
Local Tree Description GrammarsLaura KallmeyerUniversit�at T�ubingenlk@sfs.nphil.uni-tuebingen.de1 IntroductionA lot of interest has recently been paid to constraint-based de�nitions and ex-tensions of Tree Adjoining Grammars (TAG). Examples are the so-called quasi-trees (see Vijay-Shanker (1992) and Rogers (1994)), D-Tree Grammars (seeRambow et al. (1995)) and Tree Description Grammars (TDG) (see Kallmeyer(1996a,b)). The latter are grammars consisting of a set of formulas denotingtrees. TDGs are derivation-based where in each derivation step a conjunction isbuilt of the old formula, a formula of the grammar and additional equivalencesbetween node names of the two formulas. This formalism is more powerful thanTAGs. TDGs o�er the advantages of MC-TAG (see Joshi (1987a)) and D-TreeGrammars for natural languages, and they allow underspeci�cation. However,the problem is that TDGs might be unnecessarily powerful for natural lan-guages. To solve this problem, in this paper, I will propose local TDGs, arestricted version of TDGs. Local TDGs still have the advantages of TDGs butthey are semilinear and therefore more appropriate for natural languages.First, the notion of semilinearity is de�ned. Then local TDGs are introduced,and, �nally, semilinearity of local Tree Description Languages is proven.2 SemilinearityLet N be the set of non-negative integers. For (a1; � � � ; an); (b1; � � � ; bn) 2 Nnand m 2 N we de�ne: (a1; � � � ; an) + (b1; � � � ; bn) := (a1 + b1; � � � ; an + bn) andm(a1; � � � ; an) := (ma1; � � � ;man).For some alphabet X = fa1; � � � ; ang with some (arbitrary) �xed order of theelements, a function p : X� ! Nn is called a Parikh-function, if:For all w 2 X�: p(w) := (jwja1 ; jwja2 ; � � � ; jwjan ), where jwjai is the number ofoccurences of ai in w. For all L � X�: p(L) := fp(w)jw 2 Lg.Two strings x1; x2 2 X� are letter equivalent if they contain equal number ofoccurences of each symbol, i.e. if p(x1) = p(x2) for some Parikh-function p.Two languages L1; L2 � X� are letter equivalent if every element in L1 is letterequivalent to an element in L2 and vice-versa, i.e. if p(L1) = p(L2) for someParikh-function p.De�nition 1 (Semilinearity)1. Let x0; x1; � � � ; xm; 0 � m be in Nn. A linear subset of Nn is a setfx0 + n1x1 + � � �+ nmxm j ni 2 N for 1 � i � mg.1



2. The union of �nitely many linear subsets of Nn is a semilinear subset of Nn.3. A language L � X� is semilinear, if there is a Parikh-function p such thatp(L) is a semilinear subset of Nn.Proposition 1 (Parikh-Theorem) Each context free language is semilinear.Clearly, each language that is letter equivalent to a semilinear language is semi-linear as well. Because of the Parikh-Theorem (proven by Parikh (1966)), thismeans that for some language L, in order to prove the semilinearity of L, it issu�cient to show that L is letter equivalent to a context free language.Semilinearity is an important language property because it seems plausible thatnatural languages are semilinear (see Joshi (1987b) and Vijay-Shanker et al.(1987)). As far as I know, the only example of a possibly non-semilinear phe-nomenon is case stacking in Old Georgian (see Michaelis and Kracht (1996)).Since it is not clear whether there is really a (theoretically) in�nite progressionof stacking possible, there is no reason to assume natural languages not to besemilinear, as long as these are the only examples of nonsemilinear phenomena.If natural languages are semilinear, then it is desirable that the languages gen-erated by grammar formalisms intended to capture human language capacityare semilinear as well.3 Local TDGsThe tree logic used for local TDGs is the same as for TDGs (see Kallmeyer(1996b)). It is similar to the logic proposed by Rogers (1994) for TAGs. Thelogic is a quanti�er-free �rst order logic with variables K (node names), binaryrelations � (parent or immediate dominance), �� (dominance), � (linear prece-dence) and � (equality), a symbol � for the labelling function, sets of constantsN and T for the nonterminal and terminal labels, and logical connectives :,^ and _. Satisfaction is de�ned with respect to special models (�nite labelledtrees) and variable assignments. �1 entails �2 (�1 j= �2) for two formulas �1, �2i� all �nite labelled trees satisfying �1 with respect to an assignment g also sat-isfy �2 with respect to g. A sound, complete and decidable notion of syntacticconsequence, �1 ` �2, can be de�ned for this logic.In the formulas in TDGs (descriptions) certain subtrees are uniquely describedtogether with dominance relations between these trees. A negation free, disjunc-tion free satis�able formula � is a description if there is at least one k 2 node(�)(k 2 K occuring in �) such that � ` k �� k0 for all k0 2 node(�) (k is calledminimal in �), and if for all k1; k2; k3:- If � ` k1 � k2 ^ k1 �� k3, then either � ` k1 � k3 or there is a k4 with� ` k1 � k4 ^ k4 �� k3.- If � ` k1�k2^k1�k3, then either � ` k2 � k3 or � ` k2 � k3 or � ` k3 � k2.To guarantee that in each derivation step, descriptions with disjoint sets of nodenames can be chosen, an equivalence relation on f(�;K�);� is a description and2



K� � node(�)g is needed: ( 1;K 1) �K ( 2;K 2) i�  1 and  2 only di�er ina bijection (variable renaming) fK : K ! K with K 2 = fK(K 1).A TDG is a tuple G = (N;T;D; �S), such that:1. N and T are pairwise disjoint �nite sets, the nonterminals and terminals2. D is a �nite set of equivalence classes ( ;K ) (wrt �K), such that for all( ;K ) 2 ( ;K ),  is a description with constants N and T .  is calledan elementary description of G, and each k 2 K is called marked in  .3. �S is a description (with constants N and T ), the start description.In a derivation step �1  ) �2, the result �2 is the conjunction of �1, an elemen-tary  and equivalences k1 � k2 with k1 2 node(�1) and k2 2 fk; k minimalin  or k 2 K g. The main idea of local TDGs is to restrict the derivationmode such that all k1 2 node(�1) used for new equivalences occur in one singleelementary  d that was added before. Furthermore, each k1 2 node(�1) can beused but once to introduce a new equivalence. Then the derivation step onlydepends on  d, and the derivation process can be described by a context-freegrammar. Doing this, letter equivalence of local TDLs (the string languages oflocal TDGs) and context-free languages can be shown, and, consequently, localTDLs are semilinear.To understand the intuitions behind the de�nition of local TDGs, it is helpfulto have an idea of the semilinearity proof. In this proof, for a given localTDG GT a letter equivalent context-free grammar GCF is obtained as follows:The nonterminals in GCF describe \states" of elementary descriptions used inthe course of a derivation. For a derived description � in the correspondingderivation in GCF there is one nonterminal Z d for each start or elementarydescription  d added in the course of the derivation of �. Z d speci�es inwhich way the names of  d can be used in a new derivation step. For eachk 2 node( d), Z d gives information about whether k has a parent or daughterin �, whether k is minimal or does not dominate any other name in � andwhether k is strongly dominated by a name k0 such that � ` �(k0) � X forsome label X. (A strong dominance in � is a conjunct k1�� k2 in � that is notentailed by the rest of �, i.e. � without this conjunct. Notation: � `s k1�� k2.)k2 k5k4k3
k1  1 = k1 � k2^k1 � k3 ^ k2 � k3 ^k3 �� k4 ^ k4 � k5,K 1 = fk5g k13 k14k12 k16 k17k15k11  2 = k11 �� k12 ^k11 �� k15 ^ � � �K 2 = fk17g

Figure 1: non-local elementary descriptionsFor the old description � in a derivation step the following should hold: Onlyfor the elementary  d (in �) used in this derivation step may the state change.Therefore \subtree descriptions" (e.g. the part with k12; k13; k14 in  2 in Fig. 1)3



must not be inserted into strong dominances � `s k �� k0 with k0 =2 node( d).To guarantee this the form of the descriptions is restricted by de�ning localdescriptions. The descriptions of Fig. 1 for example are not local. If k13 or k14was marked, then  2 would be local.De�nition 2 (Local description) An elementary description  in a TDG G islocal, if for all k1; k2; k3 2 node( ):1. If  ` k1 � k2, then k1 = k2.2. If  `s k2 �� k1 and  `s k3 �� k1, then k2 = k3.3. If  `s k1 �� k2 and  `s k1 �� k3, then either k2 = k3 or: k1 is minimal ormarked in  and there are k4; k5 2 K with  ` k2 �� k4 and  ` k3 �� k5.4. If k1 2 K( ) and k2 is marked or minimal in  with k1 6= k2 and  ` k2��k1,such that there is no further marked name between k1 and k2, then:- There is a k 2 node( ) with  `s k2 �� k and  ` k �� k1, and for allk3 2 K : if  ` k �� k3, then  ` k1 �� k3.- If there are k4; k5 with  ` k4 �� k5,  `s k2 �� k4 and  `s k5 �� k1,then: there is an X 2 N with  ` �(ki) � X for all i 2 f1; 2; 4; 5g, and ifthere is a k with  `s k2 �� k, then k = k4 holds. 1 k1� � � � � �k2  2 k1k4k5
k2

By this de�nition two kinds of marked names k1 with k2 as next marked orminimal name dominating k1 are allowed: �rst (see  1) names k1 with nok 6= k2 strongly dominating k1. The second type (see  2) are marked nameswhere underspeci�cation can occur. This is the case, if k2 strongly dominatessome k4 and k1 is strongly dominated by some k5. k4; k5; k1 and k2 then have thesame labels, and there are no other names strongly dominated by k2. Generally,names k that are not marked or minimal do not strongly dominate more thanone name.A local TDG is a TDG G = (N;T;D; �S) where �S and all elementary descrip-tions are local. As already mentioned, the main idea of local derivation is to usefor new equivalences only names from one elementary  d in the old description�1, and to use each k 2 node(�1) at most once.De�nition 3 (Local derivation) Let G be a local TDG. For an elementary  inG and descriptions �1; �2 with �S �)l �1 and node( )\node(�1) = ;: �1  )l �2holds (�2 is locally derived from �1 in one step), if there is a  d with  d = �Sor �S �)l �  d)l �0 �)l �1, such that:1. �2 ` �1 ^  .2. For all k1 2 node(�1); k2 2 node( ) such that �2 ` k1 � k2, there is a k01with �1 ` k1 � k01 and 4



(i) k01 2 node( d), and k2 is marked or minimal in  .(ii) For all k with �1 ` k01 � k: either k01 = k, or  d 6= �S and �0 ` k01 � k.(iii) If km is the next marked or minimal name dominating k2 and there arek0m; k02 with  `s km�� k0m and  ` k0m�� k02^k02�k2, then: There is a kwith �1 `s k�� k01 such that for all k0: if  ` k0m�� k0, then �2 ` k�� k0.(iv) If there is no k3 2 K , k2 6= k3, such that  ` k2 �� k3, then either k01is a leaf name in �1 or k2 is a leaf name in  . (k is a leaf name in � i�for all k0: If � ` k �� k0, then � ` k � k0.)(v) If there is a k3 2 K with  ` k2��k3 and k2 6= k3, if there is no markedname between k2 and k3, and if there are k02; k03 with  `s k2 �� k02 and `s k03��k3 and  ` k02��k03, then: If k4 2 node( d) with �2 ` k4 � k3,then for all k 2 node(�1): �1 6` k01 � k _ k � k4.3. For all �3 such that 1. and 2. hold for �3: If �2 ` �3, then �3 ` �2.(i) makes sure that all k 2 node(�1) used in one derivation step are from oneelementary  d. (ii) says that each name can be used only once for a derivationstep. Because of (iii), parent relations in �2 come from exactly one of thedescriptions �1 or  , and everything between two marked or minimal names in must be inserted into one single strong dominance. With (iv) a k 2 K notdominating any other k0 2 K either is a leaf name or it is identi�ed with aleaf name in �1. Because of 1. and 3., �2 must entail  and �1, and �2 mustbe maximally underspeci�ed.�1  �2
k1k2k3k4 insert �� � �

� � �
� � �
� � � ;�1  ) �2 k1 � k4

k2 � k3
� � �
� � �

For k1; k2 2 node( ) either marked or minimal with no marked names in be-tween and with �2 ` k4 � k1 ^ k3 � k2 for k3; k4 2 node(�1): Either there isno k 6= k2 with  `s k �� k1. Then the derivation step is as in the preceding�gure. Or, if there is such a k, (see (v)) the derivation step has the form:�1  �2
k1
k2k3k4 insert � � � �
� � �

� � �
� � � �1  ) �2; k3 � k2

k4 � k1� � �
� � �

In a local TDG G, LlD(G) is the set of descriptions that can be locally derived5



from �S . The tree language is the set of minimal trees of these descriptions. Aminimal tree of � is a tree that satis�es � such that all parent relations in thetree are already described in �. The set of strings yielded by these trees is thestring language.Local TDGs are still powerful enough to describe fan1an2 � � � ankg and copy lan-guages. Local Tree Description Languages (TDL) are a true superset of TreeAdjoining Languages. With local TDGs, as with MC-TAGs, several subtree de-scriptions can be added simultaneously, and subsertion-like derivation steps asin D-Tree Grammars are possible. Furthermore, in cases of scope ambiguities,underspeci�ed representations can be derived (see Kallmeyer (1996b, 1997)).4 Semilinearity of local TDLsProposition 2 Local TDLs are letter equivalent to context-free languages.Proof (outline): Let GT = (NT ; T;D; �S) be a local TDG such that withoutloss of generality for all elementary or start descriptions � and all k 2 node(�)there is a X 2 NT [ T [ f�g with � ` �(k) � X.Construction of a letter equivalent context-free grammar GCF := (NC ; T; P; S):The nonterminals are states Z of the form Z = �Z ^ �Z with: �Z = �S or �Zelementary in GT (one representative for each class in D is chosen). �Z is aconjunction of formulas parent(k), child(k), leaf(k), minimal(k), dom"(k;X)or derive(k) or their negations with k 2 node(�Z) and X 2 NT . For each stateZ = �Z ^ �Z for all k 2 node(�Z) and all such formulas  = parent(k); � � �either  or : must occur in �Z .AdditionallyNC contains a start symbol S di�erent from all other nonterminals.Let Z� = ��Z ^ ��Z be equivalent to one Z 2 N (\equivalent" means that Zand Z� only di�er in a bijection K). We de�ne: A description � with �S �)l �entails Z�, � j= Z�, as follows:1. � j= parent(k) i� there is a k0 such that � j= k0 � k.2. � j= child(k) i� there is a k0 such that � j= k � k0.3. � j= leaf(k) i� k is a leaf name in �.4. � j= minimal(k) i� k is minimal in �.5. � j= derive(k) i� there are �1; �2 such that �S �)l �1 )l �2 �)l �, k 2node(�1) and �2 j= k � k0 for one k0 =2 node(�1).6. � j= dom"(k;X) i� there is a k0 with � `s k0 �� k ^ �(k0) � X.7. Apart from this, �1 j= �2 is de�ned as before.Productions P :1. If ZS 2 N with ZS = �S ^�S and �S j= �S and if t1; � � � ; tn are all occurencesof terminals in �S , then S ! t1 � � � tnZS 2 P .2. Let Z and Z 0 be states for the same elementary or start description, Znew astate for some elementary  , and t1; � � � ; tn all occurences of terminals in  .Z ! t1 � � � tnZ 0Znew 2 P i� the following holds:6



For all �, �S �)l � entailing a Z� = �� ^ �� equivalent to Z: There is a �0with �  )l �0 and Z 0� = �0� ^ �0� and Z�new = ��new ^ ��new equivalent to Z 0and Znew such that �0 j= Z 0� ^ Z�new. Furthermore �� = �0� and  = ��newhold and �� is the elementary  d (see Def. 3) used in this derivation step.3. For all Z 2 N , Z = �Z ^ �Z :Z ! � 2 P i� for all k in �Z : if X is the label of k, then either parent(k) ordom"(k;X) or derive(k) or minimal(k) is in �Z .GCF is unique and it is a context-free grammar.By induction on the length n of the derivation the following can be shown:S n+1) wn wrt GCF without applying �-productions, and Z1; � � �Zn are alloccurences of nonterminals in wni� there is a derivation �S n)l �n wrtGT such that there are pairwise di�erentZ�1 ; � � � ; Z�n with Z�i = ��i ^ ��i equivalent to Zi, with:- The elementary or start descriptions that have been used in course of thederivation of �n, are exactly ��1 ; � � � ; ��n .- �n j= Z�i for all 1 � i � n.With the �-productions the following holds for wn; �n as above: wn �) w0n canbe derived by applying only �-productions and w0n 2 T � i� �n has a minimaltree.In general: �S �)l � wrt GT , � has a minimal tree yielding the string w i� thereis a w0 letter equivalent to w such that S �) w0 wrt GCF . 2As a corollary local TDLs are semilinear.5 ConclusionTDGs have been developed to give a constraint-based TAG-extension that o�ersthe advantages of MC-TAGs and D-Tree Grammars, and to introduce under-speci�cation to TAGs. However, TDGs seem to be unnecessarily powerful fornatural languages. For this reason I have presented local TDGs in this paper, arestriction of TDGs that is still much more powerful than TAGs. Local TDGsalso have the advantages of MC-TAGs and D-Tree Grammars, and even under-speci�ed representations are still possible in local TDGs (see Kallmeyer (1996b,1997)). By describing the derivation process by a context-free grammar, I haveproven that local TDGs are semilinear, which indicates that they really arean interesting alternative to other formalisms developed for natural languageprocessing.AcknowledgmentsFor critical discussions and helpful comments, I would like to thank Tom Cornelland Frank Morawietz. 7
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