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1 Introduction

A lot of interest has recently been paid to constraint-based definitions and ex-
tensions of Tree Adjoining Grammars (TAG). Examples are the so-called quasi-
trees (see Vijay-Shanker (1992) and Rogers (1994)), D-Tree Grammars (see
Rambow et al. (1995)) and Tree Description Grammars (TDG) (see Kallmeyer
(1996a,b)). The latter are grammars consisting of a set of formulas denoting
trees. TDGs are derivation-based where in each derivation step a conjunction is
built of the old formula, a formula of the grammar and additional equivalences
between node names of the two formulas. This formalism is more powerful than
TAGs. TDGs offer the advantages of MC-TAG (see Joshi (1987a)) and D-Tree
Grammars for natural languages, and they allow underspecification. However,
the problem is that TDGs might be unnecessarily powerful for natural lan-
guages. To solve this problem, in this paper, I will propose local TDGs, a
restricted version of TDGs. Local TDGs still have the advantages of TDGs but
they are semilinear and therefore more appropriate for natural languages.

First, the notion of semilinearity is defined. Then local TDGs are introduced,
and, finally, semilinearity of local Tree Description Languages is proven.

2 Semilinearity

Let N be the set of non-negative integers. For (ay,---,ay), (b1, --,b,) € N"
and m € N we define: (ay,---,an) + (b1, -+,by) := (a1 + b1,-++,a, + by) and
m(ay, -, ap) = (may,---,may).

For some alphabet X = {ay,---,a,} with some (arbitrary) fixed order of the
elements, a function p : X* — N is called a Parikh-function, if:

For all w € X*: p(w) := (|wla,, |W]ay, -, |W]a, ), Where |w|y, is the number of
occurences of a; in w. For all L C X*: p(L) := {p(w)|w € L}.

Two strings x1,z9 € X* are letter equivalent if they contain equal number of
occurences of each symbol, i.e. if p(z1) = p(z2) for some Parikh-function p.
Two languages L1, Ly C X* are letter equivalent if every element in L is letter
equivalent to an element in Ls and vice-versa, i.e. if p(L;) = p(Lg) for some
Parikh-function p.

Definition 1 (Semilinearity)

1. Let xg, 1, ,Tm, 0 < m be in N*. A linear subset of N™ is a set
{zo+mix1 + - +npzm | n; €N for 1 <i<m}.



2. The union of finitely many linear subsets of N is a semilinear subset of N™.
3. A language L C X* is semilinear, if there is a Parikh-function p such that
p(L) is a semilinear subset of N™.

Proposition 1 (Parikh-Theorem) Each context free language is semilinear.

Clearly, each language that is letter equivalent to a semilinear language is semi-
linear as well. Because of the Parikh-Theorem (proven by Parikh (1966)), this
means that for some language L, in order to prove the semilinearity of L, it is
sufficient to show that L is letter equivalent to a context free language.

Semilinearity is an important language property because it seems plausible that
natural languages are semilinear (see Joshi (1987b) and Vijay-Shanker et al.
(1987)). As far as I know, the only example of a possibly non-semilinear phe-
nomenon is case stacking in Old Georgian (see Michaelis and Kracht (1996)).
Since it is not clear whether there is really a (theoretically) infinite progression
of stacking possible, there is no reason to assume natural languages not to be
semilinear, as long as these are the only examples of nonsemilinear phenomena.
If natural languages are semilinear, then it is desirable that the languages gen-
erated by grammar formalisms intended to capture human language capacity
are semilinear as well.

3 Local TDGs

The tree logic used for local TDGs is the same as for TDGs (see Kallmeyer
(1996b)). It is similar to the logic proposed by Rogers (1994) for TAGs. The
logic is a quantifier-free first order logic with variables K (node names), binary
relations < (parent or immediate dominance), <* (dominance), < (linear prece-
dence) and & (equality), a symbol ¢ for the labelling function, sets of constants
N and T for the nonterminal and terminal labels, and logical connectives —,
A and V. Satisfaction is defined with respect to special models (finite labelled
trees) and variable assignments. ¢, entails ¢o (¢1 = ¢2) for two formulas ¢1, @2
iff all finite labelled trees satisfying ¢; with respect to an assignment g also sat-
isfy ¢ with respect to g. A sound, complete and decidable notion of syntactic
consequence, ¢1 F ¢2, can be defined for this logic.

In the formulas in TDGs (descriptions) certain subtrees are uniquely described
together with dominance relations between these trees. A negation free, disjunc-
tion free satisfiable formula ¢ is a description if there is at least one k € node(¢)
(k € K occuring in ¢) such that ¢ - k <* k' for all k' € node(¢) (k is called
minimal in ¢), and if for all ky, ko, k3:

-If ¢ F k1 < ko A ky <* k3, then either ¢ - ki = k3 or there is a kg with

o k1 <ky ANEky <* k3.
- If o - k1 <ko Ak ks, then either ¢ F ko < k3 or ¢ - ko =~ kg or ¢ - k3 < ko.

To guarantee that in each derivation step, descriptions with disjoint sets of node
names can be chosen, an equivalence relation on {(¢, Ky4); ¢ is a description and



Ky C node(¢)} is needed: (¢, Ky, ) =k (2, Ky,) iff 11 and 1o only differ in
a bijection (variable renaming) fr : K — K with Ky, = fr(Ky,).

A TDG is a tuple G = (N, T, D, ¢g), such that:
1. N and T are pairwise disjoint finite sets, the nonterminals and terminals
2. D is a finite set of equivalence classes (1, Ky) (wrt =), such that for all

(Y, Ky) € (¢, Ky), ¢ is a description with constants N and T'. 4 is called
an elementary description of GG, and each k € Ky is called marked in ).

3. ¢g is a description (with constants N and T'), the start description.

In a derivation step ¢ é@ ¢2, the result ¢9 is the conjunction of ¢, an elemen-
tary ¢ and equivalences ki = ko with k1 € node(¢y) and ky € {k;k minimal
in ¢ or k € Ky}. The main idea of local TDGs is to restrict the derivation
mode such that all k; € node(¢1) used for new equivalences occur in one single
elementary 14 that was added before. Furthermore, each ki € node(¢;) can be
used but once to introduce a new equivalence. Then the derivation step only
depends on 14, and the derivation process can be described by a context-free
grammar. Doing this, letter equivalence of local TDLs (the string languages of
local TDGs) and context-free languages can be shown, and, consequently, local
TDLs are semilinear.

To understand the intuitions behind the definition of local TDGs, it is helpful
to have an idea of the semilinearity proof. In this proof, for a given local
TDG Gr a letter equivalent context-free grammar G ¢ is obtained as follows:
The nonterminals in G describe “states” of elementary descriptions used in
the course of a derivation. For a derived description ¢ in the corresponding
derivation in G¢p there is one nonterminal 7y, for each start or elementary
description 4 added in the course of the derivation of ¢. Zy, specifies in
which way the names of 1y can be used in a new derivation step. For each
k € node(1pq), Zy, gives information about whether k has a parent or daughter
in ¢, whether k£ is minimal or does not dominate any other name in ¢ and
whether % is strongly dominated by a name k' such that ¢ - §(k') ~ X for
some label X. (A strong dominance in ¢ is a conjunct k; <* ko in ¢ that is not
entailed by the rest of ¢, i.e. ¢ without this conjunct. Notation: ¢ b4 ki <* ks.)
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Figure 1: non-local elementary descriptions

For the old description ¢ in a derivation step the following should hold: Only
for the elementary 14 (in ¢) used in this derivation step may the state change.
Therefore “subtree descriptions” (e.g. the part with k9, k13, k14 in 9o in Fig. 1)



must not be inserted into strong dominances ¢ s k <* k' with &' ¢ node(1)q).
To guarantee this the form of the descriptions is restricted by defining local
descriptions. The descriptions of Fig. 1 for example are not local. If k13 or k4
was marked, then 1o would be local.

Definition 2 (Local description) An elementary description ¢ in a TDG G is
local, if for all k1, ko, ks € node(1)):
1. Ifiﬁ F kl ~ kg, then kl = kg.
2. If g ko <* ky and Y by ks <* kq, then ko = k3.
3. If Y g ky <* ko and ¢ 4 k1 <* ks, then either ko = k3 or: ki is minimal or
marked in 1) and there are ky, ks € Ky, with ¢ = ky <* kg and ¢ = k3 <* k5.
4. If k1 € K(¢) and ky is marked or minimal in ¢ with k1 # ke and ¢ F ko<<*kq,
such that there is no further marked name between ki and ko, then:
- There is a k € node(v) with 1 s ke <* k and ¢ = k <* ki, and for all
ky € Ky: if 1=k <" k3, then o = ky <* k3.
- If there are ky, ks with ¢ F ky <* ks, ¢ s ko <" kg and o 5 ks <* kq,
then: there is an X € N with ¢ - 6(k;) = X for alli € {1,2,4,5}, and if
there is a k with v Fg ko <* k, then k = ky holds.

o k2 o k2

@bl @bg .
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ka

By this definition two kinds of marked names k; with ke as next marked or
minimal name dominating k; are allowed: first (see ;) names k; with no
k # ko strongly dominating k1. The second type (see 1)) are marked names
where underspecification can occur. This is the case, if ko strongly dominates
some k4 and kq is strongly dominated by some k5. k4, k5, k1 and ko then have the
same labels, and there are no other names strongly dominated by k3. Generally,
names k that are not marked or minimal do not strongly dominate more than
one name.

A local TDG is a TDG G = (N, T, D, ¢s) where ¢g and all elementary descrip-
tions are local. As already mentioned, the main idea of local derivation is to use
for new equivalences only names from one elementary 4 in the old description
¢1, and to use each k € node(¢1) at most once.

Definition 3 (Local derivation) Let G be a local TDG. For an elementary 1 in

G and descriptions ¢y, ¢o with ¢pg = ¢1 and node () Nnode(py) = 0: ¢ %l ho

holds (¢po is locally derived from ¢y in one step), if there is a Vg with ¥y = ¢g

or g = ¢ gl ¢ = é1, such that:

1. ¢ Py A1)

2. For all k1 € node(¢1), ks € node(vyp) such that ¢o = ki = ko, there is a kj
with ¢1 F k1 =~ k| and



(i) k) € node(vpq), and ko is marked or minimal in 1).
(11) For all k with ¢1 b K| =~ k: either ki =k, or g # ¢g and ¢' - k| ~ k.
(153) If ky, is the next marked or minimal name dominating ko and there are
kL, ks with ) b ky, <* kL, and ¢ = kL, <* k5 ANkb <k, then: There is a k
with ¢1 s k<* K} such that for all K': if b kL, <*K', then ¢o b k<" K.

(i) If there is no k3 € Ky, ky # k3, such that ¢ - ko <* k3, then either kj
is a leaf name in ¢y or ko is a leaf name in 1. (k is a leaf name in ¢ iff
forallk': If o -k <* K, then o F k= K'.)

(v) If there is a k3 € Ky with ¢ = ke <*k3 and ko # ks, if there is no marked
name between ko and ks, and if there are kb, kY with 1 b ke <* Ky and
g k< kg and o b kY <<* kS, then: If kq € node(1pg) with ¢po b ky = ks,
then for all k € node(p1): o1 F k) <k VE < ky.

3. For all ¢3 such that 1. and 2. hold for ¢3: If o & @3, then @3 ¢o.

(i) makes sure that all k¥ € node(¢;) used in one derivation step are from one
elementary 4. (ii) says that each name can be used only once for a derivation
step. Because of (iii), parent relations in ¢o come from exactly one of the
descriptions ¢; or v, and everything between two marked or minimal names in
1 must be inserted into one single strong dominance. With (iv) a k € K not
dominating any other k' € Ky either is a leaf name or it is identified with a
leaf name in ¢;. Because of 1. and 3., ¢» must entail ¢ and ¢, and ¢ must
be maximally underspecified.

b2

s - v o ko ~ k3
b1 = ¢2
° k3 -k2
iwt oL, ~ . . .
o kg : z : z
.kl °

k1%k4

For ki,ks € node(1)) either marked or minimal with no marked names in be-
tween and with ¢ F ky = ki A k3 = ky for k3, ky € node(¢py): Either there is
no k # ko with ¢ -5 k <0* k1. Then the derivation step is as in the preceding
figure. Or, if there is such a k, (see (v)) the derivation step has the form:

b2
b1 " b1 S bo ks~ ks
. ks o ko
- insert ~
PN AN
L. b .®
ik ik '
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In a local TDG G, L, (G) is the set of descriptions that can be locally derived



from ¢g. The tree language is the set of minimal trees of these descriptions. A
minimal tree of ¢ is a tree that satisfies ¢ such that all parent relations in the
tree are already described in ¢. The set of strings yielded by these trees is the
string language.

Local TDGs are still powerful enough to describe {afa} ---a}'} and copy lan-
guages. Local Tree Description Languages (TDL) are a true superset of Tree
Adjoining Languages. With local TDGs, as with MC-TAGs, several subtree de-
scriptions can be added simultaneously, and subsertion-like derivation steps as
in D-Tree Grammars are possible. Furthermore, in cases of scope ambiguities,
underspecified representations can be derived (see Kallmeyer (1996b, 1997)).

4 Semilinearity of local TDLs

Proposition 2 Local TDLs are letter equivalent to context-free languages.

Proof (outline): Let Gy = (N7, T, D, ¢g) be a local TDG such that without
loss of generality for all elementary or start descriptions ¢ and all k € node(¢)
there isa X € Np UT U {e} with ¢ - d(k) =~ X.

Construction of a letter equivalent context-free grammar Gop := (N, T, P, S):
The nonterminals are states Z of the form Z = ¢z A &z with: ¢z = ¢g or ¢z
elementary in G (one representative for each class in D is chosen). £z is a
conjunction of formulas parent(k), child(k), leaf(k), minimal(k), dom4(k, X)
or derive(k) or their negations with k& € node(¢z) and X € Np. For each state
Z = ¢z N&z for all k € node(¢pz) and all such formulas ¢ = parent(k),---
either ¢ or —1) must occur in .

Additionally N¢ contains a start symbol S different from all other nonterminals.
Let Z~ = ¢ A& be equivalent to one Z € N (“equivalent” means that Z
and Z"~ only differ in a bijection K). We define: A description ¢ with ¢g = ¢
entails Z™, ¢ |= Z7, as follows:

1. ¢ = parent(k) iff there is a k' such that ¢ E k' < k.

¢ k= child(k) iff there is a k" such that ¢ E k < k'

¢ = leaf (k) iff k is a leaf name in ¢.

¢ = minimal (k) iff k£ is minimal in ¢.

¢ | derive(k) iff there are ¢, ¢ such that g =, ¢y = ¢o = ¢, k €
node(¢1) and ¢y |= k = k' for one k' ¢ node(¢1).

6. ¢ = domy(k, X) iff there is a k' with ¢ s &' <* kA §(K') = X.

7. Apart from this, ¢ = ¢9 is defined as before.

Productions P:
1. If Zg € N with Zg = ¢pg AN€s and ¢g = Eg and if ¢y, - - -, t,, are all occurences
of terminals in ¢g, then S — ¢ ---t,Zg € P.

2. Let Z and Z' be states for the same elementary or start description, Z,e, a
state for some elementary 1, and t¢1,- - -, %, all occurences of terminals in ).

Z =ty tyZ' Zyew € P iff the following holds:

Otk N



For all ¢, pg = ¢ entailing a Z~ = ¢™ A £~ equivalent to Z: There is a ¢/
with ¢ e ¢ and Z'~ = ¢~ ANEY and Z),, = ¢ N En,, equivalent to Z'
and Zpe,, such that ¢' = 2"~ A Z;,,. Furthermore ¢~ = ¢/~ and ¢ = ¢},
hold and ¢™ is the elementary v, (see Def. 3) used in this derivation step.

3. Forall Z e N, Z = ¢z N&gz:
7Z — e € Piff for all k in ¢z: if X is the label of k, then either parent(k) or
domy(k, X)) or derive(k) or minimal(k) is in £;.

GoF is unique and it is a context-free grammar.

By induction on the length n of the derivation the following can be shown:

g &l wy, wrt Gop without applying e-productions, and Z,--- Z, are all
occurences of nonterminals in w,,

iff there is a derivation ¢g =; ¢, wrt G7 such that there are pairwise different
27, 2y with Z77 = ¢ A& equivalent to Z;, with:

- The elementary or start descriptions that have been used in course of the
derivation of ¢,, are exactly ¢7’, -, ¢, .
- ¢n =Z7 forall 1 <i<mn.

With the e-productions the following holds for w,,, ¢, as above: w, = w!, can
be derived by applying only e-productions and w), € T* iff ¢,, has a minimal
tree.

In general: ¢g =; ¢ wrt G, ¢ has a minimal tree yielding the string w iff there
is a w' letter equivalent to w such that S = w' wrt Gop.

As a corollary local TDLs are semilinear.

5 Conclusion

TDGs have been developed to give a constraint-based TAG-extension that offers
the advantages of MC-TAGs and D-Tree Grammars, and to introduce under-
specification to TAGs. However, TDGs seem to be unnecessarily powerful for
natural languages. For this reason I have presented local TDGs in this paper, a
restriction of TDGs that is still much more powerful than TAGs. Local TDGs
also have the advantages of MC-TAGs and D-Tree Grammars, and even under-
specified representations are still possible in local TDGs (see Kallmeyer (1996b,
1997)). By describing the derivation process by a context-free grammar, I have
proven that local TDGs are semilinear, which indicates that they really are
an interesting alternative to other formalisms developed for natural language
processing.
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