The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 31
Back to Result List

Molecular characterization of anticancer and metabolic activities of resveratrol analog 3,4',5-(Z)-trimethoxystilbene and interaction with AMPK inhibitor compound C

  • Das natürlich vorkommende Polyphenol Resveratrol (3,4‘,5-(E)-Trihydroxystilben) ist eine potente chemopräventive Substanz, die in vielen verschiedenen Krebszelllinien wirksam ist. Außerdem verfügt sie über anti-inflammatorische, anti-oxidative und pro-apoptotische Wirkungen. Da Resveratrol auch in Tiermodellen des Typ-2-Diabetes und der nicht-alkoholischen Fettlebererkrankung gute Effekte gezeigt hat, wird in Erwägung gezogen es zur Prävention und Behandlung von metabolischen Erkrankungen einzusetzen. Allerdings liegen, aufgrund von schneller Metabolisierung und geringer Bioverfügbarkeit, die wirksamen Konzentrationen im mikromolaren Bereich. Eine geeignete Strategie, um die anti-tumorale Wirkung und die Bioverfügbarkeit von Resveratrol zu verbessern, scheint die Methylierung der freien Hydroxylgruppen zu sein. Allerdings liefern einige Studien Hinweise darauf, dass diese strukturelle Modifikation der Stilbengrundstruktur zu einer Veränderung des antiproliferativen Wirkmechanismus der methylierten Substanzen führt. Daher führten wir im ersten Teil dieser Arbeit genauere Untersuchungen durch, um die Veränderungen der biologischen Wirkung, die durch die Methylierung der freien Hydroxylgruppen von (E)- und (Z)-Resveratrol verursacht werden, zu charakterisieren. Einen Schwerpunkt bildete die Bestimmung der metabolischen Effekte der methylierten Substanzen. Dabei sollte aufgeklärt werden, ob die Analoga noch immer in der Lage sind bekannte Resveratrol-Targets, wie AMPK, SIRT1 und Phosphodiesterasen, zu modulieren. Zunächst bestätigten wir, dass die methylierten Resveratrolanaloga ST911 (3,4‘,5-Z)-Trimethoxystilben) und ST912 (3,4‘,5-(E)-Trimethoxystilben) einen starken antiproliferativen Effekt auf verschiedene Krebszelllinien ausüben. Wie bereits zuvor beschrieben, konnten wir beobachten, dass ST911 und ST912 das Wachstum von Tumorzellen stärker beeinflussen, als die hydroxylierten Substanzen (E)- und (Z)-Resveratrol. Dies, in Verbindung mit einer vernachlässigbaren zytotoxischen Wirkung und einer deutlich geringeren antiproliferativen Wirkung auf Primärzellen, legt nahe, dass ST911 als potentielles neues Chemotherapeutikum weiter untersucht werden sollte. Zudem zeigten ST911 und ST912 signifikante pro-apoptotische Wirkungen in CaCo-2-Zellen. Auch Resveratrol konnte in diesen Zellen Apoptose auslösen, allerdings erst nach Behandlung mit deutlich höheren Konzentrationen, verglichen mit ST911 und ST912. Eine genauere Charakterisierung der antitumoralen Wirkung von ST911 in HT-29-Zellen zeigte, dass ST911 die Polymerisation von Tubulin zu Mikrotubuli beeinflusst und einen Arrest des Zellzyklus in der Mitose-Phase auslöst. Im Gegensatz dazu führt Resveratrol zu einem Zellzyklus-Arrest in der S-Phase und beeinflusst die Tubulinpolymerisation nicht. Diese Beobachtungen verstärkten die Annahme, dass ST911 ein Mitosehemmer ist und betonten noch einmal die mechanistischen Unterschiede zwischen Resveratrol und den methylierten Analoga. Interessanterweise konnte ST911 die hepatische Fettakkumulation in einem in-vitro-Steatosemodell nicht beeinflussen, während eine Behandlung mit Resveratrol zu einer signifikanten Reduktion der intrahepatischen Triglyzeride führte. Dieses Experiment lässt vermuten, dass die stärkere antiproliferative Wirkung von ST911, keine erhöhte Aktivität in metabolischen Krankheitsmodellen nach sich zieht. Die beobachteten Unterschiede im Steatosemodell führten zu der Frage, ob die methylierten Analoga noch immer in der Lage sind die gleichen metabolischen Targetgene zu modulieren, die in der Literatur für Resveratrol beschrieben sind. Vor kurzem wurden Phosphodiesterasen (PDEs) als direkte Targets von Resveratrol identifiziert. Die Inhibition von PDEs durch Resveratrol führt zu einem Anstieg der intrazellulären cAMP-Konzentration. Diese wiederum aktiviert die bekannten Resveratrol-Targetgene AMPK und SIRT1. Unsere Experimente zeigten, dass ST911 und ST912 keinen Einfluss auf die intrazelluläre cAMP-Konzentration haben. Zusätzlich konnten wir keine AMPK- oder SIRT1-abhängigen Veränderungen der Genexpression beobachten. Dies ist ein Hinweis darauf, dass die Substanzen ihre zellulären Effekte vermutlich nicht über eine Modulation von PDEs, AMPK oder SIRT1 vermitteln. Zusammenfassend liefert der erste Teil der Arbeit Beweise dafür, dass ST911 keine positiven Effekte in metabolischen Krankheitsmodellen ausübt. Dies liegt vermutlich in einem Aktivitätsverlust gegenüber den metabolischen Targetgenen von Resveratrol begründet. Des Weiteren unterstützen unsere Ergebnisse frühere Arbeiten, die zeigen konnten, dass ST911 an Tubulin bindet und die Polymerisation zu Mikrotubuli verhindert. Weiterhin bestätigen unsere Daten, dass die Methylierung von Resveratrol zu einer grundlegenden Veränderung des Wirkmechanismus dieser Substanzen führt, die von einem kompletten Verlust der metabolischen Aktivität begleitet wird. Dies sollte bei zukünftigen Leitstrukturoptimierungen mit Resveratrol berücksichtigt werden. Im ersten Teil dieser Arbeit konnte außerdem gezeigt werden, dass Resveratrol die Gentranskription des nukleären Rezeptors SHP (aus dem Englischen: small heterodimer partner) stark induziert. Der Mechanismus dieser Induktion scheint von der Aktivität von AMPK und SIRT1 abhängig zu sein. Diese Ergebnisse konnten unser Verständnis der vielseitigen biologischen Wirkungen von Resveratrol erweitern. Dennoch sollte die Relevanz der SHP-Induktion für die Effekte von Resveratrol auf metabolische Krankheiten und Tumorwachstum noch weiter untersucht werden. Während der Experimente für den ersten Teil der Arbeit stellten wir fest, dass der AMPK-Inhibitor Compound C (CC) in der Lage war, die wachstumshemmende Wirkung von ST911 signifikant zu reduzieren. Die Untersuchung dieses sogenannten „Rescue-Effektes“ wird durch die Tatsache bestärkt, dass eine steigende Anzahl von Tumoren resistent gegenüber Chemotherapeutika ist. Außerdem fehlen spezifische Antidota für akute Intoxikationen mit Mitosehemmern. Daher zielten die folgenden Experimente darauf ab den Rescue-Effekt näher zu charakterisieren und die zugrundeliegenden Wirkmechanismen aufzuklären. Zunächst zeigten Knockdown-Experimente, dass der Rescue-Effekt unabhängig von der AMPK-inhibierenden Wirkung von CC vermittelt wird. Da CC ein ATP-kompetitiver Inhibitor der AMPK ist und zuvor bereits gezeigt wurde, dass es auch eine große Zahl anderer Kinasen inhibieren kann, vermuteten wir, dass der Rescue-Effekt mit diesen Off-Target-Effekten von CC zusammenhängt. Als nächstes testeten wir, ob die wachstumshemmenden Effekte von anderen Mitosehemmern auch durch CC aufgehoben werden können. Wir wählten verschiedene etablierte Substanzen, die dafür bekannt sind mit Mikrotubuli zu interagieren: Colchicin, das Vinca-Alkaloid Vinblastin, Disorazol A und das aus Taxus-Arten isolierte Paclitaxel. Die ersten drei dieser Substanzen haben eine depolymerisierende Wirkung auf die Mikrotubuli, während Paclitaxel zu einer stärkeren Polymerisierung führt. Zudem binden diese Substanzen an drei verschiedenen Bindestellen am Tubulin. Interessanterweise zeigten unsere Versuche, dass CC die antiproliferative Wirkung aller getesteten Mitosehemmer auf HT-29-Zellen, unabhängig von der Bindestelle, abschwächen kann. Des Weiteren konnte CC die Wirkung der pro-apoptotischen Substanz Staurosporin nicht reduzieren. Diese Ergebnisse weisen darauf hin, dass eher die tubulinbindenden, als die pro-apoptotischen Eigenschaften, von ST911 für den Rescue-Effekt verantwortlich sind. Um zu untersuchen, ob der Rescue-Effekt mit einer kompetitiven Bindung von CC und Mitosehemmern an Mikrotubuli erklärt werden kann, führten wir eine Immunfluoreszenzfärbung von ?-Tubulin durch. Wir konnten beobachten, dass die Tubulinpolymerisation und die Funktion des Spindelapparates in Zellen, die mit Mitosehemmern behandelt wurden, deutlich eingeschränkt waren. Außerdem stellten wir fest, dass CC nicht in der Lage ist die Zerstörung des Tubulingerüstes durch die Mitosehemmer zu verhindern. Eine Einzelbehandlung mit CC hatte keine Wirkung auf die Polymerisation des Tubulin zu Mikrotubuli. Insgesamt legen diese Daten nahe, dass CC nicht direkt an Mikrotubuli binden kann, um mit den Mitosehemmern um eine Bindung zu kompetitieren. Um diese Hypothese zu stärken, führten wir, in Kooperation mit Dr. Jennifer Herrmann (Helmholtz Institut für Pharmazeutische Forschung, Saarbrücken) SPR-Experimente mit Chips durch, auf denen Tubulin immobilisiert wurde. Die Messungen zeigten, das CC nicht in der Lage war gebundenes Disorazol A von der Bindestelle am Tubulin zu verdrängen. Dies zeigte nun deutlich, dass der Rescue-Effekt nicht auf einer Kompetition von CC und Mitosehemmern um Tubulinbindestellen beruht. Zellzyklusanalysen zeigten, dass die kombinierte Behandlung mit ST911 und CC zu einer Abschwächung des durch ST911 verursachten G2/M-Arrestes führt. Da wir zuvor bereits eine Beeinflussung der direkten Targets von CC und Mitosehemmern, AMPK oder Tubulin, ausgeschlossen hatten, schlussfolgerten wir, dass CC vermutlich mit anderen zellulären Signalwegen interagiert, die zu den beschriebenen Veränderungen des Zellwachstums und der Zellzyklusprogression führen. Eine Literaturrecherche ergab, dass ein erhöhter intrazellulärer Polyaminspiegel, die Aktivierung des PI3K/Akt-Signalweges oder eine erhöhte Aktivität des Transkriptionsfaktors c-Myc zu einer Abschwächung eines G2/M-Arrestes führen können. Daher fokussierten wir die weiteren Experimente auf die Untersuchung einer möglichen Beteiligung dieser Targets an der Vermittlung des Rescue-Effektes. Wir zeigten, dass CC die Expression der Spermidin/Spermin-N1-Acetyltransferase (SSAT) erhöhen kann. Die SSAT ist ein Enzym, das an der Biosynthese der Polyamine beteiligt ist. Zusätzlich beobachteten wir, dass die Behandlung mit CC nach 4 h zu einer Erhöhung von phosphoryliertem und damit aktiviertem Akt (pAkt) führt. Die zusätzliche Behandlung mit Wortmannin, einer Substanz, welche die Phosphorylierung von Akt hemmen kann, führte zu einer Abschwächung des Rescue-Effektes. Insgesamt weisen diese Ergebnisse darauf hin, dass eine Aktivierung von Akt-Signalwegen und ein Einfluss auf die Polyaminbiosynthese, zumindest teilweise, mit dem Rescue-Effekt zusammenhängen können. Die Überexpression von c-Myc, einem Transkriptionsfaktor, der eng mit dem Akt-Signalweg und der Biosynthese von Polyaminen zusammenhängt, ist oft mit einer erhöhten Zellproliferation verbunden. Wir untersuchten die zellulären Proteinmengen von c-Myc mittels Western Blot und entdeckten, dass nach der Behandlung mit Mitosehemmern zusätzliche Banden für c-Myc auf den Blots auftauchten. Diese Ergebnisse geben einen Hinweis auf eine posttranslationale Modifikation von c-Myc nach der Behandlung mit Mitosehemmern. Durch Kombination mit CC wurden die zusätzlichen Banden abgeschwächt und die Gesamtmenge an c-Myc-Protein nahm nach längeren Inkubationszeiten rapide ab. Dies legt nahe, dass die posttranslationale Modifikation von c-Myc zum Abbau des Proteins führt und, dass CC dies abschwächen kann. Verschiedene Arbeiten zeigten bereits, dass c-Myc phosphoryliert wird und nach Konjugation mit Ubiquitin vom Proteasom abgebaut wird. Daher überprüften wir, ob eine Inhibition des Proteasoms mit MG-132 zu einem ähnlichen Rescue-Effekt führt wie mit CC. Tatsächlich führte die Behandlung mit ST911 in Kombination mit MG-132 zu einer Zunahme der Zellproliferation, wie sie vorher bereits für CC beobachtet wurde. Dies bestärkte die Theorie, dass der proteasomale Abbau von c-Myc eine Rolle beim Rescue-Effekt spielen kann. Als nächstes untersuchten wir die Phosphorylierungen von c-Myc am Ser62 und Thr58. Diese Phosphorylierungen spielen eine wichtige Rolle beim Abbau von c-Myc, indem Sie das Protein für die Konjugation mit Ubiquitin markieren. Die densitometrische Auswertung der Western Blots ergab, dass die Behandlung mit ST911 initial zu einem Anstieg von phospho-c-Myc führt, dem eine schnelle Abnahme zu späteren Zeitpunkten folgt. Außerdem konnte gezeigt werden, dass dieser Anstieg von phospho-c-Myc durch Kombination mit CC reduziert wurde. Dies unterstützt die Hypothese, dass ST911 den proteasomalen Abbau von c-Myc begünstigt und CC dies verhindern kann. Dies ist eine mögliche Erklärung für die erhöhte Zellproliferation, die für die durch CC „geretteten“ Zellen beobachtet wurde. Allerdings konnte das direkte Target, das für die Vermittlung des Rescue-Effektes durch CC verantwortlich ist, bisher nicht identifiziert werden. DYRKs (aus dem Englischen: Dual-specificity tyrosine-phosphorylation-regulated kinases) sind wichtige Regulatoren von Proteinstabilität und –abbau während der Zellzyklusprogression. Vor kurzem wurde gezeigt, dass DYRK1A und DYRK2 c-Myc am Ser62 phosphorylieren können und es dadurch für den proteasomalen Abbau markieren. Interessanterweise wurde CC bereits in einer früheren Publikation als potenter Inhibitor verschiedener DYRKs beschrieben. Allerdings wurde die Hemmung der DYRKs durch CC in diesem Artikel nur in einer einzelnen Konzentration getestet. Daher bestimmten wir in einem in-vitro-Kinaseassay in Kooperation mit Dr. Matthias Engel (Universität des Saarlandes, Saarbrücken) die IC50-Werte für CC gegenüber DYRK1A, DYRK1B und DYRK2. Unsere Ergebnisse zeigten deutlich, dass CC ein bevorzugter Inhibitor von DYRK1A und DYRK1B (IC50-Wert von etwa 1 µM) ist, aber auch DYRK2 hemmen kann (IC50-Wert von etwa 5 µM). Da sich die vermutete Bindestelle von CC in der stark konservierten Kinasedomäne befindet, ist eine unspezifische Inhibition verschiedener DYRKs nicht überraschend. Genexpressionsanalysen zeigten, dass HT-29 und HepG2 vergleichbare Mengen an DYRK1A exprimieren, während DYRK1B und DYRK2 deutlich weniger in HepG2 vorhanden sind. Vorige Experimente hatten gezeigt, dass HepG2 weniger sensitiv für ST911 und den durch CC vermittelten Rescue-Effekt waren. Wir schlussfolgerten, dass die unterschiedliche Expression der DYRK-Formen eine mögliche Erklärung für diese Unterschiede sein könnte. Daher entschieden wir uns für eine nähere Untersuchung von DRK1B und DYRK2. Experimente mit verschiedenen Inhibitoren der DYRKs zeigten, dass diese Substanzen, ähnlich wie CC, in der Lage waren die antiproliferative Wirkung von ST911 abzuschwächen. Diese Ergebnisse wurden in nachfolgenden Knockdown-Experimenten bestätigt. Dies legt nahe, dass die DYRKs zumindest teilweise für die Vermittlung des Rescue-Effektes verantwortlich sind. Zusammenfassend man kann sagen, dass der Rescue-Effekt vermutlich mit der Biosynthese von Polyaminen, dem Akt-Signalweg und dem proteasomalen Abbau von c-Myc zusammenhängt. Des Weiteren scheint die direkte Inhibition von DYRKs durch CC ein vielversprechender Ansatz für die Erklärung des Effektes zu sein. Allerdings konnte in keinem der Experimente eine kompletten Aufhebung des Rescue-Effektes durch CC gezeigt werden. Daher gehen wir davon aus, dass verschiedene Targets in die Vermittlung des Rescue-Effektes involviert sind. Dies ist höchstwahrscheinlich auf eine unspezifische, ATP-kompetitive Hemmung verschiedener Kinasen durch CC zurückzuführen. Nichtsdestotrotz, sind eine nähere Untersuchung von DYRKs im Rahmen der Therapieresistenz von Tumoren und eine genauere Aufklärung der am Rescue-Effekt beteiligten Signalwege eine interessantes Feld für weitere Untersuchungen.

Download full text files

  • Dissertation_Scherzberg_2015_Pflichtexemplar.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Maria-Christina Scherzberg
URN:urn:nbn:de:hebis:30:3-424066
Referee:Dieter SteinhilberORCiDGND, Robert FürstORCiDGND
Advisor:Dieter Steinhilber, Robert Fürst
Document Type:Doctoral Thesis
Language:English
Year of Completion:2015
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/11/13
Release Date:2016/12/01
Page Number:138
Last Page:124
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:397093756
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG