The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 16
Back to Result List

Entwicklung und Untersuchung einer Vakuumbogen-Ionenquelle zur Erzeugung intensiver, hochbrillianter vierfach geladener Uranstrahlen

  • Im Rahmen des Programms zur Intensitätserhöhung am Universal Linear Accelerator UNILAC für das Element Uran hat sich die Forderung nach einer Ionenquelle ergeben, die einen intensiven, hochbrillianten Ionenstrahl aus vierfach geladenen Uranionen bereitstellen kann. Ziel war es, im Zusammenspiel von Ionenquelle, Nachbeschleunigungssystem und Niederenergiestrahlführung einen Strahlstrom von mindestens 15 emA U4+ am Eingang des RFQ-Beschleunigers bereitzustellen. Die vorliegende Arbeit befaßt sich mit den Optimierungen und den experimentellen Untersuchungen an der Vakuumbogenionenquelle VARIS für den Uranbetrieb, welche schließlich ihre Leistungsfähigkeit an der Beschleunigeranlage der GSI erfolgreich unter Beweis gestellt hat. Der erste Teil dieser Arbeit widmet sich der Theorie der Vakuumbogenentladung unter besonderer Berücksichtigung der Erzeugung von U4+. Die Generierung von U4+ erfolgt dabei zu einem Teil im dichten Kathodenspotplasma, wo das Ionisationspotential von 31 auf 21 eV herabgesetzt ist, U4+ also bei vergleichsweise niedrigen Elektronenenergien erzeugt werden kann. Der U4+-Anteil beträgt jedoch nur 30 %. Die Erzeugung eines höheren Anteils an U4+ ist geknüpft an zusätzlich Ionisationsvorgänge im expandierenden Zwischenelektrodenplasma, für welches eine neuartige Theorie (MHD Ansatz) angegeben werden konnte. Für die Vakuumbogenentladung im axialen Magnetfeld konnte eine Erhöhung der Elektronentemperatur vorhersagt werden, die für eine höhere Ionisationsrate für U4+ verantwortlich ist. Für die Elektronentemperatur wurde bei einer magnetischen Flußdichte von 40 mT ein Wert von 10 eV vorhergesagt, welcher experimentell bestätigt werden konnte. Zieht man zudem die berechneten Wirkungsquerschnitte für die Ein- und Mehrfachionisation heran, so konnte aus den Wirkungsquerschnitten vorausgesagt werden, daß für die Produktion eines hohen Anteils an U4+ eine Elektronenenergie von zirka 50 eV für die Generierung von U4+ aus U3+ erforderlich ist. Im weiteren wurde ausgeführt, wie ein Extraktionssystem ausgelegt sein muß, welches den Forderungen nach einem Gesamtstrom von 140 mA entspricht oder diesen übertrifft. Das Erreichen dieses Stroms ist im Einlochextraktionssystem mit Schwierigkeiten verbunden (große Emissionsfläche, langes Extraktionssystem, Extraktionsspannung zirka 180 kV). Aus diesen Gründen ist die Entscheidung zugunsten eines Extraktionssystem mit 13 Öffnungen mit einem Durchmesser von jeweils 3 mm gefallen. Die Gesamtemissionsfläche aller Aperturen liegt bei 0,92 cm2. Zur Bestimmung der Strahlformierung einer Öffnung im Extraktionssystem ist das Strahlsimulationsprogramm KOBRA3INP unter Berücksichtigung einer experimentell gut zugänglichen Feldstärke von 11 kV/mm bei einem Aspektverhältnis von 0,5 genutzt worden. Es ergab sich ein minimaler Divergenzwinkel von etwa 55 mrad, die unnormierte effektive Emittanz geht mit steigender Stromdichte asymptotisch einem Wert von 65p mm mrad entgegen. Für das Extraktionssystem (13 Öffnungen) kann die unnormierte effektive Emittanz zu 610p mm mrad abgeschätzt werden. Die Stromdichte, welche der Plasmagenerator bereitstellen muß, beträgt etwa 1600 A/m2. Die Extraktionsspannung liegt bei 32 kV, welche, ebenso wie die Stromdichte, experimentell erreicht wurde. Bei den experimentellen Untersuchungen wurde zunächst untersucht, inwieweit die Impedanz des Vakuumbogenplasmas gesteigert werden kann. Ziel war es, eine möglichst hohe Plasmaimpedanz und damit eine hohe Bogenspannung zu erhalten, wodurch die erreichbare Elektronenenergie vergrößert wird (Regelung der Bogenspannung durch die Plasmaimpedanz). Es ist gezeigt worden, daß die Impedanz vor allem durch eine geeignete Magnetfeldkonfiguration erhöht werden kann (axiales Feld). Ebenso sind die Geometrie der Ionenquelle (Abstand Kathode-Anode 15 mm, Anodenöffnung 15 mm) und die verwendeten Materialien (Anode aus Edelstahl, kleiner Sputterkoeffizient und Sekundärelektronenaus97 löse) entscheidend, wobei zugunsten eines zuverlässigen Zündverhaltens der Ionenquelle die Entscheidung für eine Anodenöffnung von 15 mm statt 25 mm gefallen ist. So erreicht man für eine magnetische Flußdichte von 120 mT bei einem Bogenstrom von 700 A eine Bogenspannung von 54 V, wodurch die Erzeugung bis zu sechsfach geladenen Uranionen möglich wird. Um grundlegende Eigenschaften des Vakuumbogenplasmas zu bestimmen und das theoretische Modell zur Erzeugung von U4+ zu überprüfen, wurden die Ionen- und Elektronenenergieverteilung im Plasma gemessen ...

Download full text files

  • Dissertation_Galonska.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Galonska
URN:urn:nbn:de:hebis:30-115918
Referee:Horst Klein, Alwin SchemppGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/09/29
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/07/12
Release Date:2011/09/29
Page Number:II, 104
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die Print-Ausgabe kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:311033059
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG