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Marek Gaździcki1

Institut für Kernphysik, Universität Frankfurt, Germany

Mark I. Gorenstein2,3

Institute for Theoretical Physics, University of Frankfurt, Germany
and

School of Physics and Astronomy, Tel Aviv University, Israel

A statistical model of the early stage of central nucleus–nucleus (A+A) collisions
is developed. We suggest a description of the confined state with several free pa-
rameters fitted to a compilation of A+A data at the AGS. For the deconfined state
a simple Bag model equation of state is assumed. The model leads to the conclusion
that a Quark Gluon Plasma is created in central nucleus–nucleus collisions at the
SPS. This result is in quantitative agreement with existing SPS data on pion and
strangeness production and gives a natural explanation for their scaling behaviour.
The localization and the properties of the transition region are discussed. It is shown
that the deconfinement transition can be detected by observation of the character-
istic energy dependence of pion and strangeness multiplicities, and by an increase
of the event–by–event fluctuations. An attempt to understand the data on J/ψ
production in Pb+Pb collisions at the SPS within the same approach is presented.

August 29, 2005

1E–mail: marek@ikf.physik.uni–frankfurt.de
2Permanent address: Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
3E–mail: goren@th.physik.uni-frankfurt.de

1



1 Introduction

At the final state of high energy nuclear collisions many new particles appear. They are
massive and extended objects: hadrons and hadronic resonances. What is the nature
of particle creation in strong interactions? What is form of matter in a state of very
high energy density which is created during the collision of two nuclei? These questions
motivate a broad experimental programme in which nuclear collisions at high energy are
investigated [1].

Due to lack of a calculable theory of strong interactions the interpretation of experi-
mental results has to rely on phenomenological approaches. The first models attempting
to describe high energy collisions were statistical models of the early stage [2, 3], the stage
in which excitation of the incoming matter takes place. In their original formulations they
failed to reproduce experimental results. However, when a broad set of data became avail-
able [4, 5], it was realized [6, 7] that after necessary generalization a statistical approach
to the early stage gives surprising agreement with the results. It could therefore be used
as a tool to identify the properties of the state created at the early stage. The aim of this
paper is to further develop the statistical model of the early stage and to apply it to study
the properties of the high energy density state created in nucleus–nucleus collisions.

A special role in this study is played by entropy [8] (in collisions at high energy carried
mainly by final state pions) and heavy flavours (strangeness, charm) production [9, 10, 11].
It can be argued that they are insensitive to the late stages of the collision and therefore
carry information about the early stage.

It is experimentally well established that hadrons consist of more elementary sub-
hadronic objects: quarks and gluons [12]. It is therefore natural to assume that at very
high energy density, higher than a typical energy density inside a hadron, matter is in the
form of a gas of subhadronic degrees of freedom called Quark Gluon Plasma (QGP) [13].
When a quasi–ideal gas of quarks and gluons is assumed in the statistical model of the
early stage, the results on strangeness and pion production in nucleus–nucleus collisions
at the SPS are reproduced in an essentially parameter free way [7].

This surprising agreement should be contrasted with the problems [14, 15] of micro-
scopic non–equilibrium models in describing the same set of data. Scaling properties of
the data, natural in the thermodynamical approach, arise in non–equilibrium models as
an accidental cancelation of many non–scaling dependences.

All that motivates further development of the experimental programme [16]. The main
goal is to localize the collision energy region in which the deconfinement transition takes
place and study the properties of the transition itself. In this region many anomalies are
expected. Their experimental observation will lead us to definite conclusion concerning
the early stage of nucleus–nucleus collisions. The corresponding experimental study at
the SPS should start in 1999 when beams of lower than maximal SPS energy will become
available. The experiment NA49 [16] is now being prepared for this investigation.

The main goal of this paper is to further develop of the statistical model of the early
stage in order to provide a description of the transition region, with special attention paid
to the observables which can be measured in the experimental programme. This can be
done only when the partition function of the confined state is given. We argue that this
state should not be modeled as a gas of hadrons and hadronic resonances. Consequently
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we have to introduce an effective parametrization of the confined state and try to extract
its properties from the comparison with the experimantal data.

Finally we attempt to include in the analysis the production of charm and understand
experimental data on J/ψ production [17]. The standard approach is based on the as-
sumption that cc states are created in hard QCD processes and later partially destroyed
by interactions with the surrounding matter. This approach leads to the conclusion [18]
of creation of a QGP only in central Pb+Pb collisions at SPS, but not in the collisions
of lighter nuclei. Pion and strangeness data show however no essential difference between
central S+S and Pb+Pb collisions at the SPS. They are consistent, within the statistical
model analysis, with the creation of a QGP already in central S+S collisions at the SPS.
Thus the crucial question is to what extent is this contradiction caused by the use of
different approaches for data interpretation? Can a consistent description of the data
including the production of charm be obtained using the statistical approach?

The paper is organized as follows. The model used further on for data interpretation
and analysis of the transition region is defined in Section 2. The basic features of the
model are presented in Section 3, where the approximate analytical formulae are given
together with the numerical results obtained using the full version of the model. The
model is confronted with the experimental data in Section 4. In Section 5 the discussion
of the different approaches to the strangeness and J/ψ production is given. Summary
and conclusions close the paper.

For simplicity reasons we consider only central collisions of two identical nuclei (central
A+A collisions). The nuclear mass number is denoted by A. The whole discussion is done
in the center of mass system. The c.m. energy of nucleon–nucleon pair and nucleon mass
are denoted by

√
sNN and mN , respectively.
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2 A Model of the Early Stage of A+A Collisions

1. The basic assumption of our model is that the production of new degrees of freedom
in the early stage of nucleus–nucleus collisions is a statistical process. Thus formation of
all microscopic states allowed by conservation laws is equally probable. This means that
the probability to produce a given macroscopic state is proportional to the total number
of its microscopic realizations, i.e. a macroscopic state probability P is

P ∼ eS, (1)

where S is the entropy of the macroscopic state.

2. As the particle creation process does not produce net baryonic, flavour and electric
charges only states with the total baryon, flavour and electric numbers equal to zero
should be considered. Thus the properties of the created state are entirely defined by the
volume in which production takes place, the available energy and a partition function. In
the case of collisions of large nuclei the thermodynamical approximation can be used and
the dependence on the volume and the energy reduces to the dependence on the energy
density. The state properties can be given in the form of an equation of state.

3. We assume that the creation of the early stage entropy in central A+A collisions takes
place in the volume equal to the Lorentz contracted volume occupied by the colliding
nucleons (participant nucleons) from a single nucleus:

V =
V0

γ
, (2)

where V0 = 4/3πr3
0Ap and γ =

√
sNN/(2mN) and Ap is the number of participant nucleons

from a single nucleus. The r0 parameter is taken to be 1.30 fm in order to fit the mean
baryon density in the nucleus, ρ0 = 0.11 fm−3.

4. Only a fraction of the total energy in A+A collision is transformed into the energy of
new degrees of freedom created in the early stage. This is because a part of the energy is
carried by the net baryon number which is conserved during the collision. The released
energy can be expressed as:

E = η(
√
sNN −mN) Ap . (3)

The parameter η defines the fraction of the available energy used in the production process.
It is assumed to be independent of the collision energy and the system size for A+A
collisions discussed in this paper. This assumption is in agreemnet with the experimental
data providing that a correction for pion absorption effects (see point 15 below) is taken
into account. It is usually justified by quark–gluon structure of the nucleon [19]. The
value of η used for the numerical calculations is 0.67 (see Section 4 for details).

5. In order to predict a probability of creation of a given macroscopic state all possible
degrees of freedom and interaction between them should be given in the form of the
partition function. In the case of large enough volume the grand canonical approximation
can be used and the state properties can be given in the form of an equation of state. The
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question of how one can use this equation of state to calculate the space–time evolution
(hydrodynamics) of the created system requires a separate study.

6. The most elementary particles of strong interaction are quarks and gluons. In the
following we consider u, d and s quarks and the corresponding antiquarks with the internal
number of degrees of freedom equal to 6 (3 colour states × 2 spin states). In the entropy
evaluation the contribution of c, b and t quarks can be neglected due to their large masses.
The charm production is discussed separately in Section 5. The internal number of degrees
of freedom for gluons is 16 (8 colour states × 2 spin states). The masses of gluons and
nonstrange (anti)quarks are taken to be 0, the strange (anti)quark mass is taken to be
175 MeV [20].

7. In the case of creation of colour quarks and gluons the equation of state is assumed to
be the ideal gas equation of state modified by the bag constant B in order to account for
the strong interaction between quarks and gluons and the surrounding vaccum (see e.g.
[21]):

p = pid −B , ε = εid +B, (4)

where p and ε denote pressure and energy density, respectively, and B is the so called bag
constant. The equilibrium state defined above is called Quark Gluon Plasma or Q–state.

8. At the final freeze–out stage of the collision the degrees of freedom are hadrons –
extended and massive objects composed of (anti)quarks and gluons. Due to their finite
proper volume hadrons can exist in their well defined asymptotic states only at rather low
energy densities. Estimates ǫ < 0.1÷0.4 GeV/fm3 for the hadron gas with van der Waals
excluded volume have been found in Ref. [22]. In the early stage of A+A collisions such
low energy density is created only at very low collision energies of a few GeV per nucleon.
We note also that asymptotic hadronic states can be questioned as possible degrees of
freedom in the early stage on the basis of our current understanding of e+ +e− anihilation
processes, where the initial degrees of freedom are found to be colourless qq pairs [12].
The above statements lead us to the conclusion that there is no satisfactory model of the
confined state at the early stage of A+A collisions at the AGS.

Guided by these considerations we introduce an effective parametrization of the con-
fined state. We assume that at collision energies lower than the energy needed for a QGP
creation the early stage effective degrees of freedom can be approximated by point–like
colourless bosons. This state is denoted as W–state (White–state). The nonstrange de-
grees of freedom which dominate the entropy production are taken to be massless, as
seems to be suggested by the original analysis of the entropy production in N+N and
A+A collisions [6]. Their internal number of degrees of freedom was fitted to the same
data [6, 7] to be about 3 times lower than the internal number of effective degrees of
freedom in A+A collisions at SPS, where in our model creation of QGP takes place. The
internal number of degrees of freedom for a QGP is 16 + (7/8)·36 ∼= 48 and therefore
the internal number of nonstrange degrees of freedom for low energy collisions is taken
to be 48/3 = 16. The mass of strange degrees of freedom is assumed to be 500 MeV,
equal to the kaon mass. The internal number of strange degrees of freedom is estimated
to be 14 as suggested by the fit to the strangeness and pion data at the AGS (see Sec-
tion 4). The phenomenological reduction factor 3 is used in our numerical calculations
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between the total number of degrees of freedom for Q–state and nonstrange degrees of
freedom of W–state because of the different magnitude of strangeness suppression due to
different masses of strangeness carriers in both cases. The ideal gas equation of state is
selected. We would like to underline once more that the above description of the confined
state should be treated only as an effective parametrization. Its parameters are fixed by
fitting A+A data at the AGS. This parametrization is needed for the extrapolation to
higher collision energies where the transition between the confined and deconfined state
is expected. It is, however, intresting to speculate (see Appendix A) about the possible
physical meaning of the obtained parameters of the degrees of freedom in the W–state.

9. For large enough volume the grand canonical approximation can be used and the cal-
culation of the entropy is significantly simplified. In a large system only one macroscopic
state is produced – the state with the maximum entropy density, s. This is because the
relative probability of the state with the entropy density s′ < s is given by:

P

PMAX
= exp [ V (s′ − s) ] . (5)

Thus the relative probability decreases to zero when the volume increases to infinity for
any value of s′ < s.

10. In the case of finite (small) volume the conservation laws should be accounted for
in a strict way (canonical or microcanonical treatment). The macroscopic states with an
entropy density lower than the maximum one are created with final probabilities. As the
physical properties of various states can be significantly different (see Section 3) sizeable
nontrivial event–by–event fluctuations are expected.

11. The maximum entropy state is called equilibrium state. In the model with two
different states (W and Q) the form of the maximum entropy state changes with the
collision energy. The regions, in which the equilibrium state is in the form of a pure W
or a pure Q state, are separated by the region in which both states coexist (mixed phase
or W–Q–state).

12. It is important to note that the formation of a state in global equilibrium in the
early stage of nuclear collisions is a consequence of our basic assumption that all possible
microscopic states are created with equal probability. Thus it is due to the assumed
statistical nature of the primary creation process and it is not due to equilibration by a
long lasting sequence of secondary interactions.

13. The globally equilibrated state created in the early stage expands and finally freezes–
out into hadrons and hadronic resonances. Recent analysis suggests that this hadroniza-
tion process can be described by a statistical model [23, 24]. Thus phase–space seems to
govern not only the production of entropy and the flavour content of the state in the early
stage, as discussed in this paper, but also its conversion to hadrons which happens at a
significantly lower energy scale.

14. Note that due to the Lorentz contraction the shape of the early stage volume is
non–spherical. This causes the isotropic angular distribution of particles in the early
stage to be converted during an anisotropic expansion into a forward–backward peaked
distribution as observed in the experimental data.
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15. We assume that the only process which changes the entropy content of the produced
matter during the expansion, hadronization and freeze–out is an interaction with the
baryonic subsystem. It was argued that it leads to an entropy transfer to baryons which
corresponds to the effective absorption of about 0.35 π–mesons per baryon [6, 25]. This
interaction causes also that the produced hadrons in the final state do not obey symmetries
of the early stage production process, i.e. a final hadronic state has non–zero baryonic
number and electric charge.

16. It is assumed that the total number of s and s quarks created in the early stage is
conserved during the expansion, hadronization and freeze–out.
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3 Calculations

In the first part of this section we analyze the simplified version of the model which allows
us to perform calculations in an analytical way. The results of the numerical calculations
done within the full version of the model are presented in the second part of the section.

The calculation are performed in the grand canonical formulation which is justified
for large enough systems discussed in this paper. All chemical potentials have to be
equal to zero, as we consider only systems with all conserved charges equal to zero.
Thus the temperature T remains the only independent thermodynamical variable in the
thermodynamical limit when the system volume goes to infinity. It is convenient to define
the system equation of state in terms of the pressure function p = p(T ) as the entropy
and energy densities can be caluclated from the thermodynamical relations:

s(T ) =
dp

dT
, ε(T ) = T

dp

dT
− p . (6)

In the case of an ideal gas the pressure of the particle species ‘j’ is given by:

pj(T ) =
gj

2π2

∫

∞

0
k2dk

k2

3(k2 +m2
j )1/2

1

exp
(
√

k2+m2

j

T

)

± 1
, (7)

where gj is the internal number of degrees of freedom (degeneracy factor) for j–th species,
mj is a particle mass, ‘–1’ appears in Eq. (7) for bosons and ‘+1’ for fermions. The pressure
p(T ) for an ideal gas of several particle species is additive: p(T ) =

∑

j p
j(T ). The same is

valid for the entropy and energy densities (6).

3.1 Analytical Calculations

In order to perform analytical calculations of the system entropy and illustrate the model
properties we simplify our consideration assuming that all degrees of freedom are massless.
In this case the pressure function (Eq. (7)) is equal to:

pj(T ) =
σj

3
T 4 , (8)

where σj is the so called Stephan–Boltzmann constant, equal to π2gj/30 for bosons and
7
8
π2gj/30 for fermions. The total pressure in the ideal gas of several massless species can

be presented then as p(T ) = π2gT 4/90 with the effective number of degrees of freedom g
given by

g = gb +
7

8
gf , (9)

where gb and gf are internal degrees of freedom of all bosons and fermions, respectively.
The g parameter is taken to be gW for W–state and gQ for Q–state, with gQ > gW .

The pressure, energy and entropy densities are given then as:

pW (T ) =
π2gW

90
T 4 , εW (T ) =

π2gW

30
T 4 , sW (T ) =

2π2gW

45
T 3 , (10)
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pQ(T ) =
π2gQ

90
T 4 −B , εQ(T ) =

π2gQ

30
T 4 +B , sQ(T ) =

2π2gQ

45
T 3 , (11)

for the pure W– and Q–state, respectively. Note the presence of the non–perturbative bag
terms in addition to the ideal quark–gluon gas expressions for the pressure and energy
density of the Q–state.

The 1st order phase transition between W– and Q–state is defined by the Gibbs
criterion

pW (Tc) = pQ(Tc) , (12)

from which the phase transition temperature can be calculated as:

Tc =

[

90B

π2(gQ − gW )

]1/4

. (13)

At T = Tc the system is in the mixed phase with the energy and entropy densities given
by

εmix = (1 − ξ)εc
W + ξεc

Q , smix = (1 − ξ)sc
W + ξsc

Q , (14)

where (1−ξ) and ξ are the relative volumes occupied by the W– and Q–state, respectively.
From Eqs. (10, 11) one finds the energy density discontinuity (‘latent heat’)

∆ε ≡ εQ(Tc) − εW (Tc) ≡ εc
Q − εc

W = 4B . (15)

In our model the early stage energy density is an increasing function of the collision
energy and it is given by (see Eqs. ( 2, 3)):

ε ≡ E

V
=

η ρ0 (
√
sNN − 2mN)

√
sNN

2mN
. (16)

According to our basic assumption (point 1 in Section 2) the created macroscopic state
should be defined by the entropy density maximum condition:

s(ε) = max { sW (ε), sQ(ε), smix(ε) } . (17)

In Appendix B we prove a remarkable equivalence of the Gibbs criterion (largest pressure
function pi in the pure i–phase and equal pressures (12) in the mixed phase) and the
maximum entropy criteria (17) for an arbitrary equation of state p = p(T ) with a 1-st
order phase transition. From this fundamental equivalence it follows that for ε < εc

W or
ε > εc

Q the system consists of pure W– or Q–state, respectively, with entropy density
given by the following equations:

sW (ε) =
4

3

(

π2gW

30

)1/4

ε3/4 , (18)

sQ(ε) =
4

3

(

π2gQ

30

)1/4

(ε−B)3/4 . (19)
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For εc
W < ε < εc

Q the system is in the mixed phase (14) and its entropy density can be
expressed as:

smix(ε) =
εc

Qs
c
W − εc

W s
c
Q

4B
+

sc
Q − sc

W

4B
ε ≡ a + b ε . (20)

The ratio of the total entropy of the created state to the number of nucleons paticipating
in A+A collisions is given as

S

2Ap
=

V s

2Ap
=

mN s

ρ0

√
sNN

(21)

and it is independent on the number of participant nucleons. The entropy density s in
Eq. (21) is given by our general expressions (17) with ε defined by Eq. (16). For small√
sNN the energy density (16) corresponds to the pure W–state and one finds

(

S

2Ap

)

W

= C g
1/4
W F , (22)

where

C =
2

3

(

π2mN

15ρ0

)1/4

η3/4 , F =
(
√
sNN − 2mN)3/4

(
√
sNN)1/4

. (23)

Thus for low collision energies, where the W–state is created, the entropy per participant
nucleon is proportional to F . For high

√
sNN the pure Q–state is formed and Eq. (21)

leads to
(

S

2Ap

)

Q

= C g
1/4
Q F

(

1 − 2mNB

ηρ0(
√
sNN − 2mN)

√
sNN

)3/4

(24)

∼= C g
1/4
Q F

(

1 − 3mNB

2ηρ0F 4

)

.

For large values of F the entropy per participant nucleon in Q–state is also proportional
to F . The slope is, however, larger than the corresponding slope for the W–state by a
factor (gQ/gW )1/4. In the interval of F in which the mixed phase is formed the energy
dependence of the entropy per participant nucleon is given by:

(

S

2Ap

)

mix

=
C1√
sNN

+ C2 (
√
sNN −mN) , (25)

where

C1 =
mN

ρ0
a , C2 = η b . (26)

Eq. (25) gives approximately a F 2 increase of the entropy per participant nucleon in the
mixed phase region.

Let us now turn to strangeness and assume that gs
W and gs

Q are the numbers of internal
degrees of freedom of (anti)strangness carriers in W– and Q–state, respectively. The total
entropy of the considered state is given by a sum of entropies of strange and nonstrange
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degrees of freedom. Provided that all particles are massless the fraction of entropy carried
by strange (and antistrange) particles is proportional to the number of strangeness degrees
of freedom:

Ss =
gs

g
S . (27)

Eq. (27) is valid for both W– and Q–state. Note that all degeneracy factors are calculated
according to the general relation (9). For massless particles of the j–th species the entropy
is proportional to the particle number

Sj = 4Nj . (28)

Thus the number of strange and antistrange particles can be expressed as

Ns +Ns =
S

4

gs

g
, (29)

and the strangeness to entropy ratio is equal to

Ns +Ns

S
=

1

4

gs

g
. (30)

We conclude therefore that the strangeness to entropy ratio for the ideal gas of massless
particles is dependent only on the ratio of strange to all degrees of freedom, gs/g. This
ratio is expected to be equal to gs

Q/gQ
∼= 0.22 in Q–state and gs

W/gW
∼= 0.5 in W–state

(see the next subsection). Therefore a phase transition from W– to Q–state should lead to
a decrease of the strangeness to entropy ratio by a factor of about 2. This simple picture
will be modified essentially because of the large value of the mass of strange degrees of
freedom in W–state (ms

W
∼= 500 MeV) in comparison to T . In this case the left hand side

of Eq.(30) is a strongly increasing function of T . The right hand side of Eq.(30) gives
then only its asymptotic value approached for T >> ms

W . The numerical calculations for
the selected parameters of W– and Q–state are given below.

3.2 Numerical Calculations

The results of the calculations performed within the full version of the model as defined
in Section 2 are presented below. As all nonstrange degrees of freedom are assumed to be
massless, their thermodynamical functions obtained in the previous subsections can be
used. For the number of nonstrange degrees of freedom we get:

gns
Q = 2 · 8 +

7

8
· 2 · 2 · 3 · 2 = 37 ; gns

W = 16 . (31)

The strange degrees of freedom are considered as massive ones. The Eq. (7) is used with

gs
Q = 2 · 2 · 3 = 12 , ms

Q
∼= 175 MeV ; gs

W = 14 , ms
W

∼= 500 MeV .(32)

Note that there is no factor ‘7/8’ in the expression for gs
Q (32) as the Eq. (7) with Fermi

momentum distribution is taken. The contributions of strange degrees of freedom to the
entropy and energy densities are calculated using thermodynamical relations (6).
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In order to demonstrate properties of the equation of state the ratios of ε/T 4 and
s/T 4 are plotted in Fig. 1 as a function of the temperature. The bag constant B =
600 MeV/fm3 was adjusted such that the critical temperature, Tc is equal to 200 MeV.
This choice of Tc was suggested by the results of the analysis of hadron multiplicities in
A+A collisions at SPS energies. They indicate that the hadron chemical freeze–out (or
hadronization) occurs at a temperature of 160–190 MeV [26, 27, 28, 23, 24].

As pointed out in the previuos section a convenient variable to study collision energy
dependence is the Fermi–Landau variable F . This variable is used for the further analysis.
The relation of the F variable to the laboratory momentum pLAB is shown in Fig. 2. The
values of F for the top SPS and AGS energies are about 4 GeV1/2 and 1.7 GeV1/2,
respectively.

The energy density can be calculated in a unique way on the base of assumptions ‘3’
and ‘4’ from Section 2. The energy density (16) obtained in this way is plotted in Fig.
3 as a function of F . The energy densites for the SPS and AGS energies are about 12
GeV/fm3 and 0.7 GeV/fm3, respectively.

The dependence of the early stage temperature T on F is shown in Fig. 4. Outside
the transition region T increases in an approximately linear way. Inside the transition
region T is constant (T = Tc = 200) MeV. The transition region begins at F = 2.23
GeV1/2 (pLAB = 30 A·GeV) and ends at F = 2.90 GeV1/2 (pLAB = 64 A·GeV).

The fraction of the volume occupied by the Q–state, ξ, increases rapidly in the tran-
sition region, as shown in Fig. 5.

The dependence of the entropy per participant nucleon on F is shown in Fig. 6.
Outside the transition region the entropy increases approximately proportionaly to F ,
but the slope in the Q–state region is larger than the slope in the W–state region. The
ratio between the value of entropy obtained in our model and the entropy calculated
assuming that only W–state exists is shown in Fig. 7.

We are interested in the collision energy region between the AGS and SPS. At ‘low’
collision energies (when a pure W–state is formed) the strangeness to entropy ratio in-
creases with F . This is due to the fact that the mass of the strange degrees of freedom
is significantly higher than the system temperature. At T = Tc the ratio is higher in the
W–state than in the Q–state, this causes the decrease of the ratio in the mixed phase to
the level characteristic for the Q–state. In the Q–state, due to the low mass of strange
quarks in comparison to the system temperature, only a weak dependence of the ratio on
F is observed. The F dependence of strangeness/entropy ratio is shown in Fig. 8.

Within the model one can estimate the lower limit for Tc assuming that the transition
starts just above top AGS energy (15 A·GeV). In this case one obtaines Tc = 170 (B = 300
MeV/fm3) and the non–monotonic behaviour of the strangeness production is substituted
by a rapid saturation. Remaining signatures of the phase transition are unchanged.
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4 Comparison with Data

The comparison of the model with experimental data on pion and strangeness production
is presented below. The results are taken from the compilations [4, 5, 7] where the
references to the original experimental publications can be found.

During the evolution of the system the equilibration between newly created matter and
baryons takes place. It is argued that this equilibration causes transfer of entropy from the
produced matter to baryons. The analysis of the pion suppression effect at low collision
energies indicates that this transfer corresponds to the effective absorption of about 0.35
pion per participant nucleon [25]. We assume that there are no other processes which
change the entropy content of the state produced in the early stage.

For the comparison with the model it is convenient to define the quantity:

〈Sπ〉 = 〈π〉 + κ〈K +K〉 + α〈NP 〉, (33)

where 〈π〉 is the measured total multiplicity of final state pions and 〈K + K〉 is the
multiplicity of kaons and antikaons. The factor κ = 1.6 is the approximate ratio between
mean entropy carried by a single kaon to the corresponding pion entropy at chemical
freeze–out. The term α〈NP 〉 with α = 0.35 is a correction for the above discussed transfer
of the entropy to baryons. The quantity 〈Sπ〉 can thus be interpreted as the early stage
entropy measured in pion entropy units. The conversion factor between S and 〈Sπ〉 is
choosen to be 4 (≈ pion entropy at chemical freeze–out).

The number of baryons which take part in the collision (2Ap in the model calculations)
is identified now with the experimentally measured number of participant nucleons, 〈NP 〉.
The fraction of energy carried by the produced particles (η in Eq. 1) is taken to be 0.67
as measured by the NA35 Collaboration [29] for central S+S collisions at 200 A·GeV.
Production of pions and kaons scales with the number of participant nucleons when central
Pb+Pb and S+S collisions at SPS are compared [30]. This suggests that η can be assumed
to be independent of the size of the colliding nuclei. Similar values of η are obtained when
central A+A collisions at the AGS are analyzed [31] and the correction for the pion
absorption is taken into account.

The comparison between data on 〈Sπ〉/〈NP 〉 and the model is shown in Fig. 9. The
parametrization of the W–state has been chosen to fit the AGS data and, therefore, an
agreement with low energy A+A data is not surprising. On the other hand the description
of high energy (SPS) results obtained by the NA35 and NA49 Collaborations is essentially
parameter free, as the properties of the early stage state, Quark Gluon Plasma, are rather
well defined. The change of the slope in F dependence of the pion multiplicity was
previously proposed as a signature of the transition region [6].

The comparison between the model and the data on strangeness production is done
under the assumption that the strangeness content defined in the early stage is preserved
till the hadronic freeze–out. It simplifies the picture as the gluon contribution to the
strangeness production during the QGP hadronization is neglected. We do not expect
a significant number of strange (s, s̄)-pairs or/and strange-antistrange hadron pairs pro-
duced by massless gluons with typical momenta of several hundred MeV at T = Tc.
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The total strangeness production is usually studied using the experimental ratio:

Es =
〈Λ〉 + 〈K +K〉

〈π〉 , (34)

where 〈Λ〉 is the mean multiplicity of Λ hyperons. Within the model Es (34) is calculated
as:

Es =
(Ns +Ns)/ζ

(S − Ss)/4 − α〈NP 〉
, (35)

where ζ = 1.36 is the experimentally estimated ratio between total strangeness and
strangeness carried by Λ hyperons and K + K mesons [32] and Ss is the fraction of
the entropy carried by the strangeness carriers. The comparison between the calculations
and the data is shown in Fig. 10. The description of the AGS data is again a consequence
of our parametrization of W-state: gs

W = 14, ms
W = 500 MeV. As in the case of the

pion multiplicity, the description of the strangeness results at the SPS (NA35 and NA49
Collaborations) can be considered as being essentially parameter free 4. The agreement
with the SPS data is obtained assuming creation of globally equilibrated QGP in the early
stage of nucleus–nucleus collisions. The characteristic non–monotonic energy dependence
of the ES ratio was proposed in Ref. [5] as a signature of the phase transition and it
is confirmed here by calculations in our model. Measurements of strangeness and pion
production in the transition region are obviously needed.

The entropy and strangeness production in central A+A collisions considered here
satisfies well the conditions needed for thermodynamical treatment. Therefore one expects
that the measures of the entropy per participant nucleon, 〈Sπ〉/〈NP 〉, and strangeness per
entropy, Es, are independent of the number of participants for large enough values of
〈NP 〉. In order to check this in an explicit way we show 〈Sπ〉/〈NP 〉 (Fig. 11) and Es (Fig.
12) as a function of 〈NP 〉 at SPS energy for central S+S and Pb+Pb collisions.

4 The Es value resulting from a QGP can be estimated in a simple way. Assuming that ms = 0,
and neglecting the small (< 5%) effect of pion absorption at the SPS, one gets from (30) and (35)
Es ≈ (gs

Q/1.36)/gns
Q ≈ 0.21, where gs

Q = (7/8) · 12 is the effective number of degrees of freedom of s and

s quarks and gns
Q = 16 + (7/8) · 24 is the corresponding number for u, u, d, d quarks and gluons. Here we

also use the approximation that the pion entropy at freeze–out is equal to the mean entropy of q, q and
g in a QGP.
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5 Discussion

The relationship between our approach and two widely discussed aspects of nucleus–
nucleus collisions namely strangeness and J/ψ production are presented. Finally we
comment on the event–by–event fluctuations.

5.1 Strangeness Production

The enhanced production of strangeness was considered by many authors as a potential
signal of QGP formation [9, 10, 11]. The line of arguments is the following. One estimates
that the strangeness equilibration time in QGP is comparable to the duration of the colli-
sion process (< 10 fm/c) and about 10 times shorter than the corresponding equilibration
time in hadronic matter. It is further assumed that in the early stage the strangeness
density is much below the equilibrium density e.g. it is given by the strangeness obtained
from the superposition of nucleon–nucleon interactions. Thus it follows that during the
expansion of the matter the strangeness content increases rapidly and approaches its equi-
librium value provided matter is in the QGP state. In the case of hadronic matter the
modification of the initial strangeness content is less significant due to the long equili-
bration time. This leads to the expectation that strangeness production should rapidly
increase when the energy transition region is crossed from below.

In the model presented in this paper the role of strangeness is different. The reason
can be found in the assumption concerning the early stage properties. We assume that
due to the statistical nature of the creation process the strangeness in the early stage
is already in equilibrium and therefore possible secondary processes do not modify its
value. As at T = Tc the strangeness density is similar or even lower (depending on the Tc

value) in the QGP than in the confined matter, saturation or suppression of strangeness
production is expcted to occur when crossing the transition energy range from below.

In our model the low level of strangeness production in N+N interactions as compared
to the strangeness yield in central A+A collisions, called strangeness enhancement, can be
understood as due to the effect of strict strangeness conservation (canonical suppression
factor) imposed on the degrees of freedom in the confined matter in the early stage.

5.2 J/ψ Production

Suppression of J/ψ production was proposed as a signal of creation of the QGP in nuclear
collisions [33]. The details of the models used to describe this process changed with time,
but the main line of arguments of relevance here is the same since the first proposal (for a
recent review see [17]). The interpretation of J/ψ results is done within a hard production
QCD model. It is assumed that the creation of J/ψ follows the dependence given by the
production of Drell–Yan pairs, i.e. the inclusive cross section in A+A collisions increases
with A as A2. Deviations from this dependence are interpreted as due to interactions of
the J/ψ (or ‘pre–J/ψ’ state) with the surrounding matter. Suppression of J/ψ observed
in p+A and O(S)+A collisions at SPS is considered to be caused by the interactions
with participant nucleons and produced particles. The rapid increase of the suppression
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observed only for central Pb+Pb collisions is attributed [34, 35, 18] to the formation of a
QGP which leads to a strong additional desintegration of the J/ψ mesons.

This interpretation is in contradiction to the conclusions based on the analysis of
pion and strangeness results within the statistical model. No anomalous change in this
observables is seen between central S+S and cental Pb+Pb collisions (see Figs. 11 and
12). It is therefore essential to understand whether this contradiction can be removed
when the same approach is used to interpret the whole set of data.

It is natural to extend our statistical model to charm production assuming that like
entropy and strangeness, charm in the early stage is produced according to phase space.
We take the mass of the charm quark to be mc

Q
∼= 1.5 GeV and calculate the mean number

of c and c quarks for central Pb+Pb collisions at 158 A·GeV. The early stage volume (2)
for the experimental number of participant nucleons 〈NP 〉 in central Pb+Pb collisions is
approximately V ∼= 200 fm3 and the early stage temperature is 264 MeV (see Fig. 4).
For the number density of charm quarks and antiquarks (gc

Q = 2 · 2 · 3 = 12) we get:

ρc =
gc

Q

2π2

∫

∞

0
k2dk

1

exp
(
√

k2+(mc
Q

)2

T

)

+ 1

∼= gc
Q

(

mc
QT

2π

)3/2

exp

(

− mc
Q

T

)

. (36)

Finally the total average number of charm quarks and antiquarks can be estimated as:

Nc = ρc V ∼= 0.085 fm−3 × 200 fm3 ∼= 17 . (37)

Note that the contribution of c and c to the thermodynamical functions of the QGP was
neglected in the calculations presented in the previous Sections. This is indeed justified by
a large value of the charm quark mass. The contribution of charm quarks and antiquarks
to the energy density can be estimated as εc

∼= ρcm
c
Q
∼= 0.13 GeV/fm3. This value is much

smaller than the total energy density of the QGP, εQ
∼=11 GeV/fm3, in the early stage

of Pb+Pb at the SPS. The inclusion of charm into the QGP equation of state causes a
decrease of less than 1 MeV of the early stage temperature.

The equilibrium number (37) exceeds substantially the estimate given in Ref. [36]
which is based on the assumption of perturbative production of open charm. Recently
the NA50 Collaboration attempted to estimate open charm production in central Pb+Pb
collisions at the SPS using the measured invariant mass spectrum of dimuon pairs [37].
This estimate relies on the assumption (based on the PHYTIA model) that the production
of c and c quarks is correlated. In our statistical model c and c quarks are independent
and therefore their contribution to the dimuon spectrum can not be distinguished from
the background contribution5. Thus results of NA50 on ‘charm–like’ enhancement can
not be compared with our predictions.

Due to the large mass of the charm quark one should consider a possible correction
to the grand canonical approximation due to strict charm conservation. In Fig. 13 we
show the predicted dependence of the charm to entropy ratio on the number of partici-
pant nucleons (2Ap) including a correction for strict charm conservation calculated as in
Ref. [38]. It is observed that even down to low values of 2Ap = 40 the correction is small

5We thank E. Scomparin for pointing to us this property of the NA50 procedure.
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and therefore the charm/entropy ratio is approximately independent of the volume of the
system, similar to the strangeness/entropy ratio.

Analysis of the hadron yields within a statistical hadronization model [23, 24] shows
that hadronization is a local statistical process. Thus one expects that also the ratio of
the mean J/ψ multiplicity to entropy (pion multiplicity) should be volume independent.
This prediction of our model can be checked against experimental data. However as the
results on J/ψ multiplicity are not published, we have to perform ourselves a conversion
of the available data. We start from the ET dependence of the ratio measured by the
NA50 Collaboration [39]:

R(J/ψ) =
Bµµσ(J/ψ)

σ(DY )
, (38)

where σ(J/ψ) and σ(DY ) are inclusive cross sections for production of J/ψ and Drell–
Yan pairs and Bµµ is the branching ratio for J/ψ decay into a µ+µ− pair. As at SPS
energies pion production dominates particle production, the measured transverse energy
is basically determined by the pion transverse energy. The mean transverse momentum
of pions is indepedent of the centrality [40] and therefore ET can be considered to be pro-
portinal to the pion multiplicity or the number of participant nucleons. The multiplicity
of Drell–Yan pairs increases with the centrality as 〈NP 〉4/3 or equivalently as E

4/3
T . Thus

the mean J/ψ multiplicity is expected to increase as:

〈J/ψ〉 ∼ R(J/ψ)E
4/3
T (39)

and consequently the J/ψ multiplicity per pion should be proportional to

〈J/ψ〉
ET

∼ R(J/ψ)E
1/3
T . (40)

The values of R(J/ψ)E
1/3
T are plotted as a function of ET for Pb+Pb collisions at 158

A·GeV in Fig. 14. The ratio R(J/ψ)E
1/3
T (∼ 〈J/ψ〉/〈π〉) seems to be independent of ET

in the whole range of ET . Thus we conclude that the experimental dependence of J/ψ
production on ET in Pb+Pb collisions is in the agreement with the expectation of our
model. It just reflects the statistical character of charm production and the following
hadronization process.

As pointed out in Ref. [24] the particle abundances resulting from hadronization can
be modified by inelastic interactions in the freezeing–out hadronic matter. It is however
argued [17] that the J/ψ hadronic cross sections are small, thus no significant reduction
of the J/ψ yield is expected due to hadronic interactions. This argumentation is however
not valid for ψ′ production for which hadronic cross sections are estimated to be 10 times
larger than for J/ψ and therefore a significant suppression of ψ′ mesons can be observed
[17]. This is usually considered as the reason why the ratio σ(ψ′)/σ(J/ψ) decreases with
ET [17].

We summarize that the effect of the anomalous J/ψ suppression in central Pb+Pb
collisions is a result of the interpretation of the data within the model of hard QCD pro-
duction of J/ψ with following suppression. The same data analyzed within the statistical
approach show no anomalous behaviour and lead to a consistent interpretation of the
results on pion, strangeness and charm production.
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5.3 Event–by–Event Fluctuations

It was recently measured by the NA49 Collaboration [41] that event–by–event transverse
momentum fluctuations in central Pb+Pb collisions at 158 A·GeV are smaller than fluc-
tuations measured in p+p interactions and expected in non–equilibrium models of nuclear
collisions [42, 43]. A decrease of the global fluctuations with the increasing volume of the
system and/or increasing number of internal degrees of freedom is a generic feature of
statistical models [44]. Therefore in our approach one expects a decrese of global fluctua-
tions when going from p+p interactions to central Pb+Pb collisions. The same arguments
lead to the conclusion that the flavour fluctuations should be also reduced in central A+A
collisions in comparison to p+p interactions. The method to analyze these fluctuations
was recently formulated [45].

Finally we expect an increase of the fluctuations in the transition region. This is
because of the additional possibility of changing the relative content of W– and Q–state
in the early stage. An important observable should be the strangeness to entropy ratio as
it is significantly different in W– and Q–state at T = Tc.
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6 Summary and Conclusions

In this paper we further develop the statistical model of the early stage in high energy
nucleus–nucleus collisions. We attempt to understand the possible meaning of the equili-
bration of the created state. We attribute the success of the statistical description of the
early stage of A+A collisions to the statistical nature of primary creation process rather
than to the result of following multiple secondary interactions.

We show that the assumption that the state created in the early stage is in the form
of a Quark Gluon Plasma gives an essentially parameter free description of the data on
pion and strangeness production in central A+A collisions at SPS.

It is argued that the early stage degrees of freedom in confined matter can not be
modeled by hadrons and hadronic resonances. An effective statistical description of the
confined state (W–state) is introduced and the parameters characterizing degrees of free-
dom are extracted from comparison to data.

The transition between W–state and QGP when increasing collision energy is dis-
cussed. It is proven that the condition of maximum entropy is equivalent to the Gibbs
construction of the first order phase transition between W–state and QGP.

The transition region is localized to be between 30 A·GeV and 65 A·GeV for the set of
parameters used in the paper. It is shown that the transition should be associated with
a characteristic increase of pion multiplicity and a non–monotonic energy dependence of
the strangeness to pion ratio. It is also argued that an increase of the event–by–event
fluctuations can be expected in the transition region. Note that anomalies in the space–
time pattern of the matter expansion are also expected due to softening of the equation
of state in the mixed phase [46]. This can be detected by the analysis of single particle
spectra and two particle correlations [47].

Finally we remind that the anomalous J/ψ suppression in central Pb+Pb collisions
at the SPS is a result of the data interpretation within a model assuming that the charm
production is a hard QCD process. We show that the same experimental results are also
consistent with the hypothesis that the J/ψ multiplicity per pion is independent of the
centrality of Pb+Pb collisions, similar to the behaviour of the strangeness/pion ratio.
This behaviour can be reproduced in our approach when the charm production is treated
in the same statistical way as the production of strangeness. It allows for a consistent
interpretation of the results on pion, strangeness and J/ψ production in A+A collisions
at SPS. Data on total charm production are obviously needed to check our assumption of
a statistical nature of the charm production.

We conclude that a broad set of experimental data is in agreement with the hypothesis
that a QGP is created in central A+A (S+S and Pb+Pb) collisions at the SPS. A study
of the energy dependence of several basic observables (pion and strangeness multiplicities,
expansion pattern and event–by–event fluctuations) should be able to uniquely prove the
existence of a phase transition to a Quark Gluon Plasma.
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Appendix A

The properties of the W–state were obtained by an ‘educated guess’ procedure. It is
however still intresting to note that the degrees of freedom in W–state can be identified
with colourless qq pairs. Assuming that the light quarks (u, d) are almost massless we
obtaine 4 nonstrange flavour–antiflavour combinations: uu, dd, du and ud. Each pair
can be in 4 spin states, which gives 16 massless nonstrange internal degrees of freedom.
Similar counting gives 16 different pairs with s or s quark. There are in addition 4 ss pairs
which however can be considered strongly suppressed due to the large mass of strange
quarks. Thus the numbers of non–strange and strange degrees of freedom obtained for
the colourless qq pairs approximately coincide with the corresponding numbers extracted
from the data for the W–state (gns

W ≈ 16 and gs
W ≈ 14).

The reduction of the effective number of degrees of freedom from colored q, q and
g to colour neutral qq pairs may be understood as a result of the requirement of local
colour neutrality imposed on the creation process at low energy density and/or for small
systems.

We note also that the colourless qq pairs are identified as initial degrees of freedom
in the e+ + e− anihilation process by the well known analysis of the ratio σ(e+ + e− →
hadrons)/σ(e+ + e− → µ+ + µ−) [12].

Appendix B

We present here a general proof of the equivalence between Gibbs construction of the
1st order phase transition and the basic condition that the equilibrium state is equal to
the maximum entropy state. The proof is valid when all conserved charges are equal to
zero as considered in the paper. In this case the pressure function, p = p(T ), defines
completely the system thermodynamics provid that the system volume V goes to infinity
(thermodynamical limit). The temperature T remains the only independent thermody-
namical variable. The energy density, ε(T ), and entropy density, s(T ), are calculated
as

ε(T ) = T
dp

dT
− p , s(T ) =

dp

dT
. (41)

A discontinuity of the first derivative, dp/dT , at T = Tc corresponds, by definition, to
a 1st order phase transition at temperature T = Tc. In physical terms one describes the
system at T < Tc by a function p = p1(T ) (low–temperature phase) and by p = p2(T ) at
T > Tc (high–temperature phase). At T = Tc the pressures of the two phases are equal

p1(Tc) = p2(Tc) ≡ pc , (42)

and their first derivatives satisfy the inequality
(

dp2

dT

)

T=Tc

>

(

dp1

dT

)

T=Tc

. (43)

The energy density discontinuity (latent heat) as well as the entropy density discontinuity
take place at T = Tc:

∆ε = ε2(Tc) − ε1(Tc) = Tc [s2(Tc) − s1(Tc)] > 0 . (44)
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At T = Tc the system is in the mixed phase with

εmix = (1 − ξ)ε1(Tc) + ξε2(Tc) , smix = (1 − ξ)s1(Tc) + ξs2(Tc) , (45)

where 1 − ξ and ξ are relative volumes occupied by phases ‘1’ and ‘2’, respectively. The
above construction is known as the Gibbs creteria for a 1st order phase transition: at
a given temperature T the system occupies a pure phase whos pressure is larger. The
mixed phase is formed if both pressures are equal. One considers phases ‘1’ at T > Tc

and ‘2’ at T < Tc as metastable states (superheated and supercooled, respectively). Such
a consideration is physically important in the kinetic picture of a phase transition and
for the studies of statistical fluctuations. We prove now the equivalence of the Gibbs
creteria to the maximum entropy condition of the mixed phase. It claims that at any
energy density ε from the interval [ε1(Tc), ε2(Tc)] the entropy density of the mixed phase
is maximal:

smix(ε) > si(ε) , i = 1, 2 , ε ∈ [ε1(Tc), ε2(Tc)] . (46)

The following equations for the entropy densities of the pure and mixed phase can be
easily obtained from Eq. (41):

si =
ε+ pi(T )

T
, i = 1, 2 ; smix =

ε+ pc

Tc

. (47)

Now the values of s1 and s2 should be compared to the value of smix at the same ε from
the interval [ε1(Tc), ε2(Tc)]. This means that the comparison is done at the temperature
of a pure phase T > Tc for i=1 and T < Tc for i=2 in Eq. (47). The inequalities (46) can
be transformed into

dp1

dT
>

p1(T ) − pc

T − Tc
, T > Tc , (48)

dp2

dT
<

pc − p2(T )

Tc − T
, T < Tc (49)

by substituton of ε in Eq. (47) by Tdpi/dT −pi(T ) according to Eq. (41). Simple geomet-
rical meaning of these inequalities is quite clear: they are satisfied for any convex (from
below) function pi(T ). Any physical pressure function p(T ) should have positive second
derivative, d2p/dT 2 > 0, and, therefore, is indeed a convex function. To prove this last
statement we use the relation

d2p

dT 2
=

1

T

dε

dT
, (50)

which follows from Eq. (41). Positive sign of dε/dT is a consequence of the definition of
energy in statistical mechanics:

ε =
〈E〉
V

=
1

V

∑

nEn exp(−En/T )
∑

n exp(−En/T )
. (51)

From Eq. (51) one finds

dε

dT
=

1

V

d〈E〉
dT

=
〈E2〉 − 〈E〉2

V T 2
=

〈(E − 〈E〉)2〉
V T 2

> 0 . (52)
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[16] J. Bächler et al. (NA49 Collaboration), Status and Future Programme of the NA49

Collaboration, CERN/SPSC 98–4 (1998).
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Figure 1: Energy density and pressure divided by T 4 as a function of temperature T .
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Figure 2: Relation between laboratory momentum per nucleon and the Fermi–Landau
energy variable F . The values of F for pLAB = 5, 10, 15, 40, 80, 160 and 200 A·GeV are
0.99, 1.43, 1.71, 2.47, 3.10, 3.82 and 4.08 GeV1/2, respectively.
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Figure 3: The early stage energy density as a function of F . The values of ǫ for F =
0.99, 1.43, 1.71, 2.47, 3.10, 3.82 and 4.08 GeV1/2 are 0.20, 0.47, 0.77, 1.71, 2.36, 5.03,
10.53, and 13.32 GeV/fm3, respectively.

28



Figure 4: The early stage temperature as a function of F . The values of T for F = 0.99,
1.43, 1.71, 2.47, 3.10, 3.82 and 4.08 GeV1/2 are 123, 151, 169, 203, 217, 264 and 281 MeV,
respectively.
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Figure 5: The fraction of volume occupied by a QGP as a function of F .
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Figure 6: The entropy per participant nucleon as a function of F (solid line). Dashed
line indicates the dependence obtained assuming that there is no transition to the QGP.
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Figure 7: The ratio between the entropy calculated within our model and the entropy
obtined assuming absence of the phase transition to the QGP.
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Figure 8: The ratio of the total number of s and s quarks and antiquarks to the entropy
(solid line) as a function of F . The dashed line indicates the corresponding ratio calculated
assuming absence of the phase transition to the QGP.
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Figure 9: The 〈Sπ〉/〈NP 〉 ratio as a function F . Experimental data on central collisions
of two identical nuclei are indicated by closed circles. These data should be compared
with the model predictions shown by the solid line. The open boxes show results obtained
for nucleon–nucleon interactions.
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Figure 10: The ratio ES as a function F . Experimental data on central collisions of
two identical nuclei are indicated by closed circles. These data should be compare with
the model predictions shown by the solid line. The open boxes show results obatined for
nucleon–nucleon interaction, scaled be a factor 3.6 to match A+A data at AGS energy.
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Figure 11: The 〈Sπ〉/〈NP 〉 ratio as a function 〈NP 〉 for central S+S and Pb+Pb collisions
at 200 A·GeV and 158 A·GeV. The results are not corrected for a small difference in the
collision energy (see Fig. 9). The model prediction is shown by the solid line.
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Figure 12: The ratio ES as a function 〈NP 〉 for central S+S and Pb+Pb collisions at
200 A·GeV and 158 A·GeV. The results are not corrected for a small difference in the
collision energy (see Fig. 10). The model prediction is shown by the solid line.
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Figure 13: The ratio of charm to entropy as a function of the the number of participant
nucleons (2Ap) for A+A collisions at 158 A·GeV. The canonical suppression factor is
included in the calculation.
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Figure 14: The estimate of the transverse energy dependence of the J/ψ multiplicity
per pion in collisions at 158 A·GeV. The closed points show final 1995 data and the open
points preliminary 1996 data of the NA50 Collaboration. The dashed line is drawn for
the reference.
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