Flexible Composition in LTAG: Quantifier Scope and Inverse Linking

joint work with Aravind K. Joshi and Maribel Romero

Laura Kallmeyer

Lattice, Paris 7

laura.kallmeyer@linguist.jussieu.fr

Réunion Genl, 29.09.2003

Overview

- The data: Nested Quantifiers
- The framework:
 - LTAG semantics
 - Quantifier scope
- The solution:
 - Flexible composition
 - Quantifier set approach
- Conclusion

Nested Quantifiers (1)

[Qu₁ [Qu₂]] : both scope orderings are possible: $Qu_1 > Qu_2$ (surface reading) and $Qu_2 > Qu_1$ (inverse linking reading).

- (1) Every president of an African country came to the meeting.
 Qu₁ > Qu₂: ∀x[∃y[y Afr._country ∧x president_of y] → x came to the meeting]
- (2) A representative from every African country came to the meeting. $Qu_2 > Qu_1: \forall x[x \ Afr. \ country \rightarrow \exists y[y \ repres. \ from \ x] \land y \ came$ to the meeting]

Nested Quantifiers (2)

Qu₁ ... [Qu₂ [Qu₃]]: the scope readings where Qu₁ intervenes between Qu₂ and Qu₃ are impossible (Hobbs & Shieber 1987; Larson 1987):

Nested Quantifiers (2)

Qu₁ ... [Qu₂ [Qu₃]]: the scope readings where Qu₁ intervenes between Qu₂ and Qu₃ are impossible (Hobbs & Shieber 1987; Larson 1987):

- Possible scope orders:
 - $Qu_1 > Qu_2 > Qu_3$
 - $Qu_1 > Qu_3 > Qu_2$
 - $Qu_2 > Qu_3 > Qu_1$
 - $Qu_3 > Qu_2 > Qu_1$

Nested Quantifiers (2)

Qu₁ ... [Qu₂ [Qu₃]]: the scope readings where Qu₁ intervenes between Qu₂ and Qu₃ are impossible (Hobbs & Shieber 1987; Larson 1987):

- Possible scope orders:
 - $Qu_1 > Qu_2 > Qu_3$
 - $Qu_1 > Qu_3 > Qu_2$
 - $Qu_2 > Qu_3 > Qu_1$
 - $Qu_3 > Qu_2 > Qu_1$
- Impossible scope orders:
 - * $Qu_2 > Qu_1 > Qu_3$
 - * $Qu_3 > Qu_1 > Qu_2$

Nested Quantifiers (3)

(3) Two politicians spy on someone from every city. (Larson 1987)

Nested Quantifiers (3)

- (4) Two politicians spy on someone from every city.(Larson 1987)
- * Qu₂ Qu₁ Qu₃ = * ∃ 2 ∀: ∃z [person'(z) ∧ 2x [politicians'(x) ∧ ∀y[city'(y) → from'(z,y)] ∧ spy'(x,z)]]

Problem: spy'(x, z) in nuclear scope of $\exists z \Rightarrow 2x$ also in nuclear scope of $\exists z \Rightarrow \forall y$ also in nuclear scope of $\exists z \Rightarrow$ from'(z, y) also in nuclear scope of $\exists z$ Reading can therefore be excluded for logical reasons

Nested Quantifiers (3)

- (5) Two politicians spy on someone from every city.(Larson 1987)
- * Qu₂ Qu₁ Qu₃ = * ∃ 2 ∀: ∃z [person'(z) ∧ 2x [politicians'(x) ∧ ∀y[city'(y) → from'(z,y)] ∧ spy'(x,z)]]

Problem: spy'(x, z) in nuclear scope of $\exists z \Rightarrow 2x$ also in nuclear scope of $\exists z \Rightarrow \forall y$ also in nuclear scope of $\exists z \Rightarrow$ from'(z, y) also in nuclear scope of $\exists z$ Reading can therefore be excluded for logical reasons

 * Qu₃ Qu₁ Qu₂ = * ∀ 2 ∃: Inverse linking ∀y [city'(y) → 2x [politicians'(x) ∧ ∃z[[person'(z) ∧ from'(z,y)] ∧ spy'(x,z)]]]

LTAG semantics (1)

Kallmeyer & Joshi (2003)

- elementary trees are linked to flat semantic representations
- the derivation tree shows how the semantic representations are combined
- Underspecified representations:
 - enrich formulas with labels l_1, l_2, \ldots and holes h_1, h_2, \ldots (metavariables ranging over labels)
 - scope constraints $x \ge y$ with x and y being labels or holes or variables

LTAG semantics (2)

(6) John always laughs.

LTAG semantics (3)

LTAG semantics (3)

Result: $l_1 : laugh'(x), john'(x), l_2 : always'(h_2),$ $h_1 \ge l_1, h_1 \ge l_2, h_2 \ge l_1$ arg: -

Disambiguation: Bijection from holes to labels such that

- (a) subordination on the disambiguated representation is a partial order
- (b) no label is subordinated to two labels that are siblings

LTAG semantics (3)

Result: $l_1 : laugh'(x), john'(x), l_2 : always'(h_2),$ $h_1 \ge l_1, h_1 \ge l_2, h_2 \ge l_1$ arg: -

Disambiguation: Bijection from holes to labels such that

- (a) subordination on the disambiguated representation is a partial order
- (b) no label is subordinated to two labels that are siblings

here: $h_1 \ge l_2 > h_2 \ge l_1$, therefore just one disambiguation: $h_1 \rightarrow l_2, h_2 \rightarrow l_1 \rightsquigarrow john'(x) \land always'(laugh'(x))$

Quantifier scope (1)

Idea: separating scope and predicate argument information:

Quantifier scope (2)

Quantifier scope (3)

Result:
$$l_1 : bark'(x), l_2 : \forall x(h_2, h_3), l_3 : dog'(x),$$

 $h_1 \ge l_1, h_3 \ge l_1, h_2 \ge l_3$
arg: -

just one disambiguation:

$$h_1 \to l_2, h_2 \to l_3, h_3 \to l_1$$

 $\rightsquigarrow \forall x(dog'(x), bark'(x))$

Quantifier scope (4)

Underspecified representations for scope ambiguities:

(8) some student loves every course

$$l_{2}: \exists x(h_{2}, h_{3}), l_{4}: \forall y(h_{4}, h_{5}), \\ l_{1}: loves'(x, y), l_{3}: student'(x), l_{5}: course'(y), \\ h_{2} \geq l_{3}, h_{3} \geq l_{1}, h_{4} \geq l_{5}, h_{5} \geq l_{1}, h_{1} \geq l_{1}$$

arg: –

two disambiguations:

• $h_1 \rightarrow l_2, h_2 \rightarrow l_3, h_3 \rightarrow l_4, h_4 \rightarrow l_5, h_5 \rightarrow l_1$ (wide scope of ∃)

In
$$h_1 → l_4, h_2 → l_3, h_3 → l_1, h_4 → l_5, h_5 → l_2$$
 (wide scope of ∀)

Flexible composition (1)

General idea: consider substitutions and adjunctions as *attachments* that can go in either direction. *Flexible composition*: attaching a tree t or a set of trees $\{t_1, \ldots, t_n\}$ to an elementary tree (or tree set) u

- Allows different orders when traversing the derivation tree.
- Extends the generative capacity of TAG.

For our purpose only restricted use of flexible composition: standard TAG derivation trees with a bottom-up traversal. (This special case is weakly equivalent to TAG.)

Flexible composition (2)

Flexible composition derivation for (2) *two politicians spy on someone from every city*

1. tree set for *from every city* is built and it attaches to the tree set for *someone*

Flexible composition (3)

2. the tree sets for *two politicians* and *someone from every city* attach simultaneously to *spy*:

 \Rightarrow identification of scope parts of *two* on the one hand and *someone* and *every* on the other hand

Quantifier set approach (1)

Observation: whenever an identification of scope parts takes place,

- Involved in that identification, and
- no other quantifier can intervene between them.

 \Rightarrow quantifiers that are identified are 'glued together' such that nothing else can intervene.

Quantifier set approach (2)

Formalization with *quantifier sets*:

Quantifier set approach (2)

Formalization with *quantifier sets*:

Introduce quantifier sets: whenever quantifiers scope trees are identified, a new set is built containing the scope parts of these quantifiers. (Eventually, these scope parts are already sets.)

Quantifier set approach (2)

Formalization with *quantifier sets*:

- Introduce quantifier sets: whenever quantifiers scope trees are identified, a new set is built containing the scope parts of these quantifiers. (Eventually, these scope parts are already sets.)
- additional condition on scope order for disambiguated representations:
 - (c) if one part of a quantifier set Q_1 is subordinated by one part of another quantifier set Q_2 , then all quantifiers in Q_1 must be subordinated by all quantifiers in Q_2 .

Quantifier set approach (3)

Semantic representation of (2):

$$\{l_1 : 2x(h_1, h_2), \{l_3 : \forall y(h_3, h_4), l_6 : \exists z(h_6, h_7)\}\}\$$

$$l_2 : politicians'(x), l_4 : city'(y), l_5 : from'(z, y),\$$

$$l_7 : person'(z), l_8 : spy'(x, z)\$$

$$h_1 \ge l_2, h_2 \ge l_8, h_3 \ge l_4, h_4 \ge l_5, h_5 \ge l_5,\$$

$$h_6 \ge h_5, h_5 \ge l_7, h_6 \ge l_7, h_7 \ge l_8, h_8 \ge l_8$$

arg: -

Inverse linking reading $\forall 2 \exists = l_3 > l_1 > l_6$ excluded: For $Q_1 := \{l_3 : \forall \dots, l_6 : \exists \dots\}$ and $Q_2 := l_1 : 2 \dots$, the scope order condition (c) would not be satisfied because $l_3 > l_1$ and $l_6 \neq l_1$.

Conclusion

- Data: In Qu₁ ... [Qu₂ [Qu₃]], the inverse linking reading where Qu₁ intervenes between the host Qu₂ and the nested Qu₃ is impossible: * Qu₃ > Qu₁ > Qu₂.
- *Account*.
 - Using scope parts for quantifiers and flexible composition, quantifier sets are constructed that group argumentally related quantifiers.
 - Constraints are imposed on quantifier sets: given two quantifier sets Q₁ and Q₂, all the quantifiers in Q₁ must have the same scopal relation to all the quantifiers in Q₂.

The flexible composition approach as used here does not increase the weak generative capacity of TAG.