Factoring Predicate Argument and Scope Semantics:
Underspecified Semantics with LTAG*

Laura Kallmeyer Aravind Joshi
University of Tiibingen University of Pennsylvania

Abstract

This paper proposes a compositional semantics for lexicalized tree-
adjoining grammar (LTAG). Tree-local multicomponent derivations allow sep-
aration of the semantic contribution of a lexical item into one component
contributing to the predicate argument structure and a second component
contributing to scope semantics. Based on this idea a syntax-semantics in-
terface is presented where the compositional semantics depends only on the
derivation structure. It is shown that the derivation structure (and indirectly
the locality of derivations) allows an appropriate amount of underspecifica-
tion. This is illustrated by investigating underspecified representations for
quantifier scope ambiguitites and related phenomena such as adjunct scope
and island constraints.

1 Introduction: Multicomponent LTAG

A LTAG consists of a finite set of trees (elementary trees) associated with lexical
items and composition operations of substitution (replacing a leaf with a new tree)
and adjoining (replacing an internal node with a new tree). The elementary trees
represent extended projections of lexical items and encapsulate syntactic/semantic
arguments of the lexical anchor. They are minimal in the sense that all and only
the syntactic/semantic arguments are encapsulated and further, all recursion is
factored away. This factoring of recursion is what leads to the trees being extended
projections. The elementary trees of LTAG are therefore said to possess an extended
domain of locality.

In our approach we use a LTAG varient called multicomponent TAG (MC-TAG).
A MC-TAG consists of elementary sets of trees. The locality of composition in
LTAG is extended to MC-TAG as follows. Basically, when two multicomponent
tree sets are combined, the components of one set combine with only one of the
components of the other set. This formalism, called tree-local MC-TAG, is known
to be equivalent to LTAG, thus the use of MC-TAG does not take us beyond the
power of LTAG. We use tree-local MC-TAG with at most two components in each
set. The key idea is that one of the components of a tree set contributes to the
predicate argument aspects of semantics and the other component contributes to
the scope semantics. This allows us to obtain derivation trees that provide the right
kind of underspecification for scope semantics.

2 Derivation trees and semantic dependencies

LTAG derivations are represented by derivation trees that record the history of how
the elementary trees are put together. A derived tree is the result of carrying out
the substitutions and adjoinings.

(1) John always loves Mary.

*This work was done during a visit of Laura Kallmeyer at the Institute for Research in Cognitive
Science (IRCS), University of Pennsylvania. A longer version of the paper will appear as technical
report at IRCS.

The elementary trees for (1) are shown in (2) together with the derived tree v and
the derivation tree. v is generated by adding a, and as by substitution in a; and
adjoining £ to ay. This is reflected by the derivation tree: An edge to an intitial
tree o, a1, . . . stands for a substitution and an edge to an auxiliary tree 3, 81, ... for
an adjunction.

Derived tree 7v:

B S
NP VP %o VP NP VP
A o ——
NP, -..ADV VP* John ~ ADV VP
| ‘ A <. ‘ T
(2) \ loves / always ---- always Y NP
/ loves Mary
NP NP @
ay | as | Derivation tree: /R
John Mary ay az f

Because of the localization of the arguments of a lexical item within elementary trees
the proper way to define compositional semantics for LTAG is with respect to the
derivation tree rather than the derived tree. We assume that each elementary tree
is related to a semantic representation. The derivation tree indicates how to com-
bine the semantic representations, where the direction of a semantic composition
depends on the specific syntactic operation: In case of a substitution an argument is
added to the semantic representation, and when adjoining a tree the new semantic
representation is applied to the old one. This contrasts with traditional approaches
where each node in the syntactic structure is associated with a semantic represen-
tation. Although this insight has been present from the beginning of the work on
LTAG (Shieber & Schabes 1990) a systematic formulation was begun only recently
by Joshi and Vijay-Shanker (1999). One of their goals was to investigate the role of
underspecification in compositional semantics; they suggested that LTAG deriva-
tion trees provide just the right amount of underspecification necessary for scope
semantics. Their discussion was preliminary, however.

Oa, Oas Oas 0p
(3) Iy : loves(zy, x2) john(x) mary(y) Iy : always(sy)
arg: T, Ts arg: — arg: — arg: si

(3) shows the semantic representations linked to the elementary trees in (2). We
use ‘flat’ semantic representations (as in, for example, Minimal Recursion Semantics
MRS, Copestake et al. 1997) consisting of a conjunctively interpreted set of formu-
las (typed lambda-expressions) and a set of argument variables. The formulas may
have propositional labels 1,5, Roughly, the application of one semantic repre-
sentation o to another o' consists of assigning values (of appropriate type) from o’
to some of the arguments in ¢ and then building the union of ¢ and ¢'. In (3), 04,
is applied to o,, assigning = to z; and to o,, assigning y to z3. og is applied to
0«, with [y assigned to s;. The result is (4):

Iy : loves(x,y), john(xz), mary(y), ls : always(ly)

(4)

arg: —

3 Scope information and underspecification

In order to describe underspecified representations for scope ambiguities, we adopt
ideas from Hole Semantics (Bos 1995) and enrich the semantic representations with

propositional metavariables hi, hs, ... called holes. A partial order on holes and
propositional labels describes the scope structure of a semantic representation. A
disambiguation function maps holes to propositional labels in such a way that the
scope constraints are respected.

(5) Every student loves some course.

Consider (5) for example. We suppose scope components of quantifiers to be syn-
tactically empty, they are auxiliary trees containing one single node. (6) shows
the elementary tree set for every, together with the derivation tree for adding this
quantifier to loves.

e NP
ﬁl /\ al
(6) g Det Ny Derivation tree: /\
C’UCTy /Bl a4
l1 : loves(xy,x2) lo : every(x, ha, h3) I3 :p ()
(7) 0ay| 1 <1 os,| s1 < hs Oua,| 13 < Do
arg: T,y arg: si arg: pi

(7) shows the (revised) semantic representations of a; from (2), 1 and a4. The
constraints s; < hg and I3 < hy in 03, and o4, separate restriction and body
of every. The auxiliary tree in the tree set of a quantifier contributes to scope
semantics: it introduces slots (he and hs3 in the case of every) for the scope of the
quantifier, i.e. its restriction and body. The NP part of the tree set contributes
to the predicate-argument semantics: it is inserted as a syntactic argument and it
contributes (a part of) the restriction of the quantifier. The argument p; in g,
stands for the predicate denoted by the noun in the NP that will be added by
substitution. This separation between scope information and contribution to the
predicate argument structure is partly inspired by Muskens (1998) and Muskens &
Krahmer (1998).

To make sure that in a substitution step the corresponding argument variables are
chosen in the semantic representation, each substitution node is linked to at least
one argument variable. In (7) the subject NP of «; is linked to z; and the object
NP to z5. The N substitution node in a4 is linked to p;.

The derivation tree in (6) indicates that o, is applied to o, assigning l; to si,
and o, is applied to o4, assigning x to z;. This leads to (8):

Iy : loves(x,x2), l2 : every(x, he, hs), I3 : p1(x)
(8) | li<hi, i <hs ls < he

arg: Tz, p1

Similarly, semantic representations for some are added, where the scope component
is also adjoined to the root of ay. Adding then student and course gives (9):

Iy : every(x, ha, h3), 1y : some(y, ha, hs),
9 Iy : loves(z,y), l3 : student(z), l5 : course(y)
OV by < hoyly < by, ls < hayly < hs, 1y < Iy

arg: —

With the constraints in (9), loves(x, y) is in the scope of both quantifiers, student(x)
in the scope of every and course(y) in the scope of some. The scope relation
between every and some is unspecified. Thus this approach generates underspecified
representations for scope ambiguities.

Since LTAG parsing is polynomial it follows that the construction of the underspec-
ified representaion in the derivation tree is also computable in polynomial time.

4 Adjunct Scope

(10) Pat allegedly usually drives a cadillac.

(10) is an example of adjunct scope taken from Bouma et al. 1998. As pointed out
by Bouma et al., in (10) usually must be in the scope of allegedly. Considering only
cases where both adverbs are VP-modifiers, there are three scope orders: allegedly
must have scope over usually, and the quantifier a cadillac can either have wide
scope or be between the two adverbs or it can have narrow scope.

(11) is a natural elementary representation for VP-modifiers as usually:

B /VP\ Iy : usually(hy)
(11) A]‘)V vp* s<h
usually arg: s

Schabes & Shieber (1994) would argue that in (10), both adverbs are adjoined to
the VP-node of drives, i.e. they would prefer multiple adjunction in this case. They
propose to consider the scope constraints for (10) as a consequence of the specific
syntactic derivation order. However, one of our underlying assumptions was that
the compositional semantics depends only on the derivation tree. In particular,
it should be independent from syntactic derivation order. Therefore, contrary to
Schabes & Shieber, we assume that for tree sets containing single auxiliary trees,
multiple adjunctions of several such trees at one and the same node are not allowed.
The difference between adverbs modifying the whole VP and adverbs modifying only
an embedded adverb is accounted for by adjoining in the first case at the VP-node
and in the second case at the node with label ADV (with a different semantic
representation). The restriction that several adverbial modifiers cannot be adjoined
at the same node reflects our assumption that operators adjoined at the same node
should be equivalent with respect to their scoping possibilities.

In the preceding section we have seen that we need multiple adjunction at single
nodes since the scope parts of the quantifiers in (5) were adjoined to the same node.
These scope components are lexically empty and in this case multiple adjoining does
not increase the generative power of the grammar. However, if tree-local multicom-
ponent derivations are combined with an unrestricted use of multiple adjunctions,
the power of the formalism is beyond LTAG. Thus our restriction of not allowing
multiple adjunctions at the same node in the case of adverbs is formally motivated
also and not just from the linguistic considerations.

If multiple adjunction at the VP-node of drives is not allowed in (10), the only
possible derivation is to adjoin usually to the VP-node of drives, and then to adjoin
allegedly to usually. With this derivation, the desired restriction is obtained since
the argument of allegedly is the label of usually(hy).

5 Island constraints

Island constraints for quantifier scope hold independently from specific quantifiers.
In particular relative clauses are widely accepted to be islands for quantifier scope
in the sense that quantifiers inside relative clauses cannot outscope the quantifier of
the relativized NP (see Rodman 1976, Reyle 1993, Muskens 1995, Kallmeyer 1999).

(12) a. Every representative of most of the companies saw this sample.
b. Every person who represents most of the companies saw this sample.
In (12)a. most of the companies can have wide scope, whereas in (12)b., wide scope

of the embedded quantifier most of the companies is not possible. The relative
clause in (12)b. is an island for quantifier scope.

We claim that the difference between (12)a. and (12)b. follows from different kinds of
derivations: In (12)a., the tree anchored by representative and of is an initial tree,
whereas the relative clause tree with anchor represents in (12)b. is an auxiliary
tree. This suggests that auxiliary trees constitute island whereas initial trees do
not. In the dependency structure expressed by a derivation tree, auxiliary trees
also mark some kind of islands in the following sense: Suppose that the edges in a
derivation tree are directed from predicates to arguments. For substitutions we have
downwards dependencies whereas for adjunctions we have upwards dependencies.
Then, with an auxiliary tree the chain of downwards dependencies is interrupted and
a new dependency tree begins. This observation suggests that islands follow not just
from a technical difference between two tree operations but rather that quantifiers
can rise to higher trees in the derivation structure as long as there is a downwards
dependency relation. Based on this observation, island constraints can be read off
the derivation structure as follows: Let the top of a semantic representation be
defined as its topmost element with respect to subordination. (Subordination is the
scope order given by the formulas and constraints in a semantic representation.) On
the one hand, everything inside an auxiliary tree is “blocked” by the next higher
tree: the top of the semantic representation oz of an auxiliary # must be below the
top of the semantic representation of the tree to which f is adjoined. On the other
hand, as long as there are only arguments added by substitution below an auxiliary
B, everything inside these arguments can rise up to the top of og, i.e. the tops of
these arguments must be below the top of og.

ly : saw(x,x=), la : every(x, ha, h3), l3 : person(z)
(13) | l <hi,li < hg, ls < hg, I < ha,
arg: Ty

We will illustrate this by showing a part of the analysis of (12)b. (13) is obtained
by combinig the semantic representations for saw, every and person. Here [y < hy
is an additional island constraint that has no effect in this case since every is added
to the matrix clause. Next, the relative clause is adjoined to the NP-node taking «
as an argument. After adding the semantic representations for represents and then
for who, (14) is obtained, where hy < h» is an additional island constraint.

ly : saw(z, x2), la : every(z, ha, hs), ls : person(x), ly : represents(z, xs3)
(14) | b <hi, b <hg, ls < he, la Sha, Iy Shiy ha < he

arg: Tz, T3

Adding the quantifier most to represents gives (15). Here l5 < hy and hy < hy
ensure that most (label ;) is in the restriction (and therefore the scope) of every.

Iy : saw(z, x2), la : every(z, ha, hs), l3 : person(z),
ly : represents(x,y), ls : most(y, hs, he), ls : p1(y)
(15) | It <hi, b < hg, I3 < hey la < ha, la < hg, le < hs
ly < hy, ha < hg, ls < hy, hg < hy

arg: T2, p1

Note that the locality of the TAG is responsible for the fact that quantifier scope
trees inside a relative clause cannot be adjoined to the matrix clause. So the locality
of the grammar together with the island constraints read off the derivation tree
provide just the amount of underspecification needed for quantifier scope.

6 Related work

Among recent approaches to underspecified semantics, in particular Muskens &
Krahmer (1998) and Kallmeyer (1999) are closely related to our work. Both pro-
posals also separate scope information from predicate argument semantics. Muskens
and Krahmer however do not adopt any locality constraint and therefore their use
of underspecification is too general. Kallmeyer uses tree descriptions and makes
use of the locality of TAGs. But in order to control the amount of underspecifica-
tion that comes with the use of descriptions, rather complex formal definitions are
necessary. This problem is avoided in our approach where syntactic structures are
represented by trees and underspecification is used only in a very limited way for
scope relations between propositional formulas.

7 Conclusion

In this paper, we have presented a compositional semantics for LTAG based on the
idea of factoring predicate argument and scope semantics. The framework proposed
here provides just the right amount of underspecification adequate for the analysis
of scope ambiguities.

References

Bos, J.: 1995, Predicate logic unplugged, in P. Dekker and M. Stokhof (eds), Pro-
ceedings of the 10th Amsterdam Colloguium, pp. 133-142.

Bouma, G., Malouf, R. & Sag, I.: 1998, Adjunct Scope. Workshop Models of
Underspecification and the Representation of Meaning, May 1998, Bad Teinach.

Copestake, A., Flickinger, D. & Sag, I. A.: 1997, Minimal Recursion Semantics. An
Introduction. Manuscript, Stanford University.

Joshi, A. K. & Vijay-Shanker, K.: 1999, Compositional Semantics with Lexicalized
Tree-Adjoining Grammar (LTAG): How Much Underspecification is Necessary?,
in H. C. Blunt and E. G. C. Thijsse (eds), Proceedings ot the Third International
Workshop on Computational Semantics (IWCS-3), Tilburg, pp. 131-145.

Kallmeyer, L.: 1999, Synchronous Local TDGs and Scope Ambiguities, in
G. Bouma, E. W. Hinrichs, G.-J. Kruijff and R. T. Oehrle (eds), Constraints
and Resources in Natural Language Syntax and Semantics, CSLI, pp. 245 — 262.

Muskens, R.: 1995, Order-independence and underspecification, in J. Groenendijk
(ed.), FEllipsis, Underspecification, Events and More in Dynamic Semantics,
DYANA Report R2.2.C.

Muskens, R.: 1998, Underspecified semantics. Workshop Models of Underspecifica-
tion and the Representation of Meaning, May 1998, Bad Teinach.

Muskens, R. & Krahmer, E.: 1998, Description Theory, LTAGs and Underspeci-
fied Semantics, Fourth International Workshop on Tree Adjoining Grammars and
Related Frameworks, IRCS Report 98—12, University of Pennsylvania.

Reyle, U.: 1993, Dealing with ambiguities by underspecification: Construction,
representation and deduction, Journal of Semantics 10, 123-179.

Rodman, R.: 1976, Scope phenomena, “movement transformations”, and relative
clauses, in B. H. Partee (ed.), Montague Grammar, Academic Press, pp. 165-176.

Schabes, Y. & Shieber, S. M.: 1994, An Alternative Conception of Tree-Adjoining
Derivation, Computational Linguistics 20(1), 91-124.

Shieber, S. M. & Schabes, Y.: 1990, Synchronous Tree-Adjoining Grammars, Pro-
ceedings of COLING, pp. 253-258.

