimuon decay channel, the

acceptanceA and the efficiencyε i of the detector. The inclusive J/ψ yield in each centrality classi for
our measuredpt andy ranges (∆pt, ∆y) is then given by:

Y i
J/ψ(∆pt,∆y) =

N i
J/ψ

BRJ/ψ→µ+µ−N i
eventsAε i

. (1)

The productAε was determined from Monte Carlo simulations. The generatedJ/ψ pt andy distributions
were extrapolated from existing measurements [16], including shadowing effects from EKS98 calcula-
tions [17]. As the measured J/ψ polarization in pp collisions at

√
s = 7 TeV is compatible with zero [18],

and J/ψ mesons produced from charm quarks in the medium are expectedto be unpolarized, we presume
J/ψ production is unpolarized. For the tracking chambers, the time-dependent status of each electronic
channel during the data taking period was taken into accountas well as the residual misalignment of the
detection elements. The efficiencies of the muon trigger chambers were determined from data and were
then applied in the simulations [19]. Finally, the dependence of the efficiency on the detector occupancy
was included using the embedding technique. For J/ψ mesons emitted at 2.5< y < 4 andpt ≥ 0, a run-
averaged value ofAε = 0.176 with a 8% relative systematic uncertainty was obtained.A 8%±2%(syst.)
relative decrease of the efficiency was observed when going from peripheral to central collisions.

The J/ψ yield measured in Pb-Pb collisions in centrality classi is combined with the inclusive J/ψ cross
section measured in pp collisions at the same energy to form the nuclear modification factorRAA defined
as:

Ri
AA =

Y i
J/ψ(∆pt,∆y)

〈T i
AA 〉×σpp

J/ψ(∆pt,∆y)
. (2)

The inclusive J/ψ cross section in pp collisionsσpp
J/ψ(∆pt,∆y) was measured using the same apparatus and

analysis technique within the correspondingpt andy range [12]. The reference valueσpp
J/ψ used for the

calculation ofRAA integrated overpt andy is 3.34±0.13(stat.)±0.24(syst.)±0.12(lumi.)+0.53
−1.07(pol.) µb.

The centrality intervals used in this analysis, the averagenumber of participating nucleons〈Npart〉 and
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Table 1: The average number of participating nucleons〈Npart〉 without and with〈Ncoll〉 weighting, the mid-rapidity
charged-particle density dNw

ch/dη |η=0 with 〈Ncoll〉 weighting and the average value of the nuclear overlap function
〈TAA 〉 for the centrality classes expressed in percentages of the nuclear cross section [14].

Centrality 〈Npart〉 〈Nw
part〉

dNw
ch

dη |η=0
〈TAA 〉 (mb−1)

0%–10% 356±4 361±4 1463±60 23.5±1.0
10%–20% 260±4 264±4 979±37 14.4±0.6
20%–30% 186±4 189±4 658±23 8.74±0.37
30%–50% 107±3 117±3 369±13 3.87±0.18
50%–80% 32±2 47±2 110±5 0.72±0.05
0%–80% 139±3 264±4 – 7.03±0.27

Table 2: Summary of the systematic uncertainties entering theRAA calculation. The type I (II) stands for correlated
(uncorrelated) uncertainties. The centrality dependencefor the type II is given as a range.

source value type
signal extraction 5%–12% II
input MC parametrization 5% I
tracking efficiency 5% and 0%–1% I and II
trigger efficiency 4% and 0%–2% I and II
matching efficiency 2% I
TAA 4%–8% II
σpp

J/ψ at
√

sNN = 2.76 TeV 9% I

average value of the nuclear overlap function〈TAA 〉 derived from a Glauber model calculation [14] are
summarized in Table 1. Since our most peripheral bin is rather large, the variables〈Nw

part〉 and the charged-
particle density measured at mid-rapidity dNw

ch/dη |η=0 were weighted by the number of binary collisions
〈Ncoll〉. Indeed in absence of nuclear matter effects, the J/ψ production cross section in nucleus-nucleus
is expected to scale with〈Ncoll〉. The weighted values are given in Table 1 and are used for the ALICE
data points in the following figures. All systematic uncertainties entering theRAA calculation are listed in
Table 2. In the figures below, the point to point uncorrelatedsystematic uncertainties are represented as
boxes at the position of the data points while the statistical ones are indicated by vertical bars. Correlated
systematic uncertainties are quoted directly on the figures.

The inclusive J/ψ RAA measured by ALICE at
√

sNN = 2.76 TeV in the range 2.5 < y < 4 andpt ≥ 0
is shown in Fig. 2 as a function of dNch/dη |η=0 (left) andNpart (right). The charged-particle density
closely relates to the energy density of the created medium whereas the number of participants reflects the
collision geometry. The centrality integrated J/ψ RAA is R0%−80%

AA = 0.545±0.032(stat.)±0.083(syst.),
indicating a clear J/ψ suppression. The contribution from beauty hadron feed-down to the inclusive J/ψ
yield in oury andpt domain was measured by the LHCb collaboration to be about 10%in pp collisions at√

s = 7 TeV [21]. Therefore, the difference between the prompt J/ψ RAA and our inclusive measurement
is expected not to exceed 11% ifNcoll scaling of beauty production is assumed and shadowing effects are
neglected. AllRAA results are presented assuming unpolarized J/ψ production in pp and Pb-Pb collisions.
The comparison with the PHENIX measurements2 at

√
sNN = 200 GeV at forward rapidity 1.2< |y| <

2.2 [5, 20] shows that our inclusive J/ψ RAA is almost a factor of three larger for dNch/dη |η=0 & 600
(Npart& 180). In addition, our results do not exhibit a significant centrality dependence.

2 The PHENIX mid-rapidity J/ψ RAA was measured in centrality classes wider than the ones in which the mid-rapidity
charged-particle density is given [20]. Therefore a linearinterpolation was done to extract the mid-rapidity charged-particle
density in the three most peripheral classes.
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Fig. 2: (Color online) Inclusive J/ψ RAA as a function of the mid-rapidity charged-particle density(top) and
the number of participating nucleons (bottom) measured in Pb-Pb collisions at

√
sNN = 2.76 TeV compared to

PHENIX results in Au-Au collisions at
√

sNN = 200 GeV at mid-rapidity and forward rapidity [4, 5, 20]. The
ALICE data points are placed at the dNw

ch/dη |η=0 and〈Nw
part〉 values defined in Table 1.
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Fig. 3: (Color online) Centrality integrated inclusive J/ψ RAA measured in Pb-Pb collisions at
√

sNN = 2.76 TeV
as a function of rapidity for twopt ranges. The open boxes contain the total systematic uncertainties except the
ones on the integrated luminosity in the pp reference and on theTAA , i.e. 5.2% (8.3%) for the ALICE (CMS [11])
data. The two models [22, 23] predict theRAA due only to shadowing effects for nDSg (shaded areas) and EPS09
(lines) nPDF respectively.

The rapidity dependence of the J/ψ RAA is presented in Fig. 3 for twopt domains,pt ≥ 0 and pt ≥
3 GeV/c. The J/ψ reference cross sections in pp collisions3 and theRAA total systematic uncertain-
ties, indicated as open boxes in the figure, were evaluated inthe same kinematic range. Our results
are shown together with a measurement from CMS [11] of the inclusive J/ψ RAA in the rapidity range
1.6< |y| < 2.4 with pt ≥ 3 GeV/c. No significant rapidity dependence can be seen in the J/ψ RAA for
pt ≥ 0. For pt ≥ 3 GeV/c, a decrease ofRAA is observed with increasing rapidity reaching a value of
0.289±0.061(stat.)±0.078(syst.) for 3.25< y < 4. At LHC energies, J/ψ nuclear absorption is likely
to be negligible and the modification of the gluon distribution function is dominated by shadowing ef-
fects [24]. An estimate of shadowing effects is shown in Fig.3 within the Color Singlet Model at Leading
Order [22] and the Color Evaporation Model at Next to LeadingOrder [23]. The shadowing is respec-
tively calculated with the nDSg and the EPS09 parametrizations [23] of the nuclear Parton Distribution
Function (nPDF). For nDSg (EPS09) the upper and lower limitscorrespond to the uncertainty in the fac-
torization scale (uncertainty of the nPDF). The effect of shadowing shows no dependence with rapidity
and its overall amount is reduced by the addition of a transverse momentum cut. At most, shadowing
effects are expected to lower theRAA from 1 to 0.7. Recent Color Glass Condensate (CGC) calculations
for LHC energies may indicate a larger initial state suppression (RAA ≈ 0.5) [25]. However, any J/ψ
suppression due to initial state effects, CGC or shadowing,will be stronger at lowerpt contrary to the

3We report hereσpp
J/ψ (pt ≥ 3GeV/c, 2.5 < y ≤ 3.25) = 0.34±0.03(stat.)±0.03(syst.)±0.02(lumi.) µb andσpp

J/ψ (pt ≥
3GeV/c, 3.25< y < 4) = 0.50±0.04(stat.)±0.04(syst.)±0.02(lumi.) µb that can not directly be extracted from [12].
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Fig. 4: (Color online) Inclusive J/ψ RAA measured in Pb-Pb collisions at
√

sNN = 2.76 TeV compared to the
predictions by Statistical Hadronization Model [26], Transport Model I [27] and II [28], see text for details. The
ALICE data points are placed at the〈Nw

part〉 values defined in Table 1.

data behavior.

In Fig. 4, our measurement is compared with theoretical models that include a J/ψ regeneration compo-
nent from deconfined charm quarks in the medium. The Statistical Hadronization Model [6, 26] assumes
deconfinement and a thermal equilibration of the bulk of the cc̄ pairs. Then charmonium production
occurs only at phase boundary by statistical hadronizationof charm quarks. The prediction is given
for two values of dσc c̄/dy in absence of a measurement for Pb-Pb collisions. The two transport model
results [27, 28] presented in the same figure differ mostly inthe rate equation controlling the J/ψ dis-
sociation and regeneration. Both are shown as a band which connects the results obtained with (lower
limit) and without (higher limit) shadowing. The width of the band can be interpreted as the uncertainty
of the prediction. In both transport models, the amount of regenerated J/ψ in the most central collisions
contributes to about 50% of the production yield, the rest being from initial production.

In summary, we have presented the first measurement of inclusive J/ψ nuclear modification factor down
to pt = 0 at forward rapidity in Pb-Pb collisions at

√
sNN = 2.76 TeV. The J/ψ RAA is larger than the

one measured at the SPS and at RHIC for most central collisions and does not exhibit a significant
centrality dependence. Statistical hadronization and transport models which respectively feature a full
and a partial J/ψ production from charm quarks in the QGP phase can describe the data. Towards
a definitive conclusion about the role of J/ψ production from deconfined charm quarks in a partonic
phase, the amount of shadowing needs to be measured precisely in pPb collisions. In this context, the
measurement of open charm and J/ψ elliptic flow will also help to determine the degree of thermalization
for charm quarks.
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K.K. Loo37 , X. Lopez63 , E. López Torres6 , G. Løvhøiden17 , X.-G. Lu82 , P. Luettig52 , M. Lunardon19 ,
J. Luo39 , G. Luparello45 , L. Luquin101, C. Luzzi29 , K. Ma39 , R. Ma118 , D.M. Madagodahettige-Don109,
A. Maevskaya44 , M. Mager53 ,29, D.P. Mahapatra48 , A. Maire58 , M. Malaev75 , I. Maldonado Cervantes55 ,
L. Malinina59 ,,i, D. Mal’Kevich46 , P. Malzacher85 , A. Mamonov87 , L. Manceau94 , L. Mangotra80 ,
V. Manko88 , F. Manso63 , V. Manzari98 , Y. Mao64 ,39, M. Marchisone63 ,25, J. Mareš49 , G.V. Margagliotti20 ,92,
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Collegato INFN, Alessandria, Italy
27 Dipartimento Interateneo di Fisica ‘M. Merlin’ and SezioneINFN, Bari, Italy
28 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
29 European Organization for Nuclear Research (CERN), Geneva, Switzerland
30 Fachhochschule Köln, Köln, Germany
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France
59 Joint Institute for Nuclear Research (JINR), Dubna, Russia
60 KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest,

Hungary
61 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
62 Korea Institute of Science and Technology Information
63 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal,
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74 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
75 Petersburg Nuclear Physics Institute, Gatchina, Russia
76 Physics Department, Creighton University, Omaha, Nebraska, United States
77 Physics Department, Panjab University, Chandigarh, India
78 Physics Department, University of Athens, Athens, Greece
79 Physics Department, University of Cape Town, iThemba LABS,Cape Town, South Africa
80 Physics Department, University of Jammu, Jammu, India
81 Physics Department, University of Rajasthan, Jaipur, India
82 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
83 Purdue University, West Lafayette, Indiana, United States
84 Pusan National University, Pusan, South Korea
85 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für

Schwerionenforschung, Darmstadt, Germany
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