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Abstract

Background: Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value
in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due
to small sample sizes.

Methodology/Principal Findings: We assembled all currently publically available TNBC gene expression datasets generated
on Affymetrix gene chips. Inter-laboratory variation was minimized by filtering methods for both samples and genes.
Supervised analysis was performed to identify prognostic signatures from 394 cases which were subsequently tested on an
independent validation cohort (n = 261 cases).

Conclusions/Significance: Using two distinct false discovery rate thresholds, 25% and ,3.5%, a larger (n = 264 probesets)
and a smaller (n = 26 probesets) prognostic gene sets were identified and used as prognostic predictors. Most of these
genes were positively associated with poor prognosis and correlated to metagenes for inflammation and angiogenesis. No
correlation to other previously published prognostic signatures (recurrence score, genomic grade index, 70-gene signature,
wound response signature, 7-gene immune response module, stroma derived prognostic predictor, and a medullary like
signature) was observed. In multivariate analyses in the validation cohort the two signatures showed hazard ratios of 4.03
(95% confidence interval [CI] 1.71–9.48; P = 0.001) and 4.08 (95% CI 1.79–9.28; P = 0.001), respectively. The 10-year event-free
survival was 70% for the good risk and 20% for the high risk group. The 26-gene signatures had modest predictive value
(AUC = 0.588) to predict response to neoadjuvant chemotherapy, however, the combination of a B-cell metagene with the
prognostic signatures increased its response predictive value. We identified a 264-gene prognostic signature for TNBC
which is unrelated to previously known prognostic signatures.
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Introduction

Breast cancer represents a heterogeneous disease and the

currently most relevant clinical classification is based on the

expression of the estrogen receptor (ER), progesteron receptor

(PgR), as well as the human epidermal growth factor receptor 2

(HER2) [1,2]. Molecular analyses of breast cancer have led to the

introduction of molecular subtypes that largely recapitulate this

clinical classification schema [3,4] even when studies directly

comparing those two approaches for individual samples have

shown considerable discrepancies [5,6]. To develop clinically

more useful novel markers it will be necessary to study the known

subtypes separately to avoid rediscovering genes that are highly

co-expressed with ER, PgR, and HER2 [7]. The presently

available prognostic gene signatures for breast cancer mainly

reflect proliferation status and are most useful in ER-positive

cancers [4]. For triple negative breast cancers (TNBC) [8] which

lack the expression of all three receptors and represent an

aggressive disease the use of these molecular prognostic signatures

is limited.

In previous studies we demonstrated that analysis of a cohort

of only TNBC allows the identification of different molecular

phenotypes within this subtype of breast cancer [9,10]. For the

current study we assembled all publically available TNBC gene

expression datasets generated on Affymetrix gene chips to achieve the

largest possible size for prognostic marker discovery and validation.
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To minimize inter-laboratory variation only highly comparable

arrays were included and dataset-biased genes were also removed.

We partitioned the data into a discovery (i.e finding) and validation

cohort and used a supervised approach to develop prognostic

signatures. We also assessed the correlation between the resulting

prognostic predictors with 16 previously described metagenes that

can be used to categorize TNBC into molecular subsets [9,10]. The

prognostic signatures showed the highest correlation with the

Interleukin-8(IL-8)/inflammation, Vascular endothelial growth factor

(VEGF), and Histone metagenes. However, the signatures did not

correlate with previously published prognostic signatures. The

majority of prognostic genes that we identified were associated with

poor prognosis, the few genes associated with good prognosis were

mainly genes that correlated with immune cell metagenes.

Materials and Methods

The REMARK recommendations for tumor marker studies

[11] were applied in all analyses of this study. The analytical

strategy and use of samples is illustrated in Figure 1, including the

number of cases used in each stage of the analysis. The R software

environment [12] (http://www.r-project.org/) and SPSS version

17.0 (SPSS Inc., Chicago, Illinois) were used for all analyses. Chi

square test was applied to assess associations between categorical

parameters. All reported P values are two sided and P#0.05 was

considered significant. An R script of the analyses is available as

Data S1 with accompanying data in an R.Data file as Data S2.

Assembly of a combined Affymetrix dataset from triple
negative breast cancers

To generate a homogeneous dataset for the identification of genes

with prognostic power among TNBC we used (i) only one array

platform (Affymetrix U133 gene chips) and (ii) included only

samples defined as triple negative based on the mRNA expression

levels of ER, PgR, and HER2 as previously described [13,14]. The

assembly of the finding cohort of 394 TNBC samples has been

reported previously [9,10]. This yielded gene expression data from

n = 3488 primary breast cancers including 28 different datasets

(Table S1). The data was processed with the MAS5.0 algorithm [15]

of the affy package [16] of the Bioconductor software project [17].

Data from each array were log2-transformed, median-centered, and

the expression values of all the probesets from the U133A array

were multiplied by a scale factor S so that the magnitude (sum of the

squares of the values) equals one. Within this large breast cancer

dataset, 579 triple negative breast cancers (TNBC) were identified

based on the expression of ER, PgR, and HER2 from microarray

[14]. The complete normalized expression data of the 579 TNBC is

available from Gene Expression Omnibus as supplementary file,

accession number GSE31519. In addition raw microarray data of

all new samples and all relationships to re-analyzed samples are

given under this accession. Next, we calculated a comparability

metric C for each of the 579 arrays to identify the most comparable

samples. This metric C is derived from the sum of the squared

differences of the mean (m) within a specific dataset and among all

datasets, respectively, normalized by the standard deviation (s)

calculated for all genes (g) on the array:

cdataseti
~
Xn

g~1

mg,dataseti
{ mg,total

sg,total

� �2

All datasets were sorted according to this metric and the top 15

datasets with the lowest values (norm. C#0.03), corresponding to

394 samples in total, were used as the discovery cohort (Figure S1).

The remaining 185 samples with lower array comparability

together with an additional set of 76 TNBC samples that were

obtained from an independent cohort of breast cancers [18] were

used for validation (n = 261) (see Figure 1).

Supervised prognostic signature generation by SAM
We applied a supervised classification method using all 22,283

probesets on the Affymetrix microarrays to identify a prognostic

gene expression signature. The Cox score option of Significance

Analysis of Microarrays (SAM) [19] using the R-package samr was

applied to the finding cohort of 297 TNBC samples with known

follow up to train the predictor. Delta values of 0.3 and 0.5 with

median false discovery rates of 25% and ,3.5%, respectively,

were used to select prognostic probesets and a compound

covariate predictor was developed that used the SAM-Score as a

weight for each corresponding probeset. For Kaplan-Meier

analysis we split the cases into quantiles of prediction scores and

plotted survival curves by quartiles and also for the highest quartile

versus all the rest.

Assessment of dataset bias among probesets with
prognostic value

Informative probesets obtained by SAM analysis were checked

for dataset bias (i.e. differential expression by dataset of origin that

would indicate laboratory-bias or sampling differences compared

to the rest). To assess dataset bias, we used Kruskal Wallis statistic

comparing the expression of each probeset with the primary

dataset vector across the 394 TNBC. Each probeset was then

tagged with that Kruskal Wallis value throughout all analyses

(Figure S5). Cutoffs for exclusion of probesets due to strong dataset

bias were derived from the distribution of the Kruskal Wallis

statistic over all datasets for each probeset (Figure S2). Those

cutoff values were used in stability analyes to validate the

robustness of the obtained results (Figure S8).

Correlation of prognostic genes with molecular
phenotypes of TNBC

To determine if the genes (i.e probesets) from the prognostic

signature correspond to or serve as surrogates for previously

described molecular subtypes within the TNBC group, we calculated

the correlation between each of the genes from the prognostic gene

lists and 16 previously established metagenes that represent different

cell populations and different molecular variants of TNBC. These

metagenes included the intrinsic genes of the basal-molecular class

[3], an apocrine/androgen receptor signalling signature [20,21], five

signatures related to different types of immune cells [22,23,24,25], a

stromal signature [26], the claudin-CD24 signature [27,28,29],

markers of blood [30] and adipocytes [3], as well as an angiogenesis

signature [31,23] and an inflammatory signature [32,33,34]. The

discovery of these metagenes was published previously [9,10] and

probeset IDs are isted in Table S2. Metagene values were calculated

as mean expression of all probesets that define the metagene. Both

the compound prognostic signature scores as well as the individual

expression of each of the probesets from the SAM lists were

correlated with the expression values of the 16 metagenes. Probesets

that did not correlate to any of the metagenes at a pre-specified cutoff

(see Results section) were designated as ‘‘unclassified’’.

Correlation of the identified prognostic signature scores
with published gene signatures in breast cancer

The correlation of the newly identified prognostic signatures

with seven previously published prognostic signatures was

Novel Prognostic Signatures for TNBC
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analyzed by calculating the Pearson correlation coefficient

between signature scores in the finding cohort of TNBC. The

following prognostic signatures were included in this analysis:

Recurrence score [35], genomic grade index [36], 70-gene

signature [37], wound response signature [38], 7-gene immune

response module [39], stroma derived prognostic predictor [40],

and a medullary like signature [18]. The genefu R-package [41,42]

was used to calculate the signature score as continuous variables

Figure 1. Development and validation of prognostic predictors according to REMARK criteria (McShane et al. J Clin Oncol.
2005;23:9067). The outline of the analysis strategy is schematically shown. The upper part shows the selection of the homogenous sample cohort
of 394 TNBC. The middle part shows the identification of prognostic genes for TNBC, the development of the prognostic predictor, and the validation
of this gene signature. The lower part displays the analysis of the genes which make up the signature regarding their relationship to previous known
molecular factors among TNBC.
doi:10.1371/journal.pone.0028403.g001

Novel Prognostic Signatures for TNBC

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e28403



and these were visualized through hierarchical clustering including

the current TNBC-derived prognostic signatures and all other

previously described prognostic signatures and the 16 metagenes.

Survival analyses
Follow-up data was available for 297 of the 394 TNBC samples

from the finding cohort, and for 105 of the 261 samples from the

validation cohort (Table S1). All survival intervals were measured

from the time of surgery to the survival endpoint that was available

for that dataset. In 11 datasets (n = 241), the end point was relapse

free survival (RFS) and in 6 other dataset (n = 161) it was distant

metastasis free survival (DMFS). RFS includes local recurrences as

events whereas DMFS does not. In order to plot Kaplan-Meier

survival curves and perform survival analysis of the pooled data,

we combined both types of endpoints into a single event free

survival (EFS) endpoint that includes either RFS or DMFS

whichever is available for the particular case. We have previously

shown that the effect of using these different endpoints was rather

small in the overall dataset [14]. All results from the pooled

survival analyses were also verified by examining the effect of the

different endpoints in stratified analyses. Follow-up data for those

women in whom the survival end point was not reached were

censored at the last follow-up or at 120 months. Subjects with

missing values were excluded. We constructed Kaplan-Meier

curves and used the log-rank test to determine the univariate

significance of the variables. Cox regression analysis was applied to

analyze the univariate hazard ratio of individual metagenes as

continous variables. A Cox proportional-hazards model was used

to simultaneously examine the effects of multiple covariates on

survival. The effect of each individual variable was assessed with

the use of the Wald test and described by the hazard ratio and

95% confidence intervals (95% CI).

Predictive value of prognostic genes for response to
neoadjuvant chemotherapy in TNBC

A cohort of TNBC treated with neoadjuvant chemotherapy was

assembled for which gene expression data from pre-treatment

biopsies were available. Samples from biopsies which were

microdissected were excluded. For 191 samples from seven

datasets information on pathological complete remission (pCR)

was available (see Table S5). Receiver operator characteristics

(ROC) analyses was applied to test the value of the TNBC-derived

prognostic signatures as predictors of pathological complete

response (pCR) to neoadjuvant chemotherapy. The predictive

value of the newly identified signatures was also compared to that

of a B-cell metagene as well as a combination of both markers. We

have previously demonstrated a strong correlation of B-cell and T-

cell metagenes in breast cancers [22]. This result is in line with the

observation by our group and others that lymphocyte infiltration

in breast cancer generally represents a mixture of both B- and T-

cells [22]. Consequently both B- and T-cell metagenes carry

nearly identical information and can both be used as a surrogate

marker for infiltration of both types of lymphocytes with similar

results. Superiority of one of these markers generally results from

the specific dataset and/or cutoff point used [9,22]. In the TNBC

cohort used in this study the B-cell metagene outperformed the T-

cell metagene as a continous factor [9].

Results

Identification of prognostic markers within the subgroup
of triple negative breast cancer

The Cox score option of Significance Analysis of Microarrays (SAM)

[19] of the R-package samr was applied to the finding cohort

(n = 297 samples with follow up). A delta value of 0.3 resulted in

264 prognostic probesets (235 probesets associated with poor

prognosis and 29 probesets associated with good prognosis). The

median false discovery rate (FDR) when using this delta value was

25%. A more stringent delta of 0.5 resulted in 26 probesets

associated with poor prognosis with a median false discovery rate

,3.5% (Table 1). These 26 probesets are a subset of the larger 235

probesets list (Table S9). No probesets were associated with good

prognosis at this higher stringency. The detailed results from the

SAM analysis are given in Table S3. Two distinct signatures were

constructed from the 264 and 26 probesets, respectively. The

prognostic values of both signatures were highly significant in the

finding cohort when analysed as a continous variable in

multivariate Cox regression (Table S4). Inspection of the Kaplan

Meier survival curves corresponding to the 4 prognostic score

quartiles (for both the 264- and 26-gene predictors) suggested the

highest quartile as a natural cutoff to dichotomize the patient

population (Figure S3). This cutoff was used to plot survivals

curves that are presented on Figure 2 and include the results for

both the finding and the validation cohorts. Both signatures had

strong and similar prognostic value in the discovery as well as in

the validation datasets. Table 2 includes the corresponding

multivariate Cox regression analyses of standard parameters and

the prognostic signatures. In the validation cohort the stratification

according to the 264-probeset signature resulted in a hazard ratio

(HR) of 2.76 (95% CI 1.24–6.13; P = 0.013) in univariate analysis,

and HR 4.03 (95% CI 1.71–9.48; P = 0.001) in multivariate

analysis (Table 2). For the 26-probeset signature, in the validation

cohort we observed a HR of 3.26 (95% CI 1.54–6.90; P = 0.002) in

univariate, and HR 4.08 (95% CI 1.79–9.28; P = 0.001) in

multivariate analysis. In the multivariate analyses only lymph node

status (P = 0.048) retained its significance in the presence of the 26-

probeset signature while age, tumor size, and histological grading

did not reach significance (Table 2).

Correlation of the prognostic signature scores with
molecular phenotypes in triple negative breast cancer

Several investigators described molecular subgroups within

TNBC defined by the variable expression of various metagenes

(i.e. average expression of highly co-expressed genes). In order to

examine if our TNBC-derived prognostic signatures correspond to

previously described metagenes that were used to subdivide

TNBC, we calculated the correlation between the our signature

scores and 16 different previously published TNBC-related

metagenes [9,10]. Figure S4 displays the results of hierarchical

clustering (based on Person correlation) of the 264-gene signature

score and the different metagenes. The highest correlation was

observed to the VEGF, Histone, and IL-8 metagenes in the finding

cohort (Figure S4 panel A). In the validation cohort, the Stroma and

Hemoglobin metagenes also clustered within this group (Figure S4

panel B). Of note however, these latter two metagenes are

associated with a high dataset bias (see Figure S5). A similar result

was obtained with the 26-probeset signature which is shown in

Figure S4 panel C and D. This signature also clustered together

with VEGF, IL-8, and Histone metagenes.

Correlation of individual markers from the prognostic
signatures with triple negative breast cancer metagenes

In order to examine if the individual genes that constitute the

TNBC-derived prognostic signatures correspond to the previously

described gene clusters within TNBC or represent new potential

markers, we also calculated the correlation between each individual

probeset from the supervised signatures and the 16 TNBC-related

Novel Prognostic Signatures for TNBC
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metagenes. Figure S6 shows a heat map of the correlation matrix

corresponding to the 264 probesets (235 associated with poor

prognosis and 29 with good prognosis in panel A and B,

respectively) and 16 metagenes in the 394 TNBC samples. The

highest correlation coefficient for each of the probesets and the 16

metagenes is given in Table S3. A correlation coefficient $0.2 was

used as threshold to assign a probeset to a specific metagene as

correlated (Figure S6 panel A and B). Sixty eight of the 264

probesets (25.8%) showed correlation ,0.2 to any metagene and

these were designated as ‘‘unclassified’’ (Figure S6 panel A;

alternatively we also applied a more stringent correlation coefficient

cutoff $0.3 for a stability analysis which is shown in Figure S6 panel

C and D). Of the 235 probesets that were associated with a poor

prognosis, the largest probeset groups that were assigned to

metagenes included Stroma-related (n = 51, 21.7%), Histone-related

(n = 23, 9.8%), Molecular-Apocrine–related (n = 21, 8.9%), Prolifera-

tion–related (n = 17, 7.2%), and IL-8/inflammation–related (n = 13,

5.5%) (Table S3 and Figure S6 panel A). In contrast 21 of the 29

probesets (72.4%) associated with good prognosis were assigned to

five metagenes each related to immune cell infiltration (B-cell, T-cell,

MHC-1, MHC-2, and IFN metagenes; Figure S6 panel B).

Correlation of the identified prognostic signature scores
with published gene signatures in breast cancer

Several gene signatures were previously described that are predictive

of prognosis of breast cancer in general. We also examined if our

TNBC-derived signatures represent a surrogate of these previously

reported breast cancer prognostic signatures including the recurrence

score [35], the genomic grade index [36], the 70-gene signature [37],

the wound response signature [38], the 7-gene immune response score

[39], the stroma derived prognostic predictor [40], and a medullary like

signature [18]. We assessed the correlation between our signatures and

these signatures in our finding cohort. Figure 3 shows hierarchical

clustering result of the 264-probeset signature score as continuous

variable and the 16 metagenes and the seven previously published

prognostic gene signatures. The recurrence score, the genomic grade

index, the wound response signature, and the 70-gene signature, all

clustered together with the proliferation and the basal-like metagenes.

This indicates that many of the genes included in these signatures are

related to proliferation. In contrast, the stroma derived prognostic

predictor, the 7 gene immune response score, and the medullary-like

signature clustered together with the different immune cell metagenes

in a second large cluster. None of these signatures were related to our

new TNBC-derived prognostic signature which clustered together with

the VEGF-, IL-8-, Molecular apocrine-, Claudin-CD24-, and Histone-

metagenes in a separate cluster (Figure 3). Similar results were obtained

when we used the smaller 26-probeset signature (Figure S7).

Predictive value of prognostic genes for response to
neoadjuvant chemotherapy in TNBC

We have previously shown that tumor infiltration by lympho-

cytes reflected in the high expression of B-Cell and T-Cell

Table 1. 26 probeset supervised prognostic signature for TNBC from SAM.

Affy_ID GeneSymbol SAM-Score direction of prognostic value (poor/good)

211506_s_at IL8 3.754 POOR

211708_s_at SCD 3.377 POOR

39249_at AQP3 3.308 POOR

202859_x_at IL8 3.299 POOR

202627_s_at SERPINE1 3.136 POOR

212909_at LYPDC1 3.118 POOR

200737_at PGK1 3.090 POOR

204344_s_at SEC23A 3.075 POOR

205810_s_at WASL 3.071 POOR

217356_s_at PGK1 3.031 POOR

215779_s_at HIST1H2BG 3.017 POOR

212344_at SULF1 3.008 POOR

209875_s_at SPP1 3.002 POOR

219434_at TREM1 2.982 POOR

219508_at GCNT3 2.966 POOR

208881_x_at IDI1 2.959 POOR

215427_s_at ZCCHC14 2.958 POOR

214603_at MAGEA2 2.956 POOR

219875_s_at PNAS-4 2.951 POOR

204083_s_at TPM2 2.948 POOR

218468_s_at GREM1 2.937 POOR

204615_x_at IDI1 2.902 POOR

212354_at SULF1 2.858 POOR

218469_at GREM1 2.836 POOR

212353_at SULF1 2.809 POOR

202497_x_at SLC2A3 2.797 POOR

doi:10.1371/journal.pone.0028403.t001

Novel Prognostic Signatures for TNBC
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Table 2. Multivariate Cox analyses of event free survival of TNBC according to standard parameters and expression of the 264-
probeset signature and the 26-probeset signature.

Finding Cohort Validation Cohort

Variable
No. of
patients1

Hazard
Ratio 95% CI P-Value{

No. of
patients1

Hazard
Ratio 95% CI

P-
Value{

264-probeset signature High vs Low* 59 vs 178 4.44 2.82–6.99 ,0.001 11 vs 85 4.03 1.71–9.48 0.001

Lymph node status LNN vs LNP 210 vs 27 0.73 0.38–1.40 0.341 55 vs 41 0.50 0.23–1.09 0.080

Age .50 vs #50 113 vs 124 0.73 0.47–1.15 0.176 60 vs 36 2.03 0.91–4.54 0.085

Tumor size #2 cm vs .2 cm 72 vs 165 1.00 0.60–1.64 0.964 21 vs 75 0.94 0.36–2.47 0.899

Histological grading G3 vs G1&2 166 vs 71 1.13 0.69–1.87 0.622 71 vs 25 0.75 0.32–1.72 0.491

26-probeset signature High vs Low* 62 vs 175 3.76 2.38–5.94 ,0.001 15 vs 81 4.08 1.79–9.28 0.001

Lymph node status LNN vs LNP 210 vs 27 0.71 0.37–1.36 0.300 55 vs 41 0.45 0.21–0.99 0.048

Age .50 vs #50 113 vs 124 0.67 0.42–1.06 0.090 60 vs 36 1.87 0.84–4.16 0.125

Tumor size #2 cm vs .2 cm 72 vs 165 0.96 0.58–1.58 0.860 21 vs 75 0.97 0.37–2.53 0.946

Histological grading G3 vs G1&2 166 vs 71 1.01 0.61–1.67 0.986 71 vs 25 0.68 0.29–1.59 0.372

1information on all parameters was available for 237 of the 297 TNBC samples with follow up data from the finding cohort and 96 of the 105 TNBC samples with follow
up data from the validation cohort.

{Significant P-Values are given in bold.
*highest quartile of expression score vs. rest (see Supplementary Table S4 for analysis of continous signature scores).
doi:10.1371/journal.pone.0028403.t002

Figure 2. Kaplan Meier analysis according to the prognostic signatures in the finding and validation cohort. A) The 394 TNBC samples
from the finding cohort were stratified according to the highest quartile of expression of the 264-probeset signature score. Kaplan Meier analysis of
event free survival of 297 samples with follow up information is shown. B) The 261 TNBC samples from the validation cohort were stratified according
to the highest quartile of expression of the 264-probeset signature score. Kaplan Meier analysis of event free survival of 105 samples with follow up
information is shown. C) The same analysis as in (A) was performed using the 26-probeset signature. D) The same analysis as in (B) was performed
using the 26-probeset signature.
doi:10.1371/journal.pone.0028403.g002

Novel Prognostic Signatures for TNBC
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metagenes in the cancer is predictive of response to neoadjuvant

chemotherapy [22]. This predictive value was observed for both

ER-positive and ER-negative cancers [22]. To test the potential

predictive value of our newly identified prognostic signatures we

assembled gene expression data from TNBC treated with

neoadjuvant chemotherapy encompassing 191 samples that also

had pathological complete response (pCR) data available (Table

S5). Figure 4A shows the results of receiver operator characteristics

(ROC) analyses for a previously published B-cell metagene which

has known predictive value and for the 26-gene TNBC-derived

prognostic signature. The area under the curve (AUC) for the B-

cell metagene was 0.606 (95% CI 0.512–0.699, P = 0.025) and for

the 264-gene signature it was 0.588 (95% CI 0. 504–0.673,

P = 0.061). A simple linear combination of both scores led to an

improved AUC of 0.656 (95% CI 0.568–0.743, P = 0.001). A

similar but non-significant trend was seen in a separate 95 TNBC

samples from the TOP-trial [43] (Table S5). In this independent

validation dataset, the AUC of the B-cell metagene alone was

0.587 (95% CI 0.418–0.757, P = 0.33; Figure 4B) and it was 0.621

(95% CI 0.446–0.797, P = 0.175) for the combination of the 26-

probeset signature and the B-cell metagene.

Discussion

We identified two prognostic signatures including 264 and 26

probe sets each from gene expression data of triple negative breast

cancers (TNBC) using a supervised discovery method. The smaller

signature based on probe sets with the lowest false discovery rate

represent a subset of the larger signature. We validated the

independent prognostic value of both signatures in a separate

validation cohort both using the signatures as continuous scores

(P,0.0001; Table S4) as well as dichotomous variables (P = 0.001;

Table 2). These gene signatures remained statistically significant

prognostic predictors in multivariate analysis that included age,

tumor size, nodal status and histologic grade. In order to develop

these signatures we used TNBC cases only. Previous attempts to

develop prognostic predictors almost invariable used mixed patient

cohorts [37,44,45,46,47,48,49,50]. The resulting signatures from

those studies have frequently mirrored the differences in prognosis

between molecular subtypes of breast cancer and were mainly

associated with ER status and proliferation [4]. Consequently our

new TNBC-derived prognostic signatures did not closely relate to

the published general prognostic signatures (Figure 3). In contrast,

the new signatures are mostly related to two metagenes which we

previously described in TNBC, the IL-8/inflammation and VEGF

metagenes. These metagenes were discovered through unsuper-

vised analysis of the same dataset and are based on strong and

consistent co-expression patterns and provided us with a tool to

subclassify TNBC in a previous publication [9,10]. Recent

laboratory studies have demonstrated that IL-8 could directly

increase the survival of breast cancer stem cells after chemother-

apy [51] which can be blocked with IL-8 directed drugs [52]. The

cytokine loops and cellular pathways regulated by IL-8 closely

resemble those activated during chronic inflammation and wound

healing which have previously been implicated in cancer [53].

A signature highly similar to our VEGF metagene was also

described in an independent dataset recently [31]. In that study

the VEGF metagene demonstrated high expression in metastatic

breast cancer samples and was significantly associated with poor

outcome in both breast and lung cancer and glioblastomas. These

observations are consistent with our findings. Interestingly many of

the genes included in VEGF metagene contain HIF1a binding

sites and are known to be transcriptionally regulated by this

hypoxia-induced factor and therefore may represent a molecular

measure of tumor hypoxia [31]. This raises the possibility that the

VEGF metagene and our prognostic signature that is related to it

may only be a surrogate of increasing tumors size. But this seems

not to be the case since we observed a negative correlation

between the prognostic signature and tumors size (Table S6).

The 264-probest signature contains 29 probesets (11.0%) which

were inversely associated with a poor prognosis and therefore we

refer to it as good prognosis genes. Twenty one of these (72.4%)

were correlated with immune cell metagenes which is consistent

with several other publications which have shown that lymphocyte

infiltration of TNBC is associated with an improved prognosis

[22,24,25,39,18]. Metagenes which serve as surrogate markers for

lymphocyte infiltration of the tumor (e.g. the B-Cell and T-Cell

metagenes) are also predictive of response to neoadjuvant

chemotherapy [22]. Therefore, we also assessed the chemotherapy

predictive value of our prognostic signatures and found that it had

only a week association with response to chemotherapy (Figure 4).

Our study has several limitations. The definition of TNBC was

based on gene expression data which is not the standard definition

used in the clinic. This definition holds the promise that samples

erroneously characterized as receptor-negative by immunohisto-

chemistry do not introduce noise into our analysis but discrepan-

cies to cohorts defined by immunohistochemistry can occur. We

found agreement of ER status between immunohistochemistry and

gene expression data for 444 (84.4%) of 526 samples (86.8% and

81.3% in the finding and validation cohorts, respectively). For PgR

status we found agreement for 407 (87.5%) of 465 samples (84.8%

and 90.5% in finding and validation cohort), and for HER2

agreement for 347 (94.3%) of 368 samples (94.4% and 94.1% in

finding and validation cohort). Agreement for the status of all three

receptors was found for 276 (76.2%) of 362 samples (78.7% and

Figure 3. Relationship of the 264 probeset signature to the 16
metagenes and seven known prognostic signatures in TNBC.
The 394 TNBC samples were analyzed for the expression of 16
metagenes and seven previously published prognostic signatures
(recurrence score, genomic grade index, 70-gene signature, wound
response signature, 7-gene immune response module, stroma derived
prognostic predictor, and a medullary like signature). Resulting
continous scores were used for hierarchical clustering using the
Pearson correlation as a distance metric. The mutual relationships of
all signatures is presented by the hierarchical dendrogram.
doi:10.1371/journal.pone.0028403.g003
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73.9% in finding and validation cohort, respectively). Regarding

histological grading the proportion of grade 3 tumors is 73.5% and

74.1% in finding and validation cohort, respectively (Table S7).

These numbers are clearly smaller than 92–98% in previously

reported studies [8,54,55] indicating that the cohorts used in our

study may not be truly representative of triple negative breast

cancers in general. However despite the higher number of G1 and

G2 samples histological grading was not a significant factor for

survival in our cohort neither in multivariate nor univariate

analysis. Most TNBC are high grade and therefore grade is not as

important for prognosis in this subtype as it is in ER positive

disease. Age and tumor size were also not significant in our

cohorts, even in univariate analysis. TNBCs are also often

associated with younger age but the impact of age for prognosis

within this subtype is not yet fully clear. Several lines of evidence to

suggest that tumour size may not be prognostic in TNBC [8,56].

Still it cannot be excluded that a bias in our cohort is the reason

for the lack of significance of these factors.

Our analysis involved pooling of several datasets to increase

sample size and power for discovery and validation. This strategy

bears the risk of a confounding effect through systematic technical

differences that exist between individual datasets [57,58]. To

minimize this confounder we performed multiple filtering steps to

remove biased datasets and dataset-biased genes (see Methods). In

order to validate the robustness of the obtained results we also

performed a stability analysis by using different filtering cutoffs

(Figure S2). As shown in Figure S8 the validation of several

alternative signatures generated through a variety of filtering

combinations resulted in similar results in the validation cohort

indicating a robust finding. This study also has the limitation of

heterogeneous therapy of the cases included, some cancers were

treated with surgery alone others received adjuvant or neoadju-

vant chemotherapy of various types. This treatment heterogeneity

limits the clinical interpretation of the findings, however since the

prognostic signatures had limited predictive value for neoadjuvant

chemotherapy response, we infer that their outcome predictive

value is mostly derived from its prognostic components. However

the ‘‘good’’ prognostic group still has more than 20% recurrence

at 5 years. Thus this outcome would not change the actual clinical

management of this subset of patients but could help to develop a

clinically useful multivariate prognostic model for TNBC.

During the generation of this report Lehmann et al. [59]

described a similar strategy of a pooled dataset of TNBC samples

with microarray data. These authors identified seven different

TNBC subtypes by unsupervised k-means clustering. The

expression profiles of these subtypes are similar to many of the

metagenes that we have reported for TNBC [9,10]. Thus we

wondered whether our supervised signature would also correlate

Figure 4. Analysis of the predictive value of an immune cell metagene and the supervised prognostic signature for response to
neoadjuvant chemotherapy in TNBC. A) Neoadjuvant treated TNBC samples with information on pathological complete response (pCR) and
available Affymetrix expression data were assembled from 7 datasets (MDA133, GSE16716, GSE18728, GSE19697, GSE20194, GSE20271, Frankfurt-3).
Only pretherapeutic biopsies that were not microdissected were included (n = 191 nonredundant samples) of which 52 (27%) experienced a pCR.
Three separate ROC curves for prediction of pCR by the B-Cell metagene, no-pCR by the 26-probeset signature, and pCR by a combination of both
gene signatures are shown. The areas under the curve (AUC) were 0.606, 0.588, and 0.656, respectively. B) The same analyses as presented in (A) were
performed using a smaller independent validation cohort of 95 TNBC from the TOP-Trial (GSE16446). AUC of 0.587, 0.603, and 0.621, respectively, and
only a trend towards significance (P = 0.175) was observed in these data.
doi:10.1371/journal.pone.0028403.g004
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with any of these subtypes. However as shown in Figure S9 no

clear correlation of the supervised signature with any of these

seven subtypes described by Lehmann et al. was observed. We

have also analyzed whether our signature captures similar

information as the well known intrinsic molecular subtypes of

breast cancer [3,60]. To this end we used a recently published

implementation of different variants of the centroid method to

assign single samples to a molecular subtype [61]. The

corresponding results are shown in Table S8. We applied two

alternative variants of the method which both led to the conclusion

that no significant difference in subtype assignment was observed

when samples were classified according to the expression of the

264-probeset signature.

In our previous study [9] we had used unsupervised methods to

identify subgroups of TNBC without considering outcome in the

first place. Based on subsequent correlation of the obtained groups

with prognosis we then constructed a simple binary classifier from

expression of B-cell- and IL-8-metagenes. In contrast, the

supervised signature presented here seem to include information

from several additional biological characteristics. In fact this

supervised signature can outperform the simple combination of the

two parameters used in our previous study. However, the

interpretation of the biology of such an amalgamated signature

could be much more difficult than the interpretation of metagenes.

In summary, in this paper we demonstrated that the use of a

homogenous TNBC dataset allowed us to identify prognostic gene

signatures that are unrelated to previously published general breast

cancer prognostic signatures. The composition of the signature

suggests that IL-8 mediated inflammation and VEGF related

signaling herald very poor prognosis in TNBC and immune

infiltration predicts better outcome. These observations could also

suggest potential novel therapeutic strategies for these patients as

e.g. inhibiting IL-8 signalling [51,52] might be combined with

anti-angiogenesis therapies [31], and immune augmentation [10].

Supporting Information

Figure S1 Selection of the TNBC finding cohort from
multiple datasets based on dataset comparibility. Triple

negative breast cancers (TNBC, n = 579) from 28 datasets were

sorted by dataset according to a dataset comparability metric

(horizontally). Shown are the full array data of normalized

Affymetrix U133A microarrays. The 15 most comparable datasets

encompassing n = 394 TNBC samples were subsequently used as a

finding cohort and the remaining 13 datasets (n = 185 TNBC

samples) withhold as validation cohort.

(PDF)

Figure S2 Analysis of a potential dataset bias among
probesets of the prognostic signatures from the super-
vised analysis. A) The standard Kruskal-Wallis rank test was

used to analyze the dependence of each individual probesets’

expression on the vector of the 15 different datasets in the finding

cohort of n = 394 samples. The distribution of the rank sum

statistics for all 22,283 probesets from the U133A array is shown.

Two dotted vertical lines mark the used cutoff values of 75 (yellow)

and 150 (red). B) Distribution of the Kruskal-Wallis rank sum

statistics for the 235 probesets identified by SAM as associated

with poor prognosis. Used cutoffs are represented by dotted

vertical lines as in (A). C) Distribution of the Kruskal-Wallis rank

sum statistics for th 29 probesets identified by SAM as associated

with good prognosis. Used cutoffs are represented by dotted

vertical lines as in (A).

(PDF)

Figure S3 Kaplan Meier analysis of quartiles according
to the prognostic signature scores in the finding and
validation cohorts. A) The 394 TNBC samples from the

finding cohort were stratified according to quartiles of expression

of the 264-probeset signature score. Kaplan Meier analysis of

event free survival of 297 samples with follow up information is

shown. B) The 261 TNBC samples from the validation cohort

were stratified according to quartiles of expression of the 264-

probeset signature score. Kaplan Meier analysis of event free

survival of 105 samples with follow up information is shown. C)

The same analysis as in (A) was performed using the 26-probeset

signature. D) The same analysis as in (B) was performed using the

26-probeset signature.

(PDF)

Figure S4 Correlation of the prognostic signatures with
metagenes for molecular phenotypes in triple negative
breast cancer. A) The continous score of the 264-probeset

signature was correlated with the expression of 16 metagenes for

molecular phenotypes in the 394 TNBC samples from the finding

cohort. Shown is the result from hierarchical average linkage

clustering based on absolute Pearson correlation. The signature

score clustered together with VEGF, Histone, and IL-8 metagenes.

B) The same analysis as in (A) was performed in the validation

cohort of 261 independent TNBC samples. In this analysis the

signature score clustered together with Stroma, Hemoglobin,

VEGF, and IL-8 metagenes. Of note, however, Stroma and

Hemoglobin metagenes are associated with a high dataset bias (see

Supplementary Figure S5). C) The same analysis as in (A) was

performed with the 26-probeset signature in the 394 TNBC

samples from the finding cohort. The 26-probeset signature which

was obtained by higher stringency in SAM analysis clustered

together with IL-8, VEGF, and Histone metagenes. D) The same

analysis as in (C) was performed with the 26-probest signature in

the validation cohort of 261 samples. Similar as in (C) the 26-

probeset signature clustered together with VEGF, IL-8, Prolifer-

ation, and Histone metagenes.

(PDF)

Figure S5 Analysis of dataset bias of metagenes and the
prognostic signatures. A) The dependence of earch probeset

from the U133A array on the dataset vector was analyzed using

the standard Kruskal-Wallis rank test in the finding cohort of 394

samples (see Suppl. Fig. S2). Box plots are shown for the Kruskal-

Wallis statistics of the probesets of each metagene on the left and

for the two prognostic signatures on the right. The highest dataset

bias was observed for Stroma and Hemoglobin metagenes which is

related to different applied biopsy methods (fine needle biopsy vs.

surgical resection). B) The 261 samples from the validation cohort

were used to calculate the Kruskal-Wallis rank sum statistics for all

probesets. Again box plots are shown as in (A), but the Kruskal-

Wallis statistics from the validation cohort were applied. Several

metagenes are characterized by higher bias in the validation

cohort.

(PDF)

Figure S6 Correlation of individual markers from the
prognostic signatures with known metagenes in triple
negative breast cancer. From the 264 Affymetrix probsets of

the supervised prognostic signature, 235 probesets were associated

with poor prognosis (analyzed in panels A and C) and 29 with

good prognosis (analyzed in panels B and D). A) The 235

individual probesets associated with poor prognosis (horizontically)

were analyzed for their correlation with the expression of 16

metagenes (vertically) for molecular phenotypes in the 394 TNBC

samples from the finding cohort. 116 probesets displaying a

Novel Prognostic Signatures for TNBC

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e28403



Pearson correlation above a cutoff 0.2 are sorted (horizontically)

on the left according to the assigned metagene while 60 probesets

remained unclassified. B) The 29 individual probesets associated

with good prognosis were analyzed as in (A) and 21 assigned to

metagenes (cutoff 0.2) are sorted horizontically on the left while 8

remained unclassified. C) The same analysis as in (A) was

performed using the more stringent cutoff 0.3 for assignment to

a metagene resulting in 118 probesets correlated to metagenes

from the list of 235 probesets associated with poor prognosis. D)

The same analysis as in (B) was perfomed using the more stringent

cutoff 0.3 resulting in 18 of the 29 good prognosis probesets

assigned to metagenes. All individual correlation values are given

in Supplementary Table S3.

(PDF)

Figure S7 Relationship of the 26 probeset signature to
the 16 metagenes and seven known prognostic signa-
tures in TNBC. The 394 TNBC samples were analyzed for the

expression of 16 metagenes and seven previously published

prognostic signatures as described in Figure 3 and hierachical

clustered using Pearson correlation as distance metric. Abbrevi-

ations: SAMmean = 26 probeset signature wound.score$score =

Wound response signature rs.394$score = recurrence score ggi.

score$score = genomic grade index gene70.score$score = 70-gene

signature sabatier.score$score = medullary like signature Tesch7.

score$score = 7-gene immune response module sdpp.sore$score =

stroma derived prognostic predictor.

(PDF)

Figure S8 Stability analysis of the prognostic signatures
from the supervised analysis. The 264 Affymetrix probsets of

the supervised prognostic signature were filtered according to their

dataset bias measured through Kruskal-Wallis statistic and

different stringency from SAM analysis as given in the Table

below the graphs. The resulting probeset lists of 252, 24, 181, and

16 probesets were used for prognostic signature generation as the

original 264 probeset list. In upper panels A, B, C, and D the

correlation of the four alternative signatures to the 264-probeset

signature is shown by scatter plot analysis. The lower panels

display the results from the Kaplan-Meier analyses of the

validation cohort of 261 TNBC (105 samples with follow up

information). In addition P-Values of multivariate Cox regression

analysis of the validation cohort using continous signature scores

are given in the table below.

(PDF)

Figure S9 Expression of the 264-probeset and 26-
probeset signature scores in seven different TNBC
subtypes according to Lehmann et al. A) Box plots

comparing the expression of the 264-probeset signature in the

seven different TNBC subtypes according to Lehmann et al. (J

Clin Invest. 2011; 121: 2750) separately for our finding and

validation cohorts. No clear correlation of the expression of the

signature with any of the subtypes was observed. The seven

subtypes have been ordered according the expression of the

signature in the finding cohort. Highest expression was observed in

the ‘‘basal-like 2’’ (BL2) and ‘‘luminal androgen receptor’’ (LAR)

subtypes of the finding cohort. However this effect was not

reproduced in the validation cohort. B) The same analysis as in (A)

was performed for the expression of the 26-probeset signature.

The observed result was similar in that no reproducible correlation

of the signature with any subtypes was detected.

(PDF)

Table S1 Summary of Affymetrix microarray datasets
used in this study.

(PDF)

Table S2 List of 355 Affymetrix probesets used for
metagene calculation.

(PDF)

Table S3 Details of probesets from the supervised
signatures.

(XLS)

Table S4 A) Multivariate Cox regression of continous
264-probeset signature and standard parameters for
event free survival in the finding cohort B) Multivariate
Cox regression of continous 26-probeset signature and
standard parameters for event free survival in the
finding cohort.

(PDF)

Table S5 Pre-therapeutic samples from neoadjuvant
treated TNBC.

(PDF)

Table S6 Clinical parameters of TNBC according to
expression of the 264-probeset signature.

(PDF)

Table S7 Histological grade among samples in the
finding and validation cohort.

(PDF)

Table S8 Distribution of intrinsic molecular subtypes
according to expression of the 264-probeset signature in
TNBC.

(PDF)

Table S9 264 probeset supervised prognostic signature
for TNBC from SAM.

(PDF)

Data S1 R script of the analyses.

(R)

Data S2 R.Data file (contains 11 data objects used in the R

script from Data S1).

(7z)
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