
COMPUTATIONAL NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 16 December 2011
doi: 10.3389/fncom.2011.00060

Spike train auto-structure impacts post-synaptic firing and
timing-based plasticity

Bertram Scheller 1†, Marta Castellano2,3,4†, Raul Vicente3,4 and Gordon Pipa2,3,4*

1 Clinic for Anesthesia, Intensive Care Medicine and Pain Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
2 Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
3 Department of Neurophysiology, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
4 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany

Edited by:

Hava T. Siegelmann, Rutgers
University, USA

Reviewed by:

Markus Diesmann, RIKEN Brain
Science Institute, Japan
Alessandro Villa, University of
Lausanne, Switzerland

*Correspondence:

Gordon Pipa, Institute of Cognitive
Science, University of Osnabrück,
Albrechtstraße 28, 49069 Osnabrück,
Germany.
e-mail: mail@g-pipa.de
†Bertram Scheller and Marta
Castellano have contributed equally
to this work.

Cortical neurons are typically driven by several thousand synapses.The precise spatiotem-
poral pattern formed by these inputs can modulate the response of a post-synaptic cell. In
this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory
inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron.
Both the excitatory and inhibitory input was modeled by renewal gamma processes with
varying shape factors for modeling regular and temporally random Poisson activity. We
demonstrate that the temporal structure of mutually independent inputs affects the post-
synaptic firing, while the strength of the effect depends on the firing rates of both the
excitatory and inhibitory inputs. In a second step, we explore the effect of temporal struc-
ture of mutually independent inputs on a simple version of Hebbian learning, i.e., hard
bound spike-timing-dependent plasticity. We explore both the equilibrium weight distrib-
ution and the speed of the transient weight dynamics for different mutually independent
gamma processes. We find that both the equilibrium distribution of the synaptic weights
and the speed of synaptic changes are modulated by the temporal structure of the input.
Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-
timing-dependent plasticity on the auto-structure of the input of a neuron could be used
to modulate the learning rate of synaptic modification.
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INTRODUCTION
The processing of information within the cortex crucially depends
on the neuronal self-organization and structure formation of
neuronal networks. While studying such networks and their struc-
ture formation, the spatiotemporal patterns of neuronal activity
is often ignored and spike activity is modeled by Poisson-point
processes. One argument for assuming Poissonian firing has been
that neurons can receive input from up to several thousand pre-
synaptic neurons (Destexhe et al., 2001; Faisal et al., 2008). With
the further assumption that the firing of these pre-synaptic neu-
rons is mutually independent, it has been argued that any auto-
structure in the individual processes is washed out once the activity
is integrated and forms a single so called compound process reach-
ing the soma of the cell (original publication Hanson and Tuckwell,
1983; related publications please see Fellous et al., 2003; Ostojic
et al., 2009). However, analytically it has been demonstrated that
only the inter-spike interval (ISI) distribution and the ISI corre-
lations of the compound process can be well approximated by a
Poisson process (Lindner, 2006). The auto-correlation of the com-
pound process, however, does not vanish in general (please note: a
Poisson process has zero auto-correlation; Câteau and Reyes, 2006;
Lindner, 2006). For the extreme case where all point processes
are identically distributed, the auto-correlation of the compound
process shows an overall reduction in amplitude compared to the
auto-correlation of each individual process, with the shape being

preserved (Lindner, 2006). Furthermore, it has been shown that
individual non-Poissonian pre-synaptic activity might also result
in a non-Poissonian compound activity, which holds true even if
thousands of spike trains are added up (Pipa et al., 2008).

Structure formation due to synaptic plasticity has been dis-
cussed to be reliant on the precise timing of spiking events
(Markram et al., 1997; Song and Abbott, 2001; Lazar et al., 2007,
2009). Since real neuronal activity typically deviates from Poisson
processes (Smith, 1954a,b; Burns and Webb, 1976; Levine, 1991;
Iyengar and Liao, 1997; Teich et al., 1997; Pipa et al., 2006; Nawrot
et al., 2007, 2008; Averbeck, 2009; Maimon and Assad, 2009), the
modeling of real neuronal firing and structure formation might
require a more realistic assumption, including non-Poissonian
pre-synaptic firing.

Here, the simulation of a conductance-based integrate and fire
neuron is used to determine how deviations from a Poissonian
structure of pre-synaptic spike trains affect the firing probability
of a post-synaptic cell. We show that a non-Poissonian structure
of pre-synaptic spike trains and the resulting changes in post-
synaptic firing modulate structure formation in a network with
synaptic plasticity modulated by spike-time-dependent plasticity
(STDP). In particular, we show that even in the case of mutually
independent inputs, both the equilibrium distribution of synaptic
weights and the temporal evolution of the weight of individ-
ual synapses depend on the precise temporal auto-structure of
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pre-synaptic neurons. Finally, we discuss possible consequences of
these results on structure formation in recurrent networks, as well
as potential modulators of plasticity arising just by the sensitivity
on the structure (i.e., regularity as well as rate distribution across
pre-synaptic neurons).

MATERIALS AND METHODS
MODELING THE PRE-SYNAPTIC ACTIVITY
We modeled pre-synaptic activity as a set of mutually independent
renewal processes. The ISI (ξ) of each process followed a gamma
distribution with an integer shape factor (γ)

pγ(ξ) = ξγ−1 (γλ)γ exp(−γλξ)

Γ(γ)
for ξ > 0

where γ = 1/〈ξ〉 stands for the rate of the point process. Note that
a Poisson process is then a special case of a gamma process with
a shape factor of γ = 1. In order to simulate spike trains, we sam-
pled ISIs from the corresponding gamma distribution. To prevent
correlations with respect to the initial condition, i.e., simulation
time t 0, we simulated a warm-up period containing 1000 spikes.
For the simulation shown here, we used spikes subsequent to the
warm-up period. To test whether spikes are equilibrated after the

warm-up period, we performed a test on the homogeneity of the
spiking probability in the first 100 ms after simulation start.

MODELING THE POST-SYNAPTIC NEURON
We simulated a conductance-based integrate and fire neuron (IF)
which receives input from an excitatory and an inhibitory neuronal
population, consisting of N e and N i spike trains, respectively. A
detailed description of the model can be found in Salinas and
Sejnowski (2001) and the exact values of the parameters are
described on Table 1. The equation governing the membrane
potential reads:

τmgleak
dV

dt
= −gleak(V (t ) − VL) − IAMPA − IGABA

where

IAMPA =
Ne∑
i=1

g i
AMPA(V − EAMPA) and

IGABA =
Ni∑

i=1

g i
GABA(V − EGABA)

Table 1 | Implementation details of the neural network model (as described in Nordlie et al., 2009).

Parameter Description of the parameter Parameter values

INTEGRATE AND FIRE NEURON

τm Membrane time constant τm = 20 ms

g leak Conductance of the leakage currents, modulated by gtotal See text andTable 2 for details

gtotal Total conductance contributed by excitatory and inhibitory synapses See text andTable 2 for details

gi
AMPA Synaptic conductances for both excitatory (AMPA) and inhibitory synapses (GABA) See text for details

gi
GABA

EAMPA Reversal potential for both excitatory (AMPA) and inhibitory synapses (GABA) EAMPA = 0 mV

EGABA EGABA = −70 mV

EL Resting potential EL = −74 mV

V θ Threshold of the membrane potential at which a spike is elicited V θ = −54 mV

V reset Voltage at which the membrane potential is reset after an action potential V reset = −60 mV

SYNAPTIC CONDUCTANCES

τAMPA Exponential decay of excitatory and inhibitory synaptic conductances, respectively τAMPA = 2 ms

τGABA τGABA = 5.6 ms

ḡAMPA Average synaptic strength for excitatory and inhibitory synaptic conductances See text andTable 2 for details

ḡGABA

SYNAPTIC PLASTICITY

A+ Synaptic modification constant for synaptic potentiation and depression, respectively A+ = 0.009

A− A− = 1.05·A+
τ+ Temporal decay constant of the auxiliary variables Ppre and Ppost respectively τ+ = τ−= 20 ms

τ−
PRE-SYNAPTIC ACTIVITY

γ Shape factor which determines the distribution of the inter-spike-interval distribution γ = 1 for Poisson process

γ > 1 and γ ∈ N for gamma process

λ Firing rate produced by the point process, different for inhibitory and excitatory

populations, in spikes per second

λinh = αλexci

α Firing rate ratio between excitatory and inhibitory population See text andTable 2 for details

Ne Size of excitatory pre-synaptic population See text andTable 2 for details

N i Size of inhibitory pre-synaptic population See text andTable 2 for details
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Additionally, when V (t ) exceeds a threshold V θ, an action poten-
tial is elicited. The membrane potential is then clamped to the
value V reset. The membrane time constant was set to τm = 20 ms.
Numerical integration with forward Euler method was used to
solve the differential equation (step size of 0.05 ms). AMPA
and GABA mediated receptors were modeled by exponentially
decaying synaptic conductances with time constants τAMPA = 2 ms
and τGABA = 5.6 ms.

g i
AMPA = ḡAMPA exp

(
− t − t i

0

τAMPA

)
and

g i
GABA = ḡGABA exp

(
− t − t i

0

τGABA

)
for t > t i

0.

Maximal synaptic conductance strengths ḡGABA and ḡAMPA were
chosen to be identical across all synapses of the same type.

In this modeling study, we want to control four main criteria:
First, we want to regulate the ratio between the leak conductance
g leak and the total conductance contributed by both excitatory and
inhibitory synapses g total (Destexhe and Paré, 1999). Second, we
want to control the firing rate of the post-synaptic neuron. Third,
we want to have an approximated balance between excitation and
inhibition (average net synaptic drive approx. compensating the
leak; Haider et al., 2006; Rudolph et al., 2007). Fourth, we want
to control the input firing rate of both inhibitory and excitatory
synapses so that we can control the auto-structure of the incoming
activity. Regarding this last case, the ratio between the firing rate
of the excitatory and inhibitory population is always described by:

λinh = αλexci

Next, we outline how these four constraints were met by choosing
appropriate parameters. To control the ratio between the leak con-
ductance g leak and the total conductance, we introduce the scaling
factor S, so that g total = Sg leak (see Salinas and Sejnowski, 2001).
Further simulation values of S = 2, 4, 20, 40 are used. However,
motivated by experimental studies (e.g., Destexhe and Paré, 1999)
for most parts of the simulations, we choose the total conductance
to be four times higher than the leakage (S = 4), otherwise stated.

As follows, for controlling the post-synaptic firing rate, the aver-
age membrane potential and the sub-threshold fluctuations have
to be considered. The average membrane potential in our model
is determined by the balance between excitation and inhibition.
The fluctuations are determined by the number of synapses and
the average conductance ḡGABA and ḡAMPA . Moreover, note that
increasing the number of synapses while keeping the total con-
ductance g total the same, leads to a reduction in the amount of
membrane fluctuations and therefore to a reduction in the post-
synaptic firing rate. Thus, to control the firing rate, given a certain
number of pre-synaptic synapses and a certain S determining the
total conductance, we adapted the balance of the average con-
ductance ḡGABA and ḡAMPA via numerical simulations such that
the average post-synaptic firing rate was 10 spikes/s (pre-synaptic
Poisson). Exact combinations of parameters can be taken from the
Table 2.

MODELING SPIKE-TIME-DEPENDENT PLASTICITY
Spike-time-dependent plasticity was modeled as originally intro-
duced by Abbott and Nelson (2000) and Song and Abbott (2001).
The synaptic connectivity between excitatory neurons is modified
depending on the temporal difference δt between pre- and post-
synaptic spikes. The synaptic modification, described by A+ and
A−, is given by

Δw(δt ) =
⎧⎨
⎩

A+ exp
(

δt
τ+

)
for δt < 0

−A− exp
(

δt
τ−

)
for δt ≥ 0

The exact values of the parameters are described in Table 1. This
STDP curve describes the synaptic modification in pyramidal neu-
rons of the layer 5 in neocortex as described in experiments by
Markram et al. (1997). Although variable STDP learning curves
have been found, such pair-based STDP models already repre-
sent the temporal causality relation between neurons. Moreover,
it is widely used in theoretical studies, keeping results comparable
across studies (Song and Abbott, 2001; Lazar et al., 2007; Morrison
et al., 2008). For an efficient implementation, we keep track of the
entire history that contributed to STDP at an individual synapse
by defining an auxiliary Ppre and Ppost that satisfy:

τ+
dPpre

dt
= −Ppre and τ−

dPpost

dt
= −Ppost.

Every time an excitatory pre-synaptic terminal emits a spike, Ppre
is increased by A+ otherwise, exponential decay with time con-
stant τ−), resulting in a change in the conductances of excitatory
neurons as follows:

g i
AMPA → g i

AMPA + g i
a and g i

a → g i
a + Ppregmax

Thus, Ppre(t ) determines how much a synapse is weakened if the
pre-synaptic neuron fires an action potential at time t. Otherwise,
Ppost is decreased by A− every time the post-synaptic neuron fires
an action potential and g i

a → g i
a +Ppregmax, so that Ppost(t ) deter-

mines how much the synapse is strengthened if the pre-synaptic
terminal receives a spike at time t. Following Song and Abbott
(2001), the conductances are a measure of the strengths of the
weights. Finally, g i

a is bounded such that 0 < g i
a < gmax (hard

bound).

RESULTS
First, we show that the auto-structure of pre-synaptic spiking can
modulate the auto-structure of post-synaptic activity. In particu-
lar, we present the relation between pre- and post-synaptic firing
for Poisson and gamma processes. In the last section of the results,
we show the impact of non-Poissonian pre-synaptic activity on
structure formation induced by spike-timing-dependent plastic-
ity. Note that throughout the paper, when comparing results across
different auto-structures of the pre-synaptic activity (different
shape parameter of the ISI distribution γ), all other parameters
are kept constant.
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Table 2 | Parameter specification.

ḡAMPA (nS) ḡGABA (nS) α λpost* (Hz) Poisson case Ne N i S

0.1025 0.5679 1 5.47 200 50 2

0.4057 1.4 4.60

0.3155 1.8 4.30

0.2840 2.0 4.12

0.0115 0.0550 1 6.84 2000 500

0.0393 1.4 6.35

0.0306 1.8 5.80

0.0275 2.0 5.70

0.1352 1.2354 1 10.61 200 50 4

0.8824 1.4 8.51

0.6863 1.8 7.48

0.6177 2.0 6.98

0.0135 0.1235 1 12.99 2000 500

0.0882 1.4 11.33

0.0686 1.8 10.33

0.0617 2.0 10.03

0.3975 6.5749 1 60.25 200 50 20

4.6964 1.4 45.79

3.6527 1.8 37.22

3.2875 2.0 34.12

0.0484 0.6452 1 61.83 2000 500

0.4609 1.4 52.73

0.3584 1.8 46.57

0.3226 2.0 44

0.7254 13.009 1 115.86 200 50 40

9.4639 1.4 88.22

7.3608 1.8 71.48

6.6247 2.0 65.87

0.08934 1.3009 1 117.52 2000 500

0.9292 1.4 98.97

0.7227 1.8 87.14

0.6505 2.0 82.64

*Average firing rate over 50 simulations.

IMPACT OF PRE-SYNAPTIC AUTO-STRUCTURE ON POST-SYNAPTIC
FIRING
To study how the temporal structure of either excitatory or
inhibitory drive modulates the post-synaptic firing of a neuron,
we simulated an Integrate and Fire neuron receiving inputs from
N e = 200 excitatory (AMPA) and N i = 50 inhibitory (GABA)
synapses. Each individual synapse transmits a spike train with
mean firing rate λexci or λinh, depending on whether they are
excitatory or inhibitory (see Materials and Methods for a more
detailed description of the model). Throughout this paper, the
temporal structure of each individual pre-synaptic train has been
modeled as a gamma point-process with shape factor of either 1,
corresponding to Poissonian activity (referred to as Poissonian) or
γ = 100,which corresponds to oscillatory regimes (referred to as
gamma). The impact of Poissonian and gamma processes for both
excitatory and inhibitory activity will be addressed by comparing
four different cases: Poissonian excitation and inhibition; gamma

type excitation and Poissonian inhibition, Poissonian excitation
and gamma type inhibition, and finally, gamma type excitation
and inhibition.

We start by characterizing the relation between pre- and post-
synaptic firing by means of the post-synaptic spike-triggered aver-
age of the pre-synaptic population activity (referred to as STA,
Figure 1). The STA shows the pre-synaptic population activity, i.e.,
excitatory (black) and inhibitory (red), relative to the timing of a
post-synaptic spike. For each of the combinations of Poissonian
and gamma-process activity for inhibitory and excitatory neurons
(Figure 1, row 1–4), there is a prominent increase of average excita-
tory activity and decrease of inhibitory population activity preced-
ing a post-synaptic spike, since a post-synaptic spike is more likely
to occur if inhibition is reduced (see red lines, Figure 1) and excita-
tion increased (see black lines, Figure 1). For the gamma processes,
we additionally find a repetitive structure, an increase/decrease of
spiking density preceding and following the post-synaptic spike
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FIGURE 1 | Spike-triggered average (STA) as relation between the

compound process of 250 mutually independent pre-synaptic spike

trains and post-synaptic firing. Variations of the relative firing rates of
inhibitory/excitatory are reflected in α (columns), and different combinations
of firing statistics (gamma γ = 100/Poisson γ = 1) are presented for the
pre-synaptic excitatory (Ne = 200) and inhibitory (N i = 50) population (rows).
Total conductance was S = 4 and bin size 1 ms. Firing rates for excitatory

neurons were kept at 10 Hz, whereas the firing rates of the inhibitory
population was varied in the steps 5, 10, 14, 18, 20, 24, 30, and 40 Hz,
corresponding to values of α = 0.5, 1.0, 1.4, 1.8, 2.0, 2.4, 3.0, and 40.
Increasing the firing rates of the inhibitory pre-synaptic activity leads to a
higher spike-triggered average. For a pre-synaptic gamma-process, the
modulation in the STA shows peaks in a distance of the peaks representing
the expected inter-spike interval.

for excitatory/inhibitory populations, respectively. This reduction
and increase of firing density are both occurring at a distance which
corresponds to the individual average ISI of the pre-synaptic spike
trains. Moreover, these peaks observed on the spiking density are
a reflection of the modulation of the auto-correlation of the com-
pound process (e.g., for excitatory neurons, see black lines in row
2 and 4 of Figure 1). The same modulation of pre-synaptic activ-
ity preceding a spike happens for the inhibitory population, but
the direction of the modulation is opposite (see red lines in row
3 and 4 of Figure 1). In other words, the firing density of both
excitatory and inhibitory populations is locked to a post-synaptic
event. This could be explained by the fact that the neuron may fire
if any relatively small subpopulation produces either a synchro-
nized increase of excitatory activity or a synchronized decrease of
inhibitory activity.

In summary, as a first point, post-synaptic firing is sensitive to
the pre-synaptic auto-structures of mutually independent spike
trains. Secondly, post-synaptic firing is locked to periods with
increases of excitatory firing and decreases of inhibitory firing.
Third, in the case that either of the two types is composed of
gamma processes, these increases and decreases reoccur with a
temporal structure given by the auto-correlation of the com-
pound process, which again is identical to an amplitude-reduced
auto-correlation of the individual pre-synaptic processes.

After characterizing the relation between the pre- and post-
synaptic firing, we now explore its implication on the auto-
structure of the post-synaptic firing. To that end, we computed
the auto-correlogram of the post-synaptic firing for the different

combinations of excitatory and inhibitory pre-synaptic drives
while modifying the relative firing rate between the two popu-
lations, the α factor (Figure 2). Therefore, note that the inhibitory
rate is different for any column since α ranges from 0.5 to 4.
The auto-correlation of the post-synaptic firing becomes flat (for
time intervals larger than the refractory time of a few millisec-
onds) only when all of the pre-synaptic spike trains are Poissonian
(Figure 2, row 1) or if α is large and only the inhibitory activity is
temporally structured (Figure 2, row 3, last three columns). Other-
wise, the auto-correlation of the post-synaptic firing is periodically
modulated by at least one non-Poissonian pre-synaptic population
(Figure 2). The period of the oscillatory modulation is determined
by the expected ISI of the non-Poissonian processes (e.g., Figure 2,
row 2, this modulation is 10 Hz (where Hertz stands for spikes
per second) corresponding to an average ISI of 100 ms on the
excitatory population). In the case where only the excitatory drive
is temporally structured, the modulation of the auto-correlation
has the same period as the expected ISI of the excitatory process
(Figure 2, row 2). If both the excitatory and the inhibitory popu-
lations are composed of gamma processes with different rates, as
shown in Figure 2 (row 4), the modulation of the post-synaptic
auto-correlation is a mixture of modulations of both compound
processes.

Effect of different rates for individual pre-synaptic populations
Next, we investigate the effect of the excitatory and inhibitory
input structure on the post-synaptic spike train while interacting
at different firing rates. We model both excitatory and inhibitory
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FIGURE 2 | Correlograms and firing rates of the post-synaptic

spiking activity. Variations of the relative firing rates of
inhibitory/excitatory are reflected in α (columns), and different
combinations of firing statistics (gamma γ = 100/Poisson γ = 1) are
presented for the pre-synaptic excitatory (Ne = 200) and inhibitory
(N i = 50) population (rows). Total conductance was set to S = 4. With
higher pre-synaptic inhibitory firing rates (α), the post-synaptic firing rates
decrease. At each α, the post-synaptic firing rate decreases when the

pre-synaptic firing is gamma-distributed, while the lowest post-synaptic firing
rate is present when both pre-synaptic inhibitory and excitatory distributions
are Poissonian. Modulations in the post-synaptic firing pattern are more
prominent when the excitatory population is given a gamma-shaped firing
modality, are missing when both inhibitory and excitatory firing show a
Poisson-distributed pattern and is inhomogeneous in its appearance when the
post-synaptic activity is driven by both inhibitory and excitatory
gamma-shaped distributions.

populations by mutually independent gamma processes (γ = 100)
and we vary the relative firing rate between them. The rate for the
excitatory population is set to 10 Hz while the rate of the inhibitory
population is varied systematically, based on the ratio between
the firing rate of the inhibitory and excitatory population α. We
explore a value of α = 1 and variations between 0.5 and 4.

In the case of α = 1, where excitatory and inhibitory neurons
have the same firing rates, the interaction between the two auto-
structures is restricted to a locked increase and decrease of activity
in both populations (Figure 1, row 4 and column 2), as measured
by the STAs. Nevertheless, the pre-synaptic spike-triggered aver-
age for regular gamma processes and different firing rates between
populations shows a damped oscillation for all tested values of α,
i.e.,α = 0.5, 1.4, 1.8, 2.0, 3.0, and 4.0 (Figure 1, row 4). Note that
the STA of the excitatory population remains unchanged for dif-
ferent values of α, which is expected, since pre-synaptic activity is
composed of mutually independent processes. The periods of the
oscillatory modulations for both populations is determined by the
expected ISI of the respective point processes.

Damped oscillations are also visible on the auto-correlation
of the post-synaptic activity (Figure 2, row 4). In the case of
α = 1 (Figure 2, row 1–4 and column 2), the post-synaptic auto-
correlation function essentially reflects the auto-correlation of
each of the individual processes, either excitatory or inhibitory.
However, in the other cases of α, i.e.,α = 0.5, 1.4, 1.8, 2.0, 3.0,

and 4.0, where the firing rates are not the same between exci-
tation and inhibition, the interaction between both populations
becomes more important. An α = 2 value induces a modulation
with a strong component at 10 Hz coming from the excitatory
expected ISI and a smaller component with 20 Hz arising by the
inhibitory population (Figure 2, column 5). This modulation for
α = 2 still leads to a clear damped periodic pattern of the auto-
correlation. However, for other values of α the interaction is more
complicated. For these values, the period length of the modulation
in the STA of the excitatory and inhibitory drive does not follow as
a simple n:m relation anymore, as for α = 0.5, 1, 2 corresponding
to 1:2, 1:1, and 2:1 relation, respectively.

The cases of α (i.e.,α = 1.4, 1.8, 2.0, 3.0, and 4.0) induce more
complex modulations, dominated by a rhythm of 10 Hz, arising
by the expected ISI of the excitatory population. This becomes
evident, for example, in the case of α = 1.4, for which the first side
peak of the post-synaptic auto-correlation is lower than the second
and the third (Figure 2, column 3).

Effect of population size
Additionally, we explored the effects of population size on the
auto-structure of post-synaptic firing. In Figure 3, we show the
STA and in Figure 5 the auto-correlation of the post-synaptic
spike train for the same population size that was used in all
other simulations previously discussed (N e = 200 excitatory as
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FIGURE 3 | Spike-triggered average (STA) as relation between the

compound process of 250 mutually independent pre-synaptic spike

trains and post-synaptic firing. Variations of the relative firing rates of
inhibitory/excitatory are reflected in α (color coded). Variable conductance of S
(rows) is compared to different combinations of firing statistics (gamma
γ = 100 and Poisson γ = 1) for the pre-synaptic excitatory (Ne = 200) and
inhibitory (N i = 50) population (columns). Firing rates for excitatory neurons

were kept at 10 Hz, whereas the firing rates of the inhibitory population was
varied in the steps 10, 14, 18, and 20 Hz, corresponding to values of α = 1.0,
1.4, 1.8, 2.0. Increasing the firing rates of the inhibitory pre-synaptic activity
leads to higher values of the spike-triggered average. For gamma processes
in the pre-synaptic activity, the modulation in the STA shows peaks with the
distance of the peaks representing the expected inter-spike interval. The
appearance of this modulation is irrespective of the conductance values S.

gamma-process and N i = 50 inhibitory Poisson process with rate
λinh = λexci = 10 Hz, and a total synaptic weight S = 4 times the
leak conductance). To assess the effect of the population size and
the synaptic strength, we increased the population by a factor of
10 so that N e = 2000 and N i = 500 (STAs shown in Figure 4 and
auto-correlogram shown in Figure 6). To distinguish the contri-
bution of the increase in population size from that of the total
synaptic weight, we scale at the same time the individual synap-
tic weights (different rows with S = 2, 4, 20 2, 4, 20, and 40 in
the Figures 3–6). Note that the individual synaptic weight of a
model with S = 2 and 250 synapses is equivalent to the model
with S = 20 and 2500 synapses. The same holds true for S = 4
and S = 40 in the case of 250 and 2500 synapses, respectively. In
contrast, other combinations of the number of synapses and S
induce changes in the synaptic strength distribution. To identify
the effect of an increase in the number of synapses keeping the
individual strength of each synapse identical, one can compare
the case S = 20 or 40 for the 250 synapses with the case S = 20
or 40 for 2500 synapses (compare row 1 and 2 from Figure 3
with row 3 and 4 from Figure 4). Irrespective of the choice of S
and the number of synapses, all cases exhibit the same pattern,
qualitatively. All show modulations with a frequency given by the
ISI of the excitatory population. This indicates that the tempo-
ral structure of non-Poisson activity is modulating post-synaptic

firing even for large pre-synaptic populations and rather small
weights.

EFFECTS OF NON-POISSONIAN INPUT ON STRUCTURE FORMATION
DUE TO STDP
After having evaluated the role of non-Poissonian pre-synaptic
input in the firing properties of a post-synaptic neuron, we are now
in a position to discuss the potential impact of non-Poissonian pre-
synaptic activity on structure formation and learning via STDP.
This form of plasticity has been applied to sequence learning and
has been discussed to be involved in spontaneous and activity-
driven pattern formation (Markram et al., 1997; Song et al., 2000;
Lazar et al., 2007, 2009). STDP can strengthen potentially causal
relations between pre-synaptic drive and post-synaptic activity by
increasing the synaptic strength of all synapses that have been
activated immediately before a post-synaptic spike is generated.

Equilibrium distribution of synaptic weights under STDP
We performed simulations on a single IF neuron (same as
described above) with the addition of an exponential STDP rule
to its excitatory synapses (see Materials and Methods). Inhibitory
synapses were not involved in the plasticity dynamics and were
initialized with the same synaptic strength. We then monitored,
for each individual synapse, the temporal evolution of the changes
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FIGURE 4 | Spike-triggered average (STA) comparable to Figure 3 but for

a population size of 2500 mutually independent spike trains. Figure 4

shows the dependence of varying relative firing rates for the
inhibitory/excitatory spike trains α (color coded) and variable conductances S
(rows) for the different combinations of firing statistics (gamma γ = 100 and
Poisson γ = 1) for the excitatory (Ne = 2000) and inhibitory (N i = 500)
population. Firing rates for excitatory neurons were kept at 10 Hz, whereas

the firing rates of the inhibitory population was varied in the steps 10, 14, 18,
and 20 Hz, corresponding to values of α = 1.0, 1.4, 1.8, 2.0. Increasing the
firing rates of the inhibitory pre-synaptic activity leads again to higher values
of the spike-triggered average. For gamma processes in the pre-synaptic
activity, the modulation in the STA shows peaks with the distance of the
peaks representing the expected inter-spike interval. The appearance of the
modulation is irrespective of the conductance values S.

on the synaptic strength for a period of 500 s. As in the previous
sections, we used mutually independent renewal gamma processes
as input. After ensuring that the distribution of synaptic strength
was stable at the end of the simulation period, we used the last 50 s
of the simulation time to estimate the equilibrium distribution of
the synaptic conductances.

The cumulative equilibrium distributions of conductance for
four combinations of Poissonian and gamma activity for the
inhibitory and excitatory population are shown in Figure 7A. In
general, the shape of the synaptic weight distribution is bimodal,
as shown in Song and Abbott (2001). Remarkably, temporally
structured and yet mutually independent activity of the excita-
tory population leads to different medians (corresponding to a
value of 0.5 on the y axis in Figure 7A) and different shapes of the
distributions. The median of the synaptic weight is typically larger
for the case of excitatory Poisson processes, independent of the
temporal structure of the inhibitory population. The difference in
the median can be as large as ∼20%. For all tested cases, the tails of
the bimodal distribution of weights became heavier in the case of
excitatory Poisson processes regardless of the temporal structure
of the inhibitory population. Both effects of the median and the
shape are independent of the relative rate for the excitatory and
inhibitory drives (compare different rows of Figure 7A). To test
whether this difference is indeed caused by an interaction of the

temporal structure of the pre- and post-synaptic spiking activity,
we performed a control, for which we destroyed this interaction,
while keeping the pre-synaptic temporal structure the same. To
this end, we randomized the post-synaptic spike timing. Using this
control, the cumulative distribution function (CDF) for tempo-
rally structured and unstructured pre-synaptic synapses became
identical (CDFs were compared with a two-sample Kolmogorov–
Smirnov test, test level 5%, see Figure 8), indicating that temporal
structure in the pre-synaptic activity alone is insufficient to explain
the differences observed in Figure 7.

In a second step, we studied the temporal structure of synaptic
weight changes. In particular, we tested whether synaptic changes
of the same synapse reoccur on a short time scale, as expected
by the repetitive structure of the STAs (see Figures 1, 3, and
4). To this end, we performed a spike-triggered average of the
synaptic changes of the STDP so that we could observe the aver-
aged conductance changes triggered on the post-synaptic firing
(Figure 7B). The analysis was performed for the same period (last
50 s) of the simulation as used for the CDFs where the total dis-
tribution of weights is already in a dynamic equilibrium. In the
averaged STA of the conductances, we found a clear periodic com-
ponent. The exact temporal structure of the synaptic is a function
of both the temporal structure of the excitatory and the inhibitory
activity. This was expected, based on the results regarding temporal
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FIGURE 5 | Correlograms of the post-synaptic spiking activity in

dependence of varying relative pre-synaptic firing rates for the

inhibitory/excitatory spike trains α (color coded) and variable

conductances S (rows) for the different combinations of firing statistics

(gamma γ = 100 and Poisson γ = 1) for the pre-synaptic excitatory

(N e = 200) and inhibitory (N i = 50) population (columns).

structure of the post-synaptic firing (compare Figures 2, 5, and
6). If only either the excitatory or inhibitory activity is temporally
structured (Figure 7B, blue and green curves, respectively), then
the temporal structure of the post-synaptic changes is completely
determined by the temporal structure of the non-Poissonian pre-
synaptic process (notice the differences in the periodic component
for variations of the inhibitory firing rate defined by α). However,
if both the excitatory and inhibitory pre-synaptic drive is tempo-
rally structured, the temporal structure of the synaptic changes
is a mix of the two pre-synaptic temporal structures (Figure 7B,
black curve). Remarkably, the strength of repetitive changes, espe-
cially of the first satellite peaks in the STAs of the conductance,
depends on α. For α = 1 (that corresponds to an n:m relation of
1:1) and still rather simple n:m relations of 1:2 and 2:1 for α = 0.5
and α = 2, the first side peak of the changes of the conductance
are larger than for more complex n:m relations based on α = 1.4,
1.8, 2.4, 3.0 and 4.0. This indicates that synaptic modifications
reoccur on a short timescale in the range of a few ISIs, which
boost changes associated with the same reoccurring spiking pat-
tern. It needs to be emphasized that this occurrence of the same
spiking pattern is just caused by the temporal auto-structure of
the pre-synaptic drive. This highlights that the auto-structure of
pre-synaptic activity might be relevant for modulating synaptic
learning.

Temporal evolution of weight changes caused by STDP
Next, we compared the temporal evolution of the distribution of
individual synaptic weights as a function of the simulation time. In

particular, we study whether the auto-structure of the pre-synaptic
population also has an impact on the transient period of the dis-
tribution of weights and the speed of the weights’ changes. We
compare the temporal evolution of weights for each case by means
of observing the CDF. On the one hand, we present the CDF
in the case where both pre-synaptic drives are Poisson processes
(Figure 9A). This figure shows how the synaptic weight evolves
over time due to STDP, from the initial point at t = 0, where all the
weights are the same, up to a bimodal distribution at the end of
the simulation (t = 100 s).

On the other hand, we present the differences between the
CDF of synaptic weights between two cases: Poisson/Poisson and
gamma/gamma (Figure 9B). Both measures were explored for dif-
ferent values of the relative firing rate α. We found that for identical
rates (α = 1), synaptic weights change faster during the transition
toward the equilibrium distribution. This effect is especially strong
in the first 70 s of the simulation where the case of both popula-
tions being gamma leads to more extreme values, as indicated by
the negative areas. Remarkably, we observe the same effect also for
α = 0.5 and α = 2, which are both corresponding to a rather simple
n:m relation of the period length of the modulation of the STAs
(Figures 1, 3, and 4). For the more complicated relations, α = 1.4,
1.8, 2.4, 3.0, and 4.0, this faster change of the CDFs for temporally
structured pre-synaptic activity disappears. This suggests that the
temporal structure and the interaction between the rates of excita-
tory and inhibitory processes can modulate the speed with which
synaptic weights are changing, which is the learning rate of the
STDP. For simulation times longer than 100 s, the distributions are
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FIGURE 6 | In analogy to Figure 5,This Figure shows the

correlograms of the post-synaptic spiking activity in

dependence of varying relative pre-synaptic firing rates

for the pre-synaptic excitatory (N e = 2000) and inhibitory

(N i = 500) population (columns for the inhibitory/excitatory spike

trains α (color coded) and variable conductances S (rows) for the

different combinations of firing statistics (gamma γ = 100 and

Poisson γ = 1).

close to the equilibrium and consistent with the results reported
in the previous section.

COMPARISON TO GAMMA PROCESSES WITH γ = 10
Further, we replicated the results mentioned in the case when
the pre-synaptic activity has been modeled as a gamma point
process where γ = 10. We first describe the impact of the pre-
synaptic structure on the post-synaptic firing. Along this line, we
observed that the effects were reduced but still present. The rela-
tion between the pre- and post-synaptic firing is characterized
via the STA (Figure 10A1) and its implications can be observed
on the auto-correlation function (Figure 10A2), which reflects
the temporal structure of the post-synaptic firing. For that, we
simulated the pre-synaptic activity with α = 1, so that the firing
rate of both inhibitory and excitatory pre-synaptic neurons equals
10 Hz, and the overall conductances are scaled by S = 4. In the
case where γ = 10, both STA and the auto-correlation are show-
ing a modulation of the pre- and post-synaptic activity occurring
at a distance which corresponds to the average ISI of the pre-
synaptic spike trains. These peaks also reflect the modulation on
the auto-correlation of the pre-synaptic compound process.

Second, we investigate the effects of non-Poissonian input on
structure formation due to STDP. For that, the cumulative distri-
bution of synaptic weights as a function of time was presented so
that we could estimate the temporal evolution of synaptic weights
caused by STDP. In Figure 10B, we present the differences between

the CDF of synaptic weights between two cases: Poisson/Poisson
and gamma/gamma (for γ = 10). Similar to the case where the
gamma process was described by a shape factor of γ = 10 (see
Figure 9B), we found that the synaptic weights change faster dur-
ing the transition period (the first 70 s). Moreover, the synaptic
weights shift toward more extreme values when both populations
are modeled by gamma processes (with γ = 10). Note that the
effects for both γ = 10 and γ = 100 are very similar regarding
the strength and the temporal evolution of the synaptic weight
distribution (compare Figure 10B with Figure 9B, row 2).

DISCUSSION
We demonstrate that auto-structure, such as regularity and tem-
poral structure of pre-synaptic activity, can induce temporal struc-
ture on the post-synaptic neuron, such as spatial temporal pattern
of post-synaptic activity, even when spike trains are mutually inde-
pendent. We also show that such a patterning can change the
learning rates as well as the equilibrium distribution of synap-
tic weights in a model of synaptic plasticity, such as STDP. We will
now discuss potential implications of these findings as well as their
generalizability.

INTERPLAY OF STRUCTURE IN PRE- AND POST-SYNAPTIC SPIKE
TRAINS
A first step in understanding the interplay between pre- and
post-synaptic activity is to describe the temporal structure of
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FIGURE 7 | (A) Cumulative distribution function of the synaptic
weights averaged on the stable period of simulation (last 50 s
from a total simulation time of 300 s). (B) Spike-triggered
average (STA) as a relation between the average synaptic weights
of 250 mutually independent pre-synaptic spike trains Ne = 200 and

N i = 50) and the post-synaptic firing. Color coded for different combinations of
firing statistics (gamma γ = 100 and Poisson γ = 1). Excitatory firing rate λexci

was kept constant at 10 Hz and variations of inhibitory firing rate λinh

correspond to values of α = 0.5, 1.0, 1.4, 1.8, 2.0, 2.4, 3.0, and 4.0 where
λinh = αλexci.

the compound process that is the overall input being delivered
to the soma of the cell. From previous work (Câteau and Reyes,
2006; Lindner, 2006; Tetzlaff et al., 2008), it is known that the
compound process of a set of spike trains has a remaining tem-
poral structure, reflecting the temporal structure of the individual
trains. Based on that, we study whether temporal structure in the
inhibitory and excitatory drive of a neuron can affect the post-
synaptic firing using numerical simulations of a leaky integrate
and fire neuron model. We thus studied both the temporal struc-
ture of the post-synaptic spike train based on auto-correlograms
and the interaction between the pre- and post-synaptic structure
based on spike-triggered averages. We show that auto-structure
of both the excitatory and inhibitory pre-synaptic population can
induce temporal patterns in the post-synaptic activity (Figure 2).
Even more, the impact of the temporal structure of the excitatory
and inhibitory drive can lead to different post-synaptic firing pat-
terns. This means that only if either excitatory or inhibitory activity
is temporally structured (i.e., gamma-process), the post-synaptic
spiking activity will reflect the same temporal modulation. For the

case where both excitatory and inhibitory activities are gamma,
the temporal structure of the post-synaptic activity is mainly
determined by the excitatory drive for low and intermediate con-
ductance values. For higher conductance values, both the structure
of the excitatory and inhibitory population is relevant such that
the temporal structure of the post-synaptic firing appears to be a
superposition of both modulations.

Here, we studied a single neuron. However, there might be
implications of our findings concerning temporally structured
activity on the propagation of activity in large and recurrent net-
works. To this end, Câteau and Reyes (2006) studied feed-forward
networks and the propagation of pulse packets as a function of
different temporal structures of the spiking activity. Using the
Fokker Planck approach and a leaky integrate and fire model, the
authors demonstrate that temporal structure of excitatory gamma
activity remains to be structured while propagating through layers
of the network. Further evidence for the importance of auto-
structure on the activity from a recurrent network is provided
in the study by Tetzlaff et al. (2008). They first demonstrate the
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FIGURE 8 | Quantile–Quantile plot of the CDFs of the surrogate STDP

rule for Poisson and regular gamma pre-synaptic spiking activity. Two
simulations were performed with identical parameters, but different
auto-structure in the pre-synaptic activity. In one case, the excitatory drive
was composed of regular gamma-spike trains (green), in the other case the
excitatory activity was Poisson (blue). For both, the inhibitory activity was
Poisson. For the surrogate STDP rule, the post-synaptic spike timing was
randomized, i.e., a random Poisson process with fixed post-synaptic firing
of 10 spikes/s. The result is a control showing that the CDFs for temporally
structured and unstructured pre-synaptic activity become identical,
indicating that temporal structure in the pre-synaptic activity alone is
insufficient to explain the differences observed in Figure 7A.

importance of auto-structure for individual neurons using an
alternative approach based on the Fourier domain and second,
they use numerical simulations to study the importance of auto-
structure when neurons are embedded in a recurrent network.
Combining the evidence presented by Câteau and Reyes (2006)
and Tetzlaff et al. (2008), along with the results presented here,
we suspect that temporal structure in excitatory and inhibitory
activity is at least partially preserved through many layers.

SPIKE-TIMING-DEPENDENT NEURONAL PLASTICITY AND TEMPORAL
STRUCTURE
Neuronal plasticity links structure formation in recurrent neu-
ronal networks with its spiking activity. Given the results that
the temporal structure of pre-synaptic activity affects the post-
synaptic firing (see first part of this publication) and therefore
can propagate through a larger network (Câteau and Reyes, 2006),
the question arises whether temporal structure of spiking can also
effect neuronal plasticity. To study this question, we use a spike-
timing-dependent type of neuronal plasticity (STDP) which uses
the exact timing of the pre- and post-synaptic firing to change
individual synaptic weights.

To test the impact of various pre-synaptic temporal structures
of excitatory and inhibitory activity, we observe the equilibrium

FIGURE 9 | Distribution of synaptic weights of 250 mutually

independent pre-synaptic spike trains (N e = 200 and N i = 50). Excitatory
firing rate λexci was kept constant at 10 Hz and variations of inhibitory firing
rate λinh correspond to values of α = 0.5, 1.0, 1.4, 1.8, 2.0, 2.4, 3.0, and 4.0
where λinh = αλecxi. (A) Time-resolved CDF of synaptic weights where the
pre-synaptic firing statistics are Poissonian (γ = 1). (B) Time-resolved
difference in the CDF of synaptic weights between the cases in which the
pre-synaptic drive is gamma (γ = 100) and Poisson (γ = 1).

distribution of the synaptic weights. We find that at equilibrium
the distribution of synaptic weights depends solely on the auto-
structure of the excitatory population. One possible explanation
could be the fact that the synapses of the excitatory population are
the only ones subjected to STDP. However, auto-structure of the
inhibitory population has an effect on the transient period of the
synaptic changes. This can be explained by the fact that the auto-
structure of the inhibitory population changes the firing pattern
of the post-synaptic neuron. In particular, the interplay between
pre-synaptic auto-structures can modulate the post-synaptic firing
such that the structure formation also depends on the inhibitory
firing patterns. We showed that not only the regularity of renewal
processes, but also the rate of the individual processes, modulates
the dynamics of the synaptic weights. For the case that rates of
inhibitory and excitatory population match a simple n:m rela-
tion, i.e., 1:1, 1:2, 2:1, modulations of the auto-correlation of the
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FIGURE 10 | Exploring the effects of auto-structure in gamma

processes where the ISI is drawn from a gamma distribution with a

shape parameter γ = 10 for a population of 250 mutually independent

pre-synaptic spike trains (N e = 200, N i = 50, and α = 1.0). In (A1, A2), the
STA and auto-correlation of post-synaptic activity are presented,
respectively. The different colors correspond to the comparison between
three cases: gamma-spike trains γ = 10 (light blue), gamma-spike trains
γ = 100 (red) and Poisson spike train γ = 1 (black). (B) Time-resolved
difference in the CDF of synaptic weight distribution between the cases in
which the pre-synaptic drive is gamma (γ = 10) and Poisson (γ = 1).

post-synaptic firing are rather strong, while they are considerably
reduced for other more complex relations.

In a next step, we test the temporal structure of synaptic modifi-
cations and the temporal evolution of the distribution of weights.
As shown in the first part, temporal structure of even mutu-
ally independent spike trains induces temporal structure in the
occurrence of spike patterns across neurons that take place just by
chance. This temporal modulation can be repetitive, as observed
for regular firing gamma processes. We find that such a repetitive
pattern modulates the synaptic change by STDP. We additionally
find that the auto-structure and the rate of the two types, i.e., exci-
tatory and inhibitory pre-synaptic processes, interact and can both
be used to regulate the speed with which STDP changes synaptic
weights (Figure 9). There, the speed of changes in the weight dis-
tribution in the initial period between 0 and 70 s is strongest for a
rate ratio between excitatory and inhibitory processes of 1:1 and
1:2. For other ratios between 1:1 and 1:2, this effect is strongly
reduced. Such results highlight that both the rate and changes in
the auto-structure can be used to modulate STDP.

GENERALIZABILITY FOR OTHER FORMS OF PLASTICITY AND OTHER
PROCESSES
Can the findings presented here be generalized to other STDP
models as well as to different population sizes, point process mod-
els and models other than a conductance-based integrate and fire
neuron?

In this study, we used a rather simple model of spike-timing-
dependent plasticity. This form, also known as STDP with hard
bounds, has an equilibrium weight distribution that is strongly
bimodal with mainly weak or strong synapses. An alternative
model is the soft-bound STDP which can lead to an equilib-
rium weight distribution that is uniform with most synapses
having intermediate strength (Gütig et al., 2003). So the question
is whether the results reported in this paper can be generalized
for the soft-bound or other STDP models. We found that the
auto-structure changes both the equilibrium distribution but also
the evolution of the weight distribution over time. Especially the
strong change in the first 70 s of the simulation (Figure 9), for
which the weight distribution is still uniform, indicates that the
auto-structure influences the structure formation based on STDP
for both uniform and bimodal weight distribution. Since soft-
bound STDP promotes unimodal distributions,we expect that also
soft-bound STDP is sensitive to the auto-structure of pre-synaptic
activity.

Similarly, this comparison could be made with other STDP
models proposed. Modulations of synaptic weights due to STDP
are observable, independent of the weight distribution. Structure
formation depends on the temporal relations of the spiking activ-
ity rather than on the distribution of synaptic weights itself. Other
STDP rules, such as the ones presented by van Rossum et al. (2000),
Pfister and Gerstner (2006), Morrison et al. (2007), or Clopath
et al. (2010), discuss the temporal relation among pre- and post-
synaptic spike trains. Thus, we expect our model also to reflect the
temporal structure of pre-synaptic spike trains.

We now address whether our findings are generalizable regard-
ing population size and conductance strength. Based on the
analytical results from Lindner (2006), it is known that the auto-
correlation of a compound process of scaled point processes, i.e.,
scaled delta peaks δ(t )/N, is of order 1/N. In contrast, the auto-
correlation of standard point processes, i.e., non-scaled delta peaks
δ(t ), grows linearly with N. However, it is important to note that
the shape of the auto-correlation stays identical independent of N
and whether the point processes are scaled or not. Especially in the
case where synapses are weak, one could argue that the remain-
ing auto-correlation is too small to drive the neuron. However,
we know that neurons can be close to their threshold. This makes
neurons sensitive, such that a small number of pre-synaptic events
in a short temporal window can make a neuron fire. This high-
lights that it is not the total number of synapses but the number
of pre-synaptic events that is necessary to drive the neuron, which
determines the dampening of the auto-structure in a subpopula-
tion of neurons. In other words, since the neuron is a thresholding
device, it can receive noise inputs from a pre-synaptic population
with no temporal structure, while being driven by a structured
subset of such pre-synaptic neurons. Our results support this argu-
mentation, since we found, for both a small and large population
of the order of several thousand pre-synaptic events that the auto-
structure of the pre-synaptic spike trains drives the post-synaptic
neuron nearly equally well.

We next addressed the generalizability of our findings regarding
the choice of the point process model. We chose gamma processes
which are renewal processes and which can be entirely described
by the ISI distribution. Here, we presented results for gamma
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processes that strongly deviate from Poissonian firing. Compared
to data obtained from electrophysiology, the regularity used in
the paper is rather high (Baker and Lemon, 2000; Nawrot et al.,
2007, 2008). However, we chose this regime to demonstrate the
rather strong impact auto-structure can have on structure for-
mation based on neuronal plasticity. To test whether the effects
are also existing for more biologically plausible ISI distribution,
we used gamma processes with a shape parameter of γ = 10. We
observed that the effects were reduced but still present (Figure 10).
This demonstrates that the presented results can be generalized to
less extreme deviations from Poissonian firing. However, we used
renewal processes which are just a first step toward more realis-
tic neuronal firing statistics. Such more realistic firing might also
require to model serial correlation in between ISIs and therefore
make the processes non-renewal. Analytically, one can show (Pipa
et al., 2010), that the average frequency of spike patterns across
neurons is independent of the exact ISI distribution of the renewal
process, while deviation from this renewal property can also influ-
ence the average frequency of spike pattern across neurons. Since
neuronal plasticity based on STDP is directly linked to the pattern
frequency we expect that non-renewal point processes lead to even
stronger changes of learning and structure formation as reported
here.

LIMITATIONS
This study and neural model relies on three principle assumptions.
First, that the membrane potential dynamics can be sufficiently
described by a point neuron via an ordinary differential equa-
tion describing a conductance-based integrate and fire neurons.
Second, that neural firing can be described by a gamma-renewal
process which captures the neuron refractoriness on the ISI distri-
bution. Third, that synaptic plasticity can be modeled by a rather
simple additive STDP rule. Given that by definition such assump-
tions are wrong, we should raise the question to what degree can
we expect these results to be generalizable for biological neurons?

The first assumption we made is that neurons can be modeled
by a simple point neuron with conductance-based integrate and
fire dynamics. That means that we ignored any non-linear den-
dritic computations. Predicting the effect of those non-linearities
seems to be impossible in general since they depend on the very
complex and specific topology of individual dendritic trees. How-
ever, it has been shown that non-linearities may act as coincidence
detectors based on super-linear integration on local segments of
the dendrites (London and Häusser, 2005). Since those effects are
happening in a confined area with a relatively small number of
synapses, and the modulations of auto-structure that we show here
grow with decreasing population sizes, we therefore expect that
non-linear properties of dendritic trees may boost the sensitivity to
changes in the auto-structure. Further, such a conductance-based
integrate and fire neuron is a simple one-dimensional model with
a fixed threshold. More realistic neuronal models can manifest
complex sub-threshold dynamics and may have thresholds that
can depend on the state of the neuron (such as Hodkin-Huxley,
Izhikevich or the exponential integrate and fire, see Izhikevich,
2003). For such neurons, we expect that structure imposed by
the pre-synaptic activity and dynamics of the neuron model may
interact. Therefore, we expect, as shown for example by Asai et al.

(2008), that different neuronal models may lead to different results.
However, we also expect that differences between Poissonian and
non-Poissonian pre-synaptic activity survives in one way or the
other.

Second, experimental studies indicate that gamma processes are
better models that Poisson processes when describing the tempo-
ral structure of neuronal firing. Alternatively, the ISI distribution
can be modeled by log-normal distributions. Common to both is
that they are renewal processes, meaning that subsequent ISI are
independent. Such assumption of independence on the ISI may be
wrong (Farkhooi et al., 2009; Nawrot, 2010). Here, we did not test
for the effect of non-renewal activity. Therefore, whether specific
models of non-renewal processes can change the effect of STDP,
still remains an open question for future research.

Finally, this study assumes that STDP can be modeled by a sim-
ple additive rule, while experimental findings show that this model
oversimplifies the real spike-timing-dependent plasticity (Abbott
and Nelson, 2000). Alternatively, multiplicative STDP rules or
STDP rules which take patterns of spikes into account may be
more biologically plausible (see Morrison et al., 2008 for review).
However, it needs to be stressed that all these rules appear to be
oversimplifications, if one considers that real neurons have multi-
ple neuronal plasticity forms (i.e., homostatic plasticity, synaptic
rescaling or short term modulations, like short term depression
or facilitations), acting at the same time. Any of these interact-
ing plasticity forms may change the reported results and may even
lead to new emergent properties that cannot be predicted by any of
the individual rules alone (Lazar et al., 2007, 2009). Despite these
general complications which all modeling studies suffer from, it
remains an issue whether the findings shown here can be general-
ized for other STDP rules mentioned before. We expect that most
of the effects would be found when using other STDP rules, since
all consider the exact temporal structure of the pre–post-synaptic
firing. For example, one could argue that since different STDP
rules would lead to different steady-state distributions of synaptic
weights, it could destroy the effects reported on in this paper. How-
ever,we analyzed the changes in the strength of weights undergoing
additive STDP in the early phase of learning (Figure 9B), where the
weight distribution is still unimodal (i.e.,period between 0 and 50 s
of simulation time). We found that auto-structure-induced mod-
ulations in the effective strength of neuronal plasticity have been
especially strong during this period. This suggests that the auto-
structure modulates the effective strength of neuronal plasticity
for both bimodal and unimodal weight distributions. Further, this
indicates that the effects may be even stronger for multiplicative
STDP.

POTENTIAL IMPLICATIONS FOR STRUCTURE FORMATION IN
RECURRENT NETWORKS
For learning in recurrent networks, a modulation of neuronal
plasticity can be useful. Such modulation can be used to con-
trol self-organization via spontaneous structure formation of the
network and the learning of certain trajectories of neuronal activ-
ities. One such mechanism for modulation was implemented as
reward-modulated STDP, where a global teacher signal regulates
the self-organization of the system (Florian, 2007; Izhikevich,
2007; Legenstein et al., 2008).
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Here, we propose an alternative modulation of spontaneous
structure formation based on the control of the auto-structure of
the pre-synaptic activity. We showed that temporal structure in the
pre-synaptic activity of both the excitatory and inhibitory activity
can modulate the effective strength of neuronal plasticity as well
as the speed with which synapses change their synaptic weights
in the case of STDP. Therefore, this suggests that controlling the
auto-structure of pre-synaptic activity can be used to control the
effective strength of neuronal plasticity. For example, we showed
that changes in the regularity of renewal processes and changes in
the relation between the excitatory and inhibitory firing rates can
be used to control the learning of structure in individual neurons.
Alternative mechanisms of controlling the effective strength of
neuronal plasticity via changes in the auto-structure could be mak-
ing pre-synaptic activity non-renewal, e.g., by oscillatory firing or
long-lasting temporal dependencies.

From a biological perspective, such control of the auto-
structure could be realized by many intrinsic or extrinsic mech-
anisms. Potential intrinsic mechanisms are neuromodulator or
top-down signals that shape the temporal structure of neuronal
activity in the target population. Alternatively, temporal struc-
ture in the target population may be shaped by oscillatory activity
emerging by synchronization of different populations. Extrinsic
modulations may occur via stimulus-driven changes in the bal-
ance and rate relation of excitatory and inhibitory activity. Also,
temporal structure induced by the stimulus may be a potential
candidate to modulate the effective strength of neuronal plasticity.

In conclusion, our work suggests that variation in the auto-
structure and the rate of activity in a recurrent network may be

exploited by nature to modulate the sensitivity for spontaneous
formation of structure and therefore learning.

CONCLUSION
Structure formation and neuronal self-organization in networks is
crucial for information processing within the cortex. We demon-
strate that both the speed and strength of structural changes
induced by spike-timing-dependent plasticity can be modulated
by the temporal structure of mutually independent spiking activ-
ity. This highlights the possibility that the modulation of auto-
structure of larger groups of neurons could be used to modulate
the sensitivity of spontaneous structure formation in networks.
Especially the regularity in combination with the firing rates of the
neurons seems to be a promising new concept for such a modula-
tion of synaptic plasticity. Interestingly, changes in the firing rate
and in the auto-structure of spiking activity are often modulated
during cognitive tasks, such as attention and memory, which may
indicate that nature exploits these mechanisms for modulation of
structure formation and neuronal self-organization in neuronal
circuits (Engel et al., 2001; Fries et al., 2001; Pesaran et al., 2002;
Uhlhaas et al., 2009; Düzel et al., 2010).
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