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1. Introduction

The densest matter in nature is expected to exist in neutron stars. The densities in the inte-
rior of these compact stellar objects can be of the order of several times the nuclear ground state
density. Therefore, the cores of neutron stars are likely to consist of deconfined quark matter
[1]. Moreover, the temperature is sufficiently low to allow for color-superconducting states. A
color superconductor [2] is characterized by the formation of quark Cooper pairs, analogous to an
electromagnetic superconductor, where electrons form Cooper pairs [3]. A multitude of possible
color-superconducting phases has been proposed, see e.g., Refs. [4]. Here we consider one-flavor
pairing, more precisely, a system of u and d quarks and electrons, where

�
uu � and

�
dd � Cooper

pairs are formed. These Cooper pairs carry total spin one [5]. Among all possible spin-one phases,
the isotropic color-spin-locked (CSL) phase is the ground state in an isotropic medium without
external fields [6]. In a more complicated scenario, however, the ground state is unknown. Here we
consider, in addition to the CSL phase, also the planar, polar and A phases [6, 7]. The three latter
ones exhibit anisotropic gap functions. In particular, the gap functions in the polar and A phases
have nodes at the north and south pole of the Fermi sphere.

2. Neutrino emissivity

We consider the direct Urca processes u � e ��� d � ν (electron capture) and d � u � e �	� ν
(β -decay). They provide the most efficient cooling processes of neutron stars [8]. Our starting
point to compute the time derivative of the neutrino and antineutrino distribution functions is the
kinetic equation, obtained within the Kadanoff-Baym formalism [9, 10]

i∂ λ
X Tr 
 γλ G �ν � X  Pν ������� Tr � G �ν � X  Pν � Σ �ν � X  Pν ��� Σ �ν � X  Pν � G �ν � X  Pν ���  (2.1)

where the trace runs over Dirac space. (Here and in the following, the index ν always labels neu-
trino quantities and should not be confused with a Lorentz index.) The quantities G ��� �ν � X  Pν � and
Σ ��� �ν � X  Pν � are the neutrino Green functions and self-energies, both slowly varying functions of
the space-time coordinate X � � t  x � . The leading order contributions to the neutrino self-energies
which enter the kinetic equation (2.1) are given by the diagrams in Fig. 1. For the sake of simplic-
ity, we do not take strange quarks into account. Their weak interactions are Cabibbo suppressed,
and their number density is not expected to be very large. (Admittedly, however, the bigger phase
space for the Urca processes involving massive strange quarks may partially compensate this sup-
pression.) For the explicit expressions of the functions G ��� �ν � X  Pν � and Σ ��� �ν � X  Pν � see Ref. [11].
Also see this reference for the details of the derivation which, starting from Eq. (2.1), leads to the
result

∂
∂ t

fν � t  pν ��� ∂
∂ t

fν � t  pν ����� 4αsG2
F

3π4 µeµuµd T 2 ∑
r

� 1� 1
dξ � 1 � ξ cosθν � F rr

ϕuϕd � ξ  w �! (2.2)

where fν and fν̄ are the neutrino and antineutrino distribution functions, respectively. Moreover, αs

is the strong coupling constant, GF the Fermi coupling constant, T the temperature, and µe, µu, and
µd the chemical potentials for electrons, u and d quarks, respectively. The result holds for isotropic
phases as well as for phases in which the order parameter picks a special direction in momentum
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Figure 1: Neutrino self-energies relevant for the neutrino Urca processes in the close-time-path formalism.
The " and # signs assign the vertices to the upper and lower branch of the time contour, respectively.

Table 1: Angular dependence of the energy gap (functions λξ $ r) and the functions ωrr % ξ & for four spin-one
color superconductors.

phase ω11 � ξ � λξ � 1 ω22 � ξ � λξ � 2 ω33 � ξ � λξ � 3
CSL 2 2 1 0 – –

planar 2 1 � ξ 2 1 0 – –
polar 2 1 � ξ 2 1 0 – –

A 1 � sgn � ξ � � 1 �(' ξ ' � 2 1 � sgn � ξ � � 1 � ' ξ ' � 2 1 0

space, identified with the z direction. We denote the angle between the neutrino momentum and the
z-axis by θν . The function F in the integrand depends on the energy gaps φu � d via ϕu � d ) φu � d * T ,
on the neutrino momentum pν via w ) pν * T , and on ξ ) cos θu � cosθd with θu � d being the angle
between the z-axis and the up (down) quark momentum. Its explicit form is

Frr
ϕuϕd � ξ  w �+� ωrr � ξ � ∑

e1 � e2 ,�- � ∞

0

� ∞

0
dxdy . e � e1 / y2 0 λξ 1 rϕ2

u � 1 2 � 1 . ee2 / x2 0 λξ 1 rϕ2
d � 1 2 � 1

3 . ew 0 e1 / y2 0 λξ 1 rϕ2
u � e2 / x2 0 λξ 1 rϕ2

d � 1 2 � 1 (2.3)

The index r labels the different excitation branches in the respective spin-one color superconductor.
In general, the quasiparticle excitation is given by

εk � r� f ��4 � k � µ f � 2 � λξ � rφ 2
f  (2.4)

where f � u  d and ξ � cosθk, θk being the angle between the z-axis and the quark momentum.
The functions ωrr � ξ � and λξ � r are different for each phase. In Table 1 we list these quantities for the
four spin-one color-superconducting phases considered here. From Eq. (2.2), it is straightforward
to compute the neutrino emissivity

εν )�� ∂
∂ t

� d3pν� 2π � 3 pν 
 fν � t  pν � � fν � t  pν ���5��� 2
∂
∂ t

� d3pν� 2π � 3 pν fν � t  pν �6 (2.5)

We obtain

εν � 457
630

αsG2
FT 6µeµuµd 7 13 � 2

3
G � ϕu  ϕd ��8  (2.6)
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Figure 2: Suppression functions G % ϕ 9 ϕ & of the neutrino emission contributions due to gapped modes in the
CSL, planar, polar and A phases.

where

G � ϕu  ϕd �+) 1260
457π6

� ∞

0
dww3

� 1� 1
dξ F11

ϕuϕd � ξ  w � � CSL, planar, polar �  (2.7)

G � ϕu  ϕd �+) 1260
457π6

� ∞

0
dww3

� 1� 1
dξ � F11

ϕuϕd � ξ  w � � F22
ϕuϕd � ξ  w � � � A �: (2.8)

In all phases we consider, the emissivity εν consists of two contributions. The first contribution is
given by the term 1/3 in the square brackets on the right-hand side of Eq. (2.6). It originates from
ungapped modes: r � 2 in the CSL, planar, and polar phases, and r � 3 in the A phase. The second
contribution is given by the term proportional to G � ϕu  ϕd � . It originates from the gapped modes.
The function G � ϕu  ϕd � has to be evaluated numerically for each phase separately. For the sake
of simplicity, we set ϕu � ϕd ) ϕ in the following. The results for G � ϕ  ϕ � are shown in Fig. 2.
The figure shows that the general result in Eqs. (2.6) reproduces the well-known expression for the
neutrino emissivity in the normal phase. This is obtained by taking the limit ϕ � 0. Of course, the
result in this limit is the same for all considered phases. Since G � 0  0 �!� 1, see Fig. 2, we recover
Iwamoto’s result [12].

The results for the superconducting phases can be understood from the angular dependence
of the respective gap functions, see Table 1. The suppression of the emissivity is largest for the
isotropic CSL phase, while nodes in the gap function give rise to the smallest suppression. Analyt-
ical calculations for asymptotically large values of ϕ show an exponential suppression for the CSL
and planar phases and a power-law suppression for the polar and A phases [11],

G � ϕ  ϕ ��;
<===> ===? ϕ e ��@ 2ϕ (CSL) / ϕ e � ϕ (planar) 

ϕ � 2 (polar) 
ϕ � 1 (A)  (2.9)

It is worth emphasizing that, for small ϕ , the function G � ϕ  ϕ � cannot be approximated well by the
exponential function. For ϕ A 1, the actual suppression is much weaker.

We shall use the results for the emissivity in order to dicuss the effect of spin-one color su-
perconductivity on the cooling of compact stars. This requires also the calculation of the specific
heat.
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Figure 3: The function K % ϕ & for four spin-one color superconductors.

3. Specific heat

The result for the specific heat cV can be written as [11],

cV � T ∑
f , u � d µ2

f 7 13 � 2
3

K � ϕ f � 8  (3.1)

The structure of this result is analogous to that of emissivity in Eq. (2.6), i.e., the first and the
second terms in the square brackets on the right-hand side come from ungapped and gapped modes,
respectively. The explicit form of the function K � ϕ � reads

K � ϕ �B� 3
π2

� ∞

0
dx
� 1� 1

dξ
e / x2 0 λξ 1 1ϕ2. e / x2 0 λξ 1 1ϕ2 � 1 2 2 7 x2 � λξ � 1 C ϕ2 � φ 2

0
T 2

c D 8
(CSL, planar, polar)  (3.2)

K � ϕ �B� 3
2π2

2

∑
r , 1

� ∞

0
dx
� 1� 1

dξ
e / x2 0 λξ 1 rϕ2. e / x2 0 λξ 1 rϕ2 � 1 2 2 7 x2 � λξ � r C ϕ2 � φ 2

0
T 2

c D 8 � A �! (3.3)

Here, φ0 is the value of the energy gap at zero temperature, and Tc is the critical temperature for
the superconducting phase transition. The numerical results for the function K � ϕ � for all consid-
ered cases are shown in Fig. 3. The different values of the function for different phases at ϕ � 0
indicate the jump of the specific heat at the second order phase transition. As for the emissivities,
one may derive analytical approximate expressions for the specific heat at asymptotically large ϕ ,
corresponding to asymptotically small temperatures [11],

K � ϕ ��;
<===> ===? ϕ5 E 2 e ��@ 2ϕ (CSL) 

ϕ2 e � ϕ (planar) 
ϕ � 2 (polar) 
ϕ � 1 (A)  (3.4)

Again, both phases without nodes of the gap function exhibit an exponential behavior, while the
phases with point nodes at the north and south pole of the Fermi sphere behave according to a
power-law.
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4. Cooling rates

In order to study cooling of bulk matter in spin-one color-superconducting phases, we assume
the neutrino emissivity to be the only source of energy loss. Then

εν � T �F�G� cV � T � dT
dt
 (4.1)

Integrating this equation yields

t � t0 ��� � T

T0

dT H cV � T H �
εν � T H �  (4.2)

where T0 is the temperature at time t0. By inserting the expressions from Eqs. (2.6) and (3.1) into
Eq. (4.2) and using ϕu � ϕd ) ϕ , we derive

t � t0 ��� 630
457

µ2
u � µ2

d

αsG2
F µeµuµd

� T

T0

dT H� T H � 5 1 � 2K � T H �
1 � 2G � T H �  (4.3)

where the temperature-dependent functions K � T � and G � T � are obtained from the functions K � ϕ �
and G � ϕ  ϕ � with the help of the model temperature dependence of the energy gap,

φ f � T �I� φ0 4 1 � � T * Tc � 2  (4.4)

By making use of Eq. (4.3), let us estimate the cooling behavior of a compact star whose core is
made out of spin-one color-superconducting quark matter. We start from the moment when the
stellar core, to a good approximation, becomes isothermal. At this point, the stellar age is of the
order of t0 � 102 yr and the temperature is about T0 � 100 keV. The estimates in the literature
[13, 14] suggest that the value of the critical temperature in spin-one color superconductors is of
the order of Tc � 50 keV. This is the value that we use in the numerical analysis. Moreover, we
choose µu � 400 MeV, µd � 500 MeV, µe � 100 MeV, αs � 1. The Fermi weak coupling constant
is given by GF � 1  16637 3 10 � 11 MeV � 2.

The numerical results show that the cooling behavior is dominated by the ungapped modes.
Consequently, to a very good approximation, the time dependence of the temperature can be com-
puted by neglecting the functions K � T H � and G � T H � in Eq. (4.3). In this case, an analytical expres-
sion can be easily derived,

T � t �F� T0 τ1 E 4� t � t0 � τ � 1 E 4  (4.5)

where

τ ) 315
914

µ2
u � µ2

d

αs G2
F µe µu µd

1
T 4

0
 (4.6)

With the above parameters, this constant is of the order of several minutes, τ � 10 � 5yr.
It may be interesting, although unphysical, to compare the cooling behavior of the gapped

modes of the different spin-one phases. To this end, we drop the 1 in the numerator and denominator
of the integrand in Eq. (4.3). The results are shown in Fig. 4. Note that both the initial temperature
T0 and the critical temperature Tc are beyond the scale of the figure. The reason is that, even
for the gapped modes, the cooling time scale for temperatures down to approximately 10 keV is
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Figure 4: Temperature as a function of time for normal quark matter and four spin-one “toy phases” (drop-
ping the fully ungapped modes).

set by the above constant τ . Therefore, all phases cool down very fast, and the transition to the
superconducting phase at T � 50 keV is hidden in the almost vertical shape of the curve. Only
at temperatures several times smaller than Tc, i.e., of the order of 10 keV, substantial differences
between the phases appear. In this range, the fully gapped phases cool down considerably slower
than the phases with nodes on the Fermi sphere, which, in turn, cool slower than the normal phase.
It seems to agree with physical intuition that this order reflects the order of the suppression at low
temperatures for the neutrino emissivity, i.e., the slowest cooling (isotropic gap) happens for the
phase where εν is suppressed strongest while the fastest cooling (no gap) happens for the smallest
suppression. Note, however, that the cooling depends on the ratio of the suppressions of εν and cV .
Therefore, this order is a nontrivial consequence of the exact forms of the functions G � ϕ  ϕ � and
K � ϕ � . For large values of ϕ , we may use Eqs. (2.9) and (3.4) to estimate the ratio K � ϕ �J* G � ϕ  ϕ � .
For both completely gapped phases we find K � ϕ �J* G � ϕ  ϕ �K; ϕ 3 E 2 while both phases with point
nodes yield ratios independent of ϕ . Consequently, for late times, T ; t � 2 E 11 in the CSL and planar
phases while T ; t � 1 E 4 in the polar, A and normal phases.

5. Spatial asymmetry in the neutrino emission from the A phase

In this section, we address a special aspect of the angular distribution of the neutrino emission.
To this end, we consider the net momentum carried away by neutrinos and antineutrinos from the
quark system per unit volume and time,

dP L net M
dV dt )�� ∂

∂ t

� d3pν� 2π � 3 pν 
 fν � t  pν � � fν � t  pν ���N��� 2
∂
∂ t

� d3pν� 2π � 3 pν fν � t  pν �6 (5.1)

Analogously to the case of the total emissivity, see Eq. (2.6), we arrive at the following general
result,

dP L net M
dV dt � 457

945
αsG2

FT 6µeµuµd H � ϕu  ϕd � ẑ  (5.2)

where ẑ is the unit vector in z direction, and

H � ϕu  ϕd �	)O� 420
457π6

� ∞

0
dww3

� 1� 1
dξ ξ F11

ϕuϕd � ξ  w ��� 0 � CSL, planar, polar �  (5.3)

H � ϕu  ϕd �	)O� 420
457π6

� ∞

0
dww3

� 1� 1
dξ ξ � F11

ϕuϕd � ξ  w � � F22
ϕuϕd � ξ  w ��� � A �: (5.4)
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Figure 5: Numerical results for the function H % ϕ 9 ϕ & which determine the net momentum carried away from
the spin-1 color superconducting A phase by neutrinos.

In the CSL, planar, and polar phases, the function H � ϕu  ϕd � is identically zero. This is because
F11

ϕuϕd � ξ  w � is an even function of ξ in these three phases, and therefore the integration over ξ
in Eq. (5.3) is vanishing. This means that the net momentum of emitted neutrinos as well as the
related net recoil momentum of bulk quark matter in the CSL, planar, and polar phases are zero.

The result is non-vanishing, however, in the A phase. The corresponding function H � ϕ  ϕ � is
plotted in Fig. 5. From the figure, we see that H � 0  0 �P� 0. Of course, this is just a consistency
check that, in the limit ϕ � 0, we reproduce the vanishing result in the fully isotropic normal phase
of quark matter. From the numerical data, we find that the maximum value of the function H � ϕ  ϕ �
is approximately equal to 0  064, which corresponds to the value of its argument ϕ � 2  9. At large
ϕ , the asymptotic behavior of H � ϕ  ϕ � is power suppressed as 1 * ϕ .

It may look surprising that the net momentum from the A phase is nonzero, indicating an
asymmetry in the neutrino emission with respect to the reflection of the z-axis. The gap functions
do not exhibit this asymmetry.

The origin of this remarkable result can be made transparent by rewriting the expression (5.4)
for the A phase in the following way,

H � ϕu  ϕd ���G� 840
457π6

� ∞

0
dww3

� 1� 1
dξ ξ Feff

ϕuϕd � ξ  w �  (5.5)

where

Feff
ϕuϕd � ξ  w �B) ∑

e1 � e2 ,�- � ∞

0

� ∞

0
dxdy . e � e1 / y2 0 L 1 0 ξ M 2ϕ2

u � 1 2 � 1 . ee2 / x2 0 L 1 0 ξ M 2ϕ2
d � 1 2 � 1

3 . ew 0 e1 / y2 0 L 1 0 ξ M 2ϕ2
u � e2 / x2 0 L 1 0 ξ M 2ϕ2

d � 1 2 � 1  (5.6)

In the derivation, we used the explicit forms of ωrr � ξ � and λξ � r from Table 1. Now, the result
looks as if only one single quasiparticle mode contributes to the net neutrino momentum. The
corresponding “effective” gap function has the angular dependence ; � 1 � ξ � which clearly dis-
criminates between � z and � z directions.

In order to understand the physical reason for the appearance of the effective quasiparticle
mode, it is useful to analyze the physical properties of the gapped modes of the A phase, r � 1  2.
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Figure 6: Gap functions for the first (left) and the second (middle) excitation branch with specified helicities
of quasiparticles in the upper and the lower hemispheres. The “effective” gap relevant for the neutrino
emission is shown on the right.

The color-spin structure of these modes is encoded in the projection operators Q 0
k � r, which project

onto a subspace in color-spin space corresponding to the r-th quasiparticle. These projectors appear
in the quark propagators [6]. It is instructive to write the first two projectors in the formQ 0

k � 1 � 1
2

J2
3 
 1 � sgn � k̂3 ��� H 0 � k̂ � � 1

2
J2

3 
 1 � sgn � k̂3 ��� H � � k̂ �  (5.7)Q 0
k � 2 � 1

2
J2

3 
 1 � sgn � k̂3 ��� H 0 � k̂ � � 1
2

J2
3 
 1 � sgn � k̂3 ��� H � � k̂ �  (5.8)

where J2
3 � diag � 1  1  0 � is a matrix in color space (indicating that quarks of the third color are

unpaired), and H - � k̂ �R) 1
2 � 1 S Σ T k̂ � are the helicity projectors with Σ ) γ 5γ0γ . From Eq. (5.7)

we see that the quasiparticles of the first branch have helicity � 1 when the projection of their
momentum onto the z-axis is negative, k̂3 U 0, and helicity � 1 if k̂3 V 0. Quasiparticles of the
second branch have opposite helicities, see Eq. (5.8).

The next step in the argument is to notice that only left-handed quarks participate in the weak
interactions which underly the Urca processes. In the ultrarelativistic limit, these are quarks with
negative helicity. Taking into account the helicity properties of the quasiparticles in the A phase, it
becomes clear that only an effective gap structure contributes. This is constructed from the upper
hemisphere of the first mode and the lower hemisphere of the second mode, see Fig. 6. This is a
graphical representation of the formal argument given after Eq. (5.6). [Of course, our choice for the
angular dependence of the gap functions, namely λk � 1 � � 1 �W' cos θk ' � 2 and λk � 2 � � 1 � ' cos θk ' � 2, is
only one possible convention. Equivalently, one could choose λk � 1 � � 1 � cos θk � 2 and λk � 2 � � 1 �
cos θk � 2, in which case the quasiparticle excitations would be ordered according to their helicity.
Then, quasiparticles of the first (second) branch would have negative (positive) helicity, and the
weak interaction would involve only quasiparticles of the first branch. Our convention in this paper
is in accordance with Ref. [6].]

The asymmetry in the effective gap function translates into the asymmetry of the neutrino
emission. This is due to the angular dependence of the amplitude for Urca type processes. As
in the vacuum, the corresponding amplitude squared is proportional to 1 � cos θνd , where θνd is
the angle between the neutrino and down quark momenta. Such an angular dependence of the
amplitude means that the neutrinos are preferably emitted in the direction opposite to the (almost
collinear) momenta of the participating up and down quarks. In fact, this is a general property that

9
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holds also in the normal phase [12]. Since the effective gap function assumes smaller values for
quasiparticles with k̂3 U 0 than with k̂3 V 0, there is more neutrino emission in the � z direction.

One can estimate the maximum velocity of a neutron star with a quark matter core in the
A phase that can be obtained by the asymmetric neutrino emission. It has been shown that this
velocity is negligibly small, e.g., of the order 1 m/s, see erratum in Ref. [15]. In essence, the reason
for this is that the available thermal energy in the star, after matter in the stellar interior cools down
to the critical temperature Tc A 100 keV of the A phase, is too small to power substantial momentum
kicks. (It would be interesting to investigate, however, if additional sources of stellar heating, e.g.,
such as the latent heat from a first-order phase transition, could change the conclusion.)
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