The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 3
Back to Result List

Untersuchung von TRD-Prototypen mit alternierender Hochspannung für das CBM-Experiment

  • Ziel dieser Arbeit war die Untersuchung eines neuen Prototypen für den Übergangsstrahlungsdetektor im zukünftigen CBM-Experiment. Da der TRD zur Untersuchung des Quark-Gluon-Plasmas im Bereich hoher Baryonendichten bei hohen Kollisionsraten besonders schnell sein muss, wurde ein Prototyp mit einem kleinen Gasvolumen ohne Driftbereich entwickelt. Die Geometrie ist jedoch mit einer Reduzierung der Stabilität der Gasverstärkung verbunden, denn das elektrische Feld in der Kammer ist bei den geringen Abständen von Verformungen des dünnen Kathodenfensters abhängig. Daher wurde eine vielversprechende, veränderte Drahtgeometrie eingeführt: zwischen den Anodendrähten wurden zusätzliche Felddrähte positioniert, um das elektrische Feld im Bereich der Gasverstärkung zu stabilisieren. Der neue Prototyp mit alternierender Hochspanngung und mit einer Dicke von 8 mm sowie einer aktiven Fläche von 15 x 15 cm2 wurde im Labor mit einer 55Fe-Quelle getestet. Dazu wurden Strommessungen und eine spektrale Analyse für 25 verschiedene Positionen der Quelle vor der Kammer durchgeführt, sowohl mit der neuen Kammer als auch mit einer Standardkammer als Referenz. Die mit der neuen Kammer verbundenen positiven Erwartungen konnten durchweg bestätigt werden. Sowohl für die Strom- als auch für Energiemessung konnte eine signifikante Verbesserung der Stabilität der Gasverstärkung festgestellt werden. Variationen von über 60 % über die verschiedenen Messpunkte für die Standardkammer konnten mit der Kammer mit alternierender Hochspannung auf unter 15 % reduziert werden. Auch bei einer Variation des differentiellen Drucks, der mit der Ausdehnung des Folienfensters verbunden ist, kann das elektrische Feldes mithilfe der Felddrähte stabilisiert werden. Ebenso kann eine Analyse der Energieauflösung für die mit den Prototypen aufgezeichneten Spektren den stabilisierenden Effekt bestätigen. Eine zusätzliche Verbesserung durch das Anlegen einer negativen Spannung an den Felddrähten konnte allerdings nicht beobachtet werden. Ebenso zeigten die Messungen mit einer zweiten Kammer mit asymmetrischer Geometrie, das heißt die Drahtebene wurde in Richtung der hinteren Kathode verschoben, keine weitere Stabilisierung. Messungen der an den Felddrähten influenzierten Ströme zeigen, dass diese etwa bei einem Drittel der Anodenströme liegen, wobei sie für eine Erhöhung der Felddrahtspannung ebenso wie für die Messung mit der asymmetrischen Kammer leicht ansteigen. Die Ströme an den Felddrähten sind mit der Bewegung der Ionen in der Kammer verbunden, die das elektrische Feld stören können. Durch die Einführung der Felddrähte wird sich ein Teil der Ionen zu diesen bewegen, anstelle den Weg durch die Kammer bis zu den Kathoden zurückzulegen. Die positiven Ergebnisse für die Kammer mit alternierenden Drähten sind nun Ausgangspunkt für weitere Schritte. Größere Kammern mit einer Fläche von 60 x 60 cm2, wie sie auch im finalen Experiment eingesetzt werden, wurden bereits gebaut und in einem gemischten Elektron-Pion-Strahl am PS (Protonsynchrotron) und mit einem Bleitarget am SPS (Super-Proton Synchrotron) am CERN getestet. Dabei wurde die Dicke des Gasvolumens nochmals – auf 7 mm – reduziert, was die Schnelligkeit des Detektors weiter erhöht, allerdings auch die Stabilität der Gasverstärkung wieder auf die Probe stellt. Die Daten werden derzeit ausgewertet. Eine weitere Analyse auf Basis der Padauslese im Labor ist in Planung. Hierbei ist insbesondere die Verteilung eines Signals über die Pads (Pad-Response-Funktion) von Bedeutung, wobei diese von der Bewegung der Ionen und damit von der Geometrie des elektrischen Feldes beeinflusst wird. Die Einführung der Felddrähte spielt hier eine wesentliche Rolle; insbesondere beträgt der Drahtabständ zwischen den Andodendrähten nun 5 mm, während die Abstände bei den vorhergehenden Generationen bei 2-3 mm lagen. Auch die Signalform ist von Interesse. Die derzeit ebenfalls in Entwicklung befindliche Ausleseelektronik und die Algorithmen zur Datenverarbeitung sind auf die bekannte Signalform eines Standardprototypen ausgerichtet. Eine veränderte Form müsste entsprechend berücksichtigt werden, um aussagekräftige Ergebnisse zu erhalten. Die Auswertungen in dieser Arbeit zeigen, dass sich die Signalform grundsätzlich nicht von der des Standardprototypen unterscheidet. Wichtig sind auch die Driftzeiten für Elektronen aus der Lawine. Sie spielen eine entscheidende Rolle für die die Schnelligkeit des Detektors. Mit der Einführung der Felddrähte liegen sie zwar zum großen Teil nach wie vor im Bereich eines Standardprototyen mit entsprechender Dicke des Gasvolumens von 8 mm bei bis zu 150 ns, jedoch folgt dann ein sehr langsamer Abfall mit Elektrondriftzeiten von bis zu 450 ns [47]. Eine Verbesserung ist durch ein kleineres Gasvolumen möglich, für einen Anoden-Kathoden-Abstand von 3 mm sinken die maximalen Driftzeiten auf 300 ns. Eine andere Alternative ist das Anlegen einer negativen Spannung an das Eintrittsfenster.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Susanne Gläßel
URN:urn:nbn:de:hebis:30:3-673362
URL:https://www.uni-frankfurt.de/96721658/Bachelorarbeit_Susanne_Glaessel.pdf
Publisher:Institut für Kernphysik FB 13, Goethe-Universität Frankfurt am Main
Place of publication:Frankfurt am Main
Referee:Christoph BlumeORCiDGND, Harald AppelshäuserORCiDGND
Advisor:Christoph Blume, Pascal Dillenseger
Document Type:Bachelor Thesis
Language:German
Year of Completion:2016
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/06/21
Release Date:2022/11/10
Page Number:73
Last Page:73
HeBIS-PPN:502434678
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht