On the relation between Multicomponent Tree
Adjoining Grammars with Tree Tuples
(TT-MCTAG) and Range Concatenation
Grammars (RCG)

Laura Kallmeyer and Yannick Parmentier

Collaborative Research Center 441, University of Tiibingen, Germany,
1k@sfs.uni-tuebingen.de, parmenti@sfs.uni-tuebingen.de

Abstract. This paper investigates the relation between TT-MCTAG, a
formalism used in computational linguistics, and RCG. RCGs are known
to describe exactly the class PTIME; simple RCG even have been shown
to be equivalent to linear context-free rewriting systems, i.e., to be mildly
context-sensitive. TT-MCTAG has been proposed to model free word
order languages. In general, it is NP-complete. In this paper, we will
put an additional limitation on the derivations licensed in TT-MCTAG.
We show that TT-MCTAG with this additional limitation can be trans-
formed into equivalent simple RCGs. This result is interesting for the-
oretical reasons (since it shows that TT-MCTAG in this limited form
is mildly context-sensitive) and, furthermore, even for practical reasons:
We use the proposed transformation from TT-MCTAG to RCG in an
actual parser that we have implemented.

1 Introduction

1.1 Tree Adjoining Grammars (TAG)

Tree Adjoining Grammar (TAG, [1]) is a tree-rewriting formalism. A TAG con-
sists of a finite set of trees (elementary trees). The nodes of these trees are labelled
with nonterminals and terminals (terminals only label leaf nodes). Starting from
the elementary trees, larger trees are derived by substitution (replacing a leaf
with a new tree) and adjunction (replacing an internal node with a new tree).
In case of an adjunction, the tree being adjoined has exactly one leaf that is
marked as the foot node (marked with an asterisk). Such a tree is called an
auxiliary tree. When adjoining it to a node n, in the resulting tree, the subtree
with root n from the old tree is attached to the foot node of the auxiliary tree.
Non-auxiliary elementary trees are called initial trees. A derivation starts with
an initial tree. In a final derived tree, all leaves must have terminal labels. For a
sample derivation see Fig. 1.

Definition 1 (Tree Adjoining Gramimar)
A Tree Adjoining Grammar (TAG) is a tuple G = (I, A, N,T) with

derived S

S 0
PN --VP tree: NP VP derivation tree:
NP VP« _~—_ | N laugh
~A | ADV VP* John ADV VP
NPV S 1\
always .
‘ lau‘ghs always | john always

John laughs

Fig. 1. TAG derivation for John always laughs

— N and T being disjoint finite sets, the nonterminals and terminals
— 1 being a finite set of initial trees with nonterminals N and terminals T, and
— A being a finite set of auxiliary trees with nonterminals N and terminals T .

The internal nodes in I U A can be marked as OA (obligatory adjunction)
and NA (null adjunction, i.e., no adjunction allowed).

Definition 2 (TAG derivation and tree language) LetG = (I, A, N,T) be
a TAG. Let v and ~' be finite trees.

— v = ' in G iff there is a node position p and a tree ~ that is either
elementary or derived from some elementary tree such that v' = v[p, v)]*.
= s the reflexive transitive closure of =.

— The tree language of G is L1(G) = {y|a = v for some o € I, all leaves in
v have terminal labels and there are no remaining OA nodes in v}.

The string language L(G) contains all yields of trees from the tree language.

TAG derivations are represented by derivation trees (unordered trees) that
record the history of how the elementary trees are put together. A derived tree is
the result of carrying out the substitutions and adjunctions, i.e., the derivation
tree describes uniquely the derived tree. Each edge in a derivation tree stands
for an adjunction or a substitution. The edges are labelled with Gorn addresses?.
E.g., the derivation tree in Fig. 1 indicates that the elementary tree for John
is substituted for the node at address 1 and always is adjoined at node address
2 (the fact that the former is an adjunction, the latter a substitution can be
inferred from the fact that the node at address 1 is a leaf that is no foot node
while the node at address 2 is an internal node).

Definition 3 (TAG derivation tree) Let G = (I, A,N,T) be a TAG. Let vy
be a tree derived as follows in G:

v =I[p1,M]- - [Pk, VK] where vo is an instance of an elementary tree and the
substitutions/adjunctions of the v1,...,v are all the substitutions/adjunctions
to vo that are performed to derive ~.

! For trees 7,71,...,7» and pairwise different node positions pi,...,pn in 7,
v[p1,71] - .. [Pn,¥n] denotes the result of subsequently substituting/adjoining the
Y1, --.,7¥n to the nodes in v with addresses p1,...,pn respectively.

2 The root address is €, and the jth child of a node with address p has address pj.

Then the corresponding derivation tree has a root labelled with o that has k
daughters. The edges from =y to these daughters are labelled with p1,...,pr, and
the daughters are the derivation trees for the derivations of v1,...,Vk-

1.2 Range Concatenation Grammars (RCG)

This section defines RCGs [2, 3].

Definition 4 (Range Concatenation Grammar) A positive Range Concate-
nation Grammar is a tuple G = (N, T,V, S, P) such that

— N is a finite set of predicates, each with a fized arity;

T and V are disjoint alphabets of terminals and of variables;

— S € N is the start predicate, a predicate of arity 1;

P is a finite set of clauses Ag(xo1,...,%0ay) — €, 07 Ao(Xo1,- .., T0ag) —
Ay(x11, -+, T1ay) - - An(@p1y oo o Tng,) withn > 1 and A, € N, x5 € (TU
V)* and a; being the arity of A;.

Since throughout the paper, we use only positive RCGs, whenever we say
“RCG”, we actually mean “positive RCG”3. An RCG with maximal predicate
arity n is called an RCG of arity n.

When applying a clause with respect to a string w = t; .. .t,, the arguments
of the predicates are instantiated with substrings of w, more precisely with the
corresponding ranges. A range (i,j) with 0 < ¢ < j < n corresponds to the
substring between positions ¢ and j, i.e., to the substring t;41...t;. If i = j,
then (i, j) corresponds to the empty string e. If ¢ > j, then (i, j) is undefined.

Definition 5 For a given clause, an instantiation with respect to a string w =
ty ...ty consists of a function f : {t'|t' is an occurrence of some t € T in the
clause} UV — {(i,j) |i < 4,i,5 € IN} such that

a) for all occurrences t' of a t € T in the clause: f(t') := (i,i + 1) for some
1,0 < i < n such that t; =t,

b) for allv e V: f(v) = (j,k) for some 0 <j<k<mn, and

¢) if consecutive variables and occurrences of terminals in an argument in the
clause are mapped to (i1,j1),. .., {(ix,jr) for some k, then jm = ims1 for
1 < m < k. By definition, we then state that f maps the whole argument to

(i1, Jk)-
The derivation relation is defined as follows:
Definition 6 (RCG derivation and string language)
3 The negative variant allows for negative predicate calls of the form m.

Such a predicate is meant to recognize the complement language of its positive
counterpart. See [3].

— For a predicate A of arity k, a clause A(...) — ..., and ranges (i1, 1), - -, (ik, Jk)
with respect to a given w: if there is a instantiation of this clause with left-
hand-side A({i1,71),- .-, {ik,jx)), then in one derivation step (... = ...)
A((i1,91), - -, {ii, Jr)) can be replaced with the right-hand side of this instan-
tiation. = is the reflexive transitive closure of =.

— The language of an RCG G is

L(G) = {w] S((0, |w])) = € with respect to w}.

For illustration, consider the RCG G = ({S, 4, B},{q,b},{X,Y, Z},S, P)
with P = {S(XY Z) — A(X,Z) B(Y), A(aX,aY) — A(X,Y), B(bX) — B(X),
A(e,) — €, B(e) — €}.

L(G) = {a™*a™ | k,n € IN}. Take w = aabaa. The derivation starts with
S((0,5)). First we apply the following clause instantiation:

R A

(0,2) (2,3) (3,5) (0,2) (3,5) (2,3)

aa b aa aa aa b
With this instantiation, S((0,5)) = A((0,2), (3,5))B((2, 3)). Then
Bl X) — B(X)

(2,3) (3.3) (3.3) and B(e) — €
b € €
lead to A((0, 2), (3,5))B({2,3)) = A((0,2), (3,5)) B({3, 3)) = A((0,2), (3,5)).
(X, Y)

Ala X a Y) —
Loy /o
(0,1) (1,2) (3,4) (4,5) (1,2) (4,5)

’
a a a a a a

VALV
(1,2 (2.2) (05) (5.5) (2.2) 5.5y mdAELD e
a € a € € €

lead to A((1,2), (4,5)) = A((2,2),(5,5)) = ¢

An RCG is called non-combinatorial if each of the arguments in the right-
hand sides of the productions are single variables. It is called linear if no variable
appears more than once in the left-hand sides of the productions and no variable
appears more than once in the right-hand side of the productions. It is called
non-erasing if for each production, each variable occurring in the left-hand side
occurs also in the right-hand side and vice versa. An RCG is called simple if it is
non-combinatorial, linear and non-erasing. Simple RCGs and linear context-free
rewriting systems (LCFRS, [4]) are equivalent (see [5]). Consequently, simple
RCGs are mildly context-sensitive [6].

1.3 From TAG to RCG

Now let us sketch the general idea of the transformation from TAG to RCG,
following [7]: The RCG contains predicates («)(X) and (8)(L, R) for initial and
auxiliary trees respectively. X covers the yield of a and all trees added to «,
while L and R cover those parts of the yield of § (including all trees added to
B) that are to the left and the right of the foot node of 3. The clauses in the
RCG reduce the argument(s) of these predicates by identifying those parts that
come from the elementary tree o/ itself and those parts that come from one of
the elementary trees added by substitution or adjunction. A sample TAG with
an equivalent RCG is shown in Fig. 2.

a1 Sna o o
/’\ F F 8 S

TAG: a S F | ‘
l

Equivalent RCG:
S(X) — <a1>(X) | <a2>(X) | <O¢3>(X) (every word in the language is the yield of an « € I)
(al)(aF) — <O¢2>(F) | <Oé3>(F) (the yield of a1 is a followed by the tree that substitutes at F')
<a1>(aB1B2F) — <,67>(B17 B2)<Oé2>(F) ‘ <,3>(B17 BQ)<OC3>(F) (or B adjoins to S in «;
then the yield is a followed by the left part of 3, the right part of 8 and the tree substituted at F)
<ﬂ> (B1b, CBQ) — <ﬂ> (B1, Bz) (B can adjoin to its root; then the left part is the left part
of the adjoined B followed by b; the right part is ¢ followed by the right part of the adjoined 3)
<a2>(d) — € <C¥3>(6) — € <ﬂ> (b, C) — € (the yields of a2, ag and 8 can be
d, e and the pair b (left) and c (right) resp.)

Fig. 2. A sample TAG and an equivalent RCG

2 TT-MCTAG

For a range of linguistic phenomena, multicomponent TAG (MCTAG, [4]) have
been proposed. The motivation is the desire to split the contribution of a single
lexical item (e.g., a verb and its arguments) into several elementary trees. An
MCTAG consists of sets of elementary trees, so-called multicomponents. If a
multicomponent is used in a derivation, all its members must be used.

Definition 7 (MCTAG) A multicomponent TAG (MCTAG) is a tuple G =
(I, AN, T, A) where Grac = (I,A,N,T) is a TAG, and A is a partition of
T U A, the set of elementary tree sets.

The particular type of MCTAG we are concerned with is Tree-Tuple MCTAG
with Shared Nodes (TT-MCTAG, [8]). TT-MCTAG were introduced to deal
with free word order phenomena in languages such as German. An example is
(1) where the argument es of reparieren precedes the argument der Mechaniker
of verspricht and is therefore not adjacent to the predicate it depends on:

(1) ... dass es der Mechaniker zu reparieren verspricht
... that it the mechanic to repair promises
‘... that the mechanic promises to repair it’

A TT-MCTAG is slightly different from standard MCTAG since the elemen-
tary tree sets contain two parts: 1. one lexicalized tree 7, marked as the unique
head tree, and 2. a set of auxiliary trees, the argument trees. Such a pair is called
a tree tuple. During derivation, the argument trees must either adjoin directly
to their head tree or they must be linked by a chain of adjunctions at root nodes
to a tree that attaches to the head tree. In other words, in the corresponding
TAG derivation tree, the head tree must dominate the auxiliary trees such that
all positions on the path between them, except the first one, must be e. This
captures the notion of adjunction under node sharing from [9]*.

Definition 8 (TT-MCTAG) Let G = (I,A,N,T, A) be an MCTAG. G is a
TT-MCTAG iff

1. every I' € A has the form {v,[1,...,0n} where v contains at least one leaf
with a terminal label, the head tree, and (1, ..., 0B, are auziliary trees, the
argument trees. We write such a set as a tuple (v,{f1,...,0n})-

2. A derivation tree D for somet € L({I,A,N,T)) is licensed as a TAG deriva-
tion tree in G iff D satisfies the following conditions (MC) (“multicomponent
condition”) and (SN-TTL) (“tree-tuple locality with shared nodes”):

(a) (MC) There are k pairwise disjoint instances I, ..., I of elementary
tree sets from A for some k > 1 such that Ule I; is the set of node
labels in D.

(b) (SN-TTL) for all nodes ng,n1,...,Nm, m > 1, in D with labels from
the same elementary tree tuple such that ng is labelled by the head tree:
for all 1 < i < m: either (ng,n;) € Pp® or there are Ny, Nik
with auziliary tree labels such that n; = n; g, (no,n;1) € Pp and for
1<j<k—1:{(n;j,ni;+1) € Pp where this edge is labelled with €.

Fig. 3 shows a TT-MCTAG derivation for (1). Here, the NP, auxiliary
tree adjoins directly to verspricht (its head) while the NP,.. tree adjoins to the
root of a tree that adjoins to the root of a tree that adjoins to reparieren.

In the general case, the recognition problem for TT-MCTAG is NP-hard [10].
In the following, we define a limitation for TT-MCTAG based on a suggestion
from [10]: TT-MCTAG are of rank k if, at any time during the derivation, at
most k argument trees depending on higher head trees in the derivation tree are
still waiting for adjunction.

4 The intuition is that if a tree 7' adjoins to some -, its root in the resulting derived
tree somehow belongs both to v and 7/, it is shared by them. A further tree 3
adjoining to this node can then be considered as adjoining to =y, not only to + as
in standard TAG. Note that we assume that foot nodes do not allow adjunctions,
otherwise node sharing would also apply to them.

5 For a tree v, ‘P, is the parent relation on the nodes, i.e., (z,y) € P, for nodes z,y
in v iff = is the mother of y.

derivation tree:

. N reparieren
,/“"VP‘"‘/ [----»VP /---NPnom {} .
A — >~ e — - .
"\ VP* verspricht NP, VP* -~ A’der Mech. versprqcht
\ | A P e
/ \\\ b NPnom
\;7>VP \———7VP -7 ’NPacc
‘ . 5 T~ Y | s {} 1 /\g
Zu reparieren NPgee VP* .- es Mechaniker NP, ..
v j
es

Fig. 3. TT-MCTAG derivation of (1)

Definition 9 (k-TT-MCTAG) Let G = (I,A,N, T, A) be a TT-MCTAG. G
is of rank k (or a k-TT-MCTAG for short) iff for each derivation tree D licenced
in G, the following holds:

(T'T-k) There are no nodes n, hg, ..., hi, ao,...,ar in D such that the label
of a; is an argument tree of the label of h; and (hi,n), (n,a;) € P} for0 <i <k.

With the analyses proposed in [8], that lead to a binary branching struc-
ture with a verbal projection line, the linguistic signification of this restriction is
roughly that for every VP node on the verbal projection line, at most k£ NPs can
be scrambled over this node. It is hard to say whether such a restriction is em-
pirically valid. Note however, that the number of verbs that allow for non-local
scrambling of their arguments is limited. Furthermore, the number of arguments
of these verbs is fixed. This indicates that such a limit k actually exists, al-
though it might be motivated rather by semantic and pragmatic reasons than
by syntactic reasons.

3 From kE-TT-MCTAG to RCG

We construct equivalent simple RCGs for k-TT-MCTAG in a way similar to the
RCG construction for TAG. There are predicates () for the elementary trees
(not the tree sets) that characterize the contribution of v. Recall that each TT-
MCTAG is a TAG, a TT-MCTAG derivation is a derivation in the underlying
TAG. (This is how we defined TT-MCTAG.) Consequently, we can construct
the RCG for the underlying TAG, enrich the predicates in a way that allows to
keep track of the “still to adjoin” argument trees and constrain thereby further
the RCG clauses. In this case, the yield of a predicate corresponding to a tree -y
contains not only v and its arguments but also arguments of predicates that are
higher in the derivation tree and that are adjoined below 7 via node sharing®.

5 An alternative possibility is to consider only v and its arguments as the yield of ~.
This leads to an RCG with simpler predicate names (the LPAs are not be needed)
but with predicates of higher arity since the contribution of vy can be discontinuous:
Every argument of a higher head adjoining below «y interrupts the contribution of ~.
This construction is much more complex than the one we choose here.

Our construction leads to an RCG of arity 2 with complex predicate names.
In order to keep the number of necessary predicates finite, the limit % is crucial.

A predicate () must encode the set of argument trees that depend on higher
head trees and that still need to be adjoined. We call this set the list of pending
arguments (LPA). These trees need to either adjoin to the root or to be passed
to the LPA of the root-adjoining tree. The LPA is a multiset since we allow for
several occurrences of a single tree.

In order to reduce the number of clauses, we distinguish between tree clauses
(predicates (v...)) and branching clauses (predicates (adj...) and (sub...)) follow-
ing [2]. We therefore have three kinds of predicates:

1. (v, LPA) with LPA being the list of pending arguments coming from higher
trees (not arguments of 7). This predicate has arity 2 if 7y is an auxiliary tree,
arity 1 otherwise. (y, LPA)-clauses distribute the variables for the yields
of the trees that substitute or adjoin into v among corresponding adj and
sub predicates. Furthermore, they pass the LPA to the root-position adj
predicate and distribute the arguments of v among the LPAs of all adj
predicates.

2. {adj,~,dot, LPA) as intermediate predicates (of arity 2). Here, LPA contains
a) the list of higher args if dot = €, and b) arguments of 7. We assume as
a condition that it contains only trees that can be adjoined to dot in 7.
(adj, v, dot, LP A)-clauses adjoin a v to the dot in v. If 4/ € LPA, then the
new predicate receives LPA \ {7'}. Otherwise, 4/ must be a head and LPA
is passed unchanged.

3. (sub,, dot) as intermediate predicates (arity 1). (sub, v, dot)-clauses substi-
tute a v/ into dot in .

More precisely, the construction goes as follows:

We define the decoration string o of an elementary tree v as in [2]: each inter-
nal node has two variables L and R and each substitution node has one variable
X (L and R represent the left and right parts of the yield of the adjoined tree
and X represents the yield of a substituted tree). In a top-down-left-to-right
traversal the left variables are collected during the top-down traversal, the ter-
minals and variables of substitution nodes are collected while visiting the leaves
and the right variables are collected during bottom-up traversal. Furthermore,
while visiting a foot node, a separating “,” is inserted. The string obtained in
this way is the decoration string.

1. We add a start predicate S and clauses S(X) — (o, 0)(X) for all a € I.

2. For every v € I U A: Let Ly, R, be the left and right symbols in o, for the
node at position p if this is not a substitution node. Let X, be the symbol
for the node at position p if this is a substitution node.

We assume that pq,...,pr are the possible adjunction sites, pg+1,...,p; the
substitution sites in . Then the RCG contains all clauses
(v, LPA)(0y) — (adj,~,p1, LP Ay,) (Lp,, Rp,) - .. (adj, ¥, pi, LPAp,) (Lp, , Rp,)

<5Ub» ’77pk+1>(X;Dk+1) s <SUb7 Vapl>(sz)
such that

ay VPoa an, NPina Qny NPana
< \ ,{}> < \ ’{}> < \ ,{}>

Bv; VPoa ﬂrﬂp\ Bvs VPo A B%
vl/V}*;VA’ NP, VPiL VQ/VF;‘VA’ NP, VPiu

Fig. 4. TT-MCTAG

— If LPA+#(, then € € {p1,...,px} and LPA C LPA,, and

- Uf:o LPA,, = LPAUTI () where I'(y) is either the set of arguments of
v (if 7 is a head tree) or (if «y is an argument itself), the empty set.

3. For all predicates (adj, v, dot, LPA) the RCG contains all clauses
(adj,~,dot, LPA)(L, R) — (7', LPA’)(L, R) such that v can be adjoined at
position dot in v and

— either v/ € LPA and LPA' = LPA\ {v'},
—orvy ¢ LPA, v is a head (i.e., a head tree), and LPA’ = LPA.

4. For all predicates (adj,,dot,) where dot in v is no OA-node, the RCG
contains a clause (adj, v, dot, D) (e, €) — e.

5. For all predicates (sub,~, dot) and all 4" that can be substituted into position
dot in the RCG contains a clause (sub,, dot)(X) — (v, 0)(X).

As an example consider the TT-MCTAG from Fig. 4. For this TT-MCTAG
we obtain (amongst others) the following RCG clauses:

— {ay, 0)(L vo R) — {adj, €, 0)(L, R) (only one adjunction at the root,
address €)

— (adj, 0, 0)(Ly R) = (Buys O)(LoR) | (B (L R) (Buy or g might
be adjoined at € in a,,, LPA (here empty) is passed)

— (Buy, 0)(L v1,R) — (adj, By, €,{Bn, })(L, R) (in By, there is only one
adjunction site, address €; the argument is passed to the new LPA)

= {adj, Bv, s € {Bn, })(L, R) —

s (L R) | (oo ABun DL R) | (Buas {Bus DL, R) (either

Bn, 1s adjoined and removed from the LPA or another tree (3,, or B,,) is
adjoined; in this case, the LPA remains)

= (Bors {Bn (L v1, R) — (adj, By, € {Bnis Bny 1) (L, R) (again, only one
adjunction in f,,; the argument (3, is added to the LPA)

= (Bny,0)(L X, R) — {(adj, Bn,,6,0)(L, R) (sub,Bn,,1,)(X) (adjunction to
root and substitution to 1 in G,,)

— {adj, Bn,,¢€,0)(¢,¢) — ¢ (adjunction at root of 3,, not obligatory as long
as LPA is empty)

— (sub, Bny, 1,)(X) = {an,,0)(X) (substitution of a,,, at address 1)

— {ap,,0)(n1) — € (no adjunctions or substitutions at a,,)

Take the input word ninanivevivive. The RCG derivation goes as follows”:
S(n1 na2 ny va v1 V1 Vo) = {aw, 0)(n1 N2 N1 v2 V1 U1 Vg)

= (adj, Qy, €, @) (m N2 N1 V2 V1 V1, 6) (adjunction at €, vg is scanned)
= <BU17®>(nl N2 Ny V2 V1 V1, 6) (Bu, is adjoined)
= <adja Buy s € {6n1}>(n1 N2 N1 V2 V1, 6) (adj. at €, vy scanned,
Bn, put into LPA)

= (Lo, {Bn, })(n1 N2 ny v2 v1,€) (Bo, is adjoined)
= (adj, ﬁ111367 {ﬂnla ﬁn1}>(n1 n2 N1 v, E) (adj. at €, v1 scanned,
Bn, put into LPA)

= (Buas {Bnas By }) (01 2 n1 2, €) (Bo, is adjoined)
= <adja ﬁvza €, {6712’ ﬂnl) ﬂnl }>(n1 na ni, 6) (adj. at €, vo scanned,
Bny put into LPA)

= (B {Bna» Bny 1) (01 N2 na,€) (Bn, from LPA adjoined)
= (adj, Bn1 5, € {ﬂnw ﬂn1}>(n1 na, E) <3Ub, ﬂnl, 1, >(7’Ll) (adj. at €,)
(subst. at 1)

= (adj, By s € {ﬂnga B }>(n1 na, 5) <04n1 , @) (nl) (subst. of o)
= <adja ﬂ?n » € {ﬁnw ﬁ’m }>(n1 n2, 5) € (n1 scanned)
= <ﬁn2 , {ﬁnl }>(n1 na2, 6) (Bny from LPA adjoined)
= <adja ﬁnza €, {ﬁn1}>(n17 6) <5ub7 ﬁny 1, >(n2) (adj. at €, subst. at 1)
= (adj, ﬁnza €, {Bnl }>(TL1, 6) <Oén2 5 @) (’n2) (subst. of an,)
= <a’dj7 ﬁnzv € {ﬂnl }>(7’L17 6) € (n2 scanned)
= (B, 0)(n1,€) (Bn, from LPA adjoined)
= <adj: ﬂnl) €5 (Z)>(67 6) <an1) ®>(n1) (subst. of o)
* = € (scanning of m1)

This example requires LPAs of maximal cardinality 3, i.e., a 3-TT-MCTAG.

Note that with this construction, the grouping into tree sets gets lost. E.g., in
our example, we do not know which of the n; came with which of the v;. However,
in our parser we construct the RCG only for the TT-MCTAG of a given input
sentence and if the same terminal occurs more than once in the input sentence,
we use different occurrences of the corresponding tree tuples.This way, we avoid
using the same elementary tree twice and the grouping can be inferred from the
tuple identifiers encoded in the names of the trees.

With the above construction the following can be shown:

Theorem 1. For each k-TT-MCTAG G there is a simple RCG G’ with L(G) =
L(G")B.

7 In this example, we replace the ranges with the corresponding input substrings since
this way the example is easier to read.

8 We suspect that the reverse does not hold. In other words, we suspect that the
k-TT-MCTAG languages are properly contained in the set of languages of simple
RCGs. An example of a language that is probably not in £(k-TT-MCTAG) is the
double copy language {www |w € {a,b}"}. The intuition is that, in order to obtain
the correct dependencies, the three copies of a terminal (or their substitution slots)
must be introduced in a single tree tuple. This means that two of them adjoin via
node sharing. But then it is not clear how to avoid getting not only crossing but also
other dependencies.

As a corollary, we obtain that the string languages of k-TT-MCTAG are
mildly context-sensitive.

To prove the theorem, we introduce TT-RCG derivation trees. These trees
are obtained from an RCG derivation by turning the (v, LPA) predicates into
nodes and the branching predicates into edges.

Definition 10 (TT-RCG derivation tree) Let G’ be an RCG constructed
from a k-TT-MCTAG as above. A tree Dg: with node and edge labels is a TT-
RCG derivation tree for G’ iff

— each node in D¢ is labeled with a predicate name (y,LPA) and with a
sequence of one or (if v is an auziliary tree) two w € T*.

— if the root label is (y, LPA), then there is a clause S(X) — (v, LPA)(X);

— for every node with label (v, LPA) and with | daughters with node labels
(vi, LPAL) and edge labels dot; (1 < i < 1), there is a (v, LPA)-clause
with {adj...) and (sub...) predicates on the right-hand side as described in the
construction such that

o for all adjunction sites p in v, p ¢ {dot;|1 < i <l}: LPA, =0, and
there is a clause {adj,v,p,0)(c,€) — €

e for all adjunction sites p = dot; in vy (for some i, 1 <i <1): there is a
clause (adj,~y,dot;, LPAp)(L, R) — (v, LPA})(L, R)

o for all substitution sites p = dot; in ~y (for somei, 1 <i<1]): LPA, =1
and there is a clause (sub,~,dot;)(X) — {~;, 0)(X)

— for every leaf with label (v, LPA) and (w) (or (wi,ws) Tesp.), there is a
clause (v, LPA)(w) — ¢ (or {7y, LPA)(w1,ws) — € resp.).

— the sequences of strings for a mother node are computed from the daughters
such that for at least one word w, the clauses leading from the mother to the
daughters can be instantiated successfully, assuming an instantiation with an
empty range for all variables not passed to one of the daughter predicates.

Furthermore, we call a TAG derivation tree whose nodes are equipped with
the yields of the derivation trees they root (one component for initial trees, two
components for auxiliary trees) and the set of arguments they dominate that
actually depend on higher head trees a decorated TAG derivation tree.

Once these structures are defined, we can prove the correspondence between
the decorated TAG derivation trees licensed in the k-TT-MCTAG G and the
TT-RCG derivation trees of the RCG G’. More precisely, we show that for each
decorated TAG derivation tree in G, there is an isomorphic TT-RCG derivation
tree in G’ and vice versa. We can show this by an induction on the height of the
subtree rooted by a node. (Due to space limitations, we omit the proof here.)

Conclusion

This paper has investigated the relation between two grammar formalisms, TT-
MCTAG and RCG. TT-MCTAG is a tree rewriting formalism that allows to

adequately model the free word order in certain languages, e.g., German. RCG,
on the other hand, is known to have nice formal properties: RCGs in general are
polynomially parsable, simple RCGs are even mildly context-sensitive. Further-
more, parsing algorithms for simple RCGs are already available.

In this paper, we have shown how to construct for a given TT-MCTAG with
a certain limitation (a so-called k-TT-MCTAG) an equivalent simple RCG. As
a formal result, we obtain that the class of string languages generated by k-TT-
MCTAG is contained in the class of languages generated by simple RCGs. In
particular, k-TT-MCTAG are mildly context-sensitive.

As a practical result, we can use this transformation from k-TT-MCTAG to
simple RCG for a 2-step k-TT-MCTAG parser that, in a first step, does the
transformation and, in a second step, parses with the RCG obtained from the
first step. As we have seen from the correspondence between the two derivation
structures, the derivation tree of the k-TT-MCTAG can be retrieved from the
RCG parse tree in a straightforward way. We have implemented this within a
project that develops a TAG-based grammar for German along with a parser for

this grammar®.

References

1. Joshi, A.K., Schabes, Y.: Tree-Adjoning Grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of Formal Languages. Springer, Berlin (1997) 69-123

2. Boullier, P.: On TAG Parsing. In: TALN 99, 6° conférence annuelle sur le Traite-
ment Automatique des Langues Naturelles, Cargese, Corse (1999) 75-84

3. Boullier, P.: Range Concatenation Grammars. In: Proceedings of the Sixth In-
ternational Workshop on Parsing Technologies (IWPT2000), Trento, Italy (2000)
53-64

4. Weir, D.J.: Characterizing mildly context-sensitive grammar formalisms. PhD
thesis, University of Pennsylvania (1988)

5. Boullier, P.: A Proposal for a Natural Language Processing Syntactic Backbone.
Technical Report 3342, INRIA (1998)

6. Joshi, A.K.: Tree adjoining grammars: How much contextsensitivity is required ro
provide reasonable structural descriptions? In Dowty, D., Karttunen, L., Zwicky,
A., eds.: Natural Language Parsing. Cambridge University Press (1985) 206—250

7. Boullier, P.: A Generalization of Mildly Context-Sensitive Formalisms. In: Pro-
ceedings of the Fourth International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+4), University of Pennsylvania, Philadelphia (1998)
17-20

8. Lichte, T.: An MCTAG with Tuples for Coherent Constructions in German. In:
Proceedings of the 12th Conference on Formal Grammar 2007, Dublin, Ireland
(2007)

9. Kallmeyer, L.: Tree-local multicomponent tree adjoining grammars with shared
nodes. Computational Linguistics 31(2) (2005) 187-225

10. Sggaard, A., Lichte, T., Maier, W.: The complexity of linguistically motivated
extensions of tree-adjoining grammar. In: Recent Advances in Natural Language
Processing 2007, Borovets, Bulgaria (2007)

9 See http://www.sfb44d1.uni-tuebingen.de/emmy/tulipa.

