The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
Institute of Computer Science
University of Frankfurt

13.5.05
Routing
Routing

Graph G
Routing

Graph G
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Routing

Graph G
Routing policies assign simple paths.
Routing policies assign simple paths.

We assume unit capacity and unit speed edges.
Queueing
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing
Queueing

The Necessity of Timekeeping in Adversarial Queueing
Maik Weinard
University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Queueing
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing
Maik Weinard
University of Frankfurt
Queueing

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Queueing strategies decide which packet may proceed.
Queueing Policies
Queueing Policies

- Work in an online scenario.
Queueing Policies

• Work in an online scenario.

• Work with local information only.
Queueing Policies

• Work in an online scenario.

• Work with local information only.

• Are supposed to keep the total traffic small and delays short.
Queueing Policies

- Work in an online scenario.
- Work with local information only.
- Are supposed to keep the total traffic small and delays short.
- Examples:
Queueing Policies

- Work in an online scenario.
- Work with local information only.
- Are supposed to keep the total traffic small and delays short.
- Examples:
 - First-In-First-Out (FIFO)
Queueing Policies

- Work in an online scenario.
- Work with local information only.
- Are supposed to keep the total traffic small and delays short.
- Examples:
 - First-In-First-Out (FIFO)
 - Longest-In-System (LIS)
Queueing Policies

- Work in an online scenario.
- Work with local information only.
- Are supposed to keep the total traffic small and delays short.

- Examples:
 - First-In-First-Out (FIFO)
 - Longest-In-System (LIS)
 - Nearest-To-Source (NTS)
Queueing Policies

- Work in an online scenario.
- Work with local information only.
- Are supposed to keep the total traffic small and delays short.

- Examples:
 - First-In-First-Out (FIFO)
 - Longest-In-System (LIS)
 - Nearest-To-Source (NTS)
 - Shortest-In-System (SIS)
Adversarial Queueing Theory
Adversarial Queueing Theory

- Designed to reveal the quality of queueing policies.
Adversarial Queueing Theory

- Designed to reveal the quality of queueing policies.
- An Adversary decides
Adversarial Queueing Theory

• Designed to reveal the quality of queueing policies.

• An Adversary decides
 – when and where packets are inserted,
Adversarial Queueing Theory

- Designed to reveal the quality of queueing policies.

- An Adversary decides
 - when and where packets are inserted,
 - whereto each packet is to be delivered,
Adversarial Queueing Theory

- Designed to reveal the quality of queueing policies.

- An Adversary decides
 - when and where packets are inserted,
 - whereto each packet is to be delivered,
 - along which path it is to be routed.
Adversarial Queueing Theory

- Designed to reveal the quality of queueing policies.

- An Adversary decides
 - when and where packets are inserted,
 - whereto each packet is to be delivered,
 - along which path it is to be routed.

- Only restriction:
Adversarial Queueing Theory

• Designed to reveal the quality of queueing policies.

• An Adversary decides
 – when and where packets are inserted,
 – whereto each packet is to be delivered,
 – along which path it is to be routed.

• Only restriction: Adversary may not straightforwardly overload edges.
(r,b)-Adversaries
(r,b)-Adversaries

An adversary is a \((r,b)\) adversary if for every edge \(e\) and during every interval of \(t\) consecutive steps no more than
(r,b)-Adversaries

An adversary is a \((r, b)\) adversary if for every edge \(e\) and during every interval of \(t\) consecutive steps no more than

\[r \cdot t + b \]
(r,b)-Adversaries

An adversary is a \((r, b)\) adversary if for every edge \(e\) and during every interval of \(t\) consecutive steps no more than

\[r \cdot t + b \]

packets are inserted that require edge \(e\).
(r,b)-Adversaries

An adversary is a \((r, b)\) adversary if for every edge \(e\) and during every interval of \(t\) consecutive steps no more than

\[
r \cdot t + b
\]

packets are inserted that require edge \(e\).

- \(r\) is the rate.
(r,b)-Adversaries

An adversary is a \((r, b)\) adversary if for every edge \(e\) and during every interval of \(t\) consecutive steps no more than

\[r \cdot t + b\]

packets are inserted that require edge \(e\).

- \(r\) is the rate. We demand \(r \leq 1\).
(r,b)-Adversaries

An adversary is a \((r,b)\) adversary if for every edge \(e\) and during every interval of \(t\) consecutive steps no more than

\[r \cdot t + b \]

packets are inserted that require edge \(e\).

- \(r\) is the rate. We demand \(r \leq 1\).

- \(b\) is the burstiness.
Stability
Stability

A queueing policy is *stable* on a graph G against (r, b) adversaries, if for every sequence of insertions into G by an (r, b)-adversary the number of packets in G is upper bounded by $c(r, b, G)$.
A queueing policy is *stable* on a graph G against (r, b) adversaries, if for every sequence of insertions into G by an (r, b)-adversary the number of packets in G is upper bounded by $c(r, b, G)$.

A queueing strategy is *universally stable* if it is stable on every graph against every (r, b)-adversary with $r < 1$.

Previous Work
Previous Work

Borodin, Kleinberg, Raghavan, Sudan, Williamson STOC'96
Previous Work

Borodin, Kleinberg, Raghavan, Sudan, Williamson STOC'96
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

Borodin, Kleinberg, Raghavan, Sudan, Williamson STOC'96
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96
Previous Work

\[r \]

arbitrarily close to 1

universally stable

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing
Maik Weinard
University of Frankfurt
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Previous Work

Andrews, Awerbuch, Fernández, Kleinberg, Leighton, Liu, FOCS’96

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Previous Work

The necessity of timekeeping in adversarial queueing was studied by P. Tsaparas, M.Sc. Thesis '97. The figure illustrates the stability of different queueing disciplines at various parameter values. LIS, NTS, SIS, and FFG are stable universally close to 1 arbitrarily close to 0.85, while FIFO, NTG, and FFS are stable close to 0.5.
Previous Work

- LIS, NTS, SIS, FFG universally stable
- FIFO, NTG, FFS

P. Tsaparas, M.Sc. Thesis ’97

Arbitrarily close to 1

Arbitrarily close to 0
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt

P. Tsaparas, M.Sc. Thesis ’97
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Previous Work

The necessity of timekeeping in adversarial queueing...
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

The necessity of timekeeping in adversarial queuing

- Arbitrarily close to 1
 - LIS
 - NTS
 - SIS
 - FFG
 - Universally stable

- Close to 0.85
 - FFS

- Close to 0.5
 - FIFO

- Arbitrarily close to 0
 - NTG
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

The necessity of timekeeping in adversarial queueing Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
Previous Work

The Necessity of Timekeeping in Adversarial Queueing

David Gamarnik STOC’99

arbitrarily close to 1

arbitrarily close to 0

universally stable

r

FFS

LIS NTS SIS FFG

FIFO NTG
Universally Stable Strategies
Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^{\Theta(d)}$ with \(d \) being the graph's diameter can arise.
Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^{\Theta(d)}$ with d being the graphs diameter can arise.

- Longest-In-System: $2^{O(d)}$
Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^{\Theta(d)}$ with d being the graphs diameter can arise.

- Longest-In-System: $2^{O(d)}$ and $\Omega(d)$.

Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^{\Theta(d)}$ with d being the graph’s diameter can arise.

- Longest-In-System: $2^{O(d)}$ and $\Omega(d)$.

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^\Theta(d)$ with d being the graphs diameter can arise.

- Longest-In-System: $2^O(d)$ and $\Omega(d)$.

Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^{\Theta(d)}$ with d being the graphs diameter can arise.

- Longest-In-System: $2^{O(d)}$ and $\Omega(d)$.

 Queueing Policy with polynomial delay obtained by an elaborate derandomization.

- **Question:**
Universally Stable Strategies

- Under Nearest-To-Source, Farthest-To-Go and Shortest-In-System total traffic and delay of $2^{\Theta(d)}$ with d being the graphs diameter can arise.

- Longest-In-System: $2^{O(d)}$ and $\Omega(d)$.

 Queueing Policy with polynomial delay obtained by an elaborate derandomization.

- **Question:** How difficult do strategies with polynomial delay need to be?
WTS-Strategies
A queueing strategy operates without time-stamping if each packet p is assigned a priority.
WTS-Strategies

A queueing strategy operates without time-stamping if each packet p is assigned a priority

$$f(G, P, a)$$

where
A queueing strategy operates without time-stamping if each packet p is assigned a priority $f(G, P, a)$ where

- G is the network,
WTS-Strategies

A queueing strategy operates **without time-stamping** if each packet p is assigned a priority

$$f(G, P, a)$$

where

- G is the network,
- P is the path packet p is travelling on and
A queueing strategy operates without time-stamping if each packet p is assigned a priority $f(G, P, a)$ where

- G is the network,
- P is the path packet p is travelling on and
- a is the number of edges already traversed.
A queueing strategy operates without time-stamping if each packet p is assigned a priority $f(G, P, a)$ where

- G is the network,
- P is the path packet p is travelling on and
- a is the number of edges already traversed.

At every contested edge a packet of maximum priority is advanced.
WTS-Strategies

WTS-Strategies include prominent Strategies like the universally stable Farthest-To-GO (FTG)
WTS-Strategies

WTS-Strategies include prominent Strategies like the universally stable Farthest-To-GO (FTG)

\[f_{FTG}(G, P, a) = |P| - a, \]
WTS-Strategies

WTS-Strategies include prominent Strategies like the universally stable Farthest-To-GO (FTG)

\[f_{FTG}(G, P, a) = |P| - a, \]

but the class is much broader.
WTS-Strategies

WTS-Strategies include prominent Strategies like the universally stable Farthest-To-GO (FTG)

\[f_{FTG}(G, P, a) = |P| - a, \]

but the class is much broader.

The only *reasonable* quantities not used are times:
WTS-Strategies

WTS-Strategies include prominent Strategies like the universally stable Farthest-To-GO (FTG)

\[f_{FTG}(G, P, a) = |P| - a, \]

but the class is much broader.

The only *reasonable* quantities not used are times:

- Longest-In-System uses a packets age.
WTS-Strategies

WTS-Strategies include prominent Strategies like the universally stable Farthest-To-GO (FTG)

\[f_{FTG}(G, P, a) = |P| - a, \]

but the class is much broader.

The only *reasonable* quantities not used are times:

- Longest-In-System uses a packets age.
- FIFO uses a packets current waiting time.
WTS-Strategies

Graph G
WTS-Strategies

Graph G
WTS-Strategies

Graph G
WTS-Strategies

Graph G

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
We seek a negative result about all WTS-strategies.
Results
Results

- Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.
Results

• Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

• New technique for proving 1-stability of WTS-strategies.
Results

- Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

- New technique for proving 1-stability of WTS-strategies.

- Complete classification of universally stable and 1-stable distance based WTS-strategies.
Results

• Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

• New technique for proving 1-stability of WTS-strategies.

• Complete classification of universally stable and 1-stable distance based WTS-strategies.
 – Priorities of the form $f(|P|, a)$.
Results

• Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

• New technique for proving 1-stability of WTS-strategies.

• Complete classification of universally stable and 1-stable distance based WTS-strategies.
 – Priorities of the form \(f(|P|, a) \).
 – 1-stable if \(\forall x, y : f(x, y) > f(x, y + 1) \)
Results

• Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

• New technique for proving 1-stability of WTS-strategies.

• Complete classification of universally stable and 1-stable distance based WTS-strategies.
 – Priorities of the form \(f(|P|, a) \).
 – 1-stable if \(\forall x, y : f(x, y) > f(x, y + 1) \)
 – not even universally stable otherwise.
Results

• Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

• New technique for proving 1-stability of WTS-strategies. (cf. paper)

• Complete classification of universally stable and 1-stable distance based WTS-strategies. (cf. paper)
 – Priorities of the form \(f(|P|, a) \).
 – 1-stable if \(\forall x, y : f(x, y) > f(x, y + 1) \)
 – not even universally stable otherwise.
Results

- Every WTS-Strategy can be forced into total traffic and delays exponential in the size of the graph.

Problem: Provide a family of graphs, so that for every possible assignment of priorities, a jam of exponentially many packets can be created.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.
How to create a traffic jam

Joint edge is overloaded.

For legal insertions no jam is created.
How to create a traffic jam

Joint edge is overloaded.

For legal insertions no jam is created.
How to create a traffic jam

Joint edge is overloaded.

For legal insertions no jam is created.
How to create a traffic jam

Joint edge is overloaded.

For legal insertions no jam is created.
Piling up packets
Piling up packets

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Piling up packets

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
Piling up packets

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard
University of Frankfurt
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Piling up packets

<table>
<thead>
<tr>
<th># Packs</th>
<th>Green</th>
<th>Red</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
<td>rs</td>
<td>rs</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
<td>rs</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
<td>rs</td>
<td>rs</td>
</tr>
</tbody>
</table>
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Piling up packets

The Necessity of Timekeeping in Adversarial Queueing

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>
Piling up packets

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Piling up packets

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>
Piling up packets

Packets

# green	s
# red	rs
# blue	rs
The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Piling up packets

The Necessity of Timekeeping in Adversarial Queueing

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>
Piling up packets

No red packet traverses the system.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
No red packet traverses the system.
Only \((1 - r) \cdot s\) green packets slip through.
No red packet traverses the system. Only $(1 - r) \cdot s$ green packets slip through.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>s</td>
</tr>
<tr>
<td># red</td>
<td>rs</td>
</tr>
<tr>
<td># blue</td>
<td>rs</td>
</tr>
</tbody>
</table>
No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>
Piling up packets

No red packet traverses the system.
Only \((1 - r) \cdot s\) green packets slip through.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>

The Necessity of Timekeeping in Adversarial Queueing Maik Weinard University of Frankfurt
No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>
Piling up packets

No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>
No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>
No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through. Remaining packets: \(2r \cdot s\).
No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through. Remaining packets: \(2r \cdot s\).

For \(r > \frac{1}{2}\) the set of packets grows by a multiplicative factor.
No red packet traverses the system. Only $(1 - r) \cdot s$ green packets slip through. Remaining packets: $2r \cdot s$.

For $r > \frac{1}{2}$ the set of packets grows by a multiplicative factor.
Piling up packets

No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through. Remaining packets: \(2r \cdot s\).

For \(r > \frac{1}{2}\) the set of packets grows by a multiplicative factor.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>
Piling up packets

No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through. Remaining packets: \(2r \cdot s\).

For \(r > \frac{1}{2}\) the set of packets grows by a multiplicative factor.

<table>
<thead>
<tr>
<th># Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># green</td>
<td>(s)</td>
</tr>
<tr>
<td># red</td>
<td>(rs)</td>
</tr>
<tr>
<td># blue</td>
<td>(rs)</td>
</tr>
</tbody>
</table>
No red packet traverses the system. Only \((1 - r) \cdot s\) green packets slip through. Remaining packets: \(2r \cdot s\).

For \(r > \frac{1}{2}\) the set of packets grows by a multiplicative factor.
Concatenating Gadgets
How can we get (blue) paths capable of blocking?
Idea: Improve Gadget
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.
Idea: Improve Gadget

If green packets cannot be blocked by blue packets...

... then blue packets can be blocked by green packets.

Gadget works in at least one orientation.
Arranging a Gadget Matrix
Arranging a Gadget Matrix

A $k \times k$ matrix of gadgets.
Arranging a Gadget Matrix

A $k \times k$ matrix of gadgets.
Arranging a Gadget Matrix

A $k \times k$ matrix of gadgets.

Diameter: $\Theta(k)$.

The Necessity of Timekeeping in Adversarial Queueing

Maik Weinard

University of Frankfurt
Arranging a Gadget Matrix

A $k \times k$ matrix of gadgets.

Diameter: $\Theta(k)$.

Each gadgets works in one orientation.
Arranging a Gadget Matrix

A $k \times k$ matrix of gadgets.

Diameter: $\Theta(k)$.

Each gadget works in one orientation.

There exists one row/column with at least $k/2$ usable gadgets.
Arranging a Gadget Matrix

A $k \times k$ matrix of gadgets.

Diameter: $\Theta(k)$.

Each gadget works in one orientation.

There exists one row/column with at least $k/2$ usable gadgets.

$2^{\Theta(k)}$ packets can be piled up.
Conclusions
Conclusions

- All WTS-Strategies can be forced into exponential delay.
Conclusions

- All WTS-Strategies can be forced into exponential delay.
 - The only *reasonable* quantities that WTS-strategies do not exploit are times.
Conclusions

- All WTS-Strategies can be forced into exponential delay.
 - The only *reasonable* quantities that WTS-strategies do not exploit are times.
 - Hence timekeeping appears crucial.
Conclusions

• All WTS-Strategies can be forced into exponential delay.
 – The only *reasonable* quantities that WTS-strategies do not exploit are times.
 – Hence timekeeping appears crucial.
 – LIS is among the *simplest* strategies that do use timekeeping.
Conclusions

• All WTS-Strategies can be forced into exponential delay.
 – The only reasonable quantities that WTS-strategies do not exploit are times.
 – Hence timekeeping appears crucial.
 – LIS is among the simplest strategies that do use timekeeping.

• New technique for proving 1-stability.
Conclusions

- All WTS-Strategies can be forced into exponential delay.
 - The only *reasonable* quantities that WTS-strategies do not exploit are times.
 - Hence timekeeping appears crucial.
 - LIS is among the *simplest* strategies that do use timekeeping.

- New technique for proving 1-stability.

- Complete classification of distance based WTS-strategies.
Conclusions

- All WTS-Strategies can be forced into exponential delay.
 - The only *reasonable* quantities that WTS-strategies do not exploit are times.
 - Hence timekeeping appears crucial.
 - LIS is among the *simplest* strategies that do use timekeeping.

- New technique for proving 1-stability.

- Complete classification of distance based WTS-strategies.

THANK YOU