The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 23
Back to Result List

Combined inhibition of BET proteins and PI3Kα reallocates BRD4 to transcriptional regulatory elements of BH3-only proteins and triggers mitochondrial apoptosis

  • Rhabdomyosarcoma (RMS) is the most frequent pediatric soft-tissue sarcoma comprising two major subtypes – the alveolar and the embryonal rhabdomyosarcoma. The current therapeutic regime is multimodal including surgery, radiation and chemotherapy with cytostatic drugs. Although the prognosis for RMS patients has steadily improved to a 5-year overall survival rate of 70% for ERMS and 50% for ARMS, prognosis for subgroups with primary metastases or relapsed patients is still less than 25%, highlighting the need for development of new therapies for these subgroups. Since cancer cells are addicted to their cancer promoting transcriptional program, remodeling transcription by targeting bromodomain and extraterminal (BET) proteins has emerged as compelling anticancer strategy. However, in many cancer types BET inhibition was proved cytostatic but not cytotoxic emphasizing the need for combination protocols. In this study we identify a novel synergistic interaction of the BET inhibitor JQ1 with p110α-isoform-specific Phosphoinositid-3-Kinase (PI3K) inhibitor BYL719 (Alpelisib) to induce mitochondrial apoptosis and global reallocation of BRD4 to chromatin. At first, we showed that JQ1 single treatment had cytostatic effects at nanomolar concentrations and inhibited MYC and Hedgehog (Hh) signaling in RMS known to promote proliferation of RMS. However, JQ1 single treatment barely induced cell death in RMS cells even at concentrations of up to 20 µM (< 20% cell death). Thus, we next tested combination approaches to elicit cell death. Since we previously identified synergistic cell death induction of Hh inhibition and PI3K inhibition in RMS cells we tested JQ1 in combination with the pan-PI3K/mTOR inhibitor PI-103 and the p110α-isoform-specific PI3K inhibitor BYL719. In addition, we tested JQ1 in combination with distinct HDAC inhibitors namely JNJ-26481585, SAHA (Vorinostat), MS-275 (Entinostat) and LBH-589 (Panobinostat) since the synergistic interaction of BET and HDAC inhibition has previously been described for other tumor entities. Interestingly the synergism of cell death induction of JQ1/BYL719 co-treatment is superior to the synergism of JQ1 with pan-PI3K/mTOR inhibitor PI-103 or the tested HDAC inhibitors as confirmed by calculation of combination index. To investigate the molecular mechanisms underlying the synergy of JQ1/BYL719 co-treatment, we performed RNA-Seq and BRD4 ChIP-Seq experiments. RNA-Seq exhibited, that JQ1/BYL719 co-treatment shifted the overall balance of BCL-2 family gene expression towards apoptosis and increased gene expression of proapoptotic BMF, BCL2L11 (BIM) and PMAIP1 (NOXA) while decreasing gene expression of antiapoptotic BCL2L1 (BCL xL). These changes were verified by qRT-PCR and Western blot. Notably, BRD4 is phosphorylated upon JQ1/BYL719 co-treatment and globally reallocates BRD4 to chromatin. This BRD4 reallocation includes enrichment of BRD4 at the super-enhancer site of BMF, at the super-enhancer, typical enhancer and promoter regions of BCL2L11 (BIM) and at the PMAIP1 (NOXA) promoter, while JQ1 alone, as expected, reduces global chromatin binding of BRD4. Integration of RNA-Seq and BRD4 ChIP-Seq data underlines the transcriptional relevance of reallocated BRD4 upon JQ1/BYL719 co-treatment. Immunopreciptation studies showed, that RMS cells are initially primed to undergo mitochondrial apoptosis since BIM is constitutively bound to antiapoptotic BCL-2, BCL xL and MCL-1. JQ1/BYL719 co-treatment increased BIM expression and its neutralization of antiapoptotic BCL-2, BCL-xL and MCL-1 thereby rebalancing the ratio of pro- and antiapoptotic BCL-2 proteins in favor of apoptosis. This promotes activation of BAK and BAX resulting in caspase-dependent apoptosis. The functional relevance of proapoptotic re-balancing for the execution of JQ1/BYL719-mediated apoptosis was confirmed by individual silencing of BMF, BIM, NOXA or overexpression of BCL-2 or MCL-1, which all significantly rescued JQ1/BYL719-induced cell death. Execution of cell death by mitochondrial caspase-dependent apoptosis was veryfied by individual knockdown of BAK and BAX or caspase inhibitor N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone (zVAD.fmk), which all significantly rescued JQ1/BYL719-induced cell death. In summary, combined BET and PI3Kα inhibition cooperatively induces mitochondrial apoptosis by proapoptotic re-balancing of BCL-2 family proteins accompanied by reallocation of BRD4 to transcriptional regulatory elements of BH3-only proteins.

Download full text files

Export metadata

Metadaten
Author:Cathinka BoedickerORCiDGND
URN:urn:nbn:de:hebis:30:3-518572
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Simone FuldaORCiDGND
Advisor:Simone Fulda
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/12/02
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/07/08
Release Date:2019/12/12
Page Number:147
HeBIS-PPN:456875875
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht