Block Reduction for Arbitrary Norms

MicHAEL KAIB* and HARALD RITTER'

Fachbereiche Mathematik / Informatik, Universitdt Frankfurt
60054 Frankfurt am Main, Germany

Abstract

We generalize the concept of block reduction for lattice bases from the ls—norm to
arbitrary norms. This extends the results of Schnorr [S87, S94]. We give algorithms
for block reduction and apply the resulting enumeration concept to solve subset sum
problems. The deterministic algorithm solves all subset sum problems. For up to 66
weights it needs in average less than two hours on a HP 715/50 under HU-UX 9.05.

1 Introduction

Several NP—complete problems can efficiently be reduced to the problem of finding shortest
lattice vectors with respect to the loc—norm (subset sum, 3-SAT, ...) or the /;—norm (inte-
ger factorization). The known lattice basis reduction concepts and algorithms are based on
the Euclidean norm. The first concepts of Lagrange, Gauf§ and Dirichlet (1773-1850) were
developed for low dimensions. The concept of Hermite, Korkine and Zolotarev (1850/73)
is strong and algorithmically motivated, but still impractical for higher dimensions. A suc-
cessful efficient but weak concept was introduced by Lenstra, Lenstra and Lovasz [LLL82].
Schnorr [S87] linked Lovasz and Hermite’s definitions to obtain a flexible hierarchy of con-
cepts, named block reduction. Recently some reduction concepts were generalized to arbi-
trary norms, namely the Lovdsz—Hermitean by Lovédsz and Scarf [LS92] and the Gaussian
by Kaib and Schnorr [KS94]. In this paper we generalize the strong and efficient concept
of block reduction to arbitrary norms. We prove bounds for the quality of block reduced
bases and give algorithms to construct them efficiently.

We show that a (-block reduced lattice basis bi,...,b, satisfies the inequalites

i—1 m—1

Hi?’ng U< b/ < % kg #=1 for arbitrary norms, where the ); denote the
successive minima and /@% is a generalization of the Hermite constant .
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As practical result we can solve all subset sum problems. Up to dimension 66 the deter-
ministic algorithm needs average time less than two hours on a 13.2 MFLOPS workstation.
The previous algorithms like the Schnorr—Euchner—algorithm [SE91] only solve a substantial
fraction of random subset sum problems.

2 Block Reduced Bases

Given a lattice basis b1,...,b;, € R® and an arbitrary norm ||.|| we define the distance
functions Fj(z) = ming, ¢ erllz + E;;ll &bj|| forallz € R* and i =1,...,m.

Theorem 1. FEvery basis bi,...,b, € R" of a lattice L satisfies

m 1/m
min Fy(b;) < M(L) < (m! IE (b,-)) :
=1

i=1,...,m

Proof. The proof of the left—hand inequality follows the proof for the case of the Euclidean
norm. For the right-hand inequality let V;, = voly, {z € spanL | ||z || < 1} denote the
m-~dimensional volume of a ball with radius 1. By Minkowski’s first Theorem we have the
inequality A"V, < 2™ det L. The Theorem now follows from the inequalities

2 HiS EM) Qm’
m! Vi, — det L = Vi

which hold for any basis (see [K94], Lemma 5). O

m 1/m
We define the constant k,, to denote the supremum of A\ (Zbi+---+Zby,) / (H F; (bz))
i=1

over all lattice bases by,..., by, and all norms on span(bi,...,by,). Here A\;(L) denotes the
first successive minimum of the lattice L. For the Euclidean norm we have [[;%; F; (b;) =
det L. The Hermite constants -y, are defined as the supremum of A?(L) det(L) 2/™ over all

™m 1/m
lattices L of dimension m. Hence the inequality Ai(L) < /7m (H F; (bz)) holds for
i=1

the [s-norm. For the ls-norm this inequality is sharper than the upper bound of Theorem
1. Theorem 1 shows that

m
— < < < mit/m =
5 (1+0(1) < V7, < bm < m .

Definition 2. A lattice basis b1,...,b, € R* is called Hermite reduced, if
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Fi(b;)) = min{F;i(b) | b€ Zbj+ ... +Zbyp —0} for i=1,...,m .

Definition 3. A lattice basis by,...,b, € R" is called [-block reduced with 6, % <6<1,
if for i=1,...,m

o OF;(bi) < min{F;(b) | b€ Zb;i+...+ Lbyiniitg-1,m) —0} and
o Fj(b;) < Fj(b;xbj) forallj<i.
It is called [-Dblock reduced if it is [F—block reduced with § = 1.

For 8 =1 the first condition is empty. A basis by,...,b, € R* is called size reduced
whenever the second condition is true. It is S-block reduced iff it is size reduced and all
blocks b;,...,b;1; of j+1 successive vectors are Hermite reduced with respect to the norm
F;forj < B, i4+7 < m. For 3 =m every $—block reduced basis is Hermite reduced. For
B = 2 we call them Lovdsz reduced with § (such bases were introduced for the Euclidean
norm by Lenstra, Lenstra and Lovéasz [LLL82] and studied for arbitrary norms by Lovész
and Scarf [LS92]).

For the Euclidean norm, we know from Schnorr [S87, S94] that [S-block reduced bases
b1,...,bym € R® of a lattice L satisfy the inequalities

m—1
101 1ly < agy" M(L) (1)

for f—1|m—1 and

-

2 = i+3 3=

Here oy 2 is defined to be the supremum of || by ||/Fj(bx) over all Hermite reduced lattice
bases by, ..., b, with respect to the lo—norm and oy is the supremum of the same expression
over all Hermite reduced lattice bases b1,...,b; and all norms. We always have af <
ap+1 since the basis bo,...,b; € RFFD with by = Areg+1 is Hermite reduced with respect

m m
to the norm || Y zib; ||~ := max(|| 3 zibi ||, |zo| A1) whenever the basis by,..., by €
=0 i=1

span{ey,..., e} is Hermite reduced with respect to the norm || - ||.

We first generalize Inequality 1 for arbitrary norms:

Theorem 4. Every B-block reduced basis by,...,b, € R" of a lattice L satisfies

12541
o0 ]l < ag”™" M(L) .



Proof. Let h; := Fj(b;) for i =1,...,m and choose p € {1,...,m} such that h, =
minh; . From min;— _, Fi(b;) < X we get hy, < Ay . The bases b;,...,b;; are
Hermite reduced with respect to the norm F; for 0 < j < 3, 1 +j < m . Since the oy are
monotonically increasing we have the inequalities

hi < aghiy;
for 0 <j < B, i+ 7 <m . This implies

=y =y
hi1 < aﬂh1+([3—1) < ... < ag hlﬂ’;%ﬂ“*” < ag hﬂ . O

For the constants ag it is known that oy = 2 [K94]. For 3 > 2 Schnorr [S87, S94p| proved

1+4log B

aga< B2, ag < B(B-1)slD (3)

Inequality 2 is much stronger than the combination of the bound for ay s with Inequality
1. This also holds for our generalization of Inequality 2 for arbitrary norms:

Theorem 5. Every B-block reduced basis bi,...,b, € R* of a lattice L satisfies

_9gi=1 . g m=1
2§¢§m:i+i1n§ el el ) e 1<i<m
1<i<3 - = - N T Hl m-B+1<i<m

Proof. We first prove two lemmata to get the right inequality for ¢ = 1:

Lemma 6. Every f-block reduced basis by,...,bp, € R of a lattice L satisfies

B-1 \FETD ., X
. B—-1 m—
1ol < [T & Ry Mk Fib).

=1 i=m—pF+1

Proof. Let h; = F;(b;). By definition the following inequalities hold:

BY < K'hy---hy, fori=1,..,8—1 and

>
®
IN

Ky i higgy, fori=1,..,m—§.
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Multiplication of these inequalities yields

(5“)

—1 —
[y AR = o N AR N AL (0L SRRy LA Mt MPRERY LA
and this implies
%) -1 -
h?' < Ii% KZ% “2—1 Kjﬁ(m B8) hm ﬂ—|—1 h71n 13
_ ()
< k1R KT R ﬂ)( Max F(b)) o O
i=m—[0p+1

Lemma 7. Every —-block reduced basis by,...,b, € K" of a lattice L satisfies

B=1 N\ BB |, mg
el < (I1 /) w57t @)

=1

Proof. The lemma follows from Lemma 6 by induction over m. For m = [ the lemma
holds by definition 3. Let now b = r1b1 +. ..+ 7r,,b,, be a shortest lattice vector. For r,,, =0
the claim holds by assumption. For 7, # 0 we have the inequalities

ML) = |lo|l = Fi(b) = Fi(b;) form—pB+1<i<m,

and the lemma follows with Lemma 6. O

Tteration of the inequality /ﬂ%ﬁ > 2kt [K94] yields the first inequality of the theorem by

Lemma 7:

—_

Ionll < & an 50 (D). (4)

[\

Proof of the right inequality of Theorem 5. For every j < m the basis bj,...,b, is
B-block reduced with respect to the norm F;. Hence Fj;(b;) = A1 F;(Zbj+ ...+ Zby) for
m—F+1<j<m and, by Inequality 4:

g m=1
Fj(bj) < %Iiﬁﬂ_l )‘I,Fj(ij+---+me)-



for 1 <4 <m . In addition, we have A; 5 (Zbj+ ...+ Zbp) < Aj(L) < N(L) for j<i.
The upper bound is now a consequence of the inequality

i—1

161 < B + 5 3 Fy(by) 5
j=1

We show the correctness of Inequality 5 for any size reduced basis: Let Fj(b; + &b;) =
miIlge]R Fj(bi + gbj) = Fj+1(bi) . The fact that F](bz) < Fj(b,‘ + bj) for j <1 implies
Fj(bi) = min Fj(b; + ubj)
Fj(bi + [£0105)
Fj (bi + &obj + ([So] — o) b5)
1
Fjp1(bi) + 2 Fj(bj) ,

IN

IN

since F; is a norm. Successive application of this inequality for j = 1,...,7 —1 shows
inequality 5.

Proof of the left inequality of Theorem 5. By definition of the successive minima and
because of Inequality 5 we have

i
Ai < max || b || <

Theorem 5 is now a consequence of the inequalities F;(b;) < || b; || for i—8+1 < j <4 and

i—J

T forl<j<i. (6)

2
F;(b;) < % Kg
The Inequalities 6 are obvious: every basis b;,...,b; is #-block reduced with respect to
the norm F;. Hence Lemma 6 bounds the first heights for 1 < j <i— 38+ 1 by the last
ones:

R |
Fi(b;) < g, P71 Fy(by) .
(b)) < 5 kg h:%l_agiﬂ n(bn)

By definition 3 the last heights for ¢ — 8+ 1 < j <14 we get the inequalities

Fi(b;) < Fj(b) < [ bill - 0



3 Algorithms for 8—Block Reduction

Algorithm B-Block Reduce
INPUT: by,...,by, € 2™, 6 with1/2<6<1, fwith2<F<m
1. size reduce by,...,by, j:=m—1,2:=0
2. WHILE z<m —1
j=3j+1, IFj=mTHEN j=1
k:=min(j + 5 —1,m)
ENUM(j, k) (this finds the minimal place (u;,...,u;) € Z¥~9+1 — gk—d+1
and the minimal value Fj = F;(35_; usb;)
and also b2V 1= Y u;b;)
h := min(k + 1,m)
IF Fj < 6F;(b;)
THEN extend by, ...,bj_1, 05"

to a basis b1, ..., bj—1, 05", ..., b3 of L(b1,...,bn)

size reduce by, ..., bj—1,05", ..., Op, 2:=0
ELSE size reduce bq,...,b,
z:=z+1

END while
OUTPUT: by, ..., bm

COMMENTS. 1. Throughout the algorithm the integer j is cyclically shifted through
the integers 1,2,...,m —1. The variable z counts the number of positions j that satisfy the
inequality 6F;(b;) < Fj. If this inequality does not hold for j then we insert 67 into the
basis, we size reduce and we reset z to 0. The integer 7 = m is skipped since the inequality
always holds for j = m. Obviously a basis by, ..., by, is f—block reduced with ¢ if it is size
reduced and z = m — 1. Therefore the algorithm produces, up to floating point errors, a
basis that is G—block reduced with 6.

2. We can extend b1,...,b5-1,b65"" to a basis bi,...,bj—1,b65"", ..., p" of the lattice
L(b1,...,bn) using the coefficients u; in the representation b7 = Z?:j u;b;. For this we
compute T' € GLp—j+1(Z) with [uj,...,up|T = [1,0,...,0] and we set [b;°,... 5] :=

[bj, ceey bh]T_l.

ENUM(j,k) i
1. (uj,...,uk) = (1,0,... ,0),(ﬁj,...,ﬂk) = (1,0,... ,0),8 =1:= j,b;-lew = bJ,FJ = F](bj)
2. WHILE t < k
IF Ft(z ﬁzbz) < Fj
=

1=
THEN IF t > j
THEN t:=t -1



s s
find z € R with Ft(zbt + > ’[Lzbl) = Ft+1( > ﬂlbz)
i=t+1 =t+1
ly == I_ZJ,’I‘t =L+1
IF Fy(lbe + > aibi) < Fy(reby+ 30 ibi)
i=t+1 i=t+1
THEN th = lt,lt = lt -1
ELSE i :=ry, 1 =1 + 1

S _
ELSE (uj, ... ,ug) i= (ibj, ... i), B i= 3 by, By := Fj(51v)
=7
ELSE t:=1 + 1

IFt>s
THEN ﬂt = ﬂt + 1
s =1
ELSE
s s
IF Ft(ltbt + Z ﬁzbz) < Ft(’l'tbt + ' z ﬁzbz)

1=t+1 1=t+1
THEN ﬂt = lt, lt = lt -1
ELSE i, :=r¢,mp =14 + 1

END while
Output: (uj,...,ux), F}, b7
The minimum of F} is searched in the sublattices L(b;,...,bs) with increasing s. In every

stage of the algorithm we have 4; > 0, i.e. the vector by is used positively for the search. This
prevents redundancies during the enumeration. At every step t of algorithm ENUM(j,k)
we have already fixed the integers @11,...,%s. We enumerate the integers 4; in order of
ascending values Fy(>-7_, @;b;). For this purpose we calculate a real number z for which
Fy(2by + >°i_4,1 @;b;) is minimal. An integral minimal place i; is one of the integers [; =
|z] or ry = [z] because of convexity. If Fy(lsby > j_; 1 @sb;) > Fj(zf:j u;b;), then this
inequality holds for all 4; < [;, i.e. we can stop the enumeration to the left. Similiarly
we can stop the enumeration to the right whenever Fy(rib; + Y77, i;b;) > Fj(Zf:j u;by).
When enumeration of l; (r;) is finished we look at I; — 1 (4 + 1) instead. The complexity
of computing F; and the corresponding coefficient z as well as the number of computations
of F; is crucial for the complexity of the whole algorithm.

4 Enumeration with Respect to [,—Norms

With respect to the Euclidean norm we can efficiently calculate z € R and F;. For this we

bib; 1, i g o
define i = %, ’lri(bj) = bj — Z;:% Mi,tbta b]' = Wj(bj), ¢ =< bj,b; >= ||sz% and

& = |lm(Xk, abi)|[3 for 1 < 4,j < m. We obtain z = — YK,y @ipiy, FATE, @:b) =
ét = ét+1 + (ﬂt + Z)Qct.



For general [,—norms we use the fact that all norms on R" are equivalent. There exist
constants rp, R, > 0 such that for all z € R* 7p||z||p, < ||z|l2 < Rp|z||p-

With wy = wt(ﬂt,...,ﬁk) = wt(Zéc:t ;b;), Qp1 =1 and Qp; := Ry/rp for j > 1 we get
wy = Wiy + (U +ye)be and |[mj(2)[lp < Qi (mj(x))-

Lemma 8. If, for fized (ii,...,0x) € Z* UL, there is some (iij,...,d—1) € Z'" 1 with
Fj(Zf:j U;b;) < Fj(bj), then the following inequality holds for all A, ..., Ay, € R:

m m
D Xl < QpiFi(by)] D iwillq (7)

i=t i=t
Proof. For fixed (4y,...,u;) we enumerate vectors w; on stages 1,...,0 — 1 which are all

in the hyperplane orthogonal to w;. We have w; —w; L w; for i < [, i.e.
< wi,wy > — < w,w >=< w; —w,w; >=0. (8)

If we can complete (4, ...,Ux) to (@j,...,4;) with 0 < Fj(w;j) = Fj(Zf:j w;b;) < Fj(bj),
then |lwil|3 < Qp;jFj(w;)||lwillq for i = ¢,...,m because of | < wj,w; > | < ||wjllpllwillg
(Hélder’s inequality, 1/p +1/¢ = 1) and |lwj|, < Qp;Fj(w;). We obtain

k k k k
|E)‘iéi| = |Z/\i<wi,w,->|=|Z)\,-<w,-,wj>|=\< Z)\iw,—,wj>|
i=t i=t i i=t i=t
m
< lwslloll X Aiwilly < @pF(B)ll 2 Aswilly- m
1= 1=
The main goal is an optimal selection of vectors (A, ..., Ag) for which we test Inequality 7.

Some special vectors:

o (At,...,Ax) = (1,0,...,0): Compare & and Qp ;F;(b;)||wi|lq- This linear test will
result in a search tree which is (for p = 1 and p = 00) exponentially smaller than the
full enumeration tree (no pruning) without any additional test.

o (Ar,..., k) = (A 1—=X0,...,0) with XA €]0,1[: For the whole line Aw; + (1 — A)wyt1
we need Aé + (1 — A)éq1 < Qp i Fj(b))||[Awe + (1 — A)wit1]|q, especially for all points
w) between wyy1 and wy. These points were enumerated before wy.

Because of |[Aw; + (1 — Nwyi1]|3 < A& + (1 — A)éy1 we can stop the enumeration in
direction w; — w41 as soon as the test with (1,0,...,0) causes a break.



Algorithm ENUM,,
INPUT j,k,7,p,¢, Rp, Qpj> i iy b fori=j,....kand p;, forj <t<i<k
l.s:=t:=j, dj:=u;:=1, yj:=40;:=0, nj:=6;:=1, w;:=(0,...,0)
FORt=j+1,...,k+1
Gii=u =0 =y = A =0, := 6 :=1, w;:=(0,...,0)
F = Fj(bj), F = Rng
2. WHILE t < k
Gt 1= Coy1 + (ye + )2y
IF ¢ < F
THEN wy := w1 + (yt + ﬂt)i)t
IF ¢ > j
THEN IF PRUNE(t, s,n, F,wy, ... wg, &1, .. ., &5, 4 Qpi) =1
THEN IF . =1 THEN GOTO 3.
ne = ]., At = —At
IF Atét Z 0 THEN At = At + 515
ﬂ,t = U + At
ELSE t:=t—1, m:=Ap:=0, o= > fiptiy
i=t+1
Up := vy := [—y)
IF 4y > —y THEN §; := —1
ELSE é6; :=1
ELSE IF Fj(w;) < F
THEN u; :=a; fori=3,...,s
F = Fj(wj),ﬁ := R2F?

3. ELSE t:=t+1
s := max(t, s)
IF N = 0

THEN At = —At
IF Atét Z 0 THEN At = At + (5,5
ELSE At = At + (St
th = U + At
END while
OUTPUT (uy, ..., up), F, b2 = Yo7 usb;

Algorithm PRUNE(t,s,n, F, w¢,..., Ws, &,...,Cs,q, Qp,j):
s s _ s
Test for several (A, ..., As) with Ay # 0 and Y A;é > 0, whether Y- A& < Qp ;i F|| 2- Aiwil|q-
i=t i=t

1=t

If the inequality doesn’t hold for any (A, ..., As) then return 1, else return 0.

Remark 9. 7, indicates the number of directions in which the enumeration is already
stopped at stage t. Whenever 7, = 1 and PRUNE(¢,...) = 1 we can increase ¢ by 1.
We avoid redundancies by choosing #s > 0 and initialize n; = 1. We shrink the choice
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of (At,...,As) to the case A\ # 0, Y ;_;Ai¢; > 0 to simplify the algorithm. If we allow
arbitrary (A¢,...,As) we have to decide in which direction we can stop the enumeration.

In the case of p = 2 PRUNE(,...) is always 0. Hence we can simplify the algorithm. We
don’t need the vectors w; and 7.

5 Solving Subset Sum Problems

Given positive integers ai,...,an,s we wish to solve the equation ) ;' ; z;a; = s with
Z1,...,Z € {0,1}. As in [SE91] we assume the existence of a solution and the knowledge
of g := 31" ; ;. We consider the following lattice basis:

1 1 1 -+ 1 25 2
0 2 0 0 2a; 2
B = (by, 7bn+l)T =10 0 2 0 2a9 2
0o .- 2 2a, 2

Without knowledge of g we have to remove the last column of the basis. In this case the
running time is moderately higher (in average we lose a factor 2). Every lattice vector
b = Y b, with ||b| = 1 yields a solution of the subset sum problem. The follow-
ing deterministic lattice basis reduction algorithm is designed to solve ewery subset sum
problem:

1. L3 reduce B with § = 0.99 and 5 deep insertions. Test for a solution after every
reduction step. For details, see [SE91].

2. Transform the basis to get only two vectors with nonzero entries in the last two
columns. Delete these vectors and the last two columns (the deleted vectors cannot
yield any solution).

3. B-block reduce B with 6 = 0.99 and 5 deep insertions. Test for a solution after every
reduction step. For details, see [SE91].

4. Call algorithm ENUM,, with j =1, k =n —1, p = 0o, ¢ = 1; initialize F with1+e€
and stop the enumeration as soon as a vector with /oc—norm 1 was found. (We have
Roo =1, 7o =1 and Qoo = 1.)

Steps 1 and 3 are done with respect to the Euclidean norm. For general subset sum problems
up to dimension 66 we can restrict the test PRUNE(t,...) to (As, ..., Ax) = (1,0,...,0).

11



Practical Results.

We compare the new results with the results of Schnorr—Euchner

[SE91]. For every dimension n and every bitlength b (of the weights a;) we generated 20
random problems with g = n/2 as follows: Pick random numbers ay,...,a, in the interval
1, 2”], pick a random subset I C {1,...n} of size g, set s = Y, a;. The probabilistic algo-
rithm of Schnorr-Euchner permutes the basis before f-block reducing it (partially pruned)
with respect to the Euclidean norm. This will be done at most 16 times. The running times
give the average CPU-time per problem on a HP Apollo 715/50 (13.2 MFLOPS). The times
of the Schnorr—Euchner statistic are converted to this computer type.

Schnorr—-Euchner new
block size 50, pruned block zize 30, no pruning
n b succ. succ. rounds time succ. succ. succ. time

round 1 total h:mm:ss BKZ Enum total h:mm:ss
66 34 20 20 20 0:01:34 20 0 20 0:00:29
66 42 20 20 20 0:06:22 17 3 20 0:13:39
66 50 10 19 78 0:36:08 11 9 20 1:50:54
66 58 9 14 119 1:28:10 13 7 20 1:11:45
66 66 10 19 70 1:14:17 12 8 20 1:06:17
66 72 18 20 26 0:31:21 17 3 20 0:18:42
66 80 20 20 20 0:15:16 19 1 20 0:04:05
66 88 20 20 20 0:14:28 20 0 20 0:02:20

[ P Il 127 [ 152 ] 373 | [ 129 J 31 [ 160 ] |
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