
TALN 2007, Toulouse, 5–8 juin 2007

XMG : eXtending MetaGrammars to MCTAG∗

Yannick PARMENTIER1 Laura KALLMEYER2 Timm LICHTE2

Wolfgang MAIER2

(1) LORIA - Nancy Université,
Campus Scientifique

BP 239, F-54 506 Vandœuvre-Lès-Nancy Cedex, France
(2) SFB 441 - University of Tübingen,

Nauklerstr. 35, D-72074 Tübingen, Germany
parmenti@loria.fr, lk@sfs.uni-tuebingen.de,

timm.lichte@uni-tuebingen.de, wo.maier@uni-tuebingen.de

Résumé. Dans cet article, nous présentons une extension du système XMG (eXtensible
MetaGrammar) afin de permettre la description de grammaires d’arbres adjoints à composantes
multiples. Nous présentons en particulier le formalisme XMG et son implantation et montrons
comment celle-ci permet relativement aisément d’étendre le système à différents formalismes
grammaticaux cibles, ouvrant ainsi la voie au multi-formalisme.

Abstract. In this paper, we introduce an extension of the XMG system (eXtensible Meta-
Grammar) in order to allow for the description of Multi-Component Tree Adjoining Grammars.
In particular, we introduce the XMG formalism and its implementation, and show how the lat-
ter makes it possible to extend the system relatively easily to different target formalisms, thus
opening the way towards multi-formalism.

Mots-clés : Formalismes syntaxiques, grammaires d’arbres, métagrammaires.

Keywords: Syntactic formalisms, tree-based grammars, metagrammars.

1 Introduction

For many NLP applications (e.g. generation, machine translation, etc.), large linguistic re-
sources are needed. These resources include (but are not limited to) lexicons and grammars.
The latter were originally written by hand. This task of grammar writing was requiring many
human resources. Plus, the coherence between the grammatical structures was hard to guarantee
(and maintain), as the number of structures / people involved were raising (Erbach & Uszko-
reit, 1990). To deal with these issues, several proposals have been made to automatise grammar
production. The main proposals are grammar extraction (Xia et al., 2000), grammar inference
(Higuera, 2001) and grammar generation. In this paper, we focus on the latter. Grammar gene-
ration is based on a formal description of the grammar which is processed to produce a real-size
grammar. This technique allows the grammar designer to express linguistic generalisations and

∗ This work was carried out during a visit of Yannick Parmentier at the SFB 441, University of Tübingen in
January 2007.

Parmentier, Kallmeyer, Lichte, Maier

to test different representation theories. Grammar generation systems can be divided in two
main categories, systems based on transformation rules (e.g. meta-rules or lexical rules) and
system based on composition rules (e.g. metagrammars).

Transformation rules have been used for many syntactic formalisms such as Generalized Phrase
Structure Grammars (GPSG), where they are called meta-rules. The goal of meta-rules is to
build new grammatical structures from existing ones. In unification-based grammars, lexicons
are usually defined by associating lexical items with a complex category (represented by a
feature-structure). Unlike meta-rules which are applied to grammatical structures, the transfor-
mation rules are here applied to lexical entries in order to derive new entries, and are thus called
lexical rules.

Concerning tree-based grammars, such as Tree Adjoining Grammars (TAG), a system of trans-
formation rules has been proposed by (Becker, 1993). In this system, transformation rules are
called meta-rules and applied to lexical entries containing no longer feature-structures but tree
structures (whose nodes may be labelled with feature-structures). In that case, the meta-rules
are used to derive new trees. A meta-rule has the following shape : LHS → RHS, where LHS

(respectively RHS) represents the left-hand side (resp. right-hand side) of the rule and consists
of a tree fragment. If the left-hand side of the rule matches a given lexical entry, then a tree
transformation occurs, replacing the left-hand side in the tree associated with the entry by the
right-hand side. For instance, the rule given in Fig. 1 derives the tree fragment for a clitic object
starting from the tree fragment for the canonical nominal object.

S

V NP

mange la pomme
(eats the apple)

→

S

V

Cl V

la mange
(it eats)

FIG. 1 – Transformation rule for Clitic-Object in French with TAG.

One drawback of such a system comes from the fact that the rule applications must be controlled
to avoid over-generation and infinite loops. (Prolo, 2002) proposes to use a declaration (for each
lexical entry) of valid application orderings as a control process. Nevertheless, when dealing
with real-size grammars, this task of rule ordering may be tedious.

The second trend in grammar generation, i.e. systems based on composition rules, has emerged
from works on tree-based grammars, especially TAG (Candito, 1996). Here, the factorisation
needed to describe a real-size grammar is not provided by transformation rules allowing for the
expansion of canonical trees. Instead, the factorisation arises from the definition of (i) elemen-
tary tree fragments, and (ii) composition rules over these fragments. This factorised definition
of the grammatical structures is sometimes called a metagrammar. Several metagrammatical
systems have been developed, especially for TAG1. Among these, one may cite eXtensible Me-
taGrammar (XMG), which distinguishes itself from previous approaches by its extensibility and
flexible management of variable scopes (Duchier et al., 2004). On top of providing a high-level
language allowing for the description of TAG grammars, the XMG language can be extended

1See (Duchier et al., 2004) for a comparison of these systems.

XMG: eXtending MetaGrammars to MCTAG

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived S
tree : NP VP

John ADV VP

always V

laughs

FIG. 2 – TAG derivation for John always laughs

to deal with other grammatical formalisms. Such an extension would make it easier to study the
common points between meta-descriptions for different formalisms, and opens the way towards
multi-formalism, which is one of the targets of the Mosaïque project2. To illustrate this exten-
sibility, we take the example of Multi-Component Tree Adjoining Grammars (MCTAG). The
paper is organised as follows. In section 2, we introduce MCTAG, motivate their use conside-
ring the description of German, and point out the limitations of TAG metagrammatical systems
with respect to the description of MCTAG. Then in section 3, we present the XMG formalism
and its implementation. In section 4, we show how, concretely, the XMG system has been ex-
tended to support the description of MCTAG. Finally, in section 5, we conclude and point out
some perspectives for future work.

2 Multi-Component Tree Adjoining Grammars (MCTAG) and
“Meta” MCTAG

Tree Adjoining Grammars (TAG) as originally defined by (Joshi et al., 1975) consist of ele-
mentary trees which can be combined via substitution (replacing a leaf with a new tree) and
adjunction (replacing an internal node with a new tree). In case of an adjunction, the tree being
adjoined has exactly one leaf that is marked as the foot node (marked with an asterisk). Such a
tree is called an auxiliary tree. When adjoining it to a node n, in the resulting tree, the sub-tree
with root n from the old tree is attached to the foot node of the auxiliary tree. Non-auxiliary
elementary trees are called initial trees. A derivation starts with an initial tree. In a final derived
tree, all leaves must have terminal labels. For a sample derivation see Fig. 2.

An extension of TAG that has been shown to be useful for several linguistic applications is
Multi-Component TAG (MCTAG) (Joshi, 1987; Weir, 1988). An MCTAG additionally lets one
declare tree sets consisting of elementary trees, meaning two things : firstly, using a tree set
implicates using all the trees belonging to it ; secondly, the attachment (i.e. adjunction or sub-
stitution) of the trees of a tree set can be restricted with respect to the place of attachment : if
the trees of a tree set are attached to the same elementary tree, the MCTAG is called tree-local ;
if they are attached to the same tree set, the MCTAG is called set-local ; otherwise (i.e. without
attachment restriction) the MCTAG is called non-local. Tree-local and set-local MCTAG are
polynomially parsable (the former are even strongly equivalent to simple TAG) while non-local
MCTAG are NP-complete (Rambow & Satta, 1992).

From a linguistic point of view, MCTAG are particularly interesting when modelling long dis-

2Cf. http://mosaique.labri.fr

Parmentier, Kallmeyer, Lichte, Maier

tance dependencies and movement effects, since the notion of tree sets allows for a conjoint
representation of fillers and gaps in one lexical entry. An early application of tree-local MC-
TAG was thus dedicated to the modelling of extraposed relative clauses (Kroch & Joshi, 1987).
Another field of application is the modelling of scrambling data in German, which furthermore
necessitate a TAG formalism more expressive than simple TAG or tree-local MCTAG. There-
fore (Rambow, 1994) has provided an MCTAG variant, called V-TAG, that is in fact non-local.
However, the desired computational properties are re-implemented via the use of dominance
constraints and the admission of non-synchronous attachments of the trees of a tree set. More
recently, (Kallmeyer, 2005) has developed another MCTAG variant in order to account for the
scrambling data, namely MCTAG with shared nodes (SN-MCTAG). Other than V-TAG, the no-
tion of SN-MCTAG is built upon tree-local MCTAG, but the notion of locality is relaxed, such
that non-local attachments are permitted under certain circumstances. Kallmeyer shows that
SN-MCTAG is still tractable in polynomial time. As an example a tree-local MCTAG analysis
of scrambled constituents in the German Mittelfeld is provided in Fig. 3. Note, that the analysis
is the same when using SN-MCTAG.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VP

NP VP*

den Kühlschrank

NP

t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

VP

NPs VP

NPo VP

NP V

Peter repariert

FIG. 3 – A tree-local MCTAG analysis of the German sentence “[dass] den Kühlschrank Peter
repariert” (’[that] Peter repairs the fridge’). The object noun den Kühlschrank (’the fridge’) is
fronted, leaving a trace in its base position behind the subject NP.

The different MCTAG variants proposed in the literature can be distinguished with respect to
the derivations they licence. But independent from this, they all consist of sets of elementary
TAG trees. The original metagrammar system XMG did not support tree sets, which made it
difficult to use for encoding MCTAG. Indeed, when designing metagrammars for TAG, the user
defines tree descriptions whose models are TAG trees. The only grouping of these trees is made
through the way the tree descriptions are gathered3. In practice, the descriptions are gathered
with respect to sub-categorisation frames (Crabbé, 2005). In the case of MCTAG, one may want
to describe sets of trees according to specific criteria (defined by the metagrammar designer).
The XMG language has thus been extended so that the metagrammar designer can define tree
descriptions whose models are sets of trees.

3 XMG : an extensible metagrammatical framework

In this section, we introduce the XMG system, and present its main features making it exten-
sible. This introduction will be followed (next section) by a step-by-step presentation of how to
extend it to different grammatical formalisms, taking the example of MCTAG.

3This gathering is specified using conjunctions and disjunctions, cf section 3.

XMG: eXtending MetaGrammars to MCTAG

By XMG, we refer to both (i) a metagrammatical formalism, i.e. a formal language allowing
to express abstractions over the structures of a grammar, and (ii) an implementation of this
formalism, in other words, a compiler for the XMG language.

3.1 The XMG formalism

Definition of elementary tree fragments The XMG language allows to describe reusable tree
fragments through abstractions called classes. A class corresponds to the association of a name
with a content :

Class ::= Name → Content (1)

For tree-based grammars, this content corresponds to a tree fragment (Content::=Description)
represented using a tree description logic formula built on the following language :

Description ::= x → y | x →+ y | x →∗ y | x ≺ y | x ≺+ y | x ≺∗ y |

x[f :E] | x(p:E) | Description ∧ Description
(2)

where x, y are node variables, → represents the dominance relation (mother-of relation), →+

its transitive closure, and →∗ its reflexive and transitive closure. ≺ refers to the precedence
between nodes (sister-of relation), ≺+ its transitive closure, and ≺∗ its reflexive and transitive
closure. x[f :E] is the association of the feature f and the value E to the node referred to by the
x variable. x(p:E) is the association of the property p and the value E to the x node. Note E is
an expression and can correspond to either a variable, a constant or a disjunction over constants
(so-called atomic disjunction).

Definition of combination of tree fragments Once elementary tree fragments have been defi-
ned, it is possible to define combinations over these, using two operators, namely conjunction
and disjunction. Concretely, the XMG language is extended with the following definition :

Content ::= Description | Name | Content ∨ Content | Content ∧ Content (3)

The content of a class can either be a description (tree description logic formula) or a name
(class instantiation), or a disjunction / conjunction of contents.

This part of the XMG language allows for a flexible control over the class combinations, ma-
king it possible to express linguistic properties of natural languages. For instance, the fact that
transitive verbs are made of a subject, a verbal morphology (active or passive) and a object can
be described within XMG as illustrated below :

transitive → subject ∧ morphology ∧ object

To illustrate the expressive power allowed by XMG4, you can imagine that a subject is not a
single tree fragment but a disjunction of tree fragments, each one defining a syntactic realisation
of the subject.

An important remark has to be made here. In the above example, nothing is said about the
way the tree fragments are "stuck" together, i.e. about how nodes are identified. This node
identification was a central point in previous metagrammar approaches. In the XMG approach,
the scope of a node variable is by default local to the class (i.e. to the fragment). This means that

4Another illustration of this power is the case of the agentless passive. Unlike (Candito, 1996), it does not need
any description removal with this language, the description is thus fully declarative.

Parmentier, Kallmeyer, Lichte, Maier

you can reuse the same node variable in different fragments without any name conflict. When
you want to declare that two node variables introduced in different fragments denote the same
node, you can use a prefix notation and a node equation :

S = subject ∧ A = morphology ∧ S.X = A.X

Extension to different levels of description Up to now, we have seen how to factorise syntactic
information (tree structures) within a metagrammatical description in the XMG language. In
order to allow for the extension of different levels of description (such as semantics, or non-tree-
based syntax, etc.), we have to extend the XMG language. This extension corresponds to the
concept of dimensions. The content of a class is a description belonging to a given dimension,
each dimension has its own sub-language. Definition (3) is extended by :

Content ::= Dimension + = Description | Name |

Content ∨ Content | Content ∧ Content
(4)

For instance, XMG integrates a semantic dimension allowing for the description of predicative
formulae.

3.2 The XMG compiler
The language introduced above is processed by a compiler in order to produce the grammar
described. Before presenting the architecture of this compiler, we can recall that the XMG
language is made of two devices :
– a collection of description languages (one for each dimension), allowing for the description

of basic units,
– a combination language.
This duality of the language is reflected within the architecture of the compiler, which per-
forms two main tasks : (a) accumulating basic units (in other words, processing the combination
rules), and (b) applying a processing on the accumulated units (for instance, once partial tree
descriptions are accumulated, computing the corresponding tree models). While the first task is
common to all dimensions, the second task is dimension-dependent.

Processing of the combination rules It is worth noticing that the XMG combination language
corresponds to a Definite Clause Grammar (DCG) (Pereira & Warren, 1980). Indeed, when
considering tree descriptions as words, conjunctive and disjunctive rules are just DCG rules.
This is why the combination language is processed the same way as a DCG would be by a
PROLOG compiler. In the DCG paradigm, one has to define axioms, from which PROLOG
computes the corresponding DCG parses. In our case, the metagrammar designer also defines
axioms (i.e. the classes that encode combination rules leading to total tree descriptions, such
as transitive in the above example) using the value keyword. In order to have full control on
unification, we decided to develop our own WAM-based virtual machine (see (Duchier et al.,
2004)). This virtual machine distinguishes between the different dimensions, thus as an output,
it produces a list of accumulated descriptions (total tree descriptions for syntax, list of predicates
for semantics).

Additional processing of the accumulated descriptions After the processing of the combina-
tion rules, we have a list of descriptions (one description per dimension for each axiom). Let us
call this list L(x) = (D1, . . . , Dn), where x is an axiom (class name) and Di the description of
the dimension i. Each dimension i is processed by a specific solver Si, whose role is to produce
the models Si(Di) of the description Di.

XMG: eXtending MetaGrammars to MCTAG

For the syntactic dimension, say dimension 1, D1 is a tree description, and the solver S1 com-
putes all minimal tree models satisfying D1. Let us briefly introduce S1. S1 has been developed
as a Constraint Satisfaction Problem. The idea behind this is to associate each node variable x

of the description D1 with an integer j, then to define the position of this node in a model as a
5-tuple Nx

j = (Eq, Up, Down, Left, Right) where Eq refers to the node variables (integers)
that are identified with x in a model, Up to the node variables that denote the ancestors of x

in a model, Down its descendants, etc. Finally the relations between node variables in D1 are
translated into constraints over these 5-tuples, i.e. constraints over sets of integers (see (Duchier
et al., 2004; Le Roux et al., 2006) for more details).

For the semantic dimension, say 2, D2 is a list of predicates. There is no need for further pro-
cessing of this dimension, so S2 is just the identity operation.

4 Towards a library of operational constraints for describing
different target formalisms

Before the work described here took place, the XMG system was supporting the description of
TAG, Interaction Grammars (IG)5, and Hole Semantics. We extended it so that one may also
describe MCTAG. This extension was made possible by the modular architecture of the system
as advocated in (Le Roux et al., 2006). This extension was made in two steps :

1. extension of the XMG language (either by defining a new dimension with its own sub-
language, or by extending an existing one),

2. definition of the solver for this new / extended dimension.

Extension of the XMG language As presented above, MCTAG is an extension of TAG in
which the elementary structures of the grammar are sets of trees. In a metagrammatical context,
the factorisation of an MCTAG corresponds to the definition of tree fragments that are combined
to produce (no more trees but) sets of trees. Concretely, this means that we can keep the same
tree description language as the one for TAG given in definition (2). Thus, we do not need a
new dimension, we can extend the existing syntactic dimension by adding a unary operator to
distinguish between descriptions whose models are trees and those whose models are sets of
trees. As introduced in the preceding section, the metagrammar designer defines axioms (class
names) indicating the classes which refer to total descriptions. These axioms are the starting
point for the processing of the combination rules. In our extension, we define a second type
of axioms using the setvalue keyword. The classes referred to by these new axioms have to
be interpreted as descriptions of sets of trees. This means that we have to define a new solver
for these descriptions of sets. Thus, we defined a S3 solver taking as an input a description
belonging to dimension 1 (syntax). While S1(D1) computes trees, S3(D1) computes sets of
trees. Note that S1 and S3 can be used within the same metagrammar (i.e., share the same tree
fragments).

Definition of a solver for MCTAG While the S1 solver introduced above applies tree-specific
constraints on models (such as the uniqueness of the root node), the S3 solver we defined for
MCTAG behaves differently. S3 has two major differences compared with S1

6. First, there is no

5Both TAG and IG were using the same syntactic dimension, as these formalisms are both based on trees.
6For lack of space, we do not present neither S3 nor S1 in detail here (see (Duchier et al., 2004; Le Roux et al.,

2006) for a detailed introduction to S1).

Parmentier, Kallmeyer, Lichte, Maier

constraint of root uniqueness, that is to say, two nodes of a model can be such that there is no
node above them :

∃ j, k ∈ [1..n] | Nx
j .Up = ∅ ∧ N

y

k .Up = ∅ ∧ (Nx
j .Eq ∩ N

y

k .Eq) = ∅

(n represents the number of node variables in the description). Secondly, two different nodes
of a model can belong to two different trees. For our 5-tuple representation, this means that
possibly none of their position features (Eq, Up, Down, Left, Right) intersects :

∃ j, k ∈ [1..n] | (Nx
j .Eq ∪ Nx

j .Up ∪ Nx
j .Down ∪ Nx

j .Left ∪ Nx
j .Right) ∩

(N
y

k .Eq ∪ N
y

k .Up ∪ N
y

k .Down ∪ N
y

k .Left ∪ N
y

k .Right) = ∅

To illustrate the difference between S1 and S3, consider the description A of Fig. 4. This des-
cription can be interpreted either as trees (S1(A)), or as sets of trees (S3(A)).

�

�

�

�

Class A
x [cat:S] ∧
y [cat:V] ∧
z [cat:S] ∧

x → y

�

�

�

	

S1(A)

S S S S S

V or S or V or S V or V S

V S

�

�

S3(A)⎧⎨

⎩
S S

V

⎫⎬
⎭

FIG. 4 – Description solving as trees / sets of trees.

When computing trees, S1 searches for all minimal tree models to the description. That is, S1

does not add any node on top of those referred to by a node variable in the description. S1

successively tries to identify nodes (when the feature structures labelling the nodes unify), or
to add a dominance relation between a node and a local root. S3 searches for models of sets of
trees, more precisely, S3 does not add any dominance relation on local roots. We have integrated
the S3 solver in the current XMG compiler7, and we started implementing a metagrammar for
German using this new multi-component dimension.

Note that when the metagrammar designer specifies a precedence (or dominance) relation bet-
ween nodes belonging to distinct trees of a set, S3 is unable to compute a solution. Such relations
between nodes of elements of a set are used in some extensions of MCTAG, and corresponds
to (unsolved) constraints on the trees of the set. These constraints have to be applied during
parsing. It would be interesting to extend the XMG language to include node relations that are
not to be solved.

Towards multi-formalism We have seen a first extension of the XMG system to deal with
MCTAG. As this formalism is based on trees, we did not need a new dimension. Nevertheless,
it is worth noticing that such an extension was facilitated by the modular architecture of the
system (virtual machine processing DCG rules and solver computing grammatical structures).
To sum up, it is possible to extend XMG for compiling a specific dimension provided you
define a language for describing it, and a solver for interpreting the corresponding description.
The latter can be seen as a set of operational constraints applied to a description in order to
produce valid structures (with respect to grammatical criteria).

7In the XMG-Tuebingen development branch of the subversion repository, see http://sourcesup.cru.
fr/xmg.

XMG: eXtending MetaGrammars to MCTAG

The next step in this work is to define a library of solvers applying specific operational constraints
on grammatical descriptions. These constraints will be selected dynamically by the metagram-
mar designer depending on the targeted grammatical formalism. Such a library would allow the
metagrammar designer to abstract away from the technical aspects of a given grammatical for-
malism, providing him with a high-level description language. Furthermore, the metagrammar
designer would be able to define a linguistic description that would be interpreted by different
solvers to produce grammars for different formalisms (i.e., multi-formalism).

A second interesting perspective consists of the development of a device allowing for solver
specification. Thus the linguist would be able to define its own grammatical criteria from which
the corresponding solver would be generated automatically.

Finally, another interesting perspective concerns parsing directly from the metagrammatical
descriptions (i.e., without computing the elementary units of the grammar). This path is follo-
wed by the MGCOMP system (Villemonte de la Clergerie, 2005).

5 Conclusion and Perspectives

This paper addresses a central problem of large coverage grammar implementation, namely
the difficulty to keep the grammar consistent across its different parts in spite of the conside-
rable redundancy that arises with the increasing size of an electronic grammar. This problem is
particularly prominent in lexicalised grammars that do not allow to formulate linguistic genera-
lisations outside the lexical entries. As a solution, eXtensible MetaGrammar (XMG) provides
a platform for grammar development that allows to factorise the lexical entries of a grammar
into smaller pieces that can then be used in different places. XMG is intended for lexicalised
tree grammars, in particular Tree Adjoining Grammars (TAG). TAG allows to describe a large
range of linguistic phenomena, in some cases however its expressive power is too limited. One
such example is the phenomenon of scrambling in so-called free word order languages such as
German. The different proposals for extending TAG in order to account for German scrambling
data all have in common that they use an MCTAG, i.e., a grammar consisting of sets of trees
instead of trees. The goal of this paper was to extend XMG so that it can be used not only to
describe TAG but also MCTAG.

In the paper, we have achieved such an extension by (optionally) relaxing the conditions on the
models, in particular omitting the assumption about the uniqueness of the root node. In that case,
a minimal model for a given description in the metagrammar might still be a tree (if all nodes are
connected in the description) but it could also be a set of disconnected trees. We think that our
technique of relaxing the restriction of XMG to tree models opens up interesting perspectives
for future work oriented towards other grammar formalisms. The idea to allow graphs different
from proper trees as models could be exploited for example for formalisms involving feature
structures instead of trees.

Such an extension of metagrammars to different target formalisms would allow to study how the
factorisation and the expression of linguistic generalisation is represented in these formalisms
(this comparative task would be facilitated by using the same language and system). The results
of such a study would make it possible to go further towards strong multi-formalism, that is to
say towards the compilation of different grammars (i.e. in different formalisms) starting from a
single meta-description.

Parmentier, Kallmeyer, Lichte, Maier

Références

BECKER T. (1993). HyTAG : A new Type of Tree Adjoining Grammars for Hybrid Syntactic
Representation of Free Word Order Language. PhD thesis, Universität des Saarlandes.

CANDITO M. (1996). A principle-based hierarchical representation of LTAGs. In Proceedings
of COLING’96, Kopenhagen.

CRABBÉ B. (2005). Représentation informatique de grammaires fortement lexicalisées : Ap-
plication à la grammaire d’arbres adjoints. PhD thesis, Université Nancy 2.

DUCHIER D., LE ROUX J. & PARMENTIER Y. (2004). The Metagrammar Compiler : An
NLP Application with a Multi-paradigm Architecture. In 2nd Internationale Conference of
Mozart/Oz users (MOZ’2004), Charleroi.

ERBACH G. & USZKOREIT H. (1990). Grammar Engineering : Problems and Prospects –
Report on the Saarbrücken Grammar Engineering Workshop. Rapport interne 1, Saarbrücken,
Germany.

HIGUERA C. D. L. (2001). Current trends in grammatical inference. Lecture Notes in Com-
puter Science, 1876.

JOSHI A. K. (1987). An introduction to tree adjoining grammars. In A. MANASTER-RAMER,
Ed., Mathematics of Language, p. 87–114. John Benjamins, Amsterdam.

JOSHI A. K., LEVY L. S. & TAKAHASHI M. (1975). Tree adjunct grammars. Journal of
Computer and System Science, 10, 136–163.

KALLMEYER L. (2005). Tree-local multicomponent tree adjoining grammars with shared
nodes. Computational Linguistics, 31 :2, 187–225.

KROCH A. S. & JOSHI A. K. (1987). Analyzing extraposition in a tree adjoining grammar.
In G. J. HUCK & A. E. OJEDA, Eds., Discontinous Constituency, number 20 in Syntax and
Semantics, p. 107–149. Academic Press, Inc.

LE ROUX J., CRABBÉ B. & PARMENTIER Y. (2006). A constraint driven metagrammar. In
Proceedings of the Eighth International Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+8), Sydney, Australia.

PEREIRA F. & WARREN D. (1980). Definite clause grammars for language analysis —a
survey of the formalism and a comparison to augmented transition networks. Artificial Intelli-
gence, 13, 231–278.

PROLO C. A. (2002). Generating the XTAG English grammar using metarules. In Proceedings
of the 19th International Conference on Computational Linguistics (COLING’2002), p. 814–
820, Taipei, Taiwan.

RAMBOW O. (1994). Formal and Computational Aspects of Natural Language Syntax. PhD
thesis, University of Pennsylvania, Philadelphia. IRCS Report 94-08.

RAMBOW O. & SATTA G. (1992). Formal properties of non-locality. In Proceedings of 1st
International Workshop on Tree Adjoining Grammars.

VILLEMONTE DE LA CLERGERIE E. (2005). DyALog : a tabular logic programming based
environment for NLP. In Proceedings of CSLP’05, Barcelona.

WEIR D. J. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania.

XIA F., PALMER M. & JOSHI A. (2000). A Uniform Method for Grammar Extraction and
Its Application. In Proceedings of 2000 Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora.

