
Johann Wolfgang Goethe-University Frankfurt am Main

Faculty 12 - Computer Science and Mathematics

Thesis - Bioinformatics (M.Sc.)

Intrinsically Motivated Agents
for Goal Discovery

in High Dimensional State Spaces

Author: Nico Bohlinger

Duration: 25.11.2022 - 25.05.2023

Creative Commons - CC BY - Namensnennung 4.0 International

Zusammenfassung

Goal-Conditioned Reinforcement Learning (GCRL) ist ein beliebtes Frame-
work, um Agenten zu trainieren, welche mehrere Aufgaben in einer Ler-
numgebung lösen können. Es ist entscheidend einen Agenten mit vielfälti-
gen Zielen zu trainieren, sodass er lernt zu generalisieren, um auch un-
bekannte Ziele erreichen zu können. Deshalb versuchen aktuelle Algo-
rithmen, den Agenten so zu trainieren, dass er lernt Ziele zu erreichen,
während er gleichzeitig die Umgebung nach neuen Zielen erkundet (Aubret
et al., 2021; Mendonca et al., 2021). Dies erzeugt eine Form des promi-
nenten Exploration-Exploitation Dilemmas. Um den Druck von einem
einzelnen Agenten zu nehmen, der zwei konkurrierende Ziele gleichzeitig
optimieren muss, schlägt diese Thesis die neue Algorithmenfamilie Goal-
Conditioned Reinforcement Learning with Prior Intrinsic Exploration (GC-
π) vor, welche die Exploration und das Ziel-Lernen in getrennte Phasen
aufteilt. In einer ersten Explorationsphase erkundet ein intrinsisch mo-
tivierter Agent die Umgebung und sammelt einen großen Datensatz von
Umgebungszuständen und Aktionen. Dieser Datensatz wird dann verwen-
det, um einen Repräsentationsraum zu lernen, welcher als Distanzmetrik
für das zielbedingte Belohnungssignal dient. In der letzten Phase wird eine
zielbedingte Policy mit Hilfe des Repräsentationsraums trainiert und die
Trainingsziele werden zufällig aus dem Datensatz ausgewählt, der während
der Explorationsphase gesammelt wurde. Mehrere Variationen dieser drei
Phasen werden ausführlich in der klassischen Ant-Maze MuJoCo Umge-
bung (Nachum et al., 2018) evaluiert. Die finalen Ergebnisse zeigen, dass
die vorgeschlagenen Algorithmen in der Lage sind, die Lernumgebung
vollständig zu erkunden und alle Evaluierungsziele zu erreichen, während
sie jede Dimension des Zustandsraums für den Zielraum verwenden. Dies
macht den Ansatz flexibler im Vergleich zu anderen GCRL Algorithmen
aus der Literatur, welche nur eine geringe Anzahl der Dimensionen für die
Ziele verwenden (S. Li et al., 2021a; Pong et al., 2020).

Abstract

Goal-Conditioned Reinforcement Learning (GCRL) is a popular framework
for training agents to solve multiple tasks in a single environment. It is cru-
cial to train an agent on a diverse set of goals to ensure that it can learn to
generalize to unseen downstream goals. Therefore, current algorithms try
to learn to reach goals while simultaneously exploring the environment for
new ones (Aubret et al., 2021; Mendonca et al., 2021). This creates a form
of the prominent exploration-exploitation dilemma. To relieve the pres-
sure of a single agent having to optimize for two competing objectives at
once, this thesis proposes the novel algorithm family Goal-Conditioned Re-
inforcement Learning with Prior Intrinsic Exploration (GC-π), which sep-
arates exploration and goal learning into distinct phases. In the first ex-
ploration phase, an intrinsically motivated agent explores the environment
and collects a rich dataset of states and actions. This dataset is then used to
learn a representation space, which acts as the distance metric for the goal-
conditioned reward signal. In the final phase, a goal-conditioned policy is
trained with the help of the representation space, and its training goals are
randomly sampled from the dataset collected during the exploration phase.
Multiple variations of these three phases have been extensively evaluated
in the classic AntMaze MuJoCo environment (Nachum et al., 2018). The fi-
nal results show that the proposed algorithms are able to fully explore the
environment and solve all downstream goals while using every dimension
of the state space for the goal space. This makes the approach more flexible
compared to previous GCRL work, which only ever uses a small subset of
the dimensions for the goals (S. Li et al., 2021a; Pong et al., 2020).

Contents

List of Figures III

List of Tables VI

List of Abbreviations VII

1. Introduction 1
1.1 Motivation . 1
1.2 Aim and Objectives . 3
1.3 Outline . 4

2. Fundamentals & Related Work 5
2.1 Reinforcement Learning . 5
2.2 Deep Reinforcement Learning Algorithms 7
2.3 Exploration-Exploitation Dilemma 9
2.4 Intrinsic Motivation . 11
2.5 Goal-Conditioned Reinforcement Learning 13
2.6 Representation Learning . 15

3. Problem Setup 18
3.1 Agent: Ant . 18
3.2 Environment: Maze . 19
3.3 Framework: RL-X . 21

4. Goal-Conditioned RL Baseline 25
4.1 Simple Reward . 25
4.2 Representation-based Reward 27
4.3 Goal Buffer . 30

5. Goal-Conditioned RL with Prior Intrinsic Exploration 32
5.1 Prior Intrinsic Exploration . 32
5.2 Offline Representation Learning 40

5.2.1 SimCLR . 40

I

Contents

5.2.2 Temporal Distance . 48
5.2.3 Information Retention 56

5.3 Goal-Conditioned Policy Learning 58
5.3.1 Offline Learning . 58
5.3.2 Online Learning . 62
5.3.3 Subgoal Trajectories . 66

6. Conclusion 73
6.1 Summary . 73
6.2 Limitations & Future Work . 75

Bibliography 77

II

List of Figures

2.1 The standard agent-environment interaction loop of RL . . . 6
2.2 Truncated estimation of the return distribution in TQC . . . 9
2.3 Flow through the architecture of SimCLR 17

3.1 Views of the ant robot . 19
3.2 Sizes of the maze environment 19
3.3 Seven evaluation goals in the u-shaped AntMaze environment 20
3.4 Relative computational performance of RL-X compared to SB3 24

4.1 Simple bases for the reward calculation 26
4.2 Learning all seven evaluation goals with state space reward 27
4.3 Different representation learning setups 28
4.4 Learning all seven evaluation goals with SimCLR represen-

tations without tanh . 29
4.5 Learning all seven evaluation goals with SimCLR represen-

tations with tanh . 29
4.6 SimCLR leads to ever-growing representations 30
4.7 Starting and final distances to goals sampled from the goal

buffer . 31

5.1 Visitation map of RND after 10M steps 36
5.2 Visitation map of NovelD after 10M steps 36
5.3 Visitation map of E3B after 10M steps 37
5.4 Visitation map of NovelD + E3B after 10M steps 37
5.5 Visitation map of RND after 100M steps 39
5.6 State density map of RND . 39
5.7 Distance heatmap for (8,0) for one consecutive state as posi-

tive pair . 41
5.8 Distance heatmap for (8,0) for four consecutive states as pos-

itive pairs . 42
5.9 Distance heatmap for (0,0) for temperature 0.1 43
5.10 Distance heatmap for (0,0) for temperature 1.0 44

III

List of Figures

5.11 Distance heatmap for (8,4) for batch size 512 45
5.12 Distance heatmap for (8,4) for batch size 16382 46
5.13 Distance heatmap for (0,8) for the final SimCLR model . . . 47
5.14 Distance heatmap for (0,8) for the default temporal distance

setup . 48
5.15 Distance heatmap for (0, 8) when adding 10 cheated states . 49
5.16 Distance heatmap for (0,8) when adding 50 randomly sam-

pled states from the visited state space 50
5.17 Distance heatmap for (0, 8) when adding 50 randomly sam-

pled states from the dataset . 51
5.18 Heatmap of the log-likelihood of the GMM for random sam-

pled states . 52
5.19 20% of the states with the lowest log-likelihood of the GMM

where only x, y is varied . 53
5.20 20% of the states with the lowest log-likelihood of the GMM

where all dimensions are varied 54
5.21 Distance heatmap for (0,8) when adding 50 states sampled

with the lowest log-likelihood from the GMM 55
5.22 Training loss on the information retention task 57
5.23 Differences of x,y dimensions on the information retention

task . 57
5.24 IQL with reward in representation space or x,y space 60
5.25 CQL with reward in representation space or x,y space 61
5.26 Offline TQC with reward in representation space or x,y space 61
5.27 Performance of cheated temporal distance representation with

evaluation goal sampling . 63
5.28 Performance of basic temporal distance representation with

evaluation goal sampling . 63
5.29 Performance of SimCLR representation with evaluation goal

sampling . 64
5.30 Performance of cheated temporal distance representation with

dataset states as goals . 65
5.31 Illustration of the best subgoals and trajectory for the goal (0,8) 67
5.32 Performance of the subgoal setup with evaluation goal sam-

pling . 68
5.33 Performance of the subgoal setup with dataset states as goals 69

IV

List of Figures

5.34 Loss curves for the pre-training of the high level policy . . . 71
5.35 Performance with the pre-trained high level policy 72

V

List of Tables

3.1 Algorithms in RL-X . 22
3.2 Environments in RL-X . 23

VI

List of Abbreviations

AE Autoencoder.

BIC Bayesian Information Criterion.

CLTT Contrastive Learning Through Time.

CQL Conservative Q-Learning.

D4RL Datasets for Deep Data-Driven Reinforcement Learning.

DISCERN Discriminative Embedding Reward Network.

DQN Deep Q-Network.

DRL Deep Reinforcement Learning.

E3B Exploration via Elliptical Episodic Bonuses.

GC-π Goal-Conditioned RL with Prior Intrinsic Exploration.

GCRL Goal-Conditioned Reinforcement Learning.

GMM Gaussian Mixture Model.

HER Hindsight Experience Replay.

HRL Hierarchical Reinforcement Learning.

IM Intrinsic Motivation.

InfoNCE Information Noise-Contrastive Estimation.

VII

List of Abbreviations

IQL Implicit Q-Learning.

JEM Joint Embedding Method.

LSTM Long Short-Term Memory.

MDP Markov Decision Process.

ML Machine Learning.

MSE Mean Squared Error.

MuJoCo Multi-Joint dynamics with Contact.

NN Neural Network.

NovelD Novelty Difference.

NT-Xent Normalized Temperature-Scaled Cross Entropy.

PPO Proximal Policy Optimization.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

RND Random Network Distillation.

SAC Soft Actor-Critic.

SB3 Stable-Baselines3.

SimCLR A Simple Framework for Contrastive Learning of Visual Repre-
sentations.

SOTA State-of-the-Art.

VIII

List of Abbreviations

SSL Self-Supervised Learning.

TD Temporal Difference.

TQC Truncated Quantile Critics.

UCB Upper-Confidence-Bound.

VAE Variational Autoencoder.

IX

1. Introduction

Developing fully autonomous agents with the ability to solve arbitrary
tasks in complex environments is one of the ultimate goals of Machine
Learning (ML). Such agents are the continuation of the never-ending au-
tomation of the 21st century. Real-world agents can take the form of house-
hold robots to improve the quality of life of humans by performing tedious
tasks (Driess et al., 2023). They can be used as autonomous drivers to re-
duce the number of accidents on the road and to improve the efficiency of
the transportation system (Kiran et al., 2021). Future medical robots will be
able to perform surgeries and assist doctors in their daily work (Yu et al.,
2021). In general, highly capable real-world agents can help with many
tasks and are especially useful in environments where continuous physi-
cal and mental strain, fast and precise execution, or safety concerns might
be an issue for human workers. Furthermore, digital agents can be used
to navigate the internet (Shi et al., 2017) and assist in software develop-
ment (M. Chen et al., 2021) or even plan financial strategies for businesses
(Ozbayoglu et al., 2020). No matter the environment, future agents will be
able to execute all kinds of complex behavior. Nevertheless, they should
remain fully controllable and safe to operate by humans to prove their use-
fulness. Researching how to build and train these increasingly powerful
but controllable agents is therefore crucial for current and future applica-
tions.

1.1 Motivation

Reinforcement Learning (RL) describes a framework that allows an agent
to learn how to solve a task defined by a reward signal in an environment.
However, the real world and even simulated environments consist of a pos-
sibly infinite number of tasks and each of those tasks could be important
for a human operator during downstream use. Training a specialized agent

1

1 Introduction

for each single task is therefore not a feasible approach.

Goal-Conditioned Reinforcement Learning (GCRL) tackles the problem of
having multiple tasks to care about by giving the agent a description of
the goal that is associated with the current task, thereby conditioning the
agent’s behavior on the goal. Some GCRL approaches are based on the as-
sumption that the set of relevant goals is known during training (Schaul et
al., 2015). In many applications, this set of downstream tasks/goals is not
known beforehand, so other algorithms continue to explore the environ-
ment for possible new goals while simultaneously trying to reach already
encountered ones (Warde-Farley et al., 2018). The latter approach opti-
mizes for two rivaling objectives at the same time. This is an example of
the prominent exploration-exploitation dilemma, which is pervasive to the
core of RL. To alleviate this dilemma, a stricter separation of exploration
and goal learning could be a promising approach, which allows for a more
precise focus on the respective objectives.

For hard exploration problems, the incorporation of Intrinsic Motivation
(IM) into RL algorithms has been adapted more recently (Badia et al.,
2020a). Adding intrinsic rewards enables a more extensive exploration of
the environment, which can be crucial for escaping local reward optima.
However, choosing a good mixing coefficient for intrinsic and extrinsic re-
wards is not trivial. If the intrinsic reward is too high, the agent will not
learn to solve the original task. If the extrinsic reward is too high, the agent
will tunnel vision on the extrinsic signal and not explore enough. It is con-
ceivable that selecting different mixing coefficients during different parts
of the training process or even in different parts of the state space might
be necessary for especially hard exploration tasks. When the agent can be
fully focused on exploring using only intrinsic reward, this might lead to
faster and more widespread exploration.

Combining the motivation for separating goal learning and exploration
with the approach of using pure intrinsic reward for the exploration phase
forms the main idea of this thesis.

2

1 Introduction

1.2 Aim and Objectives

The general aim of this thesis is to investigate the potential of combining
IM with GCRL. This aim is divided into the multiple objectives, which act
as the fundamentals of the development of a novel algorithm, that . . .

1. . . . is able to solve a suite of different tasks in a single environment,
by utilizing the concept of goals.

2. . . . can efficiently discover new goals during training with the help of
a pure IM objective.

3. . . . splits the objectives of exploration and goal learning into sepa-
rately optimizable processes.

4. . . . is able to reach a set of unknown downstream goals during the
evaluation phase.

5. . . . is capable of learning in a high dimensional state space without
any prior information about the dimensions, e.g., the agent is not told
which dimensions to focus on for exploration or goal learning.

6. . . . can work with a complex 3-dimensional physics-based environ-
ment and an agent with a continuous action space.

7. . . . should run with a reasonable computational budget that can be
expected from standard consumer hardware. This means that orthog-
onal ideas, such as the expensive training of world models and using
them for exploration or goal learning, are out of the scope (Mendonca
et al., 2021).

3

1 Introduction

1.3 Outline

The thesis is structured through the following chapters:

• Fundamentals & Related Work: This chapter introduces the funda-
mental topics for the following chapters and gives an overview of
their related work.

• Problem Setup: This chapter illustrates the concrete problem setup,
including the used environment, agent and the developed Deep Re-
inforcement Learning (DRL) framework.

• Goal-Conditioned RL Baseline: This chapter explains the GCRL ba-
seline algorithm, which is a mix of previously developed methods
from the literature. It is used as a reference for the following devel-
oped algorithms.

• Goal-Conditioned RL with Prior Intrinsic Exploration: This chap-
ter contains the main contributions of this thesis. It deeply explains
the developed methods and showcases them through several experi-
ments.

• Conclusion: This chapter summarizes the work of the thesis, dis-
cusses its limitations and finally suggests potential future work.

4

2. Fundamentals & Related Work

This chapter introduces all the fundamental concepts that are used as the
basis throughout the rest of the thesis. Each section explains the respective
topics and gives a brief overview of related work in the literature. This
literature review is not exhaustive, but rather focuses on the most relevant
work for the methods discussed and developed in the thesis.

2.1 Reinforcement Learning

The Reinforcement Learning framework is a paradigm of Machine Learn-
ing and is concerned with training an agent to make decisions by interact-
ing with the environment to solve a reward-defined task. The fundamen-
tals of RL are well defined in Sutton & Barto, 2018.

RL problems are typically modeled as a Markov Decision Process (MDP),
which is a mathmatical formalism used to describe sequential decision-
making processes.

A specific MDP can be defined by its 5-tuple 〈S ,A,P ,R, γ〉:

• S is the set of all possible states s and forms the state space (also
called observation space).

• A is the set of all possible actions a and forms the action space.

• P is the transition function that maps the state-action pair (s, a) to the
next state s′.

• R is the reward function that maps the state-action pair (s, a) to the
scalar reward r.

5

2 Fundamentals & Related Work

• γ is the scalar discount factor that determines the importance of fu-
ture rewards.

With the formalism of MDPs in place, the goal of an RL algorithm is to
learn a policy π(at|st) which takes, at timestep t, a state st as input and
outputs an action at. The action at is then executed in the environment,
and the agent receives a reward rt+1 and the next state st+1 from the envi-
ronment. This leads to the standard agent-environment interaction loop of
Reinforcement Learning, as shown in Figure 2.1.

Figure 2.1: The standard agent-environment interaction loop of Reinforce-
ment Learning. Modified from Sutton & Barto, 2018.

For the agent, the key value to optimize is the sum of discounted future
rewards, known as the return G, and is defined as follows:

Gt =
T

∑
k=t+1

γk−t−1rk (2.1)

where T is the terminal timestep and marks the end of the episode.

To help the agent learn a good policy, value functions are used to estimate
the expected return for a given state or state-action pair when acting ac-
cording to the current policy.
The state-value function is defined as:

V(s) = Eπ[Gt|st = s] (2.2)

6

2 Fundamentals & Related Work

The action-value function (also called Q-function) is defined as:

Q(s, a) = Eπ[Gt|st = s, at = a] (2.3)

With the definition of the return and the value function, the famous Bell-
man equation gives rise to the fundamental Temporal Difference (TD) up-
date rule of the Q-learning algorithm (Watkins, 1989):

Q(s, a)← Q(s, a) + η

(
r + γ max

a′
Q(s′, a′)−Q(s, a)

)
(2.4)

where η is the learning rate. A Q-learning agent learns only the action-
value function. The policy is then derived by selecting the action with the
highest value for a given state. Q-learning is a model-free algorithm, which
means that it does not require a model of the environment. It is also an
off-policy algorithm, which means that it can learn from experiences that
were not generated by the current policy.

2.2 Deep Reinforcement Learning Algorithms

In environments with high-dimensional state spaces, simple tabular meth-
ods such as Q-learning are not applicable, and the usage of function ap-
proximators like a Neural Network (NN) is required. The field of Deep
Reinforcement Learning combines RL with NNs to solve more complex
problems.

One of the first successful algorithms was the Deep Q-Network (DQN)
(Mnih et al., 2015). Besides using a NN to approximate the Q-function Qφ,
DQN introduces two important ideas:

• A replay buffer to store experiences that can be sampled for training.
This increases the sample efficiency and learning stability by smooth-
ing out changes in the data distribution.

7

2 Fundamentals & Related Work

• A target network Qφ̄ to increase stability by smoothing out changes
in target values, which are used for the loss function.

DQN is made for environments with a discrete action space such as the
Atari games. It can only support continuous actions by discretizing the
action space, which makes it not ideal for many complex environments and
agents. Because of this limitation, the Soft Actor-Critic (SAC) algorithm
(Haarnoja et al., 2018a) was developed.

Besides action-space limitations, classic Q-learning-based algorithms also
notoriously suffer from an overestimation bias, which means that the Q-
function tends to overestimate the true value of the action. This results
from using the maximum action-value as the approximation of the ex-
pected action-value in the Q-learning update rule (see Eq. 2.4) (Hasselt,
2010). Because of that the SAC algorithm trains two Q-functions Qφ1 , Qφ2

and takes their minimum to reduce the overestimation bias, with the fol-
lowing loss function:

∇φi(Qφi(s, a)− (r + γ(min
i=1,2

Qφ̄i
(s′, ã′)− α log πθ(ã′|s′))))2 (2.5)

where ã′ is a sampled action from the policy and α is the temperature pa-
rameter of the entropy regularization term. This regularization encourages
exploration by pushing up the entropy of the policy. The coefficient α can
be either fixed or automatically tuned (Haarnoja et al., 2018b).

In addition to the Q-functions, SAC trains a NN policy πθ(a|s), with the
following loss function:

∇θ min
i=1,2

Qφi(s, ã)− α log πθ(ã|s) (2.6)

The policy outputs mean and standard deviation of Gaussian distribu-
tions for every action dimension. The reparameterization trick (Kingma
& Welling, 2013) is then used to sample the action and compute the gradi-
ent.

The DRL algorithm chosen for all the experiments in this thesis is Trun-

8

2 Fundamentals & Related Work

cated Quantile Critics (TQC) (Kuznetsov et al., 2020). TQC uses SAC as its
core and improves on it by using quantile regression to learn the distribu-
tion of the return rather than its mean for the Q-function.

The return distribution Z is defined as:

Zφi(s, a) =
1
M

M

∑
m=1

δ(zm
φi
(s, a)) (2.7)

where M is the number of quantiles (also called atoms), δ is the Dirac delta
function and zm

φi
(s, a) is the return at the m-th quantile.

Instead of using the minimum over two Q-functions to reduce overestima-
tion, TQC combines the distributions of N Q-functions, as illustrated in
Figure 2.2. Only the first k atoms are kept to cut off the probably overesti-
mated upper tail of the combined return distribution.

Figure 2.2: The mixing process of N Q-functions into a single truncated esti-
mation of the return distribution in TQC. Taken from Kuznetsov et al., 2020.

For an extensive overview of further distributional RL algorithms see Belle-
mare et al., 2023.

2.3 Exploration-Exploitation Dilemma

As the name Reinforcement Learning suggests, an agent should learn to
reinforce good actions and avoid bad ones indicated by the given reward
signal. Naturally, the agent does not know which actions are good or bad

9

2 Fundamentals & Related Work

at the beginning of the learning process. Even after a long time of learn-
ing, the agent can never be sure that its evaluation, e.g., through its value
function, is correct. This is because environments can be stochastic, non-
stationary or partially observable. Additionally, the agent might use func-
tion approximators such as NNs, which introduce approximation errors.
Looking at it from the optimization perspective, the agent wants to find
the global optimum but can never be sure that it has found it. This means
agents need to explore by using actions that seem bad in the short term but
might lead to better long-term rewards. The core of the dilemma is that nei-
ther pure exploration nor pure exploitation leads to desirable performance;
thus, a not clearly decidable mixture of the two is needed (Sutton & Barto,
2018).

Finding the right amount of exploration is an open problem in RL and has
been studied for decades. Classical approaches to this problem are the ε-
greedy (Watkins, 1989) or Upper-Confidence-Bound (UCB) (Lai, Robbins,
et al., 1985) action selection schemes. DRL algorithms can achieve explo-
ration through multiple sources and concepts:

• Noise and uncertainty in stochastic, non-stationary or partially ob-
servable environments

• Errors in function approximators

• Noisy gradient estimations through batches or mini-batches (Schul-
man et al., 2017)

• Added exploration noise to the actions (Lillicrap et al., 2015)

• Gaussian action distributions (Haarnoja et al., 2018a)

• Entropy regularization of action distributions (Haarnoja et al., 2018a)

• Noise in the parameter space (Fortunato et al., 2017)

• Mixing intrinsic and extrinsic rewards (Badia et al., 2020a)

• The same concepts on a higher hierarchical level (Hafner et al., 2022)

10

2 Fundamentals & Related Work

All the listed sources of exploration can be reduced to differently struc-
tured noise around the current policy or rather the extrinsic reward signal.
Exploration free of bias from the extrinsic reward or different exploration
modes (Pislar et al., 2021) might be needed to solve exceedingly complex
tasks with sparse rewards or reward landscapes filled with strongly attract-
ing but poorly performing local optima.

The exploration-exploitation dilemma is typically not considered in other
ML paradigms such as Supervised, Self-Supervised or Unsupervised Learn-
ing. Although newer research in the fields of Continual and Active Learn-
ing suggests that balancing the two might be key for these paradigms in
the future as well (Jiang et al., 2022; Mundt et al., 2023). The real world
is naturally open-ended and through that provides an endless stream of
data. One can imagine how even the simplest predictive models would
first need to figure out which data they should focus on and which they
should ignore during learning.

2.4 Intrinsic Motivation

The idea of Intrinsic Motivation comes from the field of psychology and
introduces a clear distinction between extrinsic and intrinsic sources that
drive behavior. Extrinsic sources are rewards, punishments or other types
of external feedback. Intrinsic sources are inherent preferences and values.
These are a key driver of human curiosity and creativity (Ryan & Deci,
2000).

IM can be found in different forms in current DRL algorithms and is typ-
ically used to improve the exploration capabilities of agents or enable di-
verse skill learning (Aubret et al., 2019). The focus in this thesis lies on the
exploration aspect of IM and utilizes the concept of state novelty.

State novelty is a measure of how novel a state is to the agent compared to
previously visited states. Computationally, this can be achieved by using

11

2 Fundamentals & Related Work

prediction errors of designated state feature encoder networks (Pathak et
al., 2017). The main IM algorithm used in this thesis is Random Network
Distillation (RND) (Burda et al., 2018).

RND initializes two NNs fψ(s) and f̂ϕ(s). The former is a feature encoder
that maps states to a feature vector, fψ : S → Rz. It is randomly initialized
and never trained during the learning process. The latter is a predictor net-
work that tries to predict the feature vector of the random feature encoder,
so it maps to the same output dimensions f̂ϕ : S → Rz. The predictor
network is trained on the Mean Squared Error (MSE) of its prediction com-
pared to the feature vector:

‖ fψ(s)− f̂ϕ(s)‖2 (2.8)

This same error is used as the measure of state novelty and acts as the
intrinsic reward given to the agent:

ri
t = ‖ fψ(st+1)− f̂ϕ(st+1)‖2 (2.9)

To keep the scale of the intrinsic reward the same for different environ-
ments, RND divides the intrinsic reward by its running average. This type
of normalization is also performed on the input states for the feature en-
coder and predictor to control their variance.

Besides life-long exploration bonuses (also called across-episode bonuses),
like in RND, there are also episodic exploration bonuses (also called within-
episode bonuses), which try to maximize state novelty within a single
episode. These can either be combined with life-long exploration bonuses
(Badia et al., 2020a; Zhang et al., 2021) or used on their own, like in the
Exploration via Elliptical Episodic Bonuses (E3B) algorithm (Henaff et al.,
2022)

Many DRL algorithms achieve State-of-the-Art (SOTA) performance by
mixing intrinsic reward with extrinsic reward (Badia et al., 2020b; Jarrett
et al., 2022). The choice of the mixing coefficient is crucial but often fixed
during training (Burda et al., 2018). Different mixing coefficients might be

12

2 Fundamentals & Related Work

needed for different parts of the learning process (Badia et al., 2020a) or in
different parts of the state space to achieve more precise exploration. Dy-
namically adjusting the mixing coefficient can be done by using a measure
of long-term learning progress of the agent. If the learning progress slows
down, higher mixing coefficients can be used to increase exploration.

2.5 Goal-Conditioned Reinforcement Learning

Goal-Conditioned Reinforcement Learning is a subfield of RL in which an
agent learns to reach a specific goal or set of goals. GCRL introduces a
framework to tackle the problem of learning multiple tasks with the same
agent. If the language for goal specification is sufficiently expressive, goals
can be used to describe any given task. To add the notion of goals to an ex-
isting RL algorithm, the agent’s policy and value function are conditioned
on the goal: π(a|s, g) and V(s, g). In practice, state and goal are concate-
nated and form the input to the respective NNs.

Natural language is an obvious candidate to define the goal space, espe-
cially at the highest abstraction level where human operators (or teachers)
and agents can communicate (Sigaud et al., 2022). But this requires the
agent to learn a mapping from language to the state space, which is an
open problem in the domain of language grounding. One current approach
is to use automatically generated language annotations from simulated en-
vironments (Mu et al., 2022), but this is not yet scalable to real-world ap-
plications.

To circumvent the language problem, the goal space G is often defined in
an equal manner as the state space S (Schaul et al., 2015). In this way,
progress on a goal can be measured by comparing the current state to the
goal state. To calculate the rewards when trying to reach a goal, a distance
metric, e.g., the euclidean distance, can be used:

rt = −‖st − gt‖2 (2.10)

13

2 Fundamentals & Related Work

State spaces in complex environments can be high dimensional and non-
linear, i.e., euclidean distances in this raw state and goal space might not
be a good distance measure considering the dynamics of the environment.
Learning a feature representation z for those raw states can disentangle the
information in the state dimensions and subsequently make the distance
metric more meaningful:

rt = −‖zst − zgt‖2 (2.11)

Learning feature representation is performed in a variety of different ways
in the literature for GCRL algorithms (Mendonca et al., 2021; Pong et al.,
2020; Warde-Farley et al., 2018). For an overview of the different Represen-
tation Learning approaches, see section 2.6.

During the learning process, GCRL algorithms have to deal with the ques-
tion of how goals are acquired and which ones should be used next. A
range of different methods have been proposed over time (Colas et al.,
2022). To give an overview, some of them are described below with their
advantages and drawbacks:

HER: Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) uses
the encountered states in a trajectory of an episode as examples for suc-
cesfully reached goals for every state prior to it in the trajectory. This is
often referred to as goal-relabeling. Unlike other methods, HER does not
inherently encourage the exploration of the goal space.

DISCERN: Discriminative Embedding Reward Network (DISCERN)
(Warde-Farley et al., 2018) stores a goal buffer of previously encountered
states. Goals are sampled randomly from the buffer. New states are added
to the buffer either randomly or by checking if the proposed goal is fur-
ther away from the goal buffer than the proposed removal goal. The latter
variant is used to maximize the entropy of the goal buffer, which encour-
ages exploration. DISCERN focuses on making the distribution of the goal
buffer slowly more uniform rather than strongly exploring the edges of
the distribution, which contain the areas of the goal space that are not yet
mastered (Pitis et al., 2020).

14

2 Fundamentals & Related Work

Skew-Fit: Skew-Fit (Pong et al., 2020) trains a Variational Autoencoder
(VAE) on previously seen states to generate new goals. The sampling pro-
cess is skewed toward lower probability goals to maximize entropy and
encourage exploration. Skew-Fit explores the edges of the goal distribu-
tion more aggressively compared to DISCERN but is only ever trained on
already encountered states, which might slow down the exploration (Pitis
et al., 2020). Additionally, making goals potentially unreachable through
the generation of the VAE can lead to an inefficient training process.

Hierarchical Reinforcement Learning (HRL) algorithms use the notion of
goals for higher level policies that learn to propose subgoals to lower level
policies (Hafner et al., 2022; S. Li et al., 2021b; S. Li et al., 2021a). The
introduced subgoal space can be used to communicate only the necessary
information to the lower level controllers while enabling exploration on a
more abstract higher level.

2.6 Representation Learning

Representation Learning is a field of ML that aims to learn representa-
tions (also called embeddings, features, latent vectors or hidden vectors) of
raw data. The goal is to learn representations that capture the underlying
structure of the data. This means disentangling the complex and non-linear
information present in the data in a way that is useful for potential down-
stream tasks or further Transfer Learning.

Unsupervised Learning and especially Self-Supervised Learning (SSL) me-
thods use forms of Representation Learning as core components in their al-
gorithms. For instance in Unsupervised Learning, training compact repre-
sentations can be done with the family of Autoencoders (AEs) through their
reconstruction loss (Ballard, 1987; Kingma & Welling, 2014). In SSL, Joint
Embedding Methods (JEMs) are typically used among others to explicitly
learn representations (Balestriero & LeCun, 2022; Bordes et al., 2023).

15

2 Fundamentals & Related Work

In general, JEMs all train different forms of Siamese networks (Bromley
et al., 1993), which are NNs that share their weights for multiple inputs
in their objective function. These networks are trained to produce similar
representations for similar inputs. To prevent the collapse of the represen-
tation space, i.e., the network learns to produce the same representation for
all inputs, different approaches have been proposed, which can be divided
into contrastive and non-contrastive methods.

The training process of contrastive JEMs (also known as Contrastive Learn-
ing) uses positive and negative pairs of data. The positive pairs are used to
pull the representations of similar data points together, while the negative
pairs are used to push dissimilar data points apart in the representation
space (T. Chen et al., 2020). On the other hand, non-contrastive JEMs only
use positive pairs and rely on different tricks to prevent the representation
collapse, e.g., using a momentum encoder and batch normalization (Grill
et al., 2020), data clustering (Caron et al., 2020) or regularizing statistics of
the data (Bardes et al., 2022).

A Simple Framework for Contrastive Learning of Visual Representations
(SimCLR) (T. Chen et al., 2020) is a popular contrastive algorithm and the
main method of choice in this thesis. A flow through the network architec-
ture is illustrated in Figure 2.3. SimCLR uses the Normalized Temperature-
Scaled Cross Entropy (NT-Xent) loss, which is a variant of the Information
Noise-Contrastive Estimation (InfoNCE) loss (Oord et al., 2018):

simzi,zj =
zT

i zj

‖zi‖‖zj‖
(2.12)

`i,j = − log
exp

(
sim

(
zi, zj

)
/τ

)
∑2N

k=1 1[k 6=i] exp (sim (zi, zk) /τ)
(2.13)

LNT-Xent =
1

2N

N

∑
k=1

[`(2k− 1, 2k) + `(2k, 2k− 1)] (2.14)

where zi is the representation of the ith data point, N is the number of
data points, τ is a temperature parameter and sim is the cosine similarity.
The positive pairs are the ith and jth data points used in the numerator.
The negative pairs are all other data points and their pairs used in the

16

2 Fundamentals & Related Work

denominator.

Figure 2.3: Flow through the architecture of SimCLR. A positive pair for x
is sampled and first encoded by the encoder network f (·) to produce the
representations z, which can later be used for downstream tasks. For train-
ing, the representations are run through the projection head g(·) to bring
them into the representations space used for the contrastive NT-Xent loss.
Taken from T. Chen et al., 2020.

DRL algorithms that leverage contrastive learning typically use state and
next-state pairs (st, st+1) as positive pairs, and other collected states as neg-
ative pairs (Aubret et al., 2021; S. Li et al., 2021a). This type of temporal
learning is reminiscent of the Contrastive Learning Through Time (CLTT)
paradigm (Schneider et al., 2021) used for computer vision and object de-
tection. Algorithms that use AEs or VAEs rely on the reconstruction loss
and do not need positive or negative pairs (Hafner et al., 2022; Pong et
al., 2020). A third option is to predict the temporal distance in timesteps
between states (Mendonca et al., 2021):

L = |‖zt − zt+k‖2 − k| (2.15)

The temporal distance space can make for a natural representation space if
the downstream application is to use the representations for measuring the
distance between states, e.g., current state and goal state in GCRL.

17

3. Problem Setup

This chapter introduces the problem setup defined to build and test al-
gorithms that are in line with the aim and objectives of this thesis (see
chapter 1.2). The setup contains the agent, the environment and the DRL
framework used to conduct the experiments. Experiments with real-world
robots are notoriously difficult, so this thesis focuses on 3D simulated en-
vironments. As the underlying physics engine, the research proven and
newly open-sourced Multi-Joint dynamics with Contact (MuJoCo) engine
is used to model and simulate the agent and its environment. (Todorov
et al., 2012).

3.1 Agent: Ant

To make interactions possible in 3D simulated environments, the RL agent
needs a suitable body. The robotic representation of the agent used for
all the following experiments is called ant, a simple quadrupedal 3D robot
often used in RL benchmark environments (Schulman et al., 2015).

The ant’s body is made of a spherical torso in the center with four legs
attached to it (see Figure 3.1). Each leg consists of two links, a cylindrical
thigh and a cylindrical shank, modeled with MuJoCo capsules. The ant
is controlled by 8 motors, one for each hinge joint between the torso-thigh
and thigh-shank connections. This results in an 8-dimensional action space,
where each dimension consists of the torque applied to the respective mo-
tor. The torques are mapped to the continuous range of [−1, 1].

The observation space consists of 29 dimensions: The global x,y,z position
of the torso (3), the orientation of the torso as a quaternion (4), the angles of
the joints (8), the velocity of the torso (3), the angular velocity of the torso
(3) and the angular velocities of the joints (8).

18

3 Problem Setup

Figure 3.1: MuJoCo rendering of the ant robot consisting of a green torso
and four golden legs. (Left) Side view of the ant. (Right) Top view of the
ant.

3.2 Environment: Maze

Designing an environment that is challenging enough to not be solved by
simple RL algorithms but not too complex so that making progress is still
possible is a crucial part of the problem setup. For all experiments in this
thesis, a 3D maze environment is used, which is typically found in GCRL
research (Nachum et al., 2018). In combination with the ant agent, it is
referred to as the AntMaze environment in the literature. The Datasets for
Deep Data-Driven Reinforcement Learning (D4RL) (Fu et al., 2020) frame-
work provides three sizes of the maze, which are shown in Figure 3.2. The
u-shaped maze is chosen for the main experiments in this thesis, as it is the
smallest one but sufficient to develop and test algorithms and it is consis-
tently used in the literature (S. Li et al., 2021a; Nachum et al., 2018).

Figure 3.2: MuJoCo rendering of the maze environment in its three sizes as
defined in D4RL. (Left) Small u-shaped maze. (Middle) Medium sized maze.
(Right) Largest maze.

Most of the GCRL or HRL algorithms use a two-dimensional goal space

19

3 Problem Setup

for the AntMaze environment, consisting only of the targeted global x,y
position for the ant (Aubret et al., 2021; S. Li et al., 2021b; S. Li et al., 2021a;
Pong et al., 2020). As stated as one of the objectives of this thesis, there
should not be any external prioritization or limit on the goal space. A
general learning agent should be able to reach goals in the complete state
space. Therefore, in all the following experiments, the goal space will be the
same as the 29-dimensional observation space. This makes the developed
methods harder to compare to previous work but also more general. Even
though the global positions remain for now, they are generally not available
to natural agents in the real world, so being able to reach goals also defined
by other dimensions of the observation space makes for a more realistic
setup.

Figure 3.3: Seven evaluation goals in the u-shaped AntMaze environment.

20

3 Problem Setup

To test whether the agent is able to reach unknown downstream goals, a set
of seven evaluation goals is defined that can be used in evaluation phases
during training. The seven goals are nearly identical and differ only in
their global x,y positions. All other dimensions are taken from an upright
standing position of the ant with minimal velocity. The 7th evaluation
goal is the hardest to reach, as the agent always starts at position (0, 0)
(bottom left of the maze) with a small amount of noise. Analyzing the
agent’s progress in the global x,y part of the state/goal space is the easiest
to illustrate and the most challenging for the agent because of the non-
linear shape of the maze. As noted above, all other dimensions are still
part of the goal space and can be used to analyze the learning progress of
those dimensions as well.

An episode in the AntMaze consists of 5000 raw simulation steps, where
the agent’s action is repeated 4 additional times until the next observation
is received. This results in a total of 1000 steps per episode. For the devel-
oped algorithms, it is a further design choice if an episode can end before
the time limit, e.g., when the agent gets close enough to its goal.

3.3 Framework: RL-X

Experiments in DRL are notoriously compute intensive, as the training loop
consists not only of optimization steps, like in standard ML, but also of
many simulation steps. This makes it important to use a framework that
can leverage the available hardware, especially accelerators like GPUs, to its
fullest while remaining flexible for research purposes. Therefore, this sec-
tion presents RL-X, a DRL framework developed during this thesis, which
focuses on speed and flexibility.

Prominent open-source frameworks, such as Stable-Baselines3 (SB3) (Raffin
et al., 2021), RLlib (Hoffman et al., 2020) or Acme (Liang et al., 2018), offer
community-proven implementations with robust hyperparameter choices.
However, they are not fully designed for pure research purposes, because

21

3 Problem Setup

they are not easily extendable and often lack flexibility through extensive
use of modularity, which harms research development speed and prototyp-
ing. Additionally, SB3 and RLlib use PyTorch (Paszke et al., 2019) as the un-
derlying Deep Learning framework, while faster frameworks built on JAX
(Bradbury et al., 2018) are available, as used in Acme. CleanRL (Huang et
al., 2022) is a good example of a research-driven framework with its simple
and clean code and single-file implementations. As much as it is a great
resource for research, it also results in the fact that it needs to provide the
same algorithm multiple times to support different environment types and
variations, e.g., the popular Proximal Policy Optimization (PPO) algorithm
is implemented 12 times with small alterations. RL-X is a compromise be-
tween the two, offering fully independent and self-containing single direc-
tory implementations of algorithms, but also providing a generic interface
for environments and algorithms to allow for easy mixing and matching.

Table 3.1 and 3.2 show the currently implemented algorithms and sup-
ported environments in RL-X.

Table 3.1: Algorithms in RL-X

Algorithm Deep Learning framework Category Reference

AQE Flax O�-policy Wu et al., 2022
DroQ Flax O�-policy Hiraoka et al.,

2021
ESPO PyTorch, TorchScript, Flax On-policy Sun et al., 2022
MPO Flax O�-policy Abdolmaleki et

al., 2018
PPO PyTorch, TorchScript, Flax On-policy Schulman et

al., 2017
REDQ Flax O�-policy M. Chen et al.,

2021
SAC PyTorch, TorchScript, Flax O�-policy Haarnoja et al.,

2018a
TQC Flax O�-policy Kuznetsov et

al., 2020

22

3 Problem Setup

Table 3.2: Environments in RL-X

Environment type Providing framework References

Atari EnvPool Bellemare et al.,
2013; Weng et al.,
2022

Classic control EnvPool Brockman et al.,
2016; Weng et al.,
2022

DeepMind Control Suite EnvPool Tassa et al., 2018;
Weng et al., 2022

MuJoCo Gym, EnvPool Brockman et al.,
2016; Todorov et al.,
2012; Weng et al.,
2022

Custom environments with socket communication

Some algorithms are implemented with PyTorch and TorchScript (PyTorch
+ JIT compilation), but all of them have a Flax (Heek et al., 2023) version
available. Flax is a NN library that builds on top of JAX, which is a library
for automatically differentiating and JIT compiling Python/NumPy code,
which can then be run on CPUs, GPUs and TPUs. JAX was developed with
fast execution on GPUs and TPUs in mind. It offers a range of vectorization
mappings that allow for fast and parallelized execution of the compiled
code on these devices.

To benchmark computational performance of RL-X, the hardware compo-
nents listed below were used and are also the same for all further experi-
ments in this thesis:

• CPU: Intel Core i9-9900K

• GPU: NVIDIA GeForce RTX 2080 Ti

• RAM: Corsair VENGEANCE 4x16GB, DDR4, 3200MHz

RL-X can offer the biggest speedups when using a Flax implementation of

23

3 Problem Setup

an off-policy algorithm running on a GPU in a computationally fast envi-
ronment such as MuJoCo. This is because on-policy algorithms calculate
their loss function and update their NNs only after a certain number of
steps, while off-policy algorithms can do this after every step, which leads
to a lot of computation that can be optimized by using JAX. Speedups are
less significant for environments with high computational costs attached
because the agent’s acting time becomes the bottleneck of the training loop.
Figure 3.4 shows the relative computational performance of RL-X’s SAC
implementations over a SB3 baseline in the Gym Humanoid-v4 MuJoCo
environment (Brockman et al., 2016). The results are the average of mea-
suring the frames per second over 3 runs of 50k training steps and are
normalized by the SB3 CPU version. This experiment resembles a similar
setup to the one used for the thesis (MuJoCo + off-policy algorithm + GPU
available). RL-X’s Flax version achieves a significant speedup of 4.5x over
the SB3 baseline. The Flax version is also the only one that benefits from
the GPU because for PyTorch the overhead cost for the data transfer be-
tween CPU and GPU is higher than the computational gains, at least for
this regime of batch size (512) and overall loss function complexity.

Figure 3.4: Relative computational performance of the RL-X versions for SAC
in PyTorch, TorchScript and Flax compared to the SB3 baseline.

RL-X is developed fully open-source under the MIT license and can be
found on GitHub: https://github.com/nico-bohlinger/RL-X

24

4. Goal-Conditioned RL Baseline

This chapter describes the used GCRL baseline algorithm. It does not use
any ideas of IM and relies only on a mix of current methods from the liter-
ature for exploration and goal reaching. The sections illustrate the iterative
development of the algorithm with plots from the experiments. Each learn-
ing run trains either directly on the evaluation goals for development pur-
poses or is evaluted on them separately every 100k steps with 10 episodes
per goal. For all experiments, three seeds are used to show the variance of
the results. The standard deviation over the seeds can be seen through the
shaded area in the plots, where the mean is shown as a solid line in the
middle.

TQC is used as the core DRL algorithm for all experiments. The critic and
policy consist both of 2x256 (layer x neurons) NNs with Rectified Linear
Unit (ReLU) activations and their respective policy and critic head on top.
The networks are trained with a batch size of 512 and a learning rate of
0.0003.

4.1 Simple Reward

To highlight the importance of using a good representation space for the
reward calculation later on, the first experiments in Figure 4.1 are per-
formed using simple reward functions. The reward is calculated as defined
in equation 2.11 in x,y space, state space or a random representation space,
where the latter is represented with a randomly initialized 3x256 NN. The
goal during training is only the evaluation goal (8, 0). It can be seen that
the agent has no trouble reaching the goal in 1M steps in either of the three
spaces. Using the x,y space performs the best as it corresponds directly
to the evaluated distance in the x,y space to the goal. The complete state
space and the random representation need slightly more steps as the agent

25

4 Goal-Conditioned RL Baseline

has to learn to distill the relevant dimensions or rather simply does not
know that it is evaluated only in the x,y space.

The maze consists of a strong non-linearity in the x,y space through the u-
shaped corridor, which blocks the direct path to goals in the upper part of
the maze. Therefore, the agent has to learn to traverse along the corridor to
reach those goals. The raw state space does not capture this non-linearity
and the agent falls into a local minimum trying to reach the upper goals by
walking against the blocks in the middle. Going around the blocks would
give temporary worse rewards for a too long time, so the agent does not
learn to do so. Figure 4.2 shows the results of the agent trained on all
evaluation goals with distances in state space. The goals up to (8, 8) (in the
top right corner of the maze) are reachable, but the agent is unable to learn
to go beyond that for the reasons given above.

Figure 4.1: Simple bases for the reward calculation are tested with either
the x,y space, the state space or a random representation space. Note that
all three versions start with a similar random policy. The di�erence in the
first distances is an artifact of the plotting tool as it cuts some of the initial
steps for smoothing purposes.

26

4 Goal-Conditioned RL Baseline

Figure 4.2: Learning all seven evaluation goals with state space reward.

4.2 Representation-based Reward

A trained representation space can capture the dynamics of the environ-
ment and distill the information in its latent space. This can be done in
different ways as described in chapter 2.6. The SimCLR method is trained
with batches of 512 (st, st+1) pairs, a 3x256 encoder network with ReLU ac-
tivations, a 1x256 projection head and different temperature values. A rep-
resentation learned with an inverse dynamics model (Pathak et al., 2017)
is also tested. This inverse dynamics model encodes the state space into a
latent space and from there learns to predict the used action between two
consecutive states. The experiments in Figure 4.3 show that the temper-
ature parameter in SimCLR is highly volatile and crucial to get right for
the representation to work as the base of the reward calculation. The best
result is achieved with a temperature of 0.1, which is the only setup that
beats out the random representation and is going to be used for the rest of
the experiments in this chapter. Using an inverse dynamics model does not
work out of the box, but it might still lead to good results with sufficient
tuning.

Training the agent with the SimCLR representations on all seven evaluation

27

4 Goal-Conditioned RL Baseline

Figure 4.3: Di�erent representation learning setups. The inverse dynamics
model and SimCLR with di�erent temperature values are tested.

goals leads to non-optimal results as shown in Figure 4.4. Even reaching
the easier goals (4, 0) and (8, 0) is not reliably achieved during the training
process. The key issue is the ever-growing representations, as illustrated
in Figure 4.6. They result from the fact that during training the agent sees
more and more states from the same part of the state space, especially when
its converging to a less stochastic policy. This means that the entropy of the
replay buffer is becoming smaller and so the available negative pairs be-
come more similar to the positive pairs. The SimCLR loss keeps increasing
the distance between the positive and negative pairs, which finally leads
to the ever-growing representations. This constant representation growth
causes instability in the training process, but it can be mitigated in differ-
ent ways, e.g., by using a tanh activation for the last layer in the encoder
network. The tanh squashes each dimension to the range [−1, 1]. With
more stable representations, the agent in Figure 4.5 is able to reach goals
until (8, 8) reliably and (4, 8) more likely than with the state space reward
(compare to Figure 4.2).

28

4 Goal-Conditioned RL Baseline

Figure 4.4: Learning all seven evaluation goals with SimCLR representations
without any squashing of a tanh activation leads to ever-growing represen-
tations.

Figure 4.5: Learning all seven evaluation goals with SimCLR representations
with a tanh activation on the last layer keeps the size of the representa-
tions in check.

29

4 Goal-Conditioned RL Baseline

Figure 4.6: SimCLR leads to ever-growing representations without squash-
ing. The plot shows the average distance between the starting state and
the seven evaluation goals. Note that the y-axis is logarithmic.

4.3 Goal Bu�er

Goals for downstream applications are often not known in advance. To
simulate this, the set of evaluation goals should not be used during train-
ing. Chapter 2.5 introduced different algorithms to store or generate goals
for the agent. The goal buffer as described in DISCERN is used in this
chapter to test the performance of this family of algorithms. DISCERN has
two different goal buffer setups:

• Random: Newly encountered states are added to the goal buffer if the
buffer is not full yet. If the buffer is full, a random goal is replaced by
the new state with the probability of preplace.

• Diverse: Newly encountered states are added to the goal buffer if the
buffer is not full yet. If the buffer is full, a random goal is replaced
by the new state if the distance of the new state to the mean of the
buffer is larger than the distance of the random goal to the mean
of the buffer. Replacement in the described case happens with the

30

4 Goal-Conditioned RL Baseline

probability of preplace or in the opposite case with the probability of
padd-non-diverse.

Both setups are tested with preplace = 0.001, padd-non-diverse = 0.001 and
a goal buffer size of 1024, as those values were found to work well in
the original DISCERN paper. Figure 4.7 shows that with both goal buffer
setups the agent learns to reach the goals in the buffer but it only slowly
expands the active goal space. The agent is visiting the same states over and
over again to learn to reach the goals in the buffer, but this means that the
states that are added to the buffer are also more of the same. This feedback
loop makes it hard for the agent to explore more of the goal space.

Figure 4.7: Average starting and final distances to the goals sampled from
the goal bu�er. The random and diverse setups perform roughly the same.

Disentangling the process of exploring the environment for goals from the
process of learning to reach those goals will be investigated in the following
chapters. The results from Figure 4.5 will be the baseline for the developed
algorithms. It should be noted that the training process is not yet indepen-
dent of the evaluation goals, as the experiments with the goal buffer were
unsuccessful.

31

5. Goal-Conditioned RL with Prior
Intrinsic Exploration

This chapter develops a novel family of algorithms called Goal-Conditioned
RL with Prior Intrinsic Exploration (GC-π) that combines IM, represen-
tation learning and GCRL to separate the two processes of exploration
and goal learning. An algorithm of this family consists of three distinct
phases:

1. Train an agent with IM that explores the environment and collects a
dataset of (s, a, s′) transitions.

2. Train a representation space offline on the collected dataset, which
can be used as the distance metric for later reward calculations.

3. Train a goal-conditioned policy by utilizing the learned representa-
tions and the collected dataset. This can be done offline or online.

The following sections of the chapter match the three phases and explain
them in detail with experiments on different algorithmic design choices.

5.1 Prior Intrinsic Exploration

The goal of the prior intrinsic exploration phase is to explore the environ-
ment as much as possible and collect a dataset of (s, a, s′) transitions. The
exploring agent has to discover all parts of the state space that might be
relevant for the later training of the goal-conditioned policy. This is nec-
essary so that the learned representation space is accurate and the dataset
contains enough states that can act as representative training goals for the
downstream evaluation goals.

32

5 Goal-Conditioned RL with Prior Intrinsic Exploration

All experiments use the same TQC setup as described in chapter 4 as the
core DRL algorithm. For the IM method used to calculate the reward, four
different setups are tested:

• RND: The RND algorithm (Burda et al., 2018) is used as described in
chapter 2.4 with the intrinsic reward:
rRND = ri

t = ‖ fψ(st+1) − f̂ϕ(st+1)‖2 (see equation 2.9). In all ex-
periments, the random feature encoder fψ(s) is a 4x256 NN and the
predictor f̂ϕ(s) is a 6x256 NN. Both networks have ReLU activations
in-between the layers. To warm up the running average for the obser-
vation normalization, 100 random steps are taken at the beginning of
a learning run.

• NovelD: Novelty Difference (NovelD) (Zhang et al., 2021) builds on
RND and computes the intrinsic reward as:
rNovelD = ri

t = max[rRND(st+1) − α · rRND(st), β] · I[Ne(st+1) = 1],
where rRND(s) is the RND reward and Ne(s) is the visitation count
for a state. Originally, NovelD only rewards states that were seen for
the first time, but as the state space in the AntMaze environment is
continuous, naively counting visitations is problematic and therefore
omitted in the following experiments. That means every state is eli-
gible for the reward. The parameters α and β are set to 0.5 and 0.0
respectively based on the original NovelD paper.

• E3B: E3B (Henaff et al., 2022) tries to generalize the raw visitation
counts, which are needed to compute episodic exploration rewards,
to continuous state spaces. The within-episode intrinsic reward is
calculated as:
rE3B = ri

t = fψ(st)>C−1
t−1 fψ(st), where the fψ is a feature encoder. The

matrix C represents the generalized visitation count and is updated
with Ct−1 = ∑t−1

i=1 fψ(si) fψ(si)
> + λI. This means that the term C−1

t−1

in the reward calculation is the inverse of the generalized visitation
count, so the final E3B reward corresponds to 1/Ne(st) in the raw
counting approach. The parameter λ is set to 0.1 for regularization
and fψ is a 2x256 NN with ReLU activations.

33

5 Goal-Conditioned RL with Prior Intrinsic Exploration

• NovelD + E3B: As explained above, the standard visitation count
used in NovelD is not applicable to the continuous state space in
AntMaze, but the E3B approach can function as a drop-in replace-
ment. Mixing E3B with intrinsic across-episode rewards like NovelD
might lead to a better exploration performance, but this was only
suggested and not tested in the original E3B paper. Therefore, the
intrinsic reward for this combination is calculated as:
rNovelD+E3B = ri

t = max[rRND(st+1)− α · rRND(st), β] · rE3B(st)

The plots in Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4 show the
visitation maps of the four IM methods after 10M steps of training. Each
dot in the map represents a state visited by the agent in x,y coordinates.
The color of a dot shows in which episode the state was visited for the
first time during training. The lighter the color, the earlier the state was
visited. It should be kept in mind that the map only shows the exploration
of the agent in the x,y part of the state space, i.e., an algorithm that explores
those dimensions particularly well does not necessarily explore the other
dimensions to the same extent.

Figure 5.1 shows the visitation map of the RND setup. The agent explores
the environment fully and visits basically all parts inside of the maze. Com-
pared to the other methods, RND explores the maze the most extensively
and also the fastest, as the agent covers huge parts of the maze already
in the first 1000-2000 episodes. With more episodes, the agent extends its
exploration to the edges of the maze. This can even lead to the agent es-
caping the maze. One such escape can be seen in the bottom left corner
of the map. The space outside the maze is obviously novel and therefore
produces a strong intrinsic reward signal when reached, but it is hard for
the agent to reliably build enough momentum to jump over the wall and
explore the outside space.

Figure 5.2 shows the visitation map of the NovelD setup. The agent ex-
plores the maze in a similar way to RND, but its exploration is more sparse
and not as far reaching. NovelD differs from RND by giving the difference
in novelty between two consecutive states as the intrinsic reward instead of
only using the novelty of the next state. Playing around with the coefficient

34

5 Goal-Conditioned RL with Prior Intrinsic Exploration

for the subtraction, α, and the minimum reward, β, changes the exploration
behavior slightly. When reducing α to 0.0 and β to a small enough negative
value, the RND method and its performance can be fully recovered. Nov-
elD’s improvements did not help in the tested AntMaze environment, but
it has to be noted that the visitation count was removed, which might be
the leading factor for NovelD’s original performance gains (Henaff et al.,
2022).

Figure 5.3 shows the visitation map of the E3B setup. The E3B agent ex-
plores less and especially slower compared to the other methods. Letting
the agent train for longer than 10M steps (up until 100M steps in further
experiments) showed that the reward kept increasing linearly, so the agent
is not done exploring but does so very slowly. It can be hypothesized that
the agent might be able to discover the maze just as much as the other
methods, but training it for that long was not a viable option in this thesis.
An explanation for the slow exploration could be the fact that the original
E3B uses a Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997) module for its policy and value networks. The LSTM enables the
agent to reason about the states it has already visited during an episode;
therefore, it can optimize better for the within-episode reward defined by
E3B.

Figure 5.4 shows the visitation map of the NovelD + E3B setup. Naturally,
the agent explores the environment similar to NovelD, but the addition of
the E3B reward leads to a slightly more extensive exploration as the agent
is able to reach further into the maze. Through all experiments, it was
also observed that this combination resulted in the most escapes from the
maze. Nevertheless, the agent’s exploration is still lower compared to the
results from RND. For future work, it would be interesting to see if the
performance gain of combining NovelD and E3B can be used to improve
RND as well. Also adding an LSTM to the networks, similar to plain E3B,
could enhance the exploration performance.

35

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.1: Visitation map of the RND agent after 10M steps of training.

Figure 5.2: Visitation map of the NovelD agent after 10M steps of training.

36

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.3: Visitation map of the E3B agent after 10M steps of training.

Figure 5.4: Visit. map of the NovelD+E3B agent after 10M steps of training.

37

5 Goal-Conditioned RL with Prior Intrinsic Exploration

RND shows the best exploration performance after 10M steps, so it is se-
lected as the IM method of choice for the rest of the thesis. The prior
intrinsic exploration phase for the GC-π algorithms has to provide an ex-
haustive dataset of (s, a, s′) transitions, that covers the most important parts
of the state space. To curate the dataset, an RND agent is trained for 100M
steps and every transition seen during the training is stored. The produced
visitation map is shown in Figure 5.5. The inside of the maze is densely
covered by the agent and also some more regular escapes from the maze
can been seen in the top right corner.

Figure 5.6 shows the density map for the states in the dataset. The lighter
the color, the more often this part of the state space was visited. The bot-
tom left corner is mostly bright yellow and white, which is expected as the
agent starts every episode around the position (0, 0). Toward the bottom
right the colors fade more into the darker reds, but a yellow trail can be
spotted, which is the shortest path to reach further into the maze and was
therefore preferred by the agent. The top right corner is strongly yellow
and white, which is the area where the agent has escaped the maze some-
what regularly and subsequently got high rewards by the RND algorithm.
Going further to the end of the maze, the densities get darker and show
even some holes in their coverage. The whole dataset is quite unbalanced,
which is to be expected from an unbiased IM method, as it does not directly
care about a balanced state space coverage, especially not only in two of the
29 dimensions, which are the x,y positions presented in the maps. This im-
balance could be a problem for the representation learning methods later
on, which are the basis for the goal-conditioned policy learning at the end.
Skewing the sampling processes during the learning procedures in favor
of less dense areas could be a solution to this problem. Nevertheless, the
dataset covers most parts of the maze and is therefore good enough for
the prior exploration phase, as the areas around every evaluation goal are
represented in the dataset.

38

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.5: Visitation map of the RND agent after 100M steps of training.

Figure 5.6: State density map of the RND agent after 100M steps of training.

39

5 Goal-Conditioned RL with Prior Intrinsic Exploration

5.2 O�ine Representation Learning

Learning good representations of the state space is a crucial part of the GC-
π algorithms, as the distances in the representation space are later used to
calculate the reward for the goal-conditioned agent. In contrast to chap-
ter 4.2, the representations are learned offline. This means that the transi-
tions are sampled from the dataset collected during the prior exploration
phase, instead of from recently collected transitions from a replay buffer.
Every transition in the dataset is used exactly once during an optimization
epoch and multiple of those epochs are run for the training process. Be-
sides SimCLR, the prediction of temporal distances, as explained in chap-
ter 2.6, is tested as another possible representation learning method. A
small set of experiments with a triplet loss setup like in S. Li et al., 2021b
were also conducted, but the results did not show promising distances in
the learned representation space and are therefore not included here.

The evaluation of the quality of a learned representation space is done with
distance heatmaps. The distance heatmaps show the distance in represen-
tation space between a given x,y position (marked in the title of the plot)
and all the positions defined by the grid in the heatmap. Only the x,y parts
of the state space are varied and the rest are kept constant, exactly like for
the evaluation goals. All distances are normalized by the maximum dis-
tance in the plot and multiplied by 10 so that changes in relative distances
are easy to spot and the heatmaps can be compared to each other.

5.2.1 SimCLR

The default setup for SimCLR is the same as the one used in chapter 4.2.
The following experiments show ablation on the three hyperparameters:
temperature, batch size and number of consecutive states for the positive
pairs, as they have a big impact on the learned representations. To spare
space, only the results of the largest and smallest values tested are com-
pared. Intermediate values typically show interpolation between the two

40

5 Goal-Conditioned RL with Prior Intrinsic Exploration

extremes and do not provide any further insights. More experiments with
different network sizes and the euclidean distance loss instead of the cosine
similarity loss were also conducted but did not show any improvements in
their results.

Figure 5.7: Distance heatmap for the position (8, 0) for the default setup
with one consecutive state (next-state) as positive pair.

Instead of using only state, next-state pairs (st, st+1), more consecutive
states can be used to create more positive pairs for the contrastive loss,
which might result in a faster learning process. To evaluate this setup,
Figure 5.7 shows the representation distances for the position (8, 0) for the
default setup with one consecutive state (only the next-state) and Figure 5.8
shows the same when using four consecutive states. Using more than one
consecutive state deteriorates the representation quality and unnaturally
placed borders/lines in the representation space can be observed, e.g., cre-

41

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.8: Distance heatmap for the position (8, 0) when using four con-
secutive states as positive pairs.

ating a v-shaped valley of low distances in the middle right of the maze in
Figure 5.8. The reason for that might be that the objective of bringing mul-
tiple consecutive states closer together in the loss is far harder to optimize
for. An experiment with three consecutive states showed less of this effect.
In theory, using only one consecutive state should be enough to learn accu-
rate distances as long as the model is trained long enough and generalizes
well.

Chapter 4.2 showed that the temperature parameter of the softmax func-
tion in the contrastive loss has a big impact on the quality of the learned
representations. To investigate the effects of different temperatures, Fig-
ure 5.9 illustrates the distance heatmap for the position (0, 0) for the default

42

5 Goal-Conditioned RL with Prior Intrinsic Exploration

setup with temperature 0.1 and Figure 5.10 shows the same when using a
temperature of 1.0. It can be seen that the higher temperature stops the
proliferation of lower distances to the top right corner of the maze, which
is initially caused by the high density of transitions in the dataset for that
area.

Figure 5.9: Distance heatmap for (0, 0) for the default setup with a temper-
ature of 0.1 for the softmax function in the contrastive loss.

Further distance leakage can be spotted in the blocked middle part of the
maze. The dataset contains no transitions there as the agent cannot reach
that area during the exploration phase or only through super rare escapes.
SimCLR generalizes the learned representations through this part of the
maze because there are no positive or negative pairs for it. Combined with
further approximation errors, this results in the observed distance leakage.
The high temperature in Figure 5.10 can reduce this effect such that the

43

5 Goal-Conditioned RL with Prior Intrinsic Exploration

top part of the maze shows more adequate distances. In general, high
temperatures effectively smooth out the representations, which helps in
this case, but should only be used with caution as it also smooths over
correctly learned structures in the representation space.

Figure 5.10: Distance heatmap for (0, 0) when using a temperature of 1.0 for
the softmax function in the contrastive loss.

SimCLR typically benefits from larger batch sizes. The original paper uses
batch sizes up to 8192 samples. Even though the application and setting
are different, the same effect might apply here as well. Figure 5.11 shows
the distance heatmap for the position (8, 4) for the default setup with a
batch size of 512 and Figure 5.12 shows the same when using a batch size
of 16382. With the larger batch size, there is a more prominent curve in
distances in the middle right of the maze. This curve illustrates that the
method learns the underlying structure of this part of the maze better with

44

5 Goal-Conditioned RL with Prior Intrinsic Exploration

the bigger batch size than with the smaller one. All the batch sizes 512,
1024, 2048, 4096, 8192 and 16382 were tested and this effect gradually in-
creased with the batch size. With the size increase, the computational cost
increases as well and as even bigger batch sizes do not fit into the GPU
VRAM, there were no further experiments with even larger batch sizes.
Going from 8192 to 16382 samples in the batch more than doubled the
training time but only marginally improved the results. The 100 epochs
used for each training run took 19 hours with the batch size of 8192 and 39
hours with the batch size of 16382.

Figure 5.11: Distance heatmap for (8, 4) for the default setup with a batch
size of 512.

For the final SimCLR model a batch size of 8192, a temperature of 1.5 and
one consecutive state were used. The model was trained for 300 epochs,

45

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.12: Distance heatmap for (8, 4) when using a batch size of 16382.

which is why only a batch size of 8192 was used as the 16382 batch size
would have taken too long to train. The temperature of 1.5 was chosen for
experimental reasons, but its representation did not look any different to
the ones with temperature 1.0. Figure 5.13 depicts the resulting distance
heatmap for the position (0, 8) for the final SimCLR model. Even though
the representations do not show any strange artifacts anymore from the
unbalanced dataset, the distances still leak through the middle part of the
maze and more importantly do not capture the underlying structure of the
maze too well. The learned distances should fully bend around the corners
of the maze to represent the actual distances between the states but this
is either not the case or barely visible as can be seen in Figure 5.12. The
representation space seems accurate in local neighborhoods, but the global
structure is not captured well enough to be useful for guiding an agent

46

5 Goal-Conditioned RL with Prior Intrinsic Exploration

from the starting point to the end of the maze. Local minima just below the
middle part in Figure 5.13 would attract the agent and it would be unable
to learn to walk around the blocked middle as going further to the right
and top would only result in a large space of worse reward. Nevertheless,
the learned representations and their distances might still be useful if the
local accuracy can be used to navigate from subgoal to subgoal until the
agent reaches its final goal.

Figure 5.13: Distance heatmap for (0, 8) for the final SimCLR model with a
batch size of 8192, a temperature of 1.5 and one consecutive state as the
positive pair.

47

5 Goal-Conditioned RL with Prior Intrinsic Exploration

5.2.2 Temporal Distance

Instead of relying on a contrastive objective and inferring the distances
from the learned representations, a NN that learns to predict the number
of timesteps between two states optimizes for a distance metric directly. In
the default training setup, one batch equals one episode of 1000 timesteps
sampled from the dataset. Using every state pairing results in a 1000x1000
matrix, which is optimized with the loss defined in equation 2.15.

Figure 5.14: Distance heatmap for (0, 8) for the default temporal distance
setup.

Figure 5.14 shows the distance heatmap for the position (0, 8) for this de-
fault setup. When comparing the results to the distance heatmap from the
best SimCLR setup in Figure 5.13, it can be seen that the learned distances
strongly curve around the corners of the maze and resemble the shape of

48

5 Goal-Conditioned RL with Prior Intrinsic Exploration

the maze a lot more accurately. Unfortunately, there is still a leakage of
small distances on the left boarder of the maze, making the bottom left
closer to the (0, 8) position than it should be. Nevertheless, the resulting
local minimum is far smaller, and if the agent explores enough to the right,
it can quickly find a good path of continuously decreasing distances toward
the goal, which would be a better reward signal during learning.

Figure 5.15: Distance heatmap for (0, 8) when adding 10 cheated states with
x,y positions sampled from the blocked middle part of the maze with a
target distance of 1000.

As already the experiments with SimCLR showed, the leakage of distances
through the blocked middle part in the maze causes problems for a NN
to accurately learn the underlying u-shape. Transitions in this part of the
maze are completely missing in the dataset, but the tested methods are un-
able to leverage the fact that missing transitions for a part of the state space
indicate the impossibility of reaching that area. States without transitions

49

5 Goal-Conditioned RL with Prior Intrinsic Exploration

near them should therefore be far away from the rest of the state space that
was actually visited and is part of the dataset. Sampling states that are
explicitly not part of the dataset and using them as negative pairs or in the
temporal distance setup with the maximum distance of 1000 steps might
be a way to enforce this property.

Figure 5.16: Distance heatmap for (0, 8) when adding 50 randomly sampled
states based on the complete visited state space with a target distance of
1000.

To start testing the mentioned hypothesis in an optimal but somewhat
cheated way, for every batch, 10 x,y positions are sampled uniformly from
the blocked middle part of the maze and every other dimension is filled
with random configurations from the dataset. These cheated states are
added to the current batch and every proper state gets a target distance of
1000 timesteps to the cheated ones. Learning with this cheated setup, the
resulting distance heatmap for the position (0, 8) is shown in Figure 5.15.

50

5 Goal-Conditioned RL with Prior Intrinsic Exploration

The leakage through the middle part can now barely be seen anymore and
the distances curve perfectly around the maze. It should be kept in mind
that this way of generating negative/unreachable samples is only possible
because the x and y dimensions can be easily observed and reasoned about
by a human. All other 27 dimensions can have the same problem result-
ing from unreachable parts of their state space that are not in the dataset.
Figure 5.15 highlights what is possible if sampling from the distribution
of states that are not part of the dataset is possible and the remaining ex-
periments in this section try to find a way to do this in a more general
approach.

Figure 5.17: Distance heatmap for (0, 8) when adding 50 randomly sampled
states from the dataset with a target distance of 1000.

Instead of selectively sampling states, another approach can be to deter-
mine the minimum and maximum values for each dimension and then

51

5 Goal-Conditioned RL with Prior Intrinsic Exploration

sample uniformly from the space between those values. An additional 10
percent of the min and max values is added to them to be able to also
sample states at the borders of the visited state space. The target distances
for the sampled negative states are set to 1000 again. The correct distances
for states that are sampled this way but are also part of the dataset can
still be learned when there are enough samples of them in the dataset to
counteract the 1000 distance. On the other hand, the unreachable states
should keep their distance of 1000 as there are no samples in the dataset
to counteract it. Figure 5.16 shows the resulting distance heatmap for the
position (0, 8) when adding 50 randomly sampled negative states based
on the complete visited state space to the batches. The random samples
smooth out the distance heatmap but do not stop the leakage through the
middle of the maze. There is still a big local minimum around the bot-
tom of the blocked middle part, which looks even slightly worse as the
distances are lower there compared to Figure 5.14.

Figure 5.18: Heatmap of the log-likelihood of the best Gaussian Mixture
Model (GMM) model for uniformly random sampled states, where only the
x and y dimensions are varied.

Rather than sampling based on the complete visited state space, Mendonca

52

5 Goal-Conditioned RL with Prior Intrinsic Exploration

et al., 2021 proposes to sample the negative states from the actual dataset
and label them with the maximum distance as well. Figure 5.17 presents
the resulting distance heatmap for the position (0, 8) when adding 50 ran-
domly sampled negative states from the collected dataset to the batches.
The leakage is still not stopped, but the local distance minimum is much
smaller. There is a distance valley of around 7.2, which is followed by
only a slightly higher plateau of around 7.3 to the right before going down
again and revealing a path of continuously decreasing distances toward
(0, 8). Unfortunately, another local minimum arose in the bottom right
corner which can be misleading for the agent.

Figure 5.19: 20% of the states with the lowest log-likelihood of the GMM for
uniformly random sampled states, where the x, y dimensions are varied.

To generalize the idea of explicitly sampling states that are not part of the
dataset, like with the cheated setup, a model that can capture the distri-
bution of the dataset can be trained and used to score uniformly random
sampled states based on how likely they are to be part of the dataset. For
this setup, a GMM (Bishop & Nasrabadi, 2006) is trained to approximate
the probability distribution of all 29 dimensions with the samples from
the dataset. The GMM implementation used is the one from the Python
package scikit-learn (Pedregosa et al., 2011). To get the best parameters

53

5 Goal-Conditioned RL with Prior Intrinsic Exploration

for the model, a grid search is performed over the number of components
(100, 300, 500) and the covariance type (full, spherical, diag, tied). The
maximum number of iterations is fixed to 200 and 1M samples from the
dataset are used for training. After training, the runs are evaluated and
ranked based on the Bayesian Information Criterion (BIC). The best model
uses 500 components, the full covariance type and takes around 54 hours
to train. The long training time is the main reason why not more samples
from the dataset are used for training. For future experiments, it would
be possible to stick with the diag covariance type as the performance is
slightly worse but only takes around 17 hours to train.

Figure 5.20: 20% of the states with the lowest log-likelihood of the GMM
for uniformly random sampled states, where all dimensions are varied.

Figure 5.18 illustrates uniformly random sampled states from the range
of min and max values of the visited state space and colored by the log-
likelihood of the best GMM model. The more yellow the color is, the more
likely it is that the state is part of the dataset. To sample states that are
unlikely to be in the dataset, only the 20% of the states with the lowest log-
likelihood are kept, which results in Figure 5.19. Both figures show that the
GMM captures the distribution of the dataset quite well and the produced
states with low log-likelihood are around the borders of the maze and most

54

5 Goal-Conditioned RL with Prior Intrinsic Exploration

importantly in the blocked middle part as well. These plots are produced
by only varying the x and y positions of the randomly sampled states and
keeping the other dimensions fixed. Figure 5.20 presents the same plot
but uniformly random sampling every dimension and again keeping the
20% of the states with the lowest log-likelihood. Unfortunately, now all
previously seen structure is gone and only a slight focus on lower y values
can be seen.

Figure 5.21: Distance heatmap for (0, 8) when adding 50 states sampled
from the 20% of states with the lowest log-likelihood scored by the GMM
with a target distance of 1000.

Figure 5.21 shows the resulting distance heatmap for the position (0, 8)
when adding 50 states sampled from the 20% of states with the lowest log-
likelihood to the batches. As already highlighted Figure 5.20, the sampled
negative states are not very useful anymore and the final setup does not
perform any better compared to the added random states in Figure 5.16.

55

5 Goal-Conditioned RL with Prior Intrinsic Exploration

The GMM shows potential when only considering the x and y dimensions,
so making this work for all dimensions might still be possible and an in-
teresting avenue for future work.

5.2.3 Information Retention

The final quality measure of the learned representations, that a GC-π al-
gorithm actually cares about, is the performance of the goal-conditioned
policy trained with them. Doing this downstream evaluation for every
trained representation is too time consuming. Therefore, another way to
assess the quality besides visually inspecting the distance heatmap is to
look at the information contained in the representations. For a final com-
parison of the SimCLR and temperoral distances methods, a supervised
learning experiment is conducted, where the goal is to predict the original
state from its representation. The performance on this task indicates how
much information about the original states is contained in their respective
representations. The loss is defined as the MSE between the original state
s and the output of a 3x256 NN fψ(zs), which tries to convert the represen-
tation zs back to the original state:

L = ‖s− fψ(zs)‖2 (5.1)

After training for 200 epochs on the complete dataset, the resulting train-
ing loss curves can be seen in Figure 5.22. The representations learned with
the temporal distance method perform in general better than those learned
with the SimCLR method. To evaluate single dimensions, the absolute
difference between the original and predicted value of each dimension is
also tracked during training. Surprisingly, the SimCLR representations per-
form significantly better on the x and y dimensions, which is highlighted
in Figure 5.23. The temporal distance method shows better results on the
other dimensions, but those might be not as crucial for guiding the goal-
conditioned policy in its learning phase.

56

5 Goal-Conditioned RL with Prior Intrinsic Exploration

To determine which representation is better overall is hard to say with only
looking at the distance heatmaps and the information retention experiment.
In the end, the performance of the goal-conditioned policy is what matters
the most and this will be evaluated extensively in the next section.

Figure 5.22: Training loss curves for the NNs trained with the SimCLR and
temporal distance representations in the information retention task.

Figure 5.23: Absolute di�erences between the original and the predicted
values of the x and y dimensions for the NNs trained with the SimCLR and
temporal distance representations in the information retention task.

57

5 Goal-Conditioned RL with Prior Intrinsic Exploration

5.3 Goal-Conditioned Policy Learning

Creating a goal-conditioned policy is the last step in the GC-π algorithm
pipeline. The training process can be done with either offline or online RL
methods. In the offline case, the policy is trained with the dataset collected
from the prior intrinsic exploration phase. This means that no additional
data points are collected for policy training. During online learning, the
agent can collect its own data by interacting with the environment. In both
cases, the policy is trained with goals sampled from the collected dataset.
Additionally, the previously offline learned representation space is used
to calculate the reward as defined in equation 2.11. This means that the
goal-conditioned policy can only ever be as good as the collected dataset
and the representations it is trained with. Using offline RL is the more
compelling and elegant option as the complete GC-π agent does only have
to interact with the environment once for pure exploration purposes, but
it is also notoriously hard to get right and train successfully (Kumar et al.,
2020). Therefore, the online learning case is evaluated more extensively
and further improvements, e.g., using subgoals to guide the policy, are
only investigated for the online case as well.

5.3.1 O�ine Learning

In general, offline RL is a lot trickier to train than its online counterpart
because the agent cannot safely reinforce its own actions anymore. Sam-
pling actions from the policy is necessary for most types of DRL objective
functions such as equation 2.5 for SAC’s version of the Q-learning objec-
tive or for policy gradient methods (Schulman et al., 2017). This means that
the policy can generate actions or rather state-action pairs that are not cov-
ered by the dataset. Sampling such out-of-distribution actions can lead to
catastrophic overestimation of their value (Kumar et al., 2020). The agent
does not get any reality checks by actually trying the actions out in the
environment, as would be the case in online RL. This problem led to the
development of many offline-specific algorithms that try to reduce the im-

58

5 Goal-Conditioned RL with Prior Intrinsic Exploration

pact of out-of-distribution actions, two of which are tested in this section.
For all the following experiments, the "cheated" temporal distance repre-
sentation is used (see Figure 5.15) as it is visually the best performing one
and its capabilities were checked in preliminary online RL experiments.
Besides the distance in representation space, the distance in x,y space is
also tested. During the training process, the policy is conditioned only on
the evaluation goal (8, 0). This training setup was chosen to initially make
the learning problem as easy as possible. The difficulty of the task can
always be increased later.

Implicit Q-Learning (IQL) (Kostrikov et al., 2021) circumvents the problem
of overestimating out-of-distribution actions by simply never using them.
It trains a state-value function V(s) that regresses to an upper expected
value:

LV = Lτ
2(Qφ̄(s, a)−Vψ(s)) (5.2)

Lτ
2(u) = |τ − 1(u < 0)|u2 (5.3)

where τ defines the targeted expectile. The action-value function Q(s, a)
can then be trained by using V(s′) as the bootstrap target instead of taking
Q(s′, ã′) for a sampled action of the policy:

LQ = (r + γVψ(s′)−Qφ(s, a))2 (5.4)

After training the two value functions, the policy can be extracted with
simple advantage-weighted regression (Peng et al., 2019):

Lπ = exp
(

β(Qφ̄(s, a)−Vψ(s))
)

log πθ(a|s) (5.5)

where β is a temperature parameter. To closely follow the recommenda-
tions of the original paper and official implementation, the targeted ex-
pectile is set to τ = 0.8 and for the temperature a small set of values
were initially tested β = [10.0, 1.0, 0.1]. The results of the training process
are shown in Figure 5.24. Neither the representation distance nor the x,y
distance can enable the learning of a good policy. More extensive hyper-
parameter tuning might be needed to make the algorithm work, but the
obtained results were not promising enough to further investigate IQL.

59

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.24: IQL conditioned on the goal (8, 0) and the reward calculated in
representation space or x,y space.

Conservative Q-Learning (CQL) (Kumar et al., 2020) is another offline RL
algorithm that learns a lower-bound Q-function around the actions in the
dataset to reduce the impact of out-of-distribution actions. In practice,
CQL implements a simple Q-value regularizer on top of an SAC-style al-
gorithm, which weights down the Q-values of actions sampled from the
policy compared to actions from the dataset. For the experiments, the ex-
act hyperparameters are used as in the original paper, but the number of
sampled actions is reduced from 10 to 4 to make the training process faster
(from 20 to 10 minutes per epoch). More sampled actions did not improve
the results in preliminary experiments running for 20 epochs. The training
curve for CQL is illustrated in Figure 5.25. Again, neither the representa-
tion distance nor the x,y distance show good performance. Compared to
IQL, the agent at least learns to move slightly to the right and reaches a
final distance of 6 units, but there are no signs of it learning to get out of
this poor local minimum.

Both offline RL algorithms showed disappointing results. For the last at-
tempt, only pure TQC is used without any offline specific modifications.
This corresponds to the previously used CQL setup without the Q-value
regularizer. The results are presented in Figure 5.26. The agent learns sub-
stantially better and gets in the 2-unit range of the goal with the reward in

60

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.25: CQL conditioned on the goal (8, 0) and the reward calculated
in representation space or x,y space.

x,y space. Calculating the reward in the representation space still leads to
an improvement over the other offline methods, but its performance shows
high variance and is not as good as the x,y space reward. Even though the
results are better in general, they are not good enough to be considered a
success compared to the baseline online RL results in chapter 4.

Figure 5.26: Pure o�ine TQC conditioned on the goal (8, 0) and the reward
calculated in representation space or x,y space.

Unfortunately, both IQL and CQL show poor results already in the easy

61

5 Goal-Conditioned RL with Prior Intrinsic Exploration

learning setup, even to the point that a standard TQC agent performs better
than any offline specific adaptation. Different algorithms, further hyperpa-
rameter tuning, better representations or a more balanced dataset might
help to alleviate the underlying problems and should be investigated more
thoroughly in the future. Using offline RL algorithms is still a promising
idea due to its ability to learn from a completely different behavior policy.
This means that every interaction with the environment can fully focus on
exploration or even be from a completely different type of agent. Never-
theless, to make progress in the AntMaze task, the focus for the rest of the
thesis lies on online RL algorithms.

5.3.2 Online Learning

In the online learning setup, the agent is trained with the help of the pre-
viously offline learned representation space, but can interact with the en-
vironment to collect its own data and reinforce its policy in the typical
trial-and-error RL fashion. This section starts with experiments sampling
the evaluation goals for the training process, like in chapter 4. Later on,
the states collected in the dataset are used as the goals during training. To
learn only from the collected states is a tougher problem, as the agent has
to generalize much more and the dataset is not balanced, but it allows the
algorithm to be fully free of any knowledge about possible downstream
goals, which is one of the main objectives of this thesis (see chapter 1.2).

The first experiment is conducted with the "cheated" temporal distance
representation. Using this representation is not the end goal, but a good
starting point. The results can be seen in Figure 5.27. The agent is able
to consistently reach all seven evaluation goals after only around 5M steps
and outcompete the baseline performance by a large margin (compare to
Figure 4.5). It should be noted that this is the first time in this thesis that the
agent could reach the last evaluation goal (0, 8). This experiment demon-
strates that the desired performance in the proposed AntMaze setup is
possible, but the use of the "cheated" representation and the incorporation
of the evaluation goals during the training process remain undesirable.

62

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.27: Performance on the evaluation goals when using the "cheated"
temporal distance representation for the reward calculation and sampling
the evaluation goals for training.

Figure 5.28: Performance on the evaluation goals when using the basic tem-
poral distance representation for the reward calculation and sampling the
evaluation goals for training.

To remove the need for the "cheated" representation, the next experiment
is conducted with a standard temporal distance representation. Both the
basic setup (Figure 5.14) and the addition of negative samples from the
dataset (Figure 5.17) were evaluated in preliminary experiments. The ba-
sic setup performed better and its resulting learning curve is depicted in

63

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.28. The agent can only barely reach the goal (8, 8) after 20M steps
and makes no progress in going deeper into the maze. Using a standard
temporal distance representation is not enough to solve the task and per-
forms worse than the baseline with a SimCLR representation (compare to
Figure 4.5). On the upside, the significant performance difference between
the normal and the "cheated" representation space highlights the potential
of future representation learning methods, which can generate and use out-
of-distribution data as negative samples, like the "cheated" representation
did in a first attempt.

The best previously trained SimCLR representation (Figure 5.13) is tested
in the next experiment and its results are illustrated in Figure 5.29. The
agent is able to reach all seven evaluation goals and performs substantially
better than the normal temporal distance representation. During training,
the ability to reach the last two evaluation goals emerges roughly 2M steps
later than in Figure 5.27, but in general the performance is comparable to
the "cheated" temporal distance representation. This means that standard
representation learning methods such as SimCLR can be enough to solve
the task, at least as long as the evaluation goals are used during training.

Figure 5.29: Performance on the evaluation goals when using the SimCLR
representation for the reward calculation and sampling the evaluation
goals for training.

The collected dataset provides a rich set of states, which can be used dur-

64

5 Goal-Conditioned RL with Prior Intrinsic Exploration

ing training to remove the need for knowledge about the evaluation goals.
It can be expected that the agent will perform worse or at least needs more
time to show the same performance on the evaluation goals when not di-
rectly training on them. The states in the dataset are also not uniformly
distributed over the maze and the deeper sections of the maze are less rep-
resented (see Figure 5.6). To initially make the task simpler, the "cheated"
temporal distance representation is used, as it showed the best performance
in the previous experiment. Figure 5.30 displays the agent’s performance
when using the states sampled from the dataset as the training goals. The
learning shows high variance and in the end the agent is not able to con-
sistently reach even the more easier goals such as (8, 0). A lack of good
generalization in the goal space might be the main reason for the poor per-
formance as the agent cannot simply memorize seven paths to the seven
evaluation goals anymore, but rather has to infer the underlying structure
of the state/goal space. Another reason can be the other 27 dimensions
besides the global x,y position in the goal state. The states/goals sampled
from the dataset have different values in all dimensions, whereas the eval-
uation goals only differ in the x,y position. These factors might be too
much for the agent to learn a good policy and even the "cheated" temporal
distance representation is not good enough to compensate for them.

Figure 5.30: Performance on the evaluation goals when using the "cheated"
temporal distance representation for the reward calculation and sampling
the states in the dataset as training goals.

65

5 Goal-Conditioned RL with Prior Intrinsic Exploration

5.3.3 Subgoal Trajectories

HRL algorithms leverage a higher level policy that generates subgoals to
guide a lower level policy that is responsible for the actual movements of
the agent (Hafner et al., 2022). This setup can make it easier for the agent to
reach far away goals, as it only needs to navigate from subgoal to subgoal,
but training such a high level policy adds another layer of complexity and
more wall clock time to the training process. To evaluate the potential
of subgoals for a GC-π algorithm, the trajectories in the collected dataset
can be used as the source of the subgoals, rather than letting them be
produced by a higher level policy, which is typically parameterized with a
NN. To heuristically find the best subgoals in the dataset for a given goal,
the following procedure is used:

1. Calculate the representations for all states in the dataset and the goal
state.

2. Loop over all states and determine the closest one to the goal by
calculating the euclidean distance between the representations.

3. Take the trajectory containing the closest state and cut it off at the
closest state.

4. Choose every n-th state from the trajectory as a potential subgoal,
where n is a hyperparameter.

5. Loop over the potential subgoals in reverse order with tuples of three
consecutive subgoals and remove the second subgoal in the tuple if
the distance between the first and the third subgoal is smaller than
the distance between the second and the third subgoal.

When training on goals sampled from the dataset, the subgoals are calcu-
lated on the fly, whereas the subgoals for the evaluation goals are calculated
beforehand. The pruning step (5.) is used to remove subgoals that do not
bring the agent closer to the next subgoal, which is helpful as the trajec-
tories from the prior intrinsic exploration can be chaotic and full of loops
or backtracking. The hyperparameter n is set to 50 in the following exper-

66

5 Goal-Conditioned RL with Prior Intrinsic Exploration

iments, which means that every 50th state in a trajectory is considered a
potential subgoal. For the representation space, the SimCLR representation
is used, as it proved the best performance in the previous section (exlud-
ing the "cheated" representation). SimCLR showed poor distances for far
away states but rather good ones for neighboring states, as illustrated in
its distance heatmap (Figure 5.13). Furthermore, SimCLR reached better
performance on the information retention task for the x and y dimensions
than the temporal distance representation. All of this points to accurate
local distances, which is all that is needed in this setup as the agent only
has to navigate from subgoal to subgoal.

Figure 5.31: Illustration of the best trajectory in the dataset for the evalu-
ation goal (0, 8) in green and red, the calculated and pruned subgoals in
black and an example trajectory from a trained agent in blue.

67

5 Goal-Conditioned RL with Prior Intrinsic Exploration

The best trajectory and the corresponding subgoals for the evaluation goal
(0, 8) are illustrated in Figure 5.31. The subgoals are already pruned and
show a good path to the end goal with no backtracking. As an example
for the pruning, if subgoal 7 would be a bit further to the left, the subgoal
8 would be removed as well. The figure also shows an example trajectory
of a trained agent, which is guided by the subgoals and comes very close
to the final goal at the end. As it can be seen, the agent does not need
to precisely reach every subgoal, because during the training process, the
subgoals are switched before the agent reaches them. The agent starts with
the subgoal sg1, i.e., the second subgoal in the list. A current subgoal is
switched to the next one when the distance in the representation space
between the agent’s state st and the current subgoal sgi is smaller than the
distance between the previous subgoal sgi−1 and the current subgoal sgi.
This heuristic ensures that the agent does not get stuck trying to precisely
reach the current subgoal and it also avoids the need for any distance cutoff
hyperparameter.

Figure 5.32: Performance on the evaluation goals with the subgoal setup
when using the SimCLR representation for the reward calculation and sam-
pling the evaluation goals for training.

For the first experiment, the agent is trained directly on the seven eval-
uation goals. Figure 5.32 displays the performance of the agent and can
be compared to the setup without subgoals in Figure 5.29. The agent is
able to reach the last two evaluation goals faster than previously and its

68

5 Goal-Conditioned RL with Prior Intrinsic Exploration

performance is even comparable to the "cheated" temporal distance repre-
sentation in Figure 5.27. The spikes for the goal (0, 8) during the middle
and end of training in Figure 5.29 are far more damped in comparison and
the agent now reaches the goal consistently.

In the setup without subgoals, the agent struggled to reach even the sim-
plest evaluation goals when trained on states sampled from the dataset as
training goals (Figure 5.30). Figure 5.33 shows the performance of the sub-
goal setup in this scenario while also leveraging the SimCLR representation
instead of the "cheated" temporal distance representation. The final perfor-
mance after training for 20M steps is not as clean and consistent as when
training on the evaluation goals directly and the standard deviation for the
goal (0, 8) is still quite high, but the agent is now able to reach or come
close to all evaluation goals without directly training on them for the first
time. The main reasons for the worse performance compared to directly
training on the evaluation goals, as explained in the previous section, still
apply, but the addition of subgoals helps the agent significantly navigating
and generalizing in the narrower subgoal space. Longer training times and
additional hyperparameter tuning might improve the performance even
further.

Figure 5.33: Performance on the evaluation goals with the subgoal setup
when using the SimCLR representation for the reward calculation and sam-
pling the states in the dataset as training goals.

69

5 Goal-Conditioned RL with Prior Intrinsic Exploration

The pruning step in the subgoal calculation helps to disentangle the chaotic
trajectories in the dataset, but it does not guarantee the best possible sub-
goals for the goal-conditioned agent. It seems natural to let the agent im-
prove the subgoal generation during training on its own, so it can optimize
for reaching speed of the end goals and consistency. To do this, the pre-
viously defined subgoal procedure is distilled into a high level policy pa-
rameterized by a NN. The high level policy πϑ(sgt|st, g) takes the current
state and the end goal as input and produces the next subgoal as its output.
Both the original state space and the representation space were tested for
the inputs and the output, but the original state space performed better in
preliminary experiments, i.e., the lower level policy was able to learn faster
and reach better performance. To pre-train the high level policy, training
and test datasets of 50M and 5M samples each are curated with (state, goal,
subgoal) tuples from the previously collected dataset. The states and goals
are randomly sampled from all the states in the dataset and have to be part
of the same trajectory. The corresponding subgoal is then calculated using
the subgoal procedure described above. A 3x256 NN with a 29-dimensional
output head is used for the high level policy and trained with the following
MSE loss:

L = ‖sg− πϑ(s, g)‖2 (5.6)

As in all other experiments, the learning rate is set to 0.0003 and a batch
size of 512 is used. Figure 5.34 shows the training and test loss curves
for the pre-training of the high level policy. The losses decrease steadily
and the area of the standard deviation can barely be seen over the 3 seeds,
which indicates a stable learning process. More epochs of training were
not possible due to time constraints but would most certainly improve the
loss further.

Using the pre-trained high level policy during the online goal-conditioned
training allows for generating subgoals on the fly. This removes the need
of coming up with a heuristic to switch the subgoals during an episode as
the high level policy can simply generate a new subgoal in every timestep,
which makes for smoother subgoal transitions and learning signals, as long
as the learned high level policy can generalize well. Figure 5.35 illustrates
the potential of the high level policy. The agent performs more consistently

70

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.34: Train and test loss curves for the pre-training of the high level
policy.

on some of the easier goals such as (4, 0) and (8, 4) compared to using
the heuristic for the subgoal generation directly (see Figure 5.33). Unfor-
tunately, the performance on the last subgoal (0, 8) is slightly worse than
before. This is caused by the fact that the deeper parts of the maze are un-
derrepresented in the dataset, which makes it harder for the pre-training
process to generalize well in those areas, whereas the heuristic generation
can rely on finding one single good trajectory in the dataset toward the
goal.

Fine tuning the high level policy during the online training process requires
many non-trivial design decisions. The first one is the used reward signal.
The generated subgoals should assure that the agent reaches the end goal
as fast and consistent as possible. Therefore, the reward might be higher
the faster the agent reaches the end goal. This opens the question of how to
define when a goal was reached, which might be answered with a distance
threshold in the representation space. With this reward setup, the high
level policy would only receive a non-zero reward signal when reaching
the end goal. This can be too sparse in the early stages of training and it
can then overwrite the carefully pre-trained parameters. Updating the pol-
icy based on a randomly initialized Q-function at the start of the training
process can also lead to catastrophic overwriting of the parameters. An-

71

5 Goal-Conditioned RL with Prior Intrinsic Exploration

Figure 5.35: Performance on the evaluation goals with the subgoal setup
when using the SimCLR representation for the reward calculation and sam-
pling the states in the dataset as training goals. The subgoals are gener-
ated with the pre-trained high level policy.

other problem is the action space parameterization of the high level policy.
Typically, continuous action space compatible DRL algorithms such as SAC
or TQC parameterize the action space with a Gaussian distribution. The
mean of the distribution can be the output head of the pre-trained policy,
but how the standard deviation should be initialized is unclear. All those
mentioned problems and a lack of experimentation time lead to only worse
results than before and are not further investigated in this thesis They re-
main great avenues for future work.

72

6. Conclusion

To conclude this thesis, the first section of this chapter will summarize the
results and main contributions described in the previous chapters. The sec-
ond section will discuss the limitations of the developed GC-π algorithms
and propose interesting directions for future work.

6.1 Summary

The aim of this thesis was to develop a novel algorithm that follows the ob-
jectives defined in chapter 1.2 with the specific goal-conditioned AntMaze
problem setup described in chapter 3. The main contribution is the GC-
π algorithm family, which was proposed in chapter 5. The following list
summarizes the approaches of the GC-π algorithms on how the defined
objectives were achieved:

• Concept of goals: The GC-π algorithms utilize the GCRL framework
to define goals. Contrary to previous work, every dimension of the
state space is used in the goal space, which allows for a completely
flexible goal selection.

• Discover new goals: A dataset containing states, which act as pos-
sible goals, is collected through a prior intrinsic exploration phase.
The goal-conditioned agent samples those goals during training and
therefore learns to deliberately reach the parts of the state/goal space
that were explored by the intrinsic agent previously.

• Separately optimizable processes: The exploration and goal learning
objectives are separated into two distinct phases and executed one
after another. This means that the objectives are optimized by a fully

73

6 Conclusion

intrinsic motivated agent and a goal-conditioned agent respectively
and do not compete with each other, as is the case in previous work.

• Unknown downstream goals: When the intrinsic agent is able to
explore the state space extensively, the goal-conditioned agent is free
to learn only about the collected states/goals. It can generalize to
unseen downstream goals as long as there are enough similar states
in the dataset.

• High dimensional state space: The GC-π algorithms learn a repre-
sentation of the state space that can handle the high dimensionality
by reweighting and compressing (if necessary) the influence of the
dimensions with a NN and therefore focus on the relevant ones and
disentangle the underlying dynamics of the learning problem.

• Physics-based environment and continuous action space: All ex-
periments were conducted with the AntMaze environment, which
uses the MuJoCo physics engine and the simulated ant robot, which
consists of an 8-dimensional continuous action space. Both pose no
problems for the developed algorithms because they use TQC as the
underlying DRL algorithm, which handles continuous action spaces
and high-dimensional inputs easily through the use of NNs.

• Reasonable computational budget: A single complete 20M step train-
ing run takes between 17 and 19 hours with the hardware described in
chapter 3.3. This learning speed is made possible with the newly de-
veloped DRL framework RL-X. All experiments that were conducted
for this thesis used two PCs with the same hardware setup. The total
number of tracked experiments is 371, with an average of 12.18 hours
per experiment, which amounts to a total compute time of 4519 hours
or 188 days for all the research done in this thesis.

74

6 Conclusion

6.2 Limitations & Future Work

The developed GC-π algorithms in this thesis are a promising approach for
goal-conditioned learning problems by combining multiple areas of RL and
ML research. This also means that progress in each of those areas can be
used to improve the GC-π algorithms further and make them more general.
Each of the three phases (prior intrinsic exploration, offline representation
learning, goal-conditioned policy learning) can be individually improved
and an improvement in one phase helps the subsequent phases as well.

The initially collected dataset is the basis of the learned representation
space, goal sampling, potential offline RL and subgoal trajectories. The
used RND agent was able to explore the AntMaze environment extensively
but struggled to produce a balanced dataset, which is to be expected as the
algorithm was not designed for this purpose. For future research, it might
be interesting to bring the balancedness criterion directly into the intrinsic
reward function or postprocess the dataset to make it more balanced. Be-
sides that, general improvements in the field of IM can be used to improve
the exploration capabilities of the intrinsic agent, which will be needed for
even bigger and more complex environments.

The offline learned representation space lies at the heart of the GC-π algo-
rithms because it forms the reward signal for the goal-conditioned policy
learning. The representations learned with the temporal distance approach
showed promising results as accurate distances for far away states were
learned. Nevertheless, in the final usage as the distance metric for the
reward signal, the temporal distance method fell short and the represen-
tations learned with SimCLR performed better. Investigating this discrep-
ancy and also trying to apply newer non-contrastive JEMs that do not need
negative samples (Bardes et al., 2022) are interesting directions for future
work. Improvements to the representations might as well be the key to un-
locking the potential of offline goal-conditioned policy learning, as current
methods such as IQL and CQL were unable to learn good policies. In the
offline learning setup, the agent would only need to interact with the en-
vironment during exploration to collect the dataset, or the data could even

75

6 Conclusion

come from completely different sources such as human demonstrations
(Rajeswaran et al., 2017).

Interweaving the exploration and goal learning phases more often than
only once per training run could be an interesting way to share the knowl-
edge between the two agents and speed up the learning process (Pislar et
al., 2021). This could be done by alternating between the two phases every
n episodes or even every n steps, where the parameter n might be learned
based on a measure of the current learning progress or based on the part
of the state space the agent is currently in.

The AntMaze environment uses only a 29-dimensional state space, which
is high dimensional but still relatively small compared to environments
where the agent has thousands of sensors or even camera images as in-
put. The applied representation learning methods have to be able to disen-
tangle and compress such high dimensions or the resulting reward signal
will be too noisy and full of local minima to be useful. Besides extremely
high-dimensional state spaces, hidden state spaces produced by LSTMs or
similar recurrent NNs also pose a challenge not only for the representa-
tion learning methods. The GCRL framework itself makes it hard to define
downstream goals as a human operator when the state space is too large
or its dimensions are simply not interpretable. A combination or trans-
lation of language representations and state space representations might
be necessary to make goal-conditioned RL feasible for complex real-world
applications, where humans define abstract goals in their natural language
(Colas et al., 2022).

76

Bibliography

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., & Ried-
miller, M. (2018). Maximum a posteriori policy optimisation, In Inter-
national conference on learning representations.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., Mc-
Grew, B., Tobin, J., Pieter Abbeel, O., & Zaremba, W. (2017). Hindsight
experience replay. Advances in neural information processing sys-
tems, 30.

Aubret, A., Matignon, L., & Hassas, S. (2019). A survey on intrinsic motivation
in reinforcement learning. arXiv preprint arXiv:1908.06976.

Aubret, A., Matignon, L., & Hassas, S. (2021). Distop: Discovering a topo-
logical representation to learn diverse and rewarding skills. arXiv
preprint arXiv:2106.03853.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo,
Z. D., & Blundell, C. (2020b). Agent57: Outperforming the atari hu-
man benchmark, In International conference on machine learning.
PMLR.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B., Kapturowski, S.,
Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A., Et al. (2020a). Never
give up: Learning directed exploration strategies, In International
conference on learning representations.

Balestriero, R., & LeCun, Y. (2022). Contrastive and non-contrastive self-
supervised learning recover global and local spectral embedding
methods, In Advances in neural information processing systems.

Ballard, D. H. (1987). Modular learning in neural networks., In Aaai.

Bardes, A., Ponce, J., & Lecun, Y. (2022). Vicreg: Variance-invariance-covariance
regularization for self-supervised learning, In Iclr 2022-10th interna-
tional conference on learning representations.

77

Bibliography

Bellemare, M. G., Dabney, W., & Rowland, M. (2023). Distributional reinforce-
ment learning [http://www.distributional-rl.org]. MIT Press.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47, 253–279.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine
learning (Vol. 4). Springer.

Bordes, F., Balestriero, R., & Vincent, P. (2023). Towards democratizing joint-
embedding self-supervised learning. arXiv preprint arXiv:2303.01986.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang,
Q. (2018). JAX: Composable transformations of Python+NumPy pro-
grams (Version 0.4.9). http://github.com/google/jax

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
& Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1993). Signature
verification using a" siamese" time delay neural network. Advances
in neural information processing systems, 6.

Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2018). Exploration by ran-
dom network distillation, In International conference on learning
representations.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020).
Unsupervised learning of visual features by contrasting cluster as-
signments. Advances in neural information processing systems, 33,
9912–9924.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., Et al. (2021). Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework
for contrastive learning of visual representations, In International
conference on machine learning. PMLR.

78

http://www.distributional-rl.org
http://github.com/google/jax

Bibliography

Colas, C., Karch, T., Sigaud, O., & Oudeyer, P.-Y. (2022). Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: A
short survey. Journal of Artificial Intelligence Research, 74, 1159–1199.

Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid,
A., Tompson, J., Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet,
P., Duckworth, D., Levine, S., Vanhoucke, V., Hausman, K., Toussaint,
M., Gre�, K., . . . Florence, P. (2023). Palm-e: An embodied multimodal
language model, In Arxiv preprint arxiv:2303.03378.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A.,
Mnih, V., Munos, R., Hassabis, D., Et al. (2017). Noisy networks for ex-
ploration, In International conference on learning representations.

Fu, J., Kumar, A., Nachum, O., Tucker, G., & Levine, S. (2020). D4rl: Datasets
for deep data-driven reinforcement learning.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Do-
ersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Et al. (2020).
Bootstrap your own latent-a new approach to self-supervised learn-
ing. Advances in neural information processing systems, 33, 21271–
21284.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018a). Soft actor-critic: O�-
policy maximum entropy deep reinforcement learning with a stochas-
tic actor, In International conference on machine learning. PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V.,
Zhu, H., Gupta, A., Abbeel, P., Et al. (2018b). Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905.

Hafner, D., Lee, K.-H., Fischer, I., & Abbeel, P. (2022). Deep hierarchical plan-
ning from pixels, In Advances in neural information processing sys-
tems.

Hasselt, H. (2010). Double q-learning. Advances in neural information pro-
cessing systems, 23.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., & van
Zee, M. (2023). Flax: A neural network library and ecosystem for JAX
(Version 0.6.8). http://github.com/google/flax

79

http://github.com/google/flax

Bibliography

Hena�, M., Raileanu, R., Jiang, M., & Rocktäschel, T. (2022). Exploration via
elliptical episodic bonuses, In Advances in neural information pro-
cessing systems.

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., & Tsuruoka, Y. (2021).
Dropout q-functions for doubly e�cient reinforcement learning, In
International conference on learning representations.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735–1780.

Ho�man, M. W., Shahriari, B., Aslanides, J., Barth-Maron, G., Momchev, N.,
Sinopalnikov, D., Stańczyk, P., Ramos, S., Raichuk, A., Vincent, D., Et
al. (2020). Acme: A research framework for distributed reinforcement
learning. arXiv preprint arXiv:2006.00979.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., & Araújo,
J. G. (2022). Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. The Journal of Machine Learning
Research, 23(1), 12585–12602.

Jarrett, D., Tallec, C., Altché, F., Mesnard, T., Munos, R., & Valko, M. (2022). Cu-
riosity in hindsight, In Deep reinforcement learning workshop neurips
2022.

Jiang, M., Rocktäschel, T., & Grefenstette, E. (2022). General intelligence re-
quires rethinking exploration. arXiv preprint arXiv:2211.07819.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. stat,
1050, 1.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A. A., Yogamani, S., &
Pérez, P. (2021). Deep reinforcement learning for autonomous driv-
ing: A survey. IEEE Transactions on Intelligent Transportation Sys-
tems, 23(6), 4909–4926.

Kostrikov, I., Nair, A., & Levine, S. (2021). O�ine reinforcement learning with
implicit q-learning, In Deep rl workshop neurips.

80

Bibliography

Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative q-learning
for o�ine reinforcement learning. Advances in Neural Information
Processing Systems, 33, 1179–1191.

Kuznetsov, A., Shvechikov, P., Grishin, A., & Vetrov, D. (2020). Controlling
overestimation bias with truncated mixture of continuous distribu-
tional quantile critics, In International conference on machine learn-
ing. PMLR.

Lai, T. L., Robbins, H. Et al. (1985). Asymptotically e�cient adaptive alloca-
tion rules. Advances in applied mathematics, 6(1), 4–22.

Li, S., Zhang, J., Wang, J., Yu, Y., & Zhang, C. (2021b). Active hierarchical explo-
ration with stable subgoal representation learning, In International
conference on learning representations.

Li, S., Zheng, L., Wang, J., & Zhang, C. (2021a). Learning subgoal represen-
tations with slow dynamics, In International conference on learning
representations.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J.,
Jordan, M., & Stoica, I. (2018). Rllib: Abstractions for distributed rein-
forcement learning, In International conference on machine learn-
ing. PMLR.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
& Wierstra, D. (2015). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., & Pathak, D. (2021). Dis-
covering and achieving goals via world models. Advances in Neural
Information Processing Systems, 34, 24379–24391.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Et al. (2015).
Human-level control through deep reinforcement learning. nature,
518(7540), 529–533.

Mu, J., Zhong, V., Raileanu, R., Jiang, M., Goodman, N., Rocktäschel, T., &
Grefenstette, E. (2022). Improving intrinsic exploration with language
abstractions, In Advances in neural information processing systems.

81

Bibliography

Mundt, M., Hong, Y., Pliushch, I., & Ramesh, V. (2023). A wholistic view of con-
tinual learning with deep neural networks: Forgotten lessons and
the bridge to active and open world learning. Neural Networks.

Nachum, O., Gu, S. S., Lee, H., & Levine, S. (2018). Data-e�cient hierarchical
reinforcement learning. Advances in neural information processing
systems, 31.

Oord, A. v. d., Li, Y., & Vinyals, O. (2018). Representation learning with con-
trastive predictive coding. arXiv preprint arXiv:1807.03748.

Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for
financial applications: A survey. Applied Soft Computing, 93, 106384.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Et al. (2019). Pytorch: An imperative
style, high-performance deep learning library. Advances in neural
information processing systems, 32.

Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017). Curiosity-driven ex-
ploration by self-supervised prediction, In International conference
on machine learning. PMLR.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Peng, X. B., Kumar, A., Zhang, G., & Levine, S. (2019). Advantage-weighted
regression: Simple and scalable o�-policy reinforcement learning.
arXiv preprint arXiv:1910.00177.

Pislar, M., Szepesvari, D., Ostrovski, G., Borsa, D. L., & Schaul, T. (2021). When
should agents explore?, In International conference on learning rep-
resentations.

Pitis, S., Chan, H., Zhao, S., Stadie, B., & Ba, J. (2020). Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning, In
International conference on machine learning. PMLR.

82

Bibliography

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., & Levine, S. (2020). Skew-fit:
State-covering self-supervised reinforcement learning, In Proceed-
ings of the 37th international conference on machine learning.

Ra�n, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N.
(2021). Stable-baselines3: Reliable reinforcement learning implemen-
tations. The Journal of Machine Learning Research, 22(1), 12348–12355.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E.,
& Levine, S. (2017). Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary educational psychol-
ogy, 25(1), 54–67.

Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015). Universal value func-
tion approximators, In International conference on machine learn-
ing. PMLR.

Schneider, F., Xu, X., Ernst, M. R., Yu, Z., & Triesch, J. (2021). Contrastive learn-
ing through time, In Svrhm workshop@ neurips.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-
dimensional continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Shi, T., Karpathy, A., Fan, L., Hernandez, J., & Liang, P. (2017). World of bits:
An open-domain platform for web-based agents, In International
conference on machine learning. PMLR.

Sigaud, O., Akakzia, A., Caselles-Dupré, H., Colas, C., Oudeyer, P.-Y., & Chetouani,
M. (2022). Towards teachable autotelic agents. IEEE Transactions on
Cognitive and Developmental Systems.

Sun, M., Kurin, V., Liu, G., Devlin, S., Qin, T., Hofmann, K., & Whiteson, S.
(2022). You may not need ratio clipping in ppo. arXiv preprint arXiv:2202.00079.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

83

Bibliography

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D.,
Abdolmaleki, A., Merel, J., Lefrancq, A., Et al. (2018). Deepmind control
suite. arXiv preprint arXiv:1801.00690.

Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-
based control, In 2012 ieee/rsj international conference on intelli-
gent robots and systems. IEEE.

Warde-Farley, D., Van de Wiele, T., Kulkarni, T., Ionescu, C., Hansen, S., &
Mnih, V. (2018). Unsupervised control through non-parametric dis-
criminative rewards, In International conference on learning repre-
sentations.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. King’s College,
Cambridge United Kingdom.

Weng, J., Lin, M., Huang, S., Liu, B., Makoviichuk, D., Makoviychuk, V., Liu, Z.,
Song, Y., Luo, T., Jiang, Y., Et al. (2022). Envpool: A highly parallel re-
inforcement learning environment execution engine, In Thirty-sixth
conference on neural information processing systems datasets and
benchmarks track.

Wu, Y., Chen, X., Wang, C., Zhang, Y., & Ross, K. W. (2022). Aggressive q-
learning with ensembles: Achieving both high sample e�ciency and
high asymptotic performance, In Deep reinforcement learning work-
shop neurips.

Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in health-
care: A survey. ACM Computing Surveys (CSUR), 55(1), 1–36.

Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonzalez, J. E., & Tian, Y.
(2021). Noveld: A simple yet e�ective exploration criterion. Advances
in Neural Information Processing Systems, 34, 25217–25230.

84

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Aim and Objectives
	Outline

	Fundamentals & Related Work
	Reinforcement Learning
	Deep Reinforcement Learning Algorithms
	Exploration-Exploitation Dilemma
	Intrinsic Motivation
	Goal-Conditioned Reinforcement Learning
	Representation Learning

	Problem Setup
	Agent: Ant
	Environment: Maze
	Framework: RL-X

	Goal-Conditioned RL Baseline
	Simple Reward
	Representation-based Reward
	Goal Buffer

	Goal-Conditioned RL with Prior Intrinsic Exploration
	Prior Intrinsic Exploration
	Offline Representation Learning
	SimCLR
	Temporal Distance
	Information Retention

	Goal-Conditioned Policy Learning
	Offline Learning
	Online Learning
	Subgoal Trajectories

	Conclusion
	Summary
	Limitations & Future Work

	Bibliography

